
Propositional Logic – II

Madhavan Mukund

Chennai Mathematical Institute
http://www.cmi.ac.in/~madhavan

SAT-SMT School, TIFR
4 December 2016

http://www.cmi.ac.in/~madhavan

Logical consequence

• Recall, logical consequence X |= F — any assignment A that
satisfies all of X also satisfies F

• Special case is validity, |= F

• If X is finite, we can check logical consequence using a truth
table

• What if X is infinite?

Axiomatizations and proofs

• Set up a formal system to derive judgements about logical
consequences

• X ` F will dnote that “F can be derived from X”

• Inference rules reflect the semantics

If X ` F and X ` G then X ` F ∧ G (∧ introduction)

• Rules are uniquely identified by a label, here “∧ introduction”

• Typically written “vertically” as

X ` F ,X ` G
X ` F ∧ G

(∧ introduction)

• Above the line is the premise, below is the conclusion

Rules

G ∈ X
X ` G

(Axiom)
X ` G ,X ⊆ X ′

X ′ ` G
(Monotonicity)

X ` G
X ` ¬¬G

(Double negation)
X ` F ,X ` G
X ` F ∧ G

(∧ introduction)

X ` F ∧ G
X ` F

(∧ elimination)
X ` F ∧ G
X ` G ∧ F

(∧ symmetry)

X ` F ∨ G
X ` G ∨ F

(∨ symmetry)
X ` F

X ` F ∨ G
(∨ introduction)

X ` F ∨ G ,X ∪ {F} ` H,X ∪ {G} ` H
X ` H

(∨ elimination)

X ∪ {F} ` G
X ` F → G

(→ introduction)

X ` F → G ,
X ` F
X ` G

(→ elimination)

Formal proofs

• Some more rules to rewrite→,↔ in terms of ¬,∨ . . .

• A proof is a sequence of statements X ` F where each line
follows from a previous one by one of the rules

Example

• Anything can be derived from a contradiction

• Assume F ∧¬F ∈ X

1. X ` F ∧¬F (Axiom)
2. X ` ¬F ∧ F (∧ symmetry, 1)
3. X ` ¬F (∧ elimination, 2)
4. X ` ¬F ∨ G (∨ introduction, 3)
5. X ` F → G (→ rewrite, 5)
6. X ` F (∧ elimination, 1)
7. X ` G (→ elimination, 5 and 6)

Soundness

• If X ` F then X |= F

• Derivations only reveal “true” logical consequences

• By induction on the length of the proof

• The Axiom is sound

• Every rule preserves soundness

Completeness

• If X |= F then X ` F

• Every logical consequence can be derived in the system

• This is more difficult to prove

• Introduce a new rule, resolution

Resolution

• Assume F is in CNF

• Recall that a clause can be seen as a set of literals

• Let C1, C2 be clauses and A ∈ P such that A ∈ C1,
¬A ∈ C2

• We can resolve C1 and C2 to get
R = (C1 \ {A})∪ (C2 \ {¬A})

Example

• C1 = {A1,¬A2,A3}, C2 = {A2,¬A3,A4}
• Resolve (on A3) to get {A1,A2,¬A2,A4}
• Resolvent is not unique—resolve on A2 to get
{A1,¬A3,A3,A4}

Soundness of Resolution

Soundness

Let R be a resolvent of C1 and C2. Then {C1,C2} ` R

Let X = {C1,C2}, C1 = A∨ F , C2 = ¬A∨ G

1. X ` A∨ F (Axiom)
2. X ∪ {¬A} ` A∨ F (Monotonicity, 1)
3. X ∪ {¬A} ` ¬A (Axiom)
4. X ∪ {¬A} ` F (→ elimination, 2 and 3)
5. X ∪ {¬A} ` F ∨ G (∨ introduction, 4)
6. X ` ¬A∨ G (Axiom)
7. X ∪ {¬¬A} ` ¬A∨ g (Monotonicity, 6)
8. X ∪ {¬¬A} ` ¬¬A (Axiom)
9. X ∪ {¬¬A} ` G (→ elimination, 7 and 8)
10. X ∪ {¬¬A} ` G ∨ F (∨ introduction, 9)
11. X ∪ {¬¬A} ` F ∨ G (∨ symmetry, 10)
12. X ` F ∨ G (Proof by cases, 5 and 11)

Soundness of Resolution

• Hence we can add Resolution as a rule to our formal proof
system

• In fact, we need only Resolution to prove completness!

