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Functional programming

Program < set of function definitions
—unction definition < how to “calculate” the value

Declarative programming

Provably correct programs

Functional program closely follows mathematical

definition

Rapid prototyping

Easy to go from (what we require) to
(working program)
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Functional programming in Haskell

Built-in types | nt , Fl oat , Bool , . ..
with basic operations +, -, *,/, ||, &&,. . .
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else x * (power x (n-1))
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Functional programming in Haskell

Built-in types | nt , Fl oat , Bool , . ..
with basic operations +, -, *,/, ||, &&,. . .
Defining a new function (and its type)
power :: Float ->Int -> Fl oat
power x n = If (n ==20) then 1.0
el se x * (power x (n-1))

Multiple arguments are consumed “one at a time”

power :: Float xInt -> Fl oat
power (x,n) = ...

Need not be a “total” function
What is power 2.0 -17



Ways of defining functions

Multiple definitions, read top to bottom
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Definition by cases
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Ways of defining functions

Multiple definitions, read top to bottom
Definition by cases

oower Float -> Int -> Fl oat
oower x 0 = 1.0
oower x n = x * (power x (n-1))

Implicit “pattern matching” of arguments

Xor :: Bool -> Bool -> Bool
xor True True = Fal se
xor Fal se Fal se = Fal se

Xor Xy = True
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Ways of defining functions ...

Multiple options with conditional guards
mx . Int ->1Int ->1Int

max I [ (1 >=]) = |
(<)) =]
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Ways of defining functions ...

Multiple options with conditional guards

mx :: Int ->1Int -> |nt
mx I | | (1 >=7]) =1
| (<)) =]
Default conditional value — ot her wi se
max3 ;. nt ->Int ->1nt ->Int
max3 I | K (1 >=]) && (1 >= k)
(] >= k)
ot herw se




Ways of defining functions ...

Multiple options with conditional guards

mx :: Int ->1Int -> [nt
mx I | | (1 >=7]) =1
| (<)) =]
Default conditional value — ot her wi se
max3 ;. nt ->Int ->1Int -> |nt
mx3 I | Kk (1 >=]) && (1 >= k) = 1
(] >= K) =)
ot herw se = kK

Note: Conditional guards are evaluated top to bottom!
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Pairs, triples, ...

Can form n-tuples of types
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Can form n-tuples of types

(X,Y,2)

( Fl oat , Fl oat, Fl oat)

represents a point in 3D

Can define a function
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(Fl oat, Fl oat, Fl oat) ->
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Pairs, triples, ...

Can form n-tuples of types

(X,¥,z) :: (Float, Fl oat, Fl oat)
represents a point in 3D

Can define a function
di st ance3D ::
(Fl oat, Fl oat, Fl oat) ->
(Fl oat, Fl oat, Fl oat) -> Fl oat

Functions can return n-tuples
maxAndM nOF 3
Int ->1Int ->1Int -> (Int,Int)
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Local definitions using wher e

Example: Compute distance between two points in 2D

di st ance : .
(Fl oat, Fl oat) - >( Fl oat, Fl oat) - >Fl oat

di stance (x1,yl) (x2,y2) =
sqrt((sqr xdistance) + (sgr ydi stance))
wher e

xdi stance = x2 - xl1
ydi stance = y2 - yl
sqr :: Float -> Fl oat

sqr z = Z*Z



Computation Is rewriting

Use definitions to simplify expressions till no further
simplification is possible

Madras Christian College, 8 December 2003 — p.9



Computation Is rewriting

Use definitions to simplify expressions till no further
simplification is possible

Builtin simplifications
3 + 5~ 8 True || Fal se~ True

Madras Christian College, 8 December 2003 — p.9



Computation Is rewriting

Use definitions to simplify expressions till no further
simplification is possible

Builtin simplifications
3 + 5~ 8 True || Fal se~ True

Simplifications based on user defined functions
power 3.0 2

Madras Christian College, 8 December 2003 — p.9



Computation Is rewriting

Use definitions to simplify expressions till no further
simplification Is possible
Builtin simplifications

3 + 5~ 8 True || Fal se~ True
Simplifications based on user defined functions
power 3.0 2
~»3.0 * (power 3.0 (2-1))



Computation Is rewriting

Use definitions to simplify expressions till no further
simplification Is possible
Builtin simplifications

