Functional Programming in Haskell
 Part 2 : Abstract dataypes and "infinite" structures

Madhavan Mukund
Chennai Mathematical Institute
92 G N Chetty Rd, Chennai 600 017, India
madhavan@cmi .ac.in
http://www.cmi.ac.in/~madhavan

Haskell review

- Program \equiv Collection of function definitions
- Program \equiv Collection of function definitions
- Computation \equiv Rewriting using definitions
- Program \equiv Collection of function definitions
- Computation \equiv Rewriting using definitions
- Functions are associated with input and output types
- Program \equiv Collection of function definitions
- Computation \equiv Rewriting using definitions
- Functions are associated with input and output types
- isDigit : : Char -> Bool
- Program \equiv Collection of function definitions
- Computation \equiv Rewriting using definitions
- Functions are associated with input and output types
- isDigit : : Char -> Bool
isDigit ' $0^{\prime}=$ True
isDigit '1' = True
isDigit '9' = True
isDigit c = False
- Program \equiv Collection of function definitions
- Computation \equiv Rewriting using definitions
- Functions are associated with input and output types
- isDigit : : Char -> Bool
isDigit ' $0^{\prime}=$ True
isDigit '1' = True
isDigit '9' = True
isDigit c = False
- isDigit c

$$
\begin{aligned}
\left(c>=\prime 0^{\prime} \& \& ~ c<=\prime^{\prime}\right) & =\text { True } \\
& =\text { False }
\end{aligned}
$$

Haskell review . . .

Basic collective type is a list

- Basic collective type is a list
- Define list functions by induction on structure
- Basic collective type is a list
- Define list functions by induction on structure
- Example Adding up a list of integers
- Basic collective type is a list
- Define list functions by induction on structure
- Example Adding up a list of integers

```
sum :: [Int] -> Int
sum [] = 0
sum (x:l) = x + (sum l)
```

- Basic collective type is a list
- Define list functions by induction on structure
- Example Adding up a list of integers
$\operatorname{sum}:: \quad$ Int] $->$ Int
$\operatorname{sum}[]=0$
$\operatorname{sum}(x: l)=x+(\operatorname{sum} 1)$
- (Conditional) polymorphism
- Basic collective type is a list
- Define list functions by induction on structure
- Example Adding up a list of integers

$$
\begin{aligned}
& \operatorname{sum}: \quad[\text { Int }]->\text { Int } \\
& \operatorname{sum}[] \quad=0 \\
& \operatorname{sum}(x: l)=x+(\operatorname{sum} 1)
\end{aligned}
$$

- (Conditional) polymorphism Most general type of sum is sum : : (Num a) => [a] -> a where Num a is true for any type a that supports basic arithmetic operations +, -, ...

Today's agenda

Adding new types

Today's agenda

Adding new types

- Defining abstract datatypes

Provide an interface that "hides" the implementation

Today's agenda

- Adding new types
- Defining abstract datatypes

Provide an interface that "hides" the implementation

- Using "infinite" data structures

User defined datatypes

The data declaration adds new datatypes

User defined datatypes

- The data declaration adds new datatypes
- Enumerated types
data Signal = Red | Yellow | Green

User defined datatypes

- The data declaration adds new datatypes
- Enumerated types
data Signal = Red | Yellow | Green
- Can use this type in a function such as

$$
\begin{aligned}
& \text { stopwhen : } \quad \text { Signal -> Bool } \\
& \text { stopwhen Red }=\text { True } \\
& \text { stopwhen } c=\text { False }
\end{aligned}
$$

User defined datatypes

- The data declaration adds new datatypes
- Enumerated types
data Signal $=$ Red \mid Yellow \mid Green
- Can use this type in a function such as
stopwhen :: Signal -> Bool
stopwhen Red = True
stopwhen $\mathrm{c}=$ False
- What if we write instead
stopwhen2 :: Signal -> Bool
stopwhen2 c | (c == Red) = True
otherwise = False

User defined types and type classes

stopwhen2 requires Eq Signal

User defined types and type classes

- stopwhen2 requires Eq Signal
- How about
nextlight :: Signal -> Signal nextlight Green = Yellow nextlight Yellow = Red nextlight Red = Green

