Propositional Logic - I

Madhavan Mukund

Chennai Mathematical Institute
http://www.cmi.ac.in/~madhavan

SAT-SMT School, TIFR
4 December 2016

What is logic about?

- Structure of logical arguments

All men are mortal.
Socrates is a man.
Therefore, Socrates is mortal.

- Which word are important? AII? Mortal?

Borogoves are mimsy whenever it is brillig.
It is now brillig and this thing is a borogove.
Hence this thing is mimsy.

Propositional logic

- Propositions are atomic facts that can be either True or False
- The sky is blue
- Donald Trump won the election
- Connect propositions to make complex statements
- The sky is blue and it is raining
- If Hillary Clinton won the election then demonetization will be rolled back

Propositional logic

- A snobbish club takes in members only if they are rich or famous, with the added provision that no one who is famous but not rich is admitted.
- To join the club, you must be (a) rich, (b) rich but not famous, (c) famous but not rich, (d) both rich and famous?
- Let R denote rich, F denote famous
- Membership criteria: (R or $F)$ and $\operatorname{not}(F$ and $\operatorname{not}(R))$
- Try all possible combinations of setting R and F to \{True, False\}

Syntax

- Assume a countably infinite set $\mathcal{P}=\left\{A_{1}, A_{2}, \ldots\right\}$ of atomic propositions
- Ignore interpretation, just formal symbols
- Two logical connectives
- \neg, unary (not, negation)
- \vee, binary (or, disjunction)
- The set of formulas \mathcal{F} is defined as follows
- Every atomic proposition belongs to \mathcal{F}
- If $F \in \mathcal{F}$, then $\neg F \in \mathcal{F}$
- If $F, G \in \mathcal{F}$, then $F \vee G \in \mathcal{F}$

Semantics

- The meaning of a formula is a truth value in \{True, False \}
- For convenience, denote True by 1, False by 0
- An assignment $\mathcal{A}: \mathcal{P} \rightarrow\{0,1\}$ fixes the truth value of each atomic proposition
- Extend to all formulas: $\mathcal{A}: \mathcal{F} \rightarrow\{0,1\}$ is defined as follows
- $F=A \in \mathcal{P}: \mathcal{A}(F)=\mathcal{A}(A)$
- $F=\neg G: \mathcal{A}(F)=1-\mathcal{A}(G)$
- $F=G_{1} \vee G_{1}: \mathcal{A}(F)=1$ if either $\mathcal{A}\left(G_{1}\right)=1$ or $\mathcal{A}\left(G_{2}\right)=1$ (or both)
- V is inclusive - in natural language, or is usually exclusive
- I'll take a bus or a taxi

Derived connectives

- And: $F \wedge G \stackrel{\text { defn }}{=} \neg(\neg F \vee \neg G)$
- $\mathcal{A}(F \wedge G)=1$ iff $\mathcal{A}(F)=1$ and $\mathcal{A}(G)=1$
- Note: Use parentheses for disambiguation where needed.
- Implies: $F \rightarrow G \stackrel{\text { defn }}{=} \neg F \vee G$
- $\mathcal{A}(F \rightarrow G)=0$ iff $\mathcal{A}(F)=1$ and $\mathcal{A}(G)=0$
- If the premise is false, the formula is automatically true
- Hillary won election \rightarrow demonetization rolled back
- Iff: $F \leftrightarrow G \stackrel{\text { defn }}{=}(F \rightarrow G) \wedge(G \rightarrow F)$
- $\mathcal{A}(F \wedge G)=\mathbb{1}$ iff $\mathcal{A}(F)=\mathcal{A}(G)$
- Truth values:
- $\top \stackrel{\text { defn }}{=}\left(A_{1} \vee \neg A_{1}\right), \mathcal{A}(\top)=1$
- $\perp \stackrel{\text { defn }}{=}\left(A_{1} \wedge \neg A_{1}\right), \mathcal{A}(\perp)=0$

Derived connectives

- We will use derived connectives freely
- Derived connectives are convenient for writing formulas
- Minimal set of basic connectives makes proofs easier
- $\{\neg, \wedge\}$ can also be used as a basis

Satisfiability, validity

- $\mathcal{A} \vDash F$ denotes that $\mathcal{A}(F)=\mathbb{1}$
- A formula F is satisfiable if there is some assignment \mathcal{A} such that $\mathcal{A} \models F$
- $A, A \rightarrow B$
- A formula F is valid if $\mathcal{A} \models F$ for every assignment \mathcal{A}
- $A \vee \neg A,((A \rightarrow B) \wedge(B \rightarrow C)) \rightarrow(A \rightarrow C)$
- A formula F is a contradiction if $\mathcal{A} \not \vDash F$ for every assignment \mathcal{A}
- $C \wedge \neg C,((A \rightarrow B) \wedge(B \rightarrow C)) \rightarrow(A \rightarrow \neg C)$

Satisfiability, validity

- Decision problem: Is F satisfiable/valid?

