Functional Programming in Haskell Part I : Basics

Madhavan Mukund
Chennai Mathematical Institute
92 G N Chetty Rd, Chennai 600 017, India
madhavan@cmi.ac.in
http://www.cmi.ac.in/~madhavan

- Transform inputs to output
- Operate on specific types

- These functions are different

- Program \Leftrightarrow set of function definitions
- Function definition \Leftrightarrow how to "calculate" the value
- Declarative programming
- Provably correct programs

Functional program closely follows mathematical definition

- Rapid prototyping

Easy to go from specification (what we require) to implementation (working program)

Functional programming in Haskell

- Built-in types Int, Float, Bool, . . . with basic operations $+,-, *, /, \|, \& \&, \ldots$
- Builtin types Int, Float, Boo, . . . with basic operations $+,-, *, /, \|, \& \&, \ldots$
\square Defining a new function (and its type)

$$
\begin{aligned}
\text { power : }: ~ F l o a t ~ & > \\
\text { power } \times \mathrm{n}= & \text { if }(\mathrm{n}==0) \text { then } 1.0 \\
& \text { else } \mathrm{x} * \text { (power } \mathrm{x}(\mathrm{n}-1) \text {) }
\end{aligned}
$$

- Built-in types Int, Float, Bool, . . . with basic operations $+,-,{ }^{*}, /, \|, \& \&, \ldots$
\square Defining a new function (and its type)

$$
\begin{aligned}
\text { power : }: ~ F l o a t ~ & > \\
\text { power } \times \mathrm{n}= & \text { if }(\mathrm{n}==0 \text {) then } 1.0 \\
& \text { else } \mathrm{x} * \text { (power } \mathrm{x}(\mathrm{n}-1) \text {) }
\end{aligned}
$$

- Multiple arguments are consumed "one at a time" Not

$$
\begin{aligned}
& \text { power : : Float } \times \text { Int }->\text { Float } \\
& \text { power }(\mathrm{x}, \mathrm{n})=\ldots
\end{aligned}
$$

- Built-in types Int, Float, Bool, ... with basic operations $+,-,{ }^{*}, /, \|, \& \&, \ldots$
\square Defining a new function (and its type)

$$
\begin{aligned}
\text { power : }: ~ F l o a t ~ & > \\
\text { power } \times \mathrm{n}= & \text { if }(\mathrm{n}==0) \text { then } 1.0 \\
& \text { else } \mathrm{x} * \text { (power } \mathrm{x}(\mathrm{n}-1) \text {) }
\end{aligned}
$$

- Multiple arguments are consumed "one at a time" Not

$$
\begin{aligned}
& \text { power : : Float } \times \text { Int } \rightarrow \text { Float } \\
& \text { power }(x, n)=\ldots
\end{aligned}
$$

- Need not be a "total" function

What is power $2.0-1$?

Ways of defining functions

Multiple definitions, read top to bottom

Ways of defining functions

- Multiple definitions, read top to bottom
- Definition by cases

$$
\begin{aligned}
& \text { power : : Float }->\text { Int }->\text { Float } \\
& \text { power } x 0=1.0 \\
& \text { power } \mathrm{x} \mathrm{n}=\mathrm{x} \text { * (power } \mathrm{x}(\mathrm{n}-1) \text {) }
\end{aligned}
$$

Ways of defining functions

- Multiple definitions, read top to bottom
- Definition by cases

$$
\begin{aligned}
& \text { power }: \text { Float }->\text { Int }->\text { Float } \\
& \text { power } x 0=1.0 \\
& \text { power } x n=x * \text { (power } x(n-1) \text {) }
\end{aligned}
$$

- Implicit "pattern matching" of arguments

$$
\begin{aligned}
& \text { xor : Bool }->\text { Bool }->\text { Bool } \\
& \text { xor True True }=\text { False } \\
& \text { xor False False }=\text { False } \\
& \text { xor x y }
\end{aligned}
$$

Ways of defining functions ...