3 + 5~ 8 True || Fal se~ True
Simplifications based on user defined functions
power 3.0 2
~ 3.0 * (power 3.0 (2-1))
~ 3.0 * (power 3.0 1)



Computation Is rewriting

Use definitions to simplify expressions till no further
simplification Is possible
Builtin simplifications

3 + 5~ 8 True || Fal se~ True
Simplifications based on user defined functions
power 3.0 2
~»3.0 * (power 3.0 (2-1))
~3.0 * (power 3.0 1)
~3.0 * 3.0 * (power 3.0 (1-1))



Computation Is rewriting

Use definitions to simplify expressions till no further
simplification is possible
Builtin simplifications

3 + 5~»8 True || Fal se~ True
Simplifications based on user defined functions
power 3.0 2
~ 3.0 * (power 3.0 (2-1))
~ 3.0 * (power 3.0 1)
~3.0 * 3.0 * (power 3.0 (1-1))
~3.0 * 3.0 * (power 3.0 0)

Madras Christian College, 8 December 2003 — p.9



Computation Is rewriting

Use definitions to simplify expressions till no further
simplification is possible
Builtin simplifications

3 + 5~»8 True || Fal se~ True
Simplifications based on user defined functions
power 3.0 2
~ 3.0 * (power 3.0 (2-1))
~ 3.0 * (power 3.0 1)
~3.0 * 3.0 * (power 3.0 (1-1))
~3.0 * 3.0 * (power 3.0 0)
~»3.0* 3.0 * 1.0

Madras Christian College, 8 December 2003 — p.9



Computation Is rewriting

Use definitions to simplify expressions till no further
simplification is possible

Builtin simplifications
3 + 5~ 8 True || Fal se~ True
Simplifications based on user defined functions

power 3.0 2

~ 3.0 * (power 3.0 (2-1))

~ 3.0 * (power 3.0 1)

~3.0 * 3.0 * (power 3.0 (1-1))
~3.0 * 3.0 * (power 3.0 0)
~3.0* 3.0 * 1.0

~9.0* 1.0
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Computation Is rewriting

Use definitions to simplify expressions till no further
simplification is possible

Builtin simplifications
3 + 5~ 8 True || Fal se~ True

Simplifications based on user defined functions
power 3.0 2

~ 3.0 * (power 3.0 (2-1))

~ 3.0 * (power 3.0 1)

~3.0 * 3.0 * (power 3.0 (1-1))
~3.0 * 3.0 * (power 3.0 0)
~3.0* 3.0 * 1.0

~9.0* 1.0 ~ 9.0
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Functions that manipulate functions

A function with input type a and output type b has type
a->»>n
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a->»>

Recall useful convention that all functions read one
argument at a time!
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Functions that manipulate functions

A function with input type a and output type b has type
a->»>

Recall useful convention that all functions read one
argument at a time!

A function can take another function as argument

apply :: (Int ->1Int) ->1Int -> Int
apply f n = f n
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Functions that manipulate functions

A function with input type a and output type b has type
a->»>

Recall useful convention that all functions read one
argument at a time!

A function can take another function as argument

apply :: (Int ->1Int) ->1Int -> Int
apply f n = f n

twice :: (Int ->1Int) ->1Int -> Int
twmce f n = f (f n)
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Functions that manipulate functions

A function with input type a and output type b has type
a->»>

Recall useful convention that all functions read one
argument at a time!

A function can take another function as argument

apply :: (Int ->1Int) ->1Int -> Int
apply f n = f n

twice :: (Int ->1Int) ->1Int -> Int
twmce f n = f (f n)

twce sqr 7~»sqgr (sqr 7) ~»sqr (7*7) ---
~> 49749 ~ 2401



Running Haskell programs

hugs — A Haskell interpreter
Avalilable for Linux, Windows, ...

ghc — the Glasgow Haskell Compiler
Look at http://ww. haskel | . org
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Collections

Basic collective type is a list
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Collections

Basic collective type is a list

All items of a list must be of the same type
[Int] —listofl nt,
[ (Fl oat , Fl oat )] — list of pairs of Fl oat

Madras Christian College, 8 December 2003 — p.12



Collections

Basic collective type is a list

All items of a list must be of the same type
I nt] —listof I nt,
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_Ists are written as follows:
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Collections

Basic collective type is a list

All items of a list must be of the same type
I nt] —listof I nt,
' (Fl oat, Fl oat )] — list of pairs of Fl oat

