Propositional Logic – II

Madhavan Mukund

Chennai Mathematical Institute http://www.cmi.ac.in/~madhavan

SAT-SMT School, TIFR 4 December 2016

Logical consequence

- Recall, logical consequence X |= F any assignment A that satisfies all of X also satisfies F
- Special case is validity, |= F
- If X is finite, we can check logical consequence using a truth table

• What if X is infinite?

Axiomatizations and proofs

- Set up a formal system to derive judgements about logical consequences
- X ⊢ F will dnote that "F can be derived from X"
- Inference rules reflect the semantics

If $X \vdash F$ and $X \vdash G$ then $X \vdash F \land G$ (\land introduction)

- Rules are uniquely identified by a label, here "∧ introduction"
- Typically written "vertically" as $\frac{X \vdash F, X \vdash G}{X \vdash F \land G} (\land \text{ introduction})$
- Above the line is the premise, below is the conclusion

Rules

$\frac{\pmb{G} \in \pmb{X}}{\pmb{X} \vdash \pmb{G}}$	(Axiom)	$\frac{\pmb{X}\vdash \pmb{G}, \pmb{X}\subseteq \pmb{X'}}{\pmb{X'}\vdash \pmb{G}}$	(Monotonicity)
$\frac{X\vdash G}{X\vdash \neg\neg G}$	(Double negation)	$\frac{X \vdash F, X \vdash G}{X \vdash F \land G}$	$(\land$ introduction)
$\frac{\pmb{X}\vdash \pmb{F}\wedge \pmb{G}}{\pmb{X}\vdash \pmb{F}}$	$(\land$ elimination)	$\frac{\pmb{X}\vdash \pmb{F}\wedge \pmb{G}}{\pmb{X}\vdash \pmb{G}\wedge \pmb{F}}$	(symmetry)
$\frac{X \vdash F \lor G}{X \vdash G \lor F}$	(∨ symmetry)	$\frac{\pmb{X}\vdash \pmb{F}}{\pmb{X}\vdash \pmb{F}\vee \pmb{G}}$	(V introduction)
$\frac{X \vdash F \lor G, X \cup \{F\} \vdash H, X \cup \{G\} \vdash H}{X \vdash H} (\lor \text{ elimination})$			
$\frac{X \cup \{F\} \vdash G}{X \vdash F \to G}$	$(\rightarrow$ introduction)	$\frac{X \vdash F}{X \vdash G}$	(→ elimination)

Formal proofs

- Some more rules to rewrite \rightarrow , \leftrightarrow in terms of \neg , \lor ...
- A proof is a sequence of statements X ⊢ F where each line follows from a previous one by one of the rules

Example

- Anything can be derived from a contradiction
- Assume $F \land \neg F \in X$

1.	$X \vdash F \land \neg F$	(Axiom)
2.	$X \vdash \neg F \land F$	(\land symmetry, 1)
3.	$X \vdash \neg F$	(^ elimination, 2)
4.	$X \vdash \neg F \lor G$	(∨ introduction, 3)
5.	$X \vdash F ightarrow G$	$(\rightarrow$ rewrite, 5)
6.	X ⊢ F	$(\land$ elimination, 1)
7.	X ⊢ G	$(\rightarrow$ elimination, 5 and 6

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Soundness

- If $X \vdash F$ then $X \models F$
- Derivations only reveal "true" logical consequences

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- By induction on the length of the proof
- The Axiom is sound
- Every rule preserves soundness

Completeness

- If $X \models F$ then $X \vdash F$
- Every logical consequence can be derived in the system

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

- This is more difficult to prove
- Introduce a new rule, resolution

Resolution

- Assume *F* is in CNF
- Recall that a clause can be seen as a set of literals
- Let C_1 , C_2 be clauses and $A \in \mathcal{P}$ such that $A \in C_1$, $\neg A \in C_2$
- We can resolve C_1 and C_2 to get $R = (C_1 \setminus \{A\}) \cup (C_2 \setminus \{\neg A\})$