User defined types and type classes

- stopwhen2 requires Eq Signal
- How about
nextlight : : Signal -> Signal
nextlight Green = Yellow
nextlight Yellow = Red
nextlight Red = Green
- Displaying result of nextlight requires Show Signal

User defined types and type classes

- stopwhen2 requires Eq Signal
- How about

$$
\begin{aligned}
& \text { nextlight : : Signal -> Signal } \\
& \text { nextlight Green }=\text { Yellow } \\
& \text { nextlight Yellow }=\text { Red } \\
& \text { nextlight Red }=\text { Green }
\end{aligned}
$$

- Displaying result of nextlight requires Show Signal
- Show a is true of type a if there is a function
show :: a -> String
that allows values of a to be displayed

Adding user defined types to type classes

- Simplest solution is

data Signal = Red | Yellow | Green deriving (Eq, Show, Ord)

Adding user defined types to type classes

- Simplest solution is

$$
\begin{aligned}
& \text { data Signal = Red | Yellow | Green } \\
& \text { deriving (Eq, Show, Ord) }
\end{aligned}
$$

\square Fixes default values

Adding user defined types to type classes

- Simplest solution is

$$
\begin{aligned}
& \text { data Signal = Red | Yellow | Green } \\
& \text { deriving (Eq, Show, Ord) }
\end{aligned}
$$

- Fixes default values

Red == Red, Red /= Yellow,...

Adding user defined types to type classes

- Simplest solution is

$$
\begin{aligned}
& \text { data Signal = Red | Yellow | Green } \\
& \text { deriving (Eq, Show, Ord) }
\end{aligned}
$$

- Fixes default values

Red == Red, Red /= Yellow,...
, show Red = "Red",
show Yellow = "Yellow",...

Adding user defined types to type classes

- Simplest solution is

$$
\begin{aligned}
& \text { data Signal = Red | Yellow | Green } \\
& \text { deriving (Eq, Show, Ord) }
\end{aligned}
$$

- Fixes default values

Red == Red, Red /= Yellow,...
© show Red = "Red",
show Yellow = "Yellow",...

- Red < Yellow < Green

Adding user defined types to type classes . . .

Or, provide your own functions

Adding user defined types to type classes ...

Or, provide your own functions

$$
\begin{aligned}
& \text { data Signal = Red | Yellow | Green } \\
& \text { deriving (Eq) }
\end{aligned}
$$

Adding user defined types to type classes ...

Or, provide your own functions

data Signal = Red | Yellow | Green deriving (Eq)
instance Show Signal where show Yellow = "Yellow" show c = "Black"

Adding user defined types to type classes ...

Or, provide your own functions

$$
\begin{aligned}
& \text { data Signal = Red | Yellow | Green } \\
& \text { deriving (Eq) } \\
& \text { instance Show Signal where } \\
& \text { show Yellow = "Yellow" } \\
& \text { show c = "Black" } \\
& \begin{array}{ll}
\text { instance Ord Signal where } \\
\text { Green }<=\text { Yellow } & =\text { True } \\
\text { Yellow <= Red } & =\text { True } \\
\text { Red }<=\text { Green } & =\text { True } \\
\text { x }<=y & =
\end{array}
\end{aligned}
$$

Adding user defined types to type classes . . .

Or, provide your own functions

$$
\begin{aligned}
& \text { data Signal = Red | Yellow | Green } \\
& \text { deriving (Eq) } \\
& \text { instance Show Signal where } \\
& \text { show Yellow = "Yellow" } \\
& \text { show c = "Black" } \\
& \text { instance Ord Signal where } \\
& \begin{array}{ll}
\text { Green }<=\text { Yellow } & =\text { True } \\
\text { Yellow <= Red } & =\text { True } \\
\text { Red <= Green } & =\text { True } \\
\mathrm{x}<=y & =\text { False }
\end{array}
\end{aligned}
$$

In the class Ord, >, >=,... are defined in terms of <=

Adding user defined types to type classes . . .