- Multiple options with conditional guards

$$
\begin{aligned}
& \max : \text { : } \text { Int }->\text { Int }->\text { Int } \\
& \max i \operatorname{j} \left\lvert\, \begin{array}{ll}
(i>=j) & =i \\
(i<j) & =j
\end{array}\right.
\end{aligned}
$$

Ways of defining functions ...

\square Multiple options with conditional guards

$$
\begin{aligned}
& \max : \text { : } \text { Int }->\text { Int }->\text { Int } \\
& \max i \operatorname{j} \left\lvert\, \begin{array}{ll}
(i>=j) & =i \\
(i<j) & =j
\end{array}\right.
\end{aligned}
$$

- Default conditional value - otherwise

$$
\begin{aligned}
& \text { max :: Int -> Int -> Int -> Int } \\
& \max 3 i \operatorname{j} \mid(i \quad>=j) \& \&(i \quad>=k)=i \\
& \text { (} j>=k \text {) } \\
& =j \\
& \text { otherwise } \\
& =\mathrm{k}
\end{aligned}
$$

Ways of defining functions ...

- Multiple options with conditional guards

$$
\begin{aligned}
& \max : \text { : } \text { Int }->\text { Int }->\text { Int } \\
& \max i \operatorname{j} \left\lvert\, \begin{array}{ll}
(i>=j) & =i \\
(i<j) & =j
\end{array}\right.
\end{aligned}
$$

- Default conditional value - otherwise

$$
\begin{aligned}
& \text { max3 :: Int -> Int -> Int -> Int } \\
& \max 3 i \operatorname{j} \mid(i \quad>=j) \& \&(i \quad>=k)=i \\
& \text { (} j>=k \text {) } \\
& \text { otherwise } \\
& =j \\
& =\mathrm{k}
\end{aligned}
$$

- Note: Conditional guards are evaluated top to bottom!

Pairs, triples, . . .
Can form n-tuples of types

Pairs, triples, . . .
Can form n-tuples of types

$$
(\mathrm{x}, \mathrm{y}, \mathrm{z}): \text { (Float, Float, Float) }
$$ represents a point in 3D

Pairs, triples, . . .
Can form n-tuples of types

- (x,y,z) : : (Float, Float,Float)
represents a point in 3D
- Can define a function
distance3D : :
(Float,Float,Float) -> (Float, Float, Float) -> Float
- Can form n-tuples of types
- (x,y,z) : : (Float, Float, Float)
represents a point in 3D
- Can define a function
distance3D : :

$$
\begin{aligned}
& (\text { Float, Float, Float) }-> \\
& \text { (Float, Float, Float) }->\text { Float }
\end{aligned}
$$

- Functions can return n-tuples
maxAndMinOf3 : :
Int -> Int -> Int -> (Int, Int)

Local definitions using where

Example: Compute distance between two points in 2D

 distance : :(Float, Float) $->$ (Float, Float) $->$ Float
distance $(x 1, y 1)(x 2, y 2)=$ sqrt((sqr xdistance) + (sqr ydistance)) where

$$
\begin{aligned}
& \text { xdistance }=x 2-x 1 \\
& \text { ydistance }=y^{2}-y 1 \\
& \text { sqr : Float }->\text { Float } \\
& \text { sqr } z \quad=z^{*} z
\end{aligned}
$$

Computation is rewriting

- Use definitions to simplify expressions till no further simplification is possible

Computation is rewriting

- Use definitions to simplify expressions till no further simplification is possible
\square Builtin simplifications

$$
3+5 \leadsto 8 \quad \text { True }|\mid \text { False } \leadsto \text { True }
$$

Computation is rewriting

- Use definitions to simplify expressions till no further simplification is possible
- Builtin simplifications

$$
3+5 \leadsto 8 \quad \text { True }|\mid \text { False } \leadsto \text { True }
$$

