
Propositional Logic – I

Madhavan Mukund

Chennai Mathematical Institute
http://www.cmi.ac.in/~madhavan

SAT-SMT School, TIFR
4 December 2016

http://www.cmi.ac.in/~madhavan

What is logic about?

• Structure of logical arguments

All men are mortal.
Socrates is a man.
Therefore, Socrates is mortal.

• Which word are important? All? Mortal?

Borogoves are mimsy whenever it is brillig.
It is now brillig and this thing is a borogove.
Hence this thing is mimsy.

Propositional logic

• Propositions are atomic facts that can be either True or False

• The sky is blue

• Donald Trump won the election

• Connect propositions to make complex statements

• The sky is blue and it is raining

• If Hillary Clinton won the election then demonetization
will be rolled back

Propositional logic

• A snobbish club takes in members only if they are rich or
famous, with the added provision that no one who is famous
but not rich is admitted.

• To join the club, you must be (a) rich, (b) rich but not
famous, (c) famous but not rich, (d) both rich and
famous?

• Let R denote rich, F denote famous

• Membership criteria: (R or F) and not(F and not(R))

• Try all possible combinations of setting R and F to
{True, False}

Syntax

• Assume a countably infinite set P = {A1,A2, . . .} of atomic
propositions

• Ignore interpretation, just formal symbols

• Two logical connectives

• ¬, unary (not, negation)

• ∨, binary (or, disjunction)

• The set of formulas F is defined as follows

• Every atomic proposition belongs to F
• If F ∈ F , then ¬F ∈ F
• If F ,G ∈ F , then F ∨ G ∈ F

Semantics

• The meaning of a formula is a truth value in {True, False }
• For convenience, denote True by 1, False by 0

• An assignment A : P → {0, 1} fixes the truth value of each
atomic proposition

• Extend to all formulas: A : F → {0, 1} is defined as follows

• F = A ∈ P : A(F) = A(A)

• F = ¬G : A(F) = 1−A(G)

• F = G1 ∨ G1: A(F) = 1 if either A(G1) = 1 or
A(G2) = 1 (or both)

• ∨ is inclusive — in natural language, or is usually exclusive

• I’ll take a bus or a taxi

Derived connectives

• And: F ∧ G defn
= ¬(¬F ∨¬G)

• A(F ∧ G) = 1 iff A(F) = 1 and A(G) = 1

• Note: Use parentheses for disambiguation where needed.

• Implies: F → G defn
= ¬F ∨ G

• A(F → G) = 0 iff A(F) = 1 and A(G) = 0

• If the premise is false, the formula is automatically true

• Hillary won election→ demonetization rolled back

• Iff: F ↔ G defn
= (F → G)∧ (G → F)

• A(F ∧ G) = 1 iff A(F) = A(G)

• Truth values:

• > defn
= (A1 ∨¬A1), A(>) = 1

• ⊥ defn
= (A1 ∧¬A1), A(⊥) = 0

Derived connectives . . .

• We will use derived connectives freely

• Derived connectives are convenient for writing formulas

• Minimal set of basic connectives makes proofs easier

• {¬,∧} can also be used as a basis

Satisfiability, validity

• A |= F denotes that A(F) = 1

• A formula F is satisfiable if there is some assignment A such
that A |= F

• A, A→ B

• A formula F is valid if A |= F for every assignment A
• A∨¬A, ((A→ B)∧ (B → C))→ (A→ C)

• A formula F is a contradiction if A 6|= F for every assignment
A
• C ∧¬C , ((A→ B)∧ (B → C))→ (A→¬C)

Satisfiability, validity

• Decision problem: Is F satisfiable/valid?

Fact

F is valid iff ¬F is not satisfiable

• Sufficient to develop an algorithm for one of the two

Deciding satisfiability

• Truth value of F depends only on atomic propositions
mentioned in F — vocabulary of F

• A(A→ (B → A)) is independent of A(C)

• Formulas are finite, construct a truth table enumerating all
possible values of atomic propositions

A B B → A A→ (B → A)

0 0 1 1
0 1 0 1
1 0 1 1
1 1 1 1

• Satisfiable: at least one row evaluates to 1

• Valid: all rows evaluate to 1

• Truth table has 2n rows — exponential algorithm

Logical consequence

• G is a logical consequence of F if, whenver F is true, G must
also be true

• For every assignment A, if A |= F , then A |= G

• We write F |= G

• For a set X = {F1,F2, . . . ,Fm}, X |= G if, whenever
A |= Fi for each i ∈ {1, 2, . . . ,m}, it is also the case that
A |= G

• F and G are equivalent if F |= G and G |= F

• F is true exactly when G is true

• Write F ≡ G

Equivalences

• ∨ and ∧ distribute over each other

• F ∧ (G ∨H) ≡ (F ∧ G)∨ (F ∧H)

• F ∨ (G ∧H) ≡ (F ∨ G)∧ (F ∨H)

• De Morgan’s laws, pushing negations inside ∨ and ∧
• ¬(F ∧ G) ≡ ¬F ∨¬G

• ¬(F ∨ G) ≡ ¬F ∧¬G

• Double negation

• ¬¬F ≡ F

Subformulas

• Any formula is a subformula of itself.

• Any subformula of F is also a subformula of ¬F

• Any subformula of F or G is also a subformula of F ∨ G .

• As usual, can associate a unique parse tree with every formula

• Subformulas correspond to subtrees of the parse tree

Subformulas and substitution

Substitution Theorem

Let F be a subformula of H , and let F ≡ G . Let H ′ be the
formula obtained by replacing F in H with G . Then H ≡ H ′.

• How does one prove such a result?