_Ists are written as follows:
1 2,3,1,7]
(3.0,7.5),(7.6,9.2),(3.3,7.868)]

Empty list is denoted [ | (for all types)
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Basic operations on lists

++ concatenates lists
[1,3] ++ [5,7] =11, 3,5, 7]
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Basic operations on lists
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Basic operations on lists

++ concatenates lists
[1,3] ++ [5,7] =1[1, 3,5, 7]

Unique way of decomposing a nhonempty list

. first element of the list
. the rest (may be empty!) —
head [ 1, 3, 5, 7] 1
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Basic operations on lists

++ concatenates lists
[1,3] ++ [5,7] =1[1, 3,5, 7]

Unique way of decomposing a nhonempty list

. first element of the list
. the rest (may be empty!) —
head [ 1, 3, 5, 7] 1
tail [1, 3,5, 7] [ 3,5, 7]

: head Is an element, tail Is a list

Write x: | to denote the list with head x, tail |
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Functions on lists

B Define functions by induction on list structure
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Functions on lists

Define functions by

Base case
Value of f on | ]

Step
Extend value of f onl| tof on x: |
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Functions on lists

Define functions by

Base case

Value of f on | ]

Step

Extend value of f on| tof on x: |
ength :: [Int] -> [|nt
ength [] = 0

ength (x:1) = 1 + length |
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Functions on lists

Define functions by

Base case

Value of f on | ]

Step

Extend value of f on| tof on x: |
ength :: [Int] -> [|nt
ength [] = 0

ength (x:1) = 1 + length |

reverse :: [Int] -> [Int]
reverse |[] = []
reverse (x:l) = (reverse |) ++ [X]
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Some builtin list functions

Wlength |, reverse |, suml,
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Some builtin list functions

length |, reverse |, suml,
head | ,tail |

Dually, init |, ast |
init [1,2,3] =1[1,2],last [1,2,3] = 3
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Some builtin list functions

length |, reverse |, suml,

head | ,tail |

Dually,init |,last |

init [1,2,3] =[1,2],last [1,2,3] =
t ake n | — extract the first n elements of |
drop n | — drop the first n elements of |

Shortcut list notation

[ m . n] abbreviates the list[ m mt1, ..., n]
Example[3..7] =[3,4,5,6, 7]
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Some builtin list functions

length |, reverse |, suml,

head | ,tail |

Dually,init |,last |

init [1,2,3] =[1,2],last [1,2,3] = 3
t ake n | — extract the first n elements of |
drop n | — drop the first n elements of |

Shortcut list notation

[ m . n] abbreviates the list[ m mt1, ..., n]
Example[3..7] =[3,4,5,6, 7]
Arithmetic progressions

[1, 3.. 8] [1, 3,5, 7]

[ 9, 8. . 5] [9,8,7,6,5]
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Operating on each element of a list

map f | appliesf to each item of |
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square :: Int -> Int
square n = n*n
map square [1,2,4,9] ~][2,4,09, 81]
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map f | appliesf to each item of |

square :: Int -> Int
sgquare n = n*n
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sgquare n = n*n
map square [1,2,4,9] ~][2,4,09, 81]

filter p | selectsitems from| that satisfy p
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Operating on each element of a list

map f | appliesf to each item of |

square :: Int -> Int
sgquare n = n*n
map square [1,2,4,9] ~][2,4,09, 81]

filter p | selectsitems from| that satisfy p

even :: | nt -> Bool
even X = (nod x 2 == 0)
filter even [1,2,4,9] ~[2,4]

Can compose these functions

map square (filter even [1..10]) ~
[ 4, 16, 36, 64, 100]
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List comprehension: New lists from old

The set of squares of the even numbers between 1
and 10

{z*|x € {1,...,10}, even(x)}
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List comprehension: New lists from old

The set of squares of the even numbers between 1
and 10

{z*|x € {1,...,10}, even(x)}

The list of squares of the even numbers between 1
and 10
[ square x | x <- [1..10], even x ]

where even X = (nod x 2 == 0)
sgquare X = X*X



Using list comprehensions ...

divisors :: Int ->[Int]
divisors n =] m| m<- [1l..n],
nod n m== 0 ]
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Using list comprehensions ...

divisors :: Int ->[Int]
divisors n =] m| m<- [1l..n],

nod n m== 0 ]
prinme :: Int -> Bool

prime n = (divisors n == [1,n])

Madras Ch
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Example: Quicksort