Fact

F is valid iff $\neg F$ is not satisfiable

- Sufficient to develop an algorithm for one of the two

Deciding satisfiability

- Truth value of F depends only on atomic propositions mentioned in F - vocabulary of F
- $\mathcal{A}(A \rightarrow(B \rightarrow A))$ is independent of $\mathcal{A}(C)$
- Formulas are finite, construct a truth table enumerating all possible values of atomic propositions

A	B	$B \rightarrow A$	$A \rightarrow(B \rightarrow A)$
0	0	1	1
0	1	0	1
1	0	1	1
1	1	1	1

- Satisfiable: at least one row evaluates to 1
- Valid: all rows evaluate to 1
- Truth table has 2^{n} rows - exponential algorithm

Logical consequence

- G is a logical consequence of F if, whenver F is true, G must also be true
- For every assignment \mathcal{A}, if $\mathcal{A} \models F$, then $\mathcal{A} \models G$
- We write $F \models G$
- For a set $X=\left\{F_{1}, F_{2}, \ldots, F_{m}\right\}, X \models G$ if, whenever $\mathcal{A} \equiv F_{i}$ for each $i \in\{1,2, \ldots, m\}$, it is also the case that $\mathcal{A} \vDash G$
- F and G are equivalent if $F \models G$ and $G \models F$
- F is true exactly when G is true
- Write $F \equiv G$

Equivalences

- \vee and \wedge distribute over each other
- $F \wedge(G \vee H) \equiv(F \wedge G) \vee(F \wedge H)$
- $F \vee(G \wedge H) \equiv(F \vee G) \wedge(F \vee H)$
- De Morgan's laws, pushing negations inside \vee and \wedge
- $\neg(F \wedge G) \equiv \neg F \vee \neg G$
- $\neg(F \vee G) \equiv \neg F \wedge \neg G$
- Double negation
- $\neg \neg F \equiv F$

Subformulas

- Any formula is a subformula of itself.
- Any subformula of F is also a subformula of $\neg F$
- Any subformula of F or G is also a subformula of $F \vee G$.
- As usual, can associate a unique parse tree with every formula

- Subformulas correspond to subtrees of the parse tree

Subformulas and substitution

Substitution Theorem

Let F be a subformula of H, and let $F \equiv G$. Let H^{\prime} be the formula obtained by replacing F in H with G. Then $H \equiv H^{\prime}$.

- How does one prove such a result?

Structural induction

- To prove that property Θ holds for all formulas in \mathcal{F}, use induction over the structural complexity of the formula
- Every atomic proposition in \mathcal{P} satisfies Θ
- If $F \in \mathcal{F}$ satisfies Θ, so does $\neg F$
- If $F, G \in \mathcal{F}$ satisfy Θ, so does $F \vee G$
- Having a small set of connectives reduces the number of cases to consider

Negation normal form (NNF)

- Connectives are \neg, \vee, \wedge
- Negations appear only next to atomic propositions
- Translate $\rightarrow, \leftrightarrow, \ldots$ into \neg, \vee, \wedge
- Use De Morgan's laws, double negation to push negations inwords
- $\neg(\mathbf{A} \rightarrow(B \rightarrow \boldsymbol{A}))$
$\Rightarrow \neg(\neg \boldsymbol{A} \vee(\neg \boldsymbol{B} \vee \boldsymbol{A}))$
$\Rightarrow \neg \neg A \wedge \neg(\neg B \vee A)$
$\Rightarrow A \wedge(\neg \neg B \wedge \neg A)$
$\Rightarrow A \wedge(B \wedge \neg A)$

Conjunctive normal form (CNF)

- Conjunction of clauses
- A clause is disjunction of literals
- A literal is an atomic proposition A or its negation $\neg A$
- $(A \vee B) \wedge(\neg A \vee C \vee \neg D)$
- Can assume no literals are duplicated in a clause, no clauses are duplicated
- Each clause is a set of literals
- A formula in CNF is a set of clauses (a set of sets of literals)
- CNF is most convenient input format for SAT solving algorithms

Converting NNF to CNF

- Use distributivity of \vee over \wedge
- $\left(F_{1} \wedge \neg \neg F_{2}\right) \vee\left(\neg G_{1} \rightarrow G_{2}\right)$

$$
\Rightarrow\left(F_{1} \wedge F_{2}\right) \vee\left(\neg \neg G_{1} \vee G_{2}\right)
$$

$$
\Rightarrow\left(F_{1} \wedge F_{2}\right) \vee\left(G_{1} \vee G_{2}\right)
$$

$$
\Rightarrow\left(F_{1} \vee\left(G_{1} \vee G_{2}\right)\right) \wedge\left(F_{2} \vee\left(G_{1} \vee G_{2}\right)\right)
$$

$$
\Rightarrow\left(F_{1} \vee G_{1} \vee G_{2}\right) \wedge\left(F_{2} \vee G_{1} \vee G_{2}\right)
$$