Or, provide your own functions

$$
\begin{aligned}
& \text { data Signal = Red | Yellow | Green } \\
& \text { deriving (Eq) } \\
& \text { instance Show Signal where } \\
& \text { show Yellow = "Yellow" } \\
& \text { show c = "Black" } \\
& \text { instance Ord Signal where } \\
& \text { Green <= Yellow }=\text { True } \\
& \text { Yellow <= Red }=\text { True } \\
& \begin{array}{ll}
\text { Red }<=\text { Green } & =\text { True } \\
\mathrm{x}<=y & =\text { False }
\end{array}
\end{aligned}
$$

In the class Ord, >, >=,... are defined in terms of <= Note: <= need not even be a consistent ordering!

A binary tree to store integers at each node
data Btreeint =
Nil |
Node Int Btreeint Btreeint
\square A binary tree to store integers at each node
data Btreeint =
Nil |
Node Int Btreeint Btreeint

- Nil and Node are constructors
- A binary tree to store integers at each node
data Btreeint =
Nil |

Node Int Btreeint Btreeint

- Nil and Node are constructors
- The constructor Nil takes zero arguments
- A binary tree to store integers at each node
data Btreeint =
Nil |

Node Int Btreeint Btreeint

- Nil and Node are constructors
\square The constructor Nil takes zero arguments
A constant, like Red, Green, ...

Recursive datatypes

- A binary tree to store integers at each node data Btreeint =
- Nil and Node are constructors
- The constructor Nil takes zero arguments

A constant, like Red, Green, . . .

- The constructor Node has three arguments

Recursive datatypes

- A binary tree to store integers at each node data Btreeint =
- Nil and Node are constructors
- The constructor Nil takes zero arguments

A constant, like Red, Green, . . .

- The constructor Node has three arguments
- First component Int: value stored at the node

Recursive datatypes

- A binary tree to store integers at each node data Btreeint =
- Nil and Node are constructors
- The constructor Nil takes zero arguments

A constant, like Red, Green, ...

- The constructor Node has three arguments
- First component Int: value stored at the node
- Other two components Btreeint: left and right subtrees

Recursive datatypes ...

Example

The tree

would be written as

Node 6 (Node 4 Nil Nil)
(Node 8 (Node 7 Nil Nil) Nil)

- Define by induction on the structure of datatype
- Define by induction on the structure of datatype
- How many values are there in the tree?
- Define by induction on the structure of datatype
- How many values are there in the tree?

$$
\begin{array}{rlr}
\text { size : : Btreeint }-> & \text { Int } & \\
\text { size Nil } & =0 \\
\text { size (Node n t1 t2) } & =1 & +(\text { size t1) } \\
& & +(\text { size t2) }
\end{array}
$$

- Define by induction on the structure of datatype
- How many values are there in the tree?

$$
\begin{array}{ll}
\text { size : : Btreeint } \rightarrow & \text { Int } \\
\text { size Nil } & =0 \\
\text { size (Node n t1 t2) } & =1
\end{array} \quad \begin{aligned}
& (\text { size t1) } \\
& \\
& \\
& (\text { size t2) }
\end{aligned}
$$

- List out all values in the tree
- Define by induction on the structure of datatype
- How many values are there in the tree?

$$
\begin{array}{lrl}
\text { size : : Btreeint } \rightarrow & \text { Int } & \\
\text { size Nil } & =0 \\
\text { size (Node n t1 t2) } & =1 & +(\text { size t1) } \\
& & +(\text { size t2) }
\end{array}
$$

- List out all values in the tree

```
listout :: Btreeint -> [Int]
    listout Nil = []
    listout (Node n t1 t2) =
    [n] ++ listout t1 ++ listout t2
```

Polymorphic recursive datatypes
A binary tree to store arbitrary values at each node?
data Btree a =
Nil
Node a (Btree a) (Btree a)

Polymorphic recursive datatypes

- A binary tree to store arbitrary values at each node?
data Btree a =
Nil
Node a (Btree a) (Btree a)
- What if we want to use Btree a as a search tree
- A binary tree to store arbitrary values at each node?
data Btree a =
Nil
Node a (Btree a) (Btree a)
- What if we want to use Btree a as a search tree Values in the tree must have a natural ordering
\square A binary tree to store arbitrary values at each node?
data Btree a =
Nil
Node a (Btree a) (Btree a)
- What if we want to use Btree a as a search tree

Values in the tree must have a natural ordering

- Conditional polymorphism!
(Ord a) => data Btree a =
Nil

Node a (Btree a) (Btree a)

- Built in list type is a polymorphic recursive datatype

Polymorphic recursive datatypes . . .

