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Haskell review

� Program ≡ Collection of function definitions

� Computation ≡ Rewriting using definitions
� Functions are associated with input and output types
� isDigit :: Char -> Bool

isDigit ’0’ = True
isDigit ’1’ = True
...
isDigit ’9’ = True
isDigit c = False

� isDigit c
| (c >= ’0’ && c <= ’9’) = True

| otherwise = False
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Haskell review . . .

� Basic collective type is a list

� Define list functions by induction on structure
� Example Adding up a list of integers

sum :: [Int] -> Int

sum [] = 0

sum (x:l) = x + (sum l)

� (Conditional) polymorphism

Most general type of sum is

sum :: (Num a) => [a] -> a

where Num a is true for any type a that supports basic
arithmetic operations +, -, . . .
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Today’s agenda

� Adding new types

� Defining abstract datatypes

Provide an interface that “hides” the implementation
� Using “infinite” data structures
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User defined datatypes

� The data declaration adds new datatypes

� Enumerated types

data Signal = Red | Yellow | Green

� Can use this type in a function such as

stopwhen :: Signal -> Bool

stopwhen Red = True

stopwhen c = False

� What if we write instead

stopwhen2 :: Signal -> Bool
stopwhen2 c | (c == Red) = True

| otherwise = False
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User defined types and type classes

� stopwhen2 requires Eq Signal

� How about
nextlight :: Signal -> Signal

nextlight Green = Yellow

nextlight Yellow = Red

nextlight Red = Green

� Displaying result of nextlight requires
Show Signal

� Show a is true of type a if there is a function

show :: a -> String

that allows values of a to be displayed
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Adding user defined types to type classes

� Simplest solution is
data Signal = Red | Yellow | Green
deriving (Eq, Show, Ord)

� Fixes default values

� Red == Red, Red /= Yellow, . . .
� show Red = "Red",
show Yellow = "Yellow", . . .

� Red < Yellow < Green
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Adding user defined types to type classes . . .

Or, provide your own functions

data Signal = Red | Yellow | Green
deriving (Eq)

instance Show Signal where
show Yellow = "Yellow"
show c = "Black"

instance Ord Signal where
Green <= Yellow = True
Yellow <= Red = True
Red <= Green = True
x <= y = False

In the class Ord, >, >=,. . . are defined in terms of <=
Note: <= need not even be a consistent ordering!
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Recursive datatypes

� A binary tree to store integers at each node

data Btreeint =
Nil |

Node Int Btreeint Btreeint

� Nil and Node are constructors
� The constructor Nil takes zero arguments

A constant, like Red, Green, . . .
� The constructor Node has three arguments

� First component Int: value stored at the node
� Other two components Btreeint: left and right

subtrees
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Recursive datatypes . . .

Example

The tree
6
•

4 • 8•

7
•

would be written as

Node 6 (Node 4 Nil Nil)

(Node 8 (Node 7 Nil Nil) Nil)
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Functions on recursive datatypes

� Define by induction on the structure of datatype

� How many values are there in the tree?

size :: Btreeint -> Int

size Nil = 0

size (Node n t1 t2) = 1 + (size t1)

+ (size t2)

� List out all values in the tree

listout :: Btreeint -> [Int]

listout Nil = []

listout (Node n t1 t2) =

[n] ++ listout t1 ++ listout t2
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Polymorphic recursive datatypes

� A binary tree to store arbitrary values at each node?

data Btree a =
Nil |

Node a (Btree a) (Btree a)

� What if we want to use Btree a as a search tree

Values in the tree must have a natural ordering
� Conditional polymorphism!

(Ord a) => data Btree a =
Nil |

Node a (Btree a) (Btree a)
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Polymorphic recursive datatypes . . .