- Simplifications based on user defined functions

$$
\text { power } 3.02
$$

Computation is rewriting

- Use definitions to simplify expressions till no further simplification is possible
- Builtin simplifications

$$
3+5 \leadsto 8 \quad \text { True }|\mid \text { False } \leadsto \text { True }
$$

- Simplifications based on user defined functions power 3.02
$~ 3.0$ * (power $3.0(2-1))$

Computation is rewriting

- Use definitions to simplify expressions till no further simplification is possible
- Builtin simplifications

$$
3+5 \leadsto 8 \quad \text { True }|\mid \text { False } \leadsto \text { True }
$$

- Simplifications based on user defined functions power 3.02
$\leadsto 3.0$ * (power 3.0 (2-1))
$~ 3.0$ * (power 3.0 1)

Computation is rewriting

- Use definitions to simplify expressions till no further simplification is possible
- Builtin simplifications

$$
3+5 \leadsto 8 \quad \text { True }|\mid \text { False } \leadsto \text { True }
$$

- Simplifications based on user defined functions power 3.02
$~ 3.0$ * (power 3.0 (2-1))
~ 3.0 * (power 3.0 1)
~ 3.0 * 3.0 * (power 3.0 (1-1))

Computation is rewriting

- Use definitions to simplify expressions till no further simplification is possible
- Builtin simplifications

$$
3+5 \leadsto 8 \quad \text { True }|\mid \text { False } \leadsto \text { True }
$$

- Simplifications based on user defined functions power 3.02
$\leadsto 3.0$ * (power 3.0 (2-1))
~ 3.0 * (power 3.0 1)
$\leadsto 3.0$ * 3.0 * (power 3.0 (1-1))
~ 3.0 * 3.0 * (power 3.0 0)

Computation is rewriting

- Use definitions to simplify expressions till no further simplification is possible
- Builtin simplifications

$$
3+5 \leadsto 8 \quad \text { True }|\mid \text { False } \leadsto \text { True }
$$

- Simplifications based on user defined functions power 3.02
$\leadsto 3.0$ * (power $3.0(2-1))$
$~ 3.0$ * (power 3.0 1)
~ 3.0 * 3.0 * (power 3.0 (1-1))
$\leadsto 3.0$ * 3.0 * (power 3.0 0)
~ 3.0 * 3.0 * 1.0

Computation is rewriting

- Use definitions to simplify expressions till no further simplification is possible
- Builtin simplifications

$$
3+5 \leadsto 8 \quad \text { True }|\mid \text { False } \leadsto \text { True }
$$

- Simplifications based on user defined functions power 3.02
$\leadsto 3.0$ * (power $3.0(2-1))$
~ 3.0 * (power 3.0 1)
~ 3.0 * 3.0 * (power 3.0 (1-1))
$\leadsto 3.0$ * 3.0 * (power 3.0 0)
~ 3.0 * 3.0 * 1.0
~ 9.0 * 1.0

Computation is rewriting

- Use definitions to simplify expressions till no further simplification is possible
- Builtin simplifications

$$
3+5 \leadsto 8 \quad \text { True }|\mid \text { False } \leadsto \text { True }
$$

- Simplifications based on user defined functions power 3.02
$\leadsto 3.0$ * (power $3.0(2-1))$
~ 3.0 * (power 3.0 1)
~ 3.0 * 3.0 * (power 3.0 (1-1))
$\leadsto 3.0$ * 3.0 * (power 3.0 0)
~ 3.0 * 3.0 * 1.0
$\sim 9.0 * 1.0 \leadsto 9.0$

A function with input type a and output type b has type a -> b
\square A function with input type a and output type b has type a -> b

- Recall useful convention that all functions read one argument at a time!
- A function with input type a and output type b has type a -> b
- Recall useful convention that all functions read one argument at a time!
\square A function can take another function as argument

Functions that manipulate functions

\square A function with input type a and output type b has type a -> b

Recall useful convention that all functions read one argument at a time!