Example

- $C_1 = \{A_1, \neg A_2, A_3\}, C_2 = \{A_2, \neg A_3, A_4\}$
- Resolve (on A_3) to get $\{A_1, A_2, \neg A_2, A_4\}$
- Resolvent is not unique—resolve on A_2 to get $\{A_1, \neg A_3, A_3, A_4\}$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Soundness of Resolution

Soundness

```
Let R be a resolvent of C_1 and C_2. Then \{C_1, C_2\} \vdash R
```

Let $X = \{C_1, C_2\}, C_1 = A \lor F, C_2 = \neg A \lor G$

1.
$$X \vdash A \lor F$$

$$2. \quad X \cup \{\neg A\} \vdash A \lor F$$

$$\begin{array}{ccc} \mathbf{X} \cup \{\neg \mathbf{A}\} \vdash \neg \mathbf{A} \\ \mathbf{X} \cup \{\neg \mathbf{A}\} \vdash \mathbf{F} \end{array}$$

5.
$$X \cup \{\neg A\} \vdash F \lor G$$

6.
$$X \vdash \neg A \lor G$$

7.
$$X \cup \{\neg \neg A\} \vdash \neg A \lor g$$

$$\mathbf{X} \cup \{\neg \neg \mathbf{A}\} \vdash \neg \neg \mathbf{A}$$

10.
$$X \cup \{\neg \neg A\} \vdash G \lor F$$

11.
$$X \cup \{\neg \neg A\} \vdash F \lor G$$

12. $X \vdash F \lor G$

(Axiom) (Monotonicity, 1) (Axiom) $(\rightarrow \text{ elimination, 2 and 3})$ (∨ introduction, 4) (Axiom) (Monotonicity, 6) (Axiom) $(\rightarrow \text{ elimination}, 7 \text{ and } 8)$ $(\vee \text{ introduction, } 9)$ $(\lor$ symmetry, 10) (Proof by cases, 5 and 11) = ∽ac

Soundness of Resolution

- Hence we can add Resolution as a rule to our formal proof system
- In fact, we need only Resolution to prove completness!
- Resolution preserve satisfiability
 - If C_1, C_2 are satisfiable, their resolvent R is satisfiable
 - If R is not satisfiable, C_1, C_2 are not satisfiable
 - Empty clause (empty disjunction) is not satisfiable
 - If resolution produces an empty clause, we have derived a contradiction

Completeness

- Let $\operatorname{Res}^{0}(F) = \{C \mid C \text{ is a clause in } F\}$
- For n > 0, $\operatorname{Res}^{n}(F) = \operatorname{Res}^{n-1}(F) \cup \{R \mid R \text{ is a resolvent of two clauses in } \operatorname{Res}^{n-1}(F)\}$
- Since F is finite, we can only apply resolution a finite number of times

• For some m, $\operatorname{Res}^{m}(F) = \operatorname{Res}^{m+1}(F) = \operatorname{Res}^{*}(F)$

If $\emptyset \in \text{Res}^*(F)$, then F is unsatisfiable

• \emptyset can only arise as resolvent of $\{A\}, \{\neg A\}$

Completeness ...

If **F** is unsatisfiable, then $\emptyset \in \text{Res}^*(F)$

- Assume *F* is in CNF
- Discard all tautological clauses
- Proof is by induction on number of atomic propositions in F
- Base case, one atomic proposition
 - Possible clauses are $\{A\}$, $\{\neg A\}$, $\{A, \neg A\}$
 - Last is a tautology, discard
 - $F = \{\{A\}\}$ or $F = \{\{\neg A\}\}$, F is satisfiable
 - $F = \{\{A\}, \{\neg A\}\}, F$ is unsatisfiable, $\emptyset \in \text{Res}^*(F)$
- Induction step ...

Completeness ...