- Built in list type is a polymorphic recursive datatype

$$
\begin{aligned}
\text { data Mylist a }= & \text { Emptylist } \mid \\
& \text { Append a (Mylist a) }
\end{aligned}
$$

- Built in list type is a polymorphic recursive datatype

$$
\begin{aligned}
\text { data Mylist a }= & \text { Emptylist } \mid \\
& \text { Append a (Mylist a) }
\end{aligned}
$$

- Since lists are built in, they can use special symbols [] and : for constructors Emptylist and Append

Adding recursive datatypes to type classes

Can inherit type classes from underlying type

Adding recursive datatypes to type classes

Can inherit type classes from underlying type
data Btree a =
Nil
Node a (Btree a) (Btree a) deriving (Eq, Show)

Adding recursive datatypes to type classes

Can inherit type classes from underlying type
data Btree a =
Nil
Node a (Btree a) (Btree a)
deriving (Eq, Show)
Note: Not Eq (Btree a)
but Eq a => Eq (Btree a)

Adding recursive datatypes to type classes

- Can inherit type classes from underlying type
data Btree a =
\qquad
Node a (Btree a) (Btree a)
deriving (Eq, Show)
Note: Not Eq (Btree a)
but Eq a => Eq (Btree a)
- Derived == checks that trees have same structure

Adding recursive datatypes to type classes

- Can inherit type classes from underlying type
data Btree a =

> Nil

Node a (Btree a) (Btree a)
deriving (Eq, Show)
Note: Not Eq (Btree a)
but Eq a => Eq (Btree a)

- Derived == checks that trees have same structure

Adding recursive datatypes to type classes ...

Or we can define our own functions

Adding recursive datatypes to type classes ...

Or we can define our own functions

$$
\begin{aligned}
& \text { instance (Eq a) }=>\text { Eq (Btree a) where } \\
& \text { t } 1==\text { t } 2=\text { (listout t1 }==\text { listout t2) }
\end{aligned}
$$

Adding recursive datatypes to type classes . . .

Or we can define our own functions
instance (Eq a) => Eq (Btree a) where t1 == t2 = (listout t1 == listout t2)

because

$$
[6,8]==[6,8]
$$

Adding recursive datatypes to type classes . . .

Or we can define our own functions
instance (Eq a) => Eq (Btree a) where t1 == t2 = (listout t1 == listout t2)

because

$$
[6,8]==[6,8]
$$

Adding recursive datatypes to type classes . . .

Or we can define our own functions
instance (Eq a) => Eq (Btree a) where t1 == t2 = (listout t1 == listout t2)

because

$$
[6,8]==[6,8]
$$

Declarative programming with abstract datatypes

- Rotate right - transformation used to balance trees

Declarative programming with abstract datatypes

- Rotate right — transformation used to balance trees

rotateright (Node x (Node y t1 t2) t3) = Node y t1 (Node x t2 t3)

Abstract datatypes

- Example Queues

Abstract datatypes

- Example Queues
- Stores sequence of values in FIFO fashion

Abstract datatypes

- Example Queues
- Stores sequence of values in FIFO fashion
\square Append items at the tail of queue

Abstract datatypes

- Example Queues
- Stores sequence of values in FIFO fashion
- Append items at the tail of queue
- Want a datatype Queue a with functions

$$
\begin{aligned}
& \text { addq : (Queue a) }->a->\text { (Queue a) } \\
& \text { removeq : } \quad \text { (Queue a) }->\text { (a, Queue a) } \\
& \text { isemptyq : } \quad \text { (Queue a) }->\text { Bool } \\
& \text { emptyqueue : ((Queue a) }
\end{aligned}
$$

Abstract datatypes ...