- A function can take another function as argument

חapply :: (Int -> Int) -> Int -> Int apply f $\mathrm{n}=\mathrm{f} \mathrm{n}$

Functions that manipulate functions

\square A function with input type a and output type b has type a -> b

Recall useful convention that all functions read one argument at a time!

- A function can take another function as argument
napply :: (Int -> Int) -> Int -> Int apply $f \mathrm{n}=\mathrm{f} \mathrm{n}$
- twice : : (Int -> Int) -> Int -> Int twice $\mathrm{f} \mathrm{n}=\mathrm{f}$ (f n)

Functions that manipulate functions

\square A function with input type a and output type b has type a -> b

Recall useful convention that all functions read one argument at a time!

- A function can take another function as argument
napply :: (Int -> Int) -> Int -> Int apply f $\mathrm{n}=\mathrm{f} \mathrm{n}$
- twice : : (Int -> Int) -> Int -> Int twice $\mathrm{f} \mathrm{n}=\mathrm{f}$ (f n)
- twice sqr $7 \sim$ sqr (sqr 7) ~sqr (7*7)... $\sim 49 * 49 \sim 2401$
- hugs - A Haskell interpreter

Available for Linux, Windows, ...

- ghc — the Glasgow Haskell Compiler
- Look at http: / /www . haskell. org

Collections

Basic collective type is a list

Collections

- Basic collective type is a list
- All items of a list must be of the same type
[Int] - list of Int,
[(Float, Float)] - list of pairs of Float

Collections

- Basic collective type is a list
- All items of a list must be of the same type
[Int] — list of Int,
[(Float, Float)] - list of pairs of Float
- Lists are written as follows:
$[2,3,1,7]$
$[(3.0,7.5),(7.6,9.2),(3.3,7.868)]$

Collections

- Basic collective type is a list
- All items of a list must be of the same type
[Int] — list of Int,
[(Float, Float)] - list of pairs of Float
- Lists are written as follows:
$[2,3,1,7]$
$[(3.0,7.5),(7.6,9.2),(3.3,7.868)]$
- Empty list is denoted [] (for all types)

Basic operations on lists

++ concatenates lists
$[1,3]++[5,7]=[1,3,5,7]$

Basic operations on lists

- ++ concatenates lists

$$
[1,3]++[5,7]=[1,3,5,7]
$$

- Unique way of decomposing a nonempty list
- head : first element of the list
- tail : the rest (may be empty!) -

$$
\begin{aligned}
& \text { head }[1,3,5,7]=1 \\
& \operatorname{tail}[1,3,5,7]=[3,5,7]
\end{aligned}
$$

Basic operations on lists

- ++ concatenates lists

$$
[1,3]++[5,7]=[1,3,5,7]
$$

- Unique way of decomposing a nonempty list
- head : first element of the list
- tail : the rest (may be empty!) -
head $[1,3,5,7]=1$
tail $[1,3,5,7]=[3,5,7]$
- Note the types: head is an element, tail is a list

Basic operations on lists

- ++ concatenates lists

$$
[1,3]++[5,7]=[1,3,5,7]
$$

- Unique way of decomposing a nonempty list
- head : first element of the list
- tail : the rest (may be empty!) -
head $[1,3,5,7]=1$
tail $[1,3,5,7]=[3,5,7]$
- Note the types: head is an element, tail is a list
- Write $\mathrm{x}: 1$ to denote the list with head x , tail 1

Functions on lists

- Define functions by induction on list structure
- Define functions by induction on list structure
- Base case

Value of f on []

- Step

Extend value of f on l to f on $x: l$

- Define functions by induction on list structure
- Base case

Value of f on []

- Step

Extend value of f on l to f on $x: l$
length :: [Int] -> Int
length [] = 0
length (x:l) = $1+$ length 1

- Define functions by induction on list structure
- Base case

Value of f on []

- Step

Extend value of f on l to f on $x: l$
length :: [Int] -> Int
length [] = 0
length (x:l) = $1+$ length 1
reverse :: [Int] -> [Int]
reverse [] = []
reverse (x:l) = (reverse l) ++ [x]

Some builtin list functions

- length l, reverse l, sum l, ...

