
Functional Programming in Haskell

Part I : Basics

Madhavan Mukund

Chennai Mathematical Institute

92 G N Chetty Rd, Chennai 600 017, India

madhavan@cmi.ac.in

http://www.cmi.ac.in/˜madhavan

Madras Christian College, 8 December 2003 – p.1

Functions

� Transform inputs to output
� Operate on specific types

-

-

-

x
Real

n
Integer

power Real
x

�

� These functions are different

-

-

-

Real

Real
plus

Real
-

-

-

Integer

Integer
plus

Integer

Madras Christian College, 8 December 2003 – p.2

Functional programming

� Program ⇔ set of function definitions
� Function definition ⇔ how to “calculate” the value
� Declarative programming

� Provably correct programs
Functional program closely follows mathematical
definition

� Rapid prototyping
Easy to go from specification (what we require) to
implementation (working program)

Madras Christian College, 8 December 2003 – p.3

Functional programming in Haskell

� Built-in types Int, Float, Bool, ...
with basic operations +, -, *, /, ‖, &&,...

� Defining a new function (and its type)
power :: Float -> Int -> Float

power x n = if (n == 0) then 1.0

else x * (power x (n-1))

� Multiple arguments are consumed “one at a time”
Not . . .
power :: Float × Int -> Float
power (x,n) = ...

� Need not be a “total” function
What is power 2.0 -1?

Madras Christian College, 8 December 2003 – p.4

Functional programming in Haskell

� Built-in types Int, Float, Bool, ...
with basic operations +, -, *, /, ‖, &&,...

� Defining a new function (and its type)
power :: Float -> Int -> Float

power x n = if (n == 0) then 1.0

else x * (power x (n-1))

� Multiple arguments are consumed “one at a time”
Not . . .
power :: Float × Int -> Float
power (x,n) = ...

� Need not be a “total” function
What is power 2.0 -1?

Madras Christian College, 8 December 2003 – p.4

Functional programming in Haskell

� Built-in types Int, Float, Bool, ...
with basic operations +, -, *, /, ‖, &&,...

� Defining a new function (and its type)
power :: Float -> Int -> Float

power x n = if (n == 0) then 1.0

else x * (power x (n-1))

� Multiple arguments are consumed “one at a time”
Not . . .
power :: Float × Int -> Float
power (x,n) = ...

� Need not be a “total” function
What is power 2.0 -1?

Madras Christian College, 8 December 2003 – p.4

Functional programming in Haskell

� Built-in types Int, Float, Bool, ...
with basic operations +, -, *, /, ‖, &&,...

� Defining a new function (and its type)
power :: Float -> Int -> Float

power x n = if (n == 0) then 1.0

else x * (power x (n-1))

� Multiple arguments are consumed “one at a time”
Not . . .
power :: Float × Int -> Float
power (x,n) = ...

� Need not be a “total” function
What is power 2.0 -1?

Madras Christian College, 8 December 2003 – p.4

Ways of defining functions

� Multiple definitions, read top to bottom

� Definition by cases

power :: Float -> Int -> Float

power x 0 = 1.0

power x n = x * (power x (n-1))

� Implicit “pattern matching” of arguments

xor :: Bool -> Bool -> Bool

xor True True = False

xor False False = False

xor x y = True

Madras Christian College, 8 December 2003 – p.5

Ways of defining functions

� Multiple definitions, read top to bottom
� Definition by cases

power :: Float -> Int -> Float

power x 0 = 1.0

power x n = x * (power x (n-1))

� Implicit “pattern matching” of arguments

xor :: Bool -> Bool -> Bool

xor True True = False

xor False False = False

xor x y = True

Madras Christian College, 8 December 2003 – p.5

Ways of defining functions

� Multiple definitions, read top to bottom
� Definition by cases

power :: Float -> Int -> Float

power x 0 = 1.0

power x n = x * (power x (n-1))

� Implicit “pattern matching” of arguments

xor :: Bool -> Bool -> Bool

xor True True = False

xor False False = False

xor x y = True
Madras Christian College, 8 December 2003 – p.5

Ways of defining functions . . .

� Multiple options with conditional guards
max :: Int -> Int -> Int

max i j | (i >= j) = i

| (i < j) = j

� Default conditional value — otherwise

max3 :: Int -> Int -> Int -> Int

max3 i j k | (i >= j) && (i >= k) = i

| (j >= k) = j

| otherwise = k

� Note: Conditional guards are evaluated top to bottom!

Madras Christian College, 8 December 2003 – p.6

Ways of defining functions . . .

� Multiple options with conditional guards
max :: Int -> Int -> Int

max i j | (i >= j) = i

| (i < j) = j

� Default conditional value — otherwise

max3 :: Int -> Int -> Int -> Int

max3 i j k | (i >= j) && (i >= k) = i

| (j >= k) = j

| otherwise = k

� Note: Conditional guards are evaluated top to bottom!

Madras Christian College, 8 December 2003 – p.6

Ways of defining functions . . .

� Multiple options with conditional guards
max :: Int -> Int -> Int

max i j | (i >= j) = i

| (i < j) = j

� Default conditional value — otherwise

max3 :: Int -> Int -> Int -> Int

max3 i j k | (i >= j) && (i >= k) = i

| (j >= k) = j

| otherwise = k

� Note: Conditional guards are evaluated top to bottom!
Madras Christian College, 8 December 2003 – p.6

Pairs, triples, . . .

� Can form n-tuples of types

� (x,y,z) :: (Float,Float,Float)
represents a point in 3D

� Can define a function
distance3D ::
(Float,Float,Float) ->
(Float,Float,Float) -> Float

� Functions can return n-tuples
maxAndMinOf3 ::
Int -> Int -> Int -> (Int,Int)

Madras Christian College, 8 December 2003 – p.7

Pairs, triples, . . .

� Can form n-tuples of types
� (x,y,z) :: (Float,Float,Float)

represents a point in 3D

� Can define a function
distance3D ::
(Float,Float,Float) ->
(Float,Float,Float) -> Float

� Functions can return n-tuples
maxAndMinOf3 ::
Int -> Int -> Int -> (Int