- Implement a queue as a list

Abstract datatypes . . .

- Implement a queue as a list
- data Queue a = Qu [a]

Abstract datatypes ...

- Implement a queue as a list
- data Queue a = Qu [a]

■ addq :: (Queue a) -> a -> (Queue a)
addq (Qu l) $d=Q u$ (d:l)
removeq :: (Queue a) -> (a,Queue a)
removeq (Qu l)) = (last l,Qu (init l))
isemptyq :: (Queue a) -> Bool
isemptyq (Qu []) = True
isemptyq q = False
emptyqueue :: (Queue a)
emptyqueue = Qu []

Modules

Group together the definitions for Queue a in a separate reusable module

Modules

Group together the definitions for Queue a in a separate reusable module
\square module Queue where
data Queue a = Qu [a] addq :: (Queue a)
-> a -> (Queue a)
emptyqueue :: (Queue a) ...

Modules

- Group together the definitions for Queue a in a separate reusable module
- module Queue where
data Queue a = Qu [a] addq :: (Queue a)
-> a -> (Queue a)
emptyqueue : : (Queue a) ...
- Use these definitions in another file
import Queue

Modules

- Group together the definitions for Queue a in a separate reusable module
- module Queue where
data Queue a = Qu [a] addq :: (Queue a)
-> a -> (Queue a)
emptyqueue : : (Queue a) ...
- Use these definitions in another file import Queue
- How do we prevent unauthorized access to a queue?
remsec :
: :
(Queue a) -> (a,Queue a)
remsec (Qu (x:y:l)) = (y, Qu (x:l))

Modules

Restrict visibility outside module

Modules . . .

- Restrict visibility outside module

```
module
Queue(addq, removeq, isemptyq, emptyqueue)
where
```


Modules . . .

- Restrict visibility outside module
module
Queue (addq, removeq, isemptyq, emptyqueue) where
- Constructor Qu is not visible if you do import Queue

Modules

- Restrict visibility outside module
module
Queue (addq, removeq, isemptyq, emptyqueue) where
- Constructor Qu is not visible if you do import Queue
- Can override imported function with local definition

Modules

- Restrict visibility outside module
module
Queue (addq, removeq, isemptyq, emptyqueue) where
- Constructor Qu is not visible if you do import Queue
- Can override imported function with local definition All Haskell programs implicitly import Prelude

Modules ...

- Restrict visibility outside module
module
Queue (addq, removeq, isemptyq, emptyqueue) where
- Constructor Qu is not visible if you do import Queue
- Can override imported function with local definition All Haskell programs implicitly import Prelude Redefine builtin functions using
import Prelude hiding (max)

Modules ...

- Restrict visibility outside module
module
Queue (addq, removeq, isemptyq, emptyqueue) where
- Constructor Qu is not visible if you do import Queue
- Can override imported function with local definition All Haskell programs implicitly import Prelude Redefine builtin functions using
import Prelude hiding (max)
- More than one expression may qualify for rewriting
- More than one expression may qualify for rewriting
\square sqr $x=x^{*} x$
- More than one expression may qualify for rewriting
- sqr $\mathrm{x}=\mathrm{x}^{\star} \mathrm{x}$
\square sqr $(4+3)$
- More than one expression may qualify for rewriting
- sqr $\mathrm{x}=\mathrm{x}^{\star} \mathrm{x}$
\square sqr $(4+3)$
\leadsto sqr $7 \sim 7 * 7 ~ 49$
- More than one expression may qualify for rewriting
- sqr $\mathrm{x}=\mathrm{x}^{\star} \mathrm{x}$
- sqr $(4+3)$
\leadsto sqr $7 \sim 7 * 7 ~ 49$
$\leadsto(4+3) *(4+3) \sim(4+3) * 7 \leadsto 7 * 7 \leadsto 49$
- More than one expression may qualify for rewriting
- sqr $\mathrm{x}=\mathrm{x}^{*} \mathrm{x}$
\square sqr $(4+3)$
$~$ sqr $7 \sim 7 * 7 ~ 49$
$\leadsto(4+3) *(4+3) \sim(4+3) * 7 \sim 7 * 7 \sim 49$
- If there are multiple expressions to rewrite, Haskell chooses outermost expression
- More than one expression may qualify for rewriting
- sqr $\mathrm{x}=\mathrm{x}^{\star} \mathrm{x}$
- sqr (4+3)
$~$ sqr $7 \sim 7 * 7 ~ 49$
$\leadsto(4+3) *(4+3) \sim(4+3) * 7 \sim 7 * 7 \sim 49$
- If there are multiple expressions to rewrite, Haskell chooses outermost expression
- Outermost reduction \equiv 'Lazy" rewriting