Some builtin list functions

- length l, reverse l, sum l, ...
nead l,tail l

Some builtin list functions

- length l, reverse l, sum l, ...
[head l,tail l
- Dually, init 1 , last 1
init $[1,2,3]=[1,2]$, last $[1,2,3]=3$
- length l, reverse l, sum l, ...
- head l,tail l
- Dually, init l, last 1
init $[1,2,3]=[1,2]$, last $[1,2,3]=3$
- take n 1 - extract the first n elements of 1 drop $n \quad l$ - drop the first n elements of l

Some builtin list functions

- length l, reverse l, sum l, ...
- head l,tail l
- Dually, init l, last 1
init $[1,2,3]=[1,2]$, last $[1,2,3]=3$
- take n l-extract the first n elements of 1 drop $n \quad l$ - drop the first n elements of l
- Shortcut list notation
- length l, reverse l, sum l, ...
- head l,tail l
- Dually, init 1 , last 1
init $[1,2,3]=[1,2]$, last $[1,2,3]=3$
- take n l-extract the first n elements of 1 drop n l-drop the first n elements of 1
- Shortcut list notation
- [m. . n] abbreviates the list $[\mathrm{m}, \mathrm{m}+1, \ldots, \mathrm{n}]$

Example $[3 . .7]=[3,4,5,6,7]$

- length l, reverse l, sum l, ...
- head l,tail l
- Dually, init 1 , last 1
init $[1,2,3]=[1,2]$, last $[1,2,3]=3$
- take n l-extract the first n elements of 1 drop n l-drop the first n elements of 1
- Shortcut list notation
- [m. . n] abbreviates the list $[\mathrm{m}, \mathrm{m}+1, \ldots, \mathrm{n}]$

Example [3..7] $=[3,4,5,6,7]$

- Arithmetic progressions

$$
\begin{aligned}
& {[1,3 . .8]=[1,3,5,7]} \\
& {[9,8.5]=[9,8,7,6,5]}
\end{aligned}
$$

Operating on each element of a list

- map $£ \mathrm{l}$ applies f to each item of 1

Operating on each element of a list

- map f lapplies f to each item of 1
square : : Int -> Int
square $\mathrm{n}=\mathrm{n}$ * n
map square $[1,2,4,9] \sim[2,4,9,81]$

Operating on each element of a list

- map f l applies f to each item of 1
square :: Int -> Int
square $\mathrm{n}=\mathrm{n}$ * n
map square $[1,2,4,9] \sim[2,4,9,81]$
- filter $p l$ selects items from 1 that satisfy p

Operating on each element of a list

- map f l applies f to each item of 1

```
square :: Int -> Int
square \(\mathrm{n}=\mathrm{n}\) *n
```

map square $[1,2,4,9] \sim[2,4,9,81]$

- filter $p l$ selects items from 1 that satisfy p
even : : Int -> Bool
even $\mathrm{x}=(\bmod \times 2==0)$
filter even $[1,2,4,9] \sim[2,4]$

Operating on each element of a list

- map f lapplies f to each item of 1

```
square :: Int -> Int
square \(\mathrm{n}=\mathrm{n}\) *n
map square \([1,2,4,9] \sim[2,4,9,81]\)
```

- filter p l selects items from 1 that satisfy p
even :: Int -> Bool
even $\mathrm{x}=(\bmod \times 2==0)$
filter even $[1,2,4,9] \sim[2,4]$
- Can compose these functions