Choose an element of the list as a splitter and create
sublists of elements smaller than the splitter and larger

than the splitter
Recursively sort these sublists and combine
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Example: Quicksort

Choose an element of the list as a splitter and create
sublists of elements smaller than the splitter and larger
than the splitter

Recursively sort these sublists and combine

gsort [] =[]
gsort | =

gsort lower ++ [splitter] ++ qsort upper
wher e

splitter = head |

| ower = [1 | <- tail |, 1 <= splitter]
upper = [1 | <- tail |, 1 > splitter]
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Polymorphism

Are
ength :: [Int] -> Int
ength :: [Float] -> Int
different functions?
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Polymorphism

Are
ength :: [Int] -> I|nt
ength :: [Float] -> Int
different functions?

| engt h only looks at the “structure” of the list, not
“Into” individual elements

For any underlying typet,length :: [t] -> Int
Use a, b, . .. to denote generic types
So,length :: [a] -> Int

Similarly, the most general type of rever se Is
reverse .. [a] ->[4a]



Polymorphism versus overloading

“True” polymorphism

The computation Is performed for different types
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Polymorphism versus overloading

“True” polymorphism

The computation Is performed for different types
Overloading

Same symbol or function name denotes

computations for different types

Example Arithmetic operators

At bit level, algorithms for | nt + | nt and

Fl oat + Fl oat are different

What about subclass polymorphism in OO
programming?



Polymorphism versus overloading in OO

cl ass Shape {
}
class G rcle extends Shape {
doubl e size {return pi*radi us*radi us}
}
cl ass Square extends Shape {
doubl e size {return side*side}
!
Shape s1
Shape s2

new Circle; print sl.size();
new Square; print s2.size();
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Polymorphism versus overloading in OO

cl ass Shape {
}
class G rcle extends Shape {
doubl e size {return pi*radi us*radi us}
}
cl ass Square extends Shape {
doubl e size {return side*side}

]
Shape s1 = new Circle; print sl.size();
Shape s2 = new Square; print s2.size();

Implementation of si ze Is different!!
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Conditional polymorphism

What about
nenber x [] = Fal se

menber x (y:l1) | (x ==1vy) = True
| otherw se = nenber x |
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Conditional polymorphism

What about
menber x [] = Fal se
menber x (y:l) | (x ==vy) = True
| otherw se = nenber Xx |
Ismenber :: a -> [a] -> Bool avald

description of the type?

What is the value of
nmenber gsort [qsort, nergesort, plus]?

Equality of functions cannot be checked effectively



Conditional polymorphism

What about
menber x [] = Fal se
menber x (y:l) | (x ==vy) = True
| otherw se = nenber Xx |
Ismenber :: a -> [a] -> Bool avald

description of the type?

What is the value of
nmenber gsort [qsort, nergesort, plus]?

Equality of functions cannot be checked effectively
The underlying type should support equality
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Type classes

Haskell organizes types into . A IS a
subset of all types.

The class Eq contains all types that support == on
their elements.

The “predicate” Eq a tells whether or not a belongs to
Eg

Haskell would type this as

nenber :: Eg a => a -> [a] -> Bool

Likewise Or d a Is the set of types that support
comparison, so

qui ckSort: Od a =>[a] ->[a]



Examples of declarative programming

Compute all initial segments of a list
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Examples of declarative programming

Compute all initial segments of a list

Initial segments of [ | are empty

Initial segments of x: | — all initial segments of | with
X In front, plus the empty segment
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Examples of declarative programming

Compute all initial segments of a list

Initial segments of [ | are empty

Initial segments of x: | — all initial segments of | with
X In front, plus the empty segment
initiral :: [a] ->[[a]]
initial [] =[[]]
initial (x:1) = [[]] ++
 X:z | z < initial |]




Examples of declarative programming ...

The empty list [ | has no permutations
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Examples of declarative programming ...

The empty list [ | has no permutations

Permutations of x: |
“Interleave” x through each permutation of |

Interleave :: a ->Ja] ->[[a]]
Interleave x [] = [[X]]

I nterleave x (y:l) =

[ X:y:|] ++

[y:12 | 12 <- (interleave x |)]
pernms .. [a] ->[[a]]

perms [] = [[]]

oerns (x: 1) =

[z | v <- pernms |, zZ < interleave x VY]
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Second lecture

User defined datatypes

Stacks, queues, trees, ...

Hiding implementation detalls using modules
“Infinite” data structures
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