Evaluate argument to a function only when needed.

- More than one expression may qualify for rewriting
- sqr $\mathrm{x}=\mathrm{x}^{\star} \mathrm{x}$
- sqr (4+3)
$~$ sqr $7 \sim 7 * 7 ~ 49$
$\leadsto(4+3) *(4+3) \sim(4+3) * 7 \sim 7 * 7 \sim 49$
- If there are multiple expressions to rewrite, Haskell chooses outermost expression
- Outermost reduction \equiv 'Lazy" rewriting

Evaluate argument to a function only when needed.

- "Eager" rewriting - evaluate arguments before evaluating function
- Haskell evaluates arguments only when needed
- Haskell evaluates arguments only when needed

$$
\begin{aligned}
& \text { power : : Float -> Int -> Float } \\
& \text { power } x \quad n=\text { if (} n==0 \text {) then } 1.0 \\
& \text { else x * (power x (n-1)) }
\end{aligned}
$$

Lazy rewriting

- Haskell evaluates arguments only when needed
power :: Float -> Int -> Float
power x n $=$ if ($n=0$) then 1.0 else x * (power x (n-1))
- power (8.0/0.0) $0 \sim 1.0$

Infinite lists!

- The following definition makes sense in Haskell

$$
\text { from } n=n: \text { from }(n+1)
$$

Infinite lists!

- The following definition makes sense in Haskell
from $\mathrm{n}=\mathrm{n}$: from ($\mathrm{n}+1$)
from 2

Infinite lists!

- The following definition makes sense in Haskell

$$
\text { from } n=n: \text { from }(n+1)
$$

from 2
$\leadsto 2:($ from 3)
$~ 2:(3:($ from 4))
$\leadsto 2:(3:(4:($ from 5)))

Infinite lists!

- The following definition makes sense in Haskell

$$
\text { from } n=n \text { : from }(n+1)
$$

from 2
$\sim 2:($ from 3$)$
$~ 2:(3:($ from 4$))$
$~ 2:(3:(4:($ from 5$)))$

- Limit is the infinite list $[2,3,4,5, \ldots]$

Infinite lists!

- The following definition makes sense in Haskell

$$
\text { from } n=n \text { : from }(n+1)
$$

from 2
$~ 2:($ from 3$)$
$~ 2:(3:($ from 4) $)$
$~ 2:(3:(4:($ from 5$)))$

- Limit is the infinite list $[2,3,4,5, \ldots]$
- Haskell can (and will) generate it incrementally, till you stop it, or it runs out of memory

Infinite lists!

- The following definition makes sense in Haskell

$$
\text { from } n=n \text { : from }(n+1)
$$

from 2
$~ 2:($ from 3$)$
$~ 2:(3:($ from 4) $)$
$~ 2:(3:(4:($ from 5$)))$

- Limit is the infinite list $[2,3,4,5, \ldots]$
- Haskell can (and will) generate it incrementally, till you stop it, or it runs out of memory
- Can write [2..] to denote [2, 3, 4, ...]

Why infinite lists?

Can sometimes simplify a problem

Why infinite lists?

- Can sometimes simplify a problem
- Consider the problem of computing the $n^{\text {th }}$ prime number

Why infinite lists?

- Can sometimes simplify a problem
- Consider the problem of computing the $n^{\text {th }}$ prime number
- Idea: generate all prime numbers and wait for the $n^{\text {th }}$ entry

Why infinite lists?