Operating on each element of a list

- map f lapplies f to each item of 1
square $:$ Int \rightarrow Int
square $n=n * n$
map square $[1,2,4,9] \sim[2,4,9,81]$
- filter p 1 selects items from 1 that satisfy p
even :: Int -> Bool
even $\mathrm{x}=(\bmod \times 2==0)$
filter even $[1,2,4,9] \sim[2,4]$
- Can compose these functions
map square (filter even [1..10]) \sim

$$
[4,16,36,64,100]
$$

List comprehension: New lists from old

- The set of squares of the even numbers between 1 and 10

$$
\left\{x^{2} \mid x \in\{1, \ldots, 10\}, \text { even }(x)\right\}
$$

List comprehension: New lists from old

- The set of squares of the even numbers between 1 and 10

$$
\left\{x^{2} \mid x \in\{1, \ldots, 10\}, \text { even }(x)\right\}
$$

- The list of squares of the even numbers between 1 and 10

$$
\begin{aligned}
& {[\text { square } \mathrm{x}}\mathrm{x}<-[1 \ldots 10], \operatorname{even} \mathrm{x}] \\
& \text { where even } \mathrm{x}=(\bmod \mathrm{x} 2==0) \\
& \text { square } \mathrm{x}=\mathrm{x}^{\star} \mathrm{x}
\end{aligned}
$$

Using list comprehensions ...

$$
\begin{aligned}
\text { divisors : : Int -> [Int] } \\
\text { divisors } n=[\operatorname{m} \mid m<-[1 . . n],
\end{aligned} \quad \begin{aligned}
\bmod n m=0 \quad]
\end{aligned}
$$

Using list comprehensions ...

$$
\begin{aligned}
& \text { divisors : : Int -> [Int] } \\
& \text { divisors } n=[m \mid m<- \text { [1..n], } \\
& \bmod n \mathrm{~m}==0 \text {] } \\
& \text { prime : : Int }->\text { Bool } \\
& \text { prime } \mathrm{n}=(\text { divisors } \mathrm{n}==[1, \mathrm{n}])
\end{aligned}
$$

- Choose an element of the list as a splitter and create sublists of elements smaller than the splitter and larger than the splitter
- Recursively sort these sublists and combine

Example: Quicksort

- Choose an element of the list as a splitter and create sublists of elements smaller than the splitter and larger than the splitter
- Recursively sort these sublists and combine
qsort [] = []
qsort l =
qsort lower ++ [splitter] ++ qsort upper
where

$$
\begin{aligned}
& \text { splitter }=\text { head l } \\
& \text { lower }=\text { [i } \mid i<- \text { tail l, } i<=\text { splitter] } \\
& \text { upper }=\text { [i } \mid \text { i }<- \text { tail l, } i>\text { splitter }
\end{aligned}
$$

Polymorphism

Are
length : : [Int] -> Int
length : : [Float] -> Int different functions?

- Are

$$
\begin{aligned}
& \text { length : : [Int] -> Int } \\
& \text { length : : [Float] -> Int } \\
& \text { different functions? }
\end{aligned}
$$

- length only looks at the "structure" of the list, not "into" individual elements
For any underlying type t, length : : [t] -> Int
- Are

$$
\begin{aligned}
& \text { length : : [Int] -> Int } \\
& \text { length : }: \quad \text { [Float] -> Int } \\
& \text { different functions? }
\end{aligned}
$$

- length only looks at the "structure" of the list, not "into" individual elements
For any underlying type t , length : : [t] -> Int
- Use $\mathrm{a}, \mathrm{b}, \ldots$ to denote generic types

So, length :: [a] -> Int

- Are

$$
\begin{aligned}
& \text { length : }: \text { [Int] -> Int } \\
& \text { length :: [Float] -> Int }
\end{aligned}
$$

different functions?

- length only looks at the "structure" of the list, not "into" individual elements
For any underlying type t , length : : [t] -> Int
- Use $\mathrm{a}, \mathrm{b}, \ldots$ to denote generic types

So, length : : [a] -> Int

- Similarly, the most general type of reverse is reverse :: [a] -> [a]
"True" polymorphism
The same computation is performed for different types
- "True" polymorphism

The same computation is performed for different types

- Overloading

Same symbol or function name denotes different computations for different types

- "True" polymorphism

The same computation is performed for different types

- Overloading

Same symbol or function name denotes different computations for different types

- Example Arithmetic operators

At bit level, algorithms for Int + Int and Float + Float are different

- "True" polymorphism

The same computation is performed for different types

- Overloading

Same symbol or function name denotes different computations for different types

- Example Arithmetic operators

At bit level, algorithms for Int + Int and Float + Float are different

- What about subclass polymorphism in OO programming?