• Resolution preserve satisfiability

• If C1,C2 are satisfiable, their resolvent R is satisfiable

• If R is not satisfiable, C1,C2 are not satisfiable

• Empty clause (empty disjunction) is not satisfiable

• If resolution produces an empty clause, we have derived a
contradiction

Completeness

• Let Res0(F) = {C | C is a clause in F}
• For n > 0, Resn(F) = Resn−1(F)∪

{R | R is a resolvent of two clauses in Resn−1(F)}
• Since F is finite, we can only apply resolution a finite number

of times

• For some m, Resm(F) = Resm+1(F) = Res∗(F)

If ∅ ∈ Res∗(F), then F is unsatisfiable

• ∅ can only arise as resolvent of {A},{¬A}

Completeness . . .

If F is unsatisfiable, then ∅ ∈ Res∗(F)

• Assume F is in CNF

• Discard all tautological clauses

• Proof is by induction on number of atomic propositions in F

• Base case, one atomic proposition

• Possible clauses are {A}, {¬A}, {A,¬A}
• Last is a tautology, discard

• F = {{A}} or F = {{¬A}}, F is satisfiable

• F = {{A},{¬A}}, F is unsatisfiable, ∅ ∈ Res∗(F)

• Induction step . . .

Completeness . . .

Let F ,G ∈ F . Let H be CNF form of F ∧¬G .
The following are equivalent.

1. F |= G
2. {F} ` G
3. ∅ ∈ Res∗(H)

Compactness

Consider the following infinite set of sentences

• The universe has finitely many objects

• The universe has at least one object

• The universe has at least two objects

. . .

• The universe has at least n objects

. . .

• The entire set of sentences is contradictory

• However, every finite subset of sentences is satisfiable

• Compactness says that such a situation is impossible

Compactness . . .

Compactness

A set of formulas X is unsatisfiable iff some finite subset of X is
unsatisfiable

To prove this, we need König’s Lemma.

König’s Lemma

Let T be a finitely branching tree with infinitely many nodes.
Then T has an infinite path

• Call a node in T good if the subtree below the node is infinite

• Clearly the root of T is good

• Every good node has at least one good child (finite
branching!)

• Build an infinite path starting from the root, extending it to
include one good child at each step

Compactness . . .

• Enumerate P = {A0,A1,A2, . . .}
• A k-assignment is a function f : {A0,A1, . . . ,Ak} → {0, 1}
• Build a tree TA of k-assignments where

• Root is empty assignment

• Nodes at level j are j -assignments

• Children of a node at level j correspond to extensions
setting Aj+1 7→ 0 and Aj+1 7→ 1

• Infinite binary tree, each infinite path is an assignment A

Compactness . . .

• Suppose every finite set of X is satisfiable, but X is not
satisfiable overall

• Call a k-valuation in TA bad if it does not satisfy some
formula in X

• Prune each path below the first bad node on that path

• If the resulting tree is infinite, it has an infinite path π in
which no nodes are bad

• This path π defines a valuation that satisfies X

• Pick any F ∈ X .

• Let Aj be the largest proposition in F

• The j -valuation at depth j is not bad, so it satisfies F

Compactness . . .

• Suppose every finite set of X is satisfiable, but X is not
satisfiable overall

• Call a k-valuation in TA bad if it makes some formula in X
false

• Prune each path below the first bad node on that path

• The resulting tree must be finite, otherwise we have a
valuation that satisfies X

• This finite tree has a finite frontier {v1, v2, . . . , vm}
• Each frontier node vi is bad, so it fails to satisfy some formula

Fi ∈ X

• {F1,F2, . . . ,Fk} ⊆ X is not satisfiable

• Contradiction! Every finite subset of X is satisfiable

Compactness . . .

Compactness

If X |= F , then there is finite subset Y of X such that Y |= F

• IF X |= F the X ∪ {¬F} is unsatisfiable

• By previous argument, some finite subset Y ′ of X ∪ {¬F} is
unsatisfiable

• Choose Y = Y ′ \ {¬F}
• Clearly Y ∪ {¬F} is not satisfiable

• Hence Y |= F

Boolean functions

Ordered decision tree for f (a,b, c,d) = (a ∧ b)∨ (c ∧ d)

Binary decision diagram (BDD)

Compact representation of
boolean functions
([Bryant 1986])

• Reduced ordered
binary decision
diagram for
f (a,b, c,d) =
(a ∧ b)∨ (c ∧ d)

• Key idea
Combine equivalent
subcases

BDDs . . .

• BDD for f is canonical (for a fixed variable order)

• Check if f = g by comparing their BDDs

• Efficient algorithms for combining BDDs

• Build BDD for f op g for boolean operator op from
BDDs for f , g

• e.g., given BDD for f and g , can build BDD for f ∧ g

• Use BDDs to represent and manipulate state spaces

• Symbolic model checking ([Clarke, McMillan et al])

• More useful for hardware model checking than software
model checking

• Still at the heart of many tools