� Built in list type is a polymorphic recursive datatype

data Mylist a = Emptylist |

Append a (Mylist a)

� Since lists are built in, they can use special symbols
[] and : for constructors Emptylist and Append
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Adding recursive datatypes to type classes

� Can inherit type classes from underlying type

data Btree a =
Nil |

Node a (Btree a) (Btree a)
deriving (Eq, Show)

Note: Not Eq (Btree a)

but Eq a => Eq (Btree a)

� Derived == checks that trees have same structure

6 •

8•

/= 6•

8 •
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Adding recursive datatypes to type classes . . .

� Or we can define our own functions

instance (Eq a) => Eq (Btree a) where
t1 == t2 = (listout t1 == listout t2)

6 •

8•

==
6•

8 •

because

[6,8] == [6,8]

Madras Christian College, 10 December 2003 – p.15



Adding recursive datatypes to type classes . . .

� Or we can define our own functions

instance (Eq a) => Eq (Btree a) where
t1 == t2 = (listout t1 == listout t2)

6 •

8•

==
6•

8 •

because

[6,8] == [6,8]

Madras Christian College, 10 December 2003 – p.15



Adding recursive datatypes to type classes . . .

� Or we can define our own functions

instance (Eq a) => Eq (Btree a) where
t1 == t2 = (listout t1 == listout t2)

6 •

8•

==
6•

8 •

because

[6,8] == [6,8]

Madras Christian College, 10 December 2003 – p.15



Adding recursive datatypes to type classes . . .

� Or we can define our own functions

instance (Eq a) => Eq (Btree a) where
t1 == t2 = (listout t1 == listout t2)

6 •

8•

==
6•

8 •

because

[6,8] == [6,8]

Madras Christian College, 10 December 2003 – p.15



Adding recursive datatypes to type classes . . .

� Or we can define our own functions

instance (Eq a) => Eq (Btree a) where
t1 == t2 = (listout t1 == listout t2)

6 •

8•

==
6•

8 •

because

[6,8] == [6,8]

Madras Christian College, 10 December 2003 – p.15



Declarative programming with abstract datatypes

� Rotate right — transformation used to balance trees

x

•

y •

t1 t2

t3

⇒

y

•

x•

t1

t2 t3

� rotateright (Node x (Node y t1 t2) t3) =
Node y t1 (Node x t2 t3)
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Abstract datatypes

� Example Queues

� Stores sequence of values in FIFO fashion
� Append items at the tail of queue
� Want a datatype Queue a with functions

addq :: (Queue a) -> a -> (Queue a)

removeq :: (Queue a) -> (a,Queue a)

isemptyq :: (Queue a) -> Bool

emptyqueue :: (Queue a)
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Abstract datatypes . . .

� Implement a queue as a list

� data Queue a = Qu [a]

� addq :: (Queue a) -> a -> (Queue a)
addq (Qu l) d = Qu (d:l)

removeq :: (Queue a) -> (a,Queue a)
removeq (Qu l)) = (last l,Qu (init l))

isemptyq :: (Queue a) -> Bool
isemptyq (Qu []) = True
isemptyq q = False

emptyqueue :: (Queue a)
emptyqueue = Qu []
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Modules

� Group together the definitions for Queue a in a
separate reusable module

� module Queue where

data Queue a = Qu [a] addq :: (Queue a)
-> a -> (Queue a)
...
emptyqueue :: (Queue a) ...

� Use these definitions in another file
import Queue

� How do we prevent unauthorized access to a queue?
remsec :: (Queue a) -> (a,Queue a)
remsec (Qu (x:y:l)) = (y, Qu (x:l))

Madras Christian College, 10 December 2003 – p.19



Modules

� Group together the definitions for Queue a in a
separate reusable module

� module Queue where

data Queue a = Qu [a] addq :: (Queue a)
-> a -> (Queue a)
...
emptyqueue :: (Queue a) ...

� Use these definitions in another file
import Queue

� How do we prevent unauthorized access to a queue?
remsec :: (Queue a) -> (a,Queue a)
remsec (Qu (x:y:l)) = (y, Qu (x:l))

Madras Christian College, 10 December 2003 – p.19



Modules

� Group together the definitions for Queue a in a
separate reusable module

� module Queue where

data Queue a = Qu [a] addq :: (Queue a)
-> a -> (Queue a)
...
emptyqueue :: (Queue a) ...

� Use these definitions in another file
import Queue

� How do we prevent unauthorized access to a queue?
remsec :: (Queue a) -> (a,Queue a)
remsec (Qu (x:y:l)) = (y, Qu (x:l))

Madras Christian College, 10 December 2003 – p.19



Modules

� Group together the definitions for Queue a in a
separate reusable module

� module Queue where

data Queue a = Qu [a] addq :: (Queue a)
-> a -> (Queue a)
...
emptyqueue :: (Queue a) ...

� Use these definitions in another file
import Queue

� How do we prevent unauthorized access to a queue?
remsec :: (Queue a) -> (a,Queue a)
remsec (Qu (x:y:l)) = (y, Qu (x:l))

Madras Christian College, 10 December 2003 – p.19



Modules . . .

� Restrict visibility outside module

module
Queue(addq,removeq,isemptyq,emptyqueue)
where ...

� Constructor Qu is not visible if you do
import Queue

� Can override imported function with local definition

All Haskell programs implicitly import Prelude

Redefine builtin functions using
import Prelude hiding (max)
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Rewriting revisted

� More than one expression may qualify for rewriting

� sqr x = x*x

� sqr (4+3)

; sqr 7 ; 7*7 ; 49

; (4+3)*(4+3) ; (4+3)*7 ; 7*7 ; 49

� If there are multiple expressions to rewrite, Haskell
chooses outermost expression

� Outermost reduction ≡ ‘Lazy” rewriting
Evaluate argument to a function only when needed.

� “Eager” rewriting — evaluate arguments before
evaluating function

Madras Christian College, 10 December 2003 – p.21



Rewriting revisted

� More than one expression may qualify for rewriting
� sqr x = x*x

� sqr (4+3)

; sqr 7 ; 7*7 ; 49

; (4+3)*(4+3) ; (4+3)*7 ; 7*7 ; 49

� If there are multiple expressions to rewrite, Haskell
chooses outermost expression

� Outermost reduction ≡ ‘Lazy” rewriting
Evaluate argument to a function only when needed.

� “Eager” rewriting — evaluate arguments before
evaluating function

Madras Christian College, 10 December 2003 – p.21



Rewriting revisted

� More than one expression may qualify for rewriting
� sqr x = x*x

� sqr (4+3)

; sqr 7 ; 7*7 ; 49

; (4+3)*(4+3) ; (4+3)*7 ; 7*7 ; 49

� If there are multiple expressions to rewrite, Haskell
chooses outermost expression

� Outermost reduction ≡ ‘Lazy” rewriting
Evaluate argument to a function only when needed.

� “Eager” rewriting — evaluate arguments before
evaluating function

Madras Christian College, 10 December 2003 – p.21



Rewriting revisted

� More than one expression may qualify for rewriting
� sqr x = x*x

� sqr (4+3)

; sqr 7 ; 7*7 ; 49

; (4+3)*(4+3) ; (4+3)*7 ; 7*7 ; 49

� If there are multiple expressions to rewrite, Haskell
chooses outermost expression

� Outermost reduction ≡ ‘Lazy” rewriting
Evaluate argument to a function only when needed.

� “Eager” rewriting — evaluate arguments before
evaluating function

Madras Christian College, 10 December 2003 – p.21



Rewriting revisted

� More than one expression may qualify for rewriting
� sqr x = x*x

� sqr (4+3)

; sqr 7 ; 7*7 ; 49

; (4+3)*(4+3) ; (4+3)*7 ; 7*7 ; 49

� If there are multiple expressions to rewrite, Haskell
chooses outermost expression

� Outermost reduction ≡ ‘Lazy” rewriting
Evaluate argument to a function only when needed.

� “Eager” rewriting — evaluate arguments before
evaluating function

Madras Christian College, 10 December 2003 – p.21



Rewriting revisted

� More than one expression may qualify for rewriting
� sqr x = x*x

� sqr (4+3)

; sqr 7 ; 7*7 ; 49

; (4+3)*(4+3) ; (4+3)*7 ; 7*7 ; 49

� If there are multiple expressions to rewrite, Haskell
chooses outermost expression

� Outermost reduction ≡ ‘Lazy” rewriting
Evaluate argument to a function only when needed.

� “Eager” rewriting — evaluate arguments before
evaluating function

Madras Christian College, 10 December 2003 – p.21



Rewriting revisted

� More than one expression may qualify for rewriting
� sqr x = x*x

� sqr (4+3)

; sqr 7 ; 7*7 ; 49

; (4+3)*(4+3) ; (4+3)*7 ; 7*7 ; 49

� If there are multiple expressions to rewrite, Haskell
chooses outermost expression

� Outermost reduction ≡ ‘Lazy” rewriting
Evaluate argument to a function only when needed.

� “Eager” rewriting — evaluate arguments before
evaluating function

Madras Christian College, 10 December 2003 – p.21



Rewriting revisted

� More than one expression may qualify for rewriting
� sqr x = x*x

� sqr (4+3)

; sqr 7 ; 7*7 ; 49

; (4+3)*(4+3) ; (4+3)*7 ; 7*7 ; 49

� If there are multiple expressions to rewrite, Haskell
chooses outermost expression

� Outermost reduction ≡ ‘Lazy” rewriting
Evaluate argument to a function only when needed.

� “Eager” rewriting — evaluate arguments before
evaluating function

Madras Christian College, 10 December 2003 – p.21



Lazy rewriting

� Haskell evaluates arguments only when needed

power :: Float -> Int -> Float

power x n = if (n == 0) then 1.0

else x * (power x (n-1))

� power (8.0/0.0) 0 ; 1.0
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Infinite lists!

� The following definition makes sense in Haskell
from n = n : from (n+1)

from 2

; 2:(from 3)
; 2:(3:(from 4))
; 2:(3:(4:(from 5)))
. . .

� Limit is the infinite list [2,3,4,5,...]
� Haskell can (and will) generate it incrementally, till you

stop it, or it runs out of memory
� Can write [2..] to denote [2,3,4,...]
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Why infinite lists?

� Can sometimes simplify a problem

� Consider the problem of computing the nth prime
number

� Idea: generate all prime numbers and wait for the nth

entry
� The Sieve of Eratosthenes

� Start with [2,3,4,...]
� Transfer smallest number into list of primes and

delete all its multiples
� Repeat second step forever!
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The Sieve of Eratosthenes

primes = sieve [2..]
where sieve (x:l) =
x : sieve [y | y <- l, mod y x > 0]

How does this work?

sieve [2..]
;2:sieve [y | y <- [3..], mod y 2 > 0]
;2:sieve (3:[y | y <- [4..], mod y 2 > 0])
;2:3:sieve [z | z <- [y <- [4..],

mod y 2 > 0], mod z 3 > 0]
...
;2:3:sieve [z | z <- [5,7,9...],

mod z 3 > 0]...
;2:3:sieve [5,7,11...] ;. . .
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The nth prime

� We now have an infinite list primes of primes

� nthprime n = head (drop (n-1) primes)

� Drop the first n−1 numbers from primes

� To take the head of the rest, only need to compute one
more entry in the list

� Once “enough” has been computed, the rest of
primes is ignored!
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Concluding remarks

� Functional programming provides a framework for
declarative programming

� Provably correct programs
� Rapid prototyping

� Haskell has a powerful typing mechanism

� Conditional polymorphism
� Modules with hiding and overriding for abstract

datatypes

� Lazy evaluation permits infinite data structures
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For more information

Software and other resources

� http://www.haskell.org

Quick tutorial

� A Gentle Introduction to Haskell
by Paul Hudak et al

Textbooks

� The Craft of Functional Programming
by Simon Thompson

� Introduction to Functional Programming in Haskell
by Richard Bird
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