Polymorphism versus overloading in OO
class Shape \{
\}
class Circle extends Shape \{ double size \{return pi*radius*radius\}
\}
class Square extends Shape \{ double size \{return side*side\}
\}
Shape s1 = new Circle; print s1.size(); Shape s2 = new Square; print s2.size();

Polymorphism versus overloading in OO
class Shape \{
\}
class Circle extends Shape \{ double size \{return pi*radius*radius\}
\}
class Square extends Shape \{ double size \{return side*side\}
\}
Shape s1 = new Circle; print s1.size(); Shape s2 = new Square; print s2.size();

- Implementation of size is different!!

Conditional polymorphism

- What about
member x [] = False
member $x(y: l) \mid(x==y)=$ True
otherwise $=$ member x l

Conditional polymorphism

- What about
member x [] = False member $x(y: l) \mid(x==y)=$ True otherwise $=$ member x l
- Is member : : a $->$ [a] $->$ Bool a valid description of the type?

Conditional polymorphism

- What about
member x [] = False
member $x(y: l) \mid(x==y)=$ True
otherwise $=$ member x l
- Is member : : a -> [a] -> Bool a valid description of the type?
- What is the value of
member qsort [qsort, mergesort, plus]?
Equality of functions cannot be checked effectively

Conditional polymorphism

- What about
member x [] = False
member $x(y: l) \mid(x==y)=$ True
otherwise $=$ member x l
- Is member : : a -> [a] -> Bool a valid description of the type?
\square What is the value of
member qsort [qsort, mergesort, plus]?
Equality of functions cannot be checked effectively
- The underlying type should support equality

Type classes

- Haskell organizes types into classes. A type class is a subset of all types.
- The class Eq contains all types that support $==$ on their elements.

The "predicate" Eq a tells whether or not a belongs to Eq

- Haskell would type this as
member :: Eq a => a -> [a] -> Bool
Likewise ord a is the set of types that support comparison, so
quickSort: Ord a => [a] -> [a]

Examples of declarative programming

Compute all initial segments of a list

Examples of declarative programming

Compute all initial segments of a list

- Initial segments of [] are empty

Examples of declarative programming

Compute all initial segments of a list

- Initial segments of [] are empty
\square Initial segments of $x: l$ - all initial segments of 1 with x in front, plus the empty segment

Examples of declarative programming

Compute all initial segments of a list

- Initial segments of [] are empty
\square Initial segments of $x: 1$ - all initial segments of 1 with x in front, plus the empty segment
- initial :: [a] -> [[a]]
initial [] = [[]]
initial (x:l) = [[]] ++

$$
\text { [x:z } \mid \text { z <- initial l] }
$$

Examples of declarative programming ...

The empty list [] has no permutations

Examples of declarative programming . . .

- The empty list [] has no permutations
- Permutations of $\mathrm{x}: 1$ "Interleave" x through each permutation of 1

Examples of declarative programming . . .

- The empty list [] has no permutations
- Permutations of x : 1
"Interleave" x through each permutation of 1
- interleave :: a -> [a] -> [[a]]
interleave x [] = [[x]]
interleave x (y:l) =
[x:y:l] ++
[y:l2 | 12 <- (interleave x l)]
perms :: [a] -> [[a]]
perms [] = [[]]
perms (x:l) =

$$
[\mathrm{z} \mid \mathrm{y}<- \text { perms } \mathrm{l}, \mathrm{z}<- \text { interleave } \mathrm{x} y]
$$

Second lecture

- User defined datatypes

Stacks, queues, trees, . . .

- Hiding implementation details using modules
- "Infinite" data structures