Structural induction

• To prove that property Θ holds for all formulas in F , use
induction over the structural complexity of the formula

• Every atomic proposition in P satisfies Θ

• If F ∈ F satisfies Θ, so does ¬F

• If F ,G ∈ F satisfy Θ, so does F ∨ G

• Having a small set of connectives reduces the number of cases
to consider

Negation normal form (NNF)

• Connectives are ¬, ∨, ∧
• Negations appear only next to atomic propositions

• Translate→,↔, . . . into ¬, ∨, ∧
• Use De Morgan’s laws, double negation to push negations

inwords

• ¬(A→ (B → A))
⇒ ¬(¬A∨ (¬B ∨ A))
⇒ ¬¬A∧¬(¬B ∨ A)
⇒ A∧ (¬¬B ∧¬A)
⇒ A∧ (B ∧¬A)

Conjunctive normal form (CNF)

• Conjunction of clauses

• A clause is disjunction of literals

• A literal is an atomic proposition A or its negation ¬A

• (A∨ B)∧ (¬A∨ C ∨¬D)

• Can assume no literals are duplicated in a clause, no clauses
are duplicated

• Each clause is a set of literals

• A formula in CNF is a set of clauses (a set of sets of literals)

• CNF is most convenient input format for SAT solving
algorithms

Converting NNF to CNF

• Use distributivity of ∨ over ∧
• (F1 ∧¬¬F2)∨ (¬G1→ G2)
⇒ (F1 ∧ F2)∨ (¬¬G1 ∨ G2)
⇒ (F1 ∧ F2)∨ (G1 ∨ G2)
⇒ (F1 ∨ (G1 ∨ G2))∧ (F2 ∨ (G1 ∨ G2))
⇒ (F1 ∨ G1 ∨ G2)∧ (F2 ∨ G1 ∨ G2)

• Distributivity can cause exponential blowup

• Input: (A1 ∧ B1)∨ (A2 ∧ B2)∨ · · ·(An ∧ Bn)

• CNF has 2n clauses (A1 ∨ A2 ∨ · · · ∨ An),
(B1 ∨ A2 ∨ · · · ∨ An), . . . , (B1 ∨ B2 ∨ · · · ∨ Bn)

Disjunctive normal form (DNF)

• Disjunction of conjuncts

• (A∧ B ∧¬C)∨ (¬A∧¬D ∧ E)

• Conversion procedure is similar to CNF — use distributivity

• Again exponential blowup, but satisfiability checking is easy

• Check conjunctive clause by conjunctive clause

Efficient transformation to CNF

• CNF and DNF conversion produce equivalent formulas

• F ≡ CNF(F), F ≡ DNF(F)

• For checking satisfiability, weaker transformation suffices

• F and G are equisatisfiable if F is satisfiable whenever G is
satisfiable

• Need not be satisfied in same assignment

• There is some AF with AF |= F iff there is some AG
with AG |= G

• Can efficiently transform F into CNF formula that is
equisatifiable

Tseitin transformation

• Want to transform (A1 ∧ A2) ∨ (B1 ∧ B2) into CNF

• Introduce a new switching proposition for ∨
• (Z → (A1 ∧ A2))∧ (¬Z → (B1 ∧ B2))

• Rewrite as (¬Z ∨ (A1 ∧ A2))∧ (Z ∨ (B1 ∧ B2))

• Expands as (¬Z ∨A1)∧ (¬Z ∨A2)∧ (Z ∨B1)∧ (Z ∨B2)

• Do this recursively

• To transform ((A1 ∧ A2)∨ (B1 ∧ B2)) ∨ (C1 ∧ C2)

• Switching proposition Z accounts for inner ∨
((¬Z ∨ A1)∧ (¬Z ∨ A2)∧ (Z ∨ B1)∧ (Z ∨ B2)) ∨
(C1 ∧ C2)

• Add another switching proposition Y for outer ∨
(¬Y ∨¬Z ∨ A1)∧ (¬Y ∨¬Z ∨ A2)∧ (¬Y ∨ Z ∨
B1)∧ (¬Y ∨ Z ∨ B2)∧ (Y ∨ C1)∧ (Y ∨ C2)

Tseitin transformation

• More formally, assume input F is in NNF (only ¬, ∨, ∧)

• Suppose F has a subformula G1 ∧ · · · ∧ Gn below an ∨
• Replace G1 ∧ · · · ∧ Gn by a new proposition Z , resulting in

F(Z)

• New formula is
F(Z)∧ (¬Z ∨ G1)∧ (¬Z ∨ G2)∧ · · · ∧ (¬Z ∨ Gn)

• Equisatisfiable — by structural induction

• Blowup is quadratic — each literal becomes a clause,
attached to new switching propositions according to nesting
depth with respect to ∨
• Tseitin has also defined another transformation with a linear

blowup

Encoding hard problems

• Satisfiability is decidable using truth tables, but the procedure
has exponential complexity

• Is this inherent?

• Apparently, yes! SAT was the first problem shown to be
NP-Complete

• Cook’s Theorem: Encode computation of an NP machine
M on input I as a polynomial-size propositional formula
that is satisfiable iff M accepts I

• Let’s look at a simpler example

Graph colouring

• Colour G = (V ,E) with at most d colours

• Each vertex is assigned a colour so that any pair of vertices
connected by an edge has different colours

• V = {v1, v2, . . . , vn}, C = {1, 2, . . . ,d}
• Proposition pij — vertex vi is assigned colour j

• Each vertex has a colour

For each i ∈ {1, 2, . . . ,n}, (pi1 ∨ pi2 ∨ · · · ∨ pid)

• Endpoints of edges are coloured differently

For each (vi , vj) ∈ E , for each colour k , (¬pik ∨¬pjk)