- Can sometimes simplify a problem
\square Consider the problem of computing the $n^{\text {th }}$ prime number
- Idea: generate all prime numbers and wait for the $n^{\text {th }}$ entry
- The Sieve of Eratosthenes

Why infinite lists?

- Can sometimes simplify a problem
\square Consider the problem of computing the $n^{\text {th }}$ prime number
- Idea: generate all prime numbers and wait for the $n^{\text {th }}$ entry
- The Sieve of Eratosthenes
- Start with $[2,3,4, \ldots]$

Why infinite lists?

- Can sometimes simplify a problem
\square Consider the problem of computing the $n^{\text {th }}$ prime number
- Idea: generate all prime numbers and wait for the $n^{\text {th }}$ entry
- The Sieve of Eratosthenes
- Start with [2, 3, 4, ...]
- Transfer smallest number into list of primes and delete all its multiples

Why infinite lists?

- Can sometimes simplify a problem
- Consider the problem of computing the $n^{\text {th }}$ prime number
- Idea: generate all prime numbers and wait for the $n^{\text {th }}$ entry
- The Sieve of Eratosthenes
- Start with [2, 3, 4, ...]
- Transfer smallest number into list of primes and delete all its multiples
- Repeat second step

Why infinite lists?

- Can sometimes simplify a problem
\square Consider the problem of computing the $n^{\text {th }}$ prime number
- Idea: generate all prime numbers and wait for the $n^{\text {th }}$ entry
- The Sieve of Eratosthenes
- Start with [2, 3, 4, ...]
- Transfer smallest number into list of primes and delete all its multiples
- Repeat second step forever!

The Sieve of Eratosthenes

$$
\begin{aligned}
& \text { primes = sieve }[2 \ldots] \\
& \text { where sieve }(x: l)= \\
& \quad x: \text { sieve }[y \mid y<-l, \bmod y x>0]
\end{aligned}
$$

The Sieve of Eratosthenes

$$
\begin{aligned}
& \text { primes }=\text { sieve }[2 \ldots] \\
& \text { where sieve }(x: 1)= \\
& \quad x: \text { sieve }[y \mid y<-l, \bmod y x>0]
\end{aligned}
$$

How does this work?

The Sieve of Eratosthenes

$$
\begin{aligned}
& \text { primes }=\text { sieve }[2 \ldots] \\
& \text { where sieve }(x: l)= \\
& x: \text { sieve }[y \mid y<-l, \bmod y x>0]
\end{aligned}
$$

How does this work?
sieve [2..]

The Sieve of Eratosthenes

$$
\begin{aligned}
& \text { primes = sieve [2..] } \\
& \text { where sieve }(x: l)= \\
& \quad x: \operatorname{sieve}[y \mid y<-l, \bmod y x>0]
\end{aligned}
$$

How does this work?
sieve [2..]
$~ 2$:sieve $[y \mid y<-[3 .],. \bmod y 2>0]$

The Sieve of Eratosthenes

$$
\begin{aligned}
& \text { primes }=\text { sieve }[2 \ldots] \\
& \text { where sieve }(x: 1)= \\
& \quad x: \text { sieve }[y \mid y<-1, \bmod y x>0]
\end{aligned}
$$

How does this work?
sieve [2..]
$~ 2$:sieve $[y \mid y<-[3 .],. \bmod y 2>0]$
$\sim 2: \operatorname{sieve}(3:[y \mid y<-[4 .],. \bmod y 2>0])$

The Sieve of Eratosthenes

$$
\begin{aligned}
& \text { primes }=\text { sieve }[2 \ldots] \\
& \text { where sieve }(x: l)= \\
& \quad x: \text { sieve }[y \mid y<-l, \bmod y x>0]
\end{aligned}
$$

How does this work?
sieve [2..]
$~ 2$:sieve [y | y <- [3..], mod y 2 > 0]
$~ 2$:sieve (3:[y | y <- [4..], mod y $2>0]$)
$\sim 2: 3$:sieve [z $\mid \mathrm{z}<-$ [y <- [4..],

$$
\bmod y 2>0], \bmod z 3>0]
$$

The Sieve of Eratosthenes

$$
\begin{aligned}
& \text { primes }=\text { sieve }[2 \ldots] \\
& \text { where sieve }(x: l)= \\
& \quad x: \text { sieve }[y \mid y<-l, \bmod y x>0]
\end{aligned}
$$

How does this work?
sieve [2..]
$~ 2$:sieve [y | y <- [3..], mod y 2 > 0]
$~ 2$:sieve (3:[y $\mid y<-[4 .],. \bmod y 2>0])$
$\sim 2: 3$:sieve [z $\mid \mathrm{z}<-$ [y <- [4..],

$$
\bmod y 2>0], \bmod z 3>0]
$$

$~ 2: 3:$ sieve $[z \mid z<-[5,7,9 \ldots]$,

$$
\bmod z 3>0] \ldots
$$

The Sieve of Eratosthenes

$$
\begin{aligned}
& \text { primes }=\text { sieve }[2 \ldots] \\
& \text { where sieve }(x: l)= \\
& \quad x: \text { sieve }[y \mid y<-l, \bmod y x>0]
\end{aligned}
$$

How does this work?
sieve [2..]
$~ 2$:sieve $[y \mid y<-[3 .],. \bmod y 2>0]$
$~ 2: \operatorname{sieve}(3:[y \mid y<-[4 \ldots], \bmod y 2>0])$
$~ 2: 3:$ sieve $[\mathrm{z} \mid \mathrm{z}<-$ [y $<-$ [4..],

$$
\bmod y 2>0], \bmod z 3>0]
$$

$\sim 2: 3:$ sieve $[z \mid z<-[5,7,9 \ldots]$,

$$
\bmod z 3>0] \ldots
$$

$~ 2: 3:$ sieve $[5,7,11 \ldots] \sim \ldots$

- We now have an infinite list primes of primes
- We now have an infinite list primes of primes
- nthprime $\mathrm{n}=$ head (drop ($\mathrm{n}-1$) primes)
- We now have an infinite list primes of primes
- nthprime $\mathrm{n}=$ head (drop ($\mathrm{n}-1$) primes)
- Drop the first $n-1$ numbers from primes
- We now have an infinite list primes of primes
- nthprime $\mathrm{n}=$ head (drop ($\mathrm{n}-1$) primes)
- Drop the first $n-1$ numbers from primes
- To take the head of the rest, only need to compute one more entry in the list
- We now have an infinite list primes of primes
- nthprime $\mathrm{n}=$ head (drop ($\mathrm{n}-1$) primes)
- Drop the first $n-1$ numbers from primes
- To take the head of the rest, only need to compute one more entry in the list
- Once "enough" has been computed, the rest of primes is ignored!

Concluding remarks

- Functional programming provides a framework for declarative programming

Concluding remarks

- Functional programming provides a framework for declarative programming
, Provably correct programs

Concluding remarks

- Functional programming provides a framework for declarative programming
- Provably correct programs
- Rapid prototyping

Concluding remarks

- Functional programming provides a framework for declarative programming
- Provably correct programs
- Rapid prototyping
- Haskell has a powerful typing mechanism

Concluding remarks

- Functional programming provides a framework for declarative programming
- Provably correct programs
- Rapid prototyping
- Haskell has a powerful typing mechanism
- Conditional polymorphism

Concluding remarks

- Functional programming provides a framework for declarative programming
- Provably correct programs
- Rapid prototyping
- Haskell has a powerful typing mechanism
, Conditional polymorphism
- Modules with hiding and overriding for abstract datatypes

Concluding remarks

- Functional programming provides a framework for declarative programming
- Provably correct programs
- Rapid prototyping
- Haskell has a powerful typing mechanism
, Conditional polymorphism
- Modules with hiding and overriding for abstract datatypes
- Lazy evaluation permits infinite data structures

For more information

Software and other resources

-http://www.haskell.org
Quick tutorial

- A Gentle Introduction to Haskell by Paul Hudak et al

Textbooks

- The Craft of Functional Programming by Simon Thompson
- Introduction to Functional Programming in Haskell by Richard Bird