Let $F, G \in \mathcal{F}$. Let H be CNF form of $F \land \neg G$. The following are equivalent. 1. $F \models G$ 2. $\{F\} \vdash G$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへで

3. $\emptyset \in \operatorname{Res}^*(H)$

Compactness

. . .

. . .

Consider the following infinite set of sentences

- The universe has finitely many objects
- The universe has at least one object
- The universe has at least two objects
- The universe has at least *n* objects

- The entire set of sentences is contradictory
- However, every finite subset of sentences is satisfiable
- Compactness says that such a situation is impossible

Compactness

A set of formulas \boldsymbol{X} is unsatisfiable iff some finite subset of \boldsymbol{X} is unsatisfiable

To prove this, we need König's Lemma.

König's Lemma

Let T be a finitely branching tree with infinitely many nodes. Then T has an infinite path

- Call a node in **7** good if the subtree below the node is infinite
- Clearly the root of *T* is good
- Every good node has at least one good child (finite branching!)
- Build an infinite path starting from the root, extending it to include one good child at each step

- Enumerate $\mathcal{P} = \{A_0, A_1, A_2, \ldots\}$
- A *k*-assignment is a function $f : \{A_0, A_1, \dots, A_k\} \rightarrow \{0, 1\}$
- Build a tree $T_{\mathcal{A}}$ of k-assignments where
 - Root is empty assignment
 - Nodes at level *j* are *j*-assignments
 - Children of a node at level j correspond to extensions setting $A_{j+1} \mapsto 0$ and $A_{j+1} \mapsto 1$
 - Infinite binary tree, each infinite path is an assignment $\mathcal A$

- Suppose every finite set of X is satisfiable, but X is not satisfiable overall
- Call a k-valuation in T_A bad if it does not satisfy some formula in X
- Prune each path below the first bad node on that path
- If the resulting tree is infinite, it has an infinite path π in which no nodes are bad
- This path π defines a valuation that satisfies X
 - Pick any $F \in X$.
 - Let A_j be the largest proposition in F
 - The *j*-valuation at depth *j* is not bad, so it satisfies *F*

- Suppose every finite set of X is satisfiable, but X is not satisfiable overall
- Call a k-valuation in T_A bad if it makes some formula in X false
- Prune each path below the first bad node on that path
- The resulting tree must be finite, otherwise we have a valuation that satisfies X
- This finite tree has a finite frontier $\{v_1, v_2, \dots, v_m\}$
- Each frontier node v_i is bad, so it fails to satisfy some formula
 F_i ∈ X
- $\{F_1, F_2, \dots, F_k\} \subseteq X$ is not satisfiable
- Contradiction! Every finite subset of X is satisfiable

Compactness

If $X \models F$, then there is finite subset Y of X such that $Y \models F$

- IF $X \models F$ the $X \cup \{\neg F\}$ is unsatisfiable
- By previous argument, some finite subset Y' of X ∪ {¬F} is unsatisfiable

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- Choose $Y = Y' \setminus \{\neg F\}$
- Clearly $Y \cup \{\neg F\}$ is not satisfiable
- Hence $Y \models F$

Boolean functions

Ordered decision tree for $f(a, b, c, d) = (a \land b) \lor (c \land d)$

Binary decision diagram (BDD)

Compact representation of boolean functions ([Bryant 1986])

- Reduced ordered binary decision diagram for f(a, b, c, d) = (a ∧ b) ∨ (c ∧ d)
- Key idea Combine equivalent subcases

BDDs ...

- BDD for **f** is canonical (for a fixed variable order)
 - Check if f = g by comparing their BDDs
- Efficient algorithms for combining BDDs
 - Build BDD for *f* op *g* for boolean operator op from BDDs for *f*, *g*
 - e.g., given BDD for f and g, can build BDD for $f \land g$
- Use BDDs to represent and manipulate state spaces
 - Symbolic model checking ([Clarke, McMillan et al])
 - More useful for hardware model checking than software model checking
 - Still at the heart of many tools