- Distributivity can cause exponential blowup
- Input: $\left(A_{1} \wedge B_{1}\right) \vee\left(A_{2} \wedge B_{2}\right) \vee \cdots\left(A_{n} \wedge B_{n}\right)$
- CNF has 2^{n} clauses $\left(A_{1} \vee A_{2} \vee \cdots \vee A_{n}\right)$,
$\left(B_{1} \vee A_{2} \vee \cdots \vee A_{n}\right), \ldots,\left(B_{1} \vee B_{2} \vee \cdots \vee B_{n}\right)$

Disjunctive normal form (DNF)

- Disjunction of conjuncts
- $(A \wedge B \wedge \neg C) \vee(\neg A \wedge \neg D \wedge E)$
- Conversion procedure is similar to CNF - use distributivity
- Again exponential blowup, but satisfiability checking is easy
- Check conjunctive clause by conjunctive clause

Efficient transformation to CNF

- CNF and DNF conversion produce equivalent formulas
- $F \equiv \operatorname{CNF}(F), F \equiv \operatorname{DNF}(F)$
- For checking satisfiability, weaker transformation suffices
- F and G are equisatisfiable if F is satisfiable whenever G is satisfiable
- Need not be satisfied in same assignment
- There is some \mathcal{A}_{F} with $\mathcal{A}_{F} \models F$ iff there is some \mathcal{A}_{G} with $\mathcal{A}_{G} \models G$
- Can efficiently transform F into CNF formula that is equisatifiable

Tseitin transformation

- Want to transform $\left(A_{1} \wedge A_{2}\right) \vee\left(B_{1} \wedge B_{2}\right)$ into CNF
- Introduce a new switching proposition for \vee
- $\left(Z \rightarrow\left(A_{1} \wedge A_{2}\right)\right) \wedge\left(\neg Z \rightarrow\left(B_{1} \wedge B_{2}\right)\right)$
- Rewrite as $\left(\neg Z \vee\left(A_{1} \wedge A_{2}\right)\right) \wedge\left(Z \vee\left(B_{1} \wedge B_{2}\right)\right)$
- Expands as $\left(\neg Z \vee A_{1}\right) \wedge\left(\neg Z \vee A_{2}\right) \wedge\left(Z \vee B_{1}\right) \wedge\left(Z \vee B_{2}\right)$
- Do this recursively
- To transform $\left(\left(A_{1} \wedge A_{2}\right) \vee\left(B_{1} \wedge B_{2}\right)\right) \vee\left(C_{1} \wedge C_{2}\right)$
- Switching proposition Z accounts for inner \vee


```
( C1^C2)
```

- Add another switching proposition Y for outer \vee

$$
\begin{aligned}
& \left(\neg Y \vee \neg Z \vee A_{1}\right) \wedge\left(\neg Y \vee \neg Z \vee A_{2}\right) \wedge(\neg Y \vee Z \vee \\
& \left.B_{1}\right) \wedge\left(\neg Y \vee Z \vee B_{2}\right) \wedge\left(Y \vee C_{1}\right) \wedge\left(Y \vee C_{2}\right)
\end{aligned}
$$

Tseitin transformation

- More formally, assume input F is in NNF (only \neg, \vee, \wedge)
- Suppose F has a subformula $G_{1} \wedge \ldots \wedge G_{n}$ below an
- Replace $G_{1} \wedge \cdots \wedge G_{n}$ by a new proposition Z, resulting in $F(Z)$
- New formula is

$$
F(Z) \wedge\left(\neg Z \vee G_{1}\right) \wedge\left(\neg Z \vee G_{2}\right) \wedge \cdots \wedge\left(\neg Z \vee G_{n}\right)
$$

- Equisatisfiable - by structural induction
- Blowup is quadratic - each literal becomes a clause, attached to new switching propositions according to nesting depth with respect to
- Tseitin has also defined another transformation with a linear blowup

Encoding hard problems

- Satisfiability is decidable using truth tables, but the procedure has exponential complexity
- Is this inherent?
- Apparently, yes! SAT was the first problem shown to be NP-Complete
- Cook's Theorem: Encode computation of an NP machine M on input I as a polynomial-size propositional formula that is satisfiable iff M accepts I
- Let's look at a simpler example

Graph colouring

- Colour $G=(V, E)$ with at most d colours
- Each vertex is assigned a colour so that any pair of vertices connected by an edge has different colours
- $V=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}, C=\{1,2, \ldots, d\}$
- Proposition $p_{i j}$ - vertex v_{i} is assigned colour j
- Each vertex has a colour

$$
\text { For each } i \in\{1,2, \ldots, n\},\left(p_{i 1} \vee p_{i 2} \vee \cdots \vee p_{i d}\right)
$$

- Endpoints of edges are coloured differently

For each $\left(v_{i}, v_{j}\right) \in E$, for each colour $k,\left(\neg p_{i k} \vee \neg p_{j k}\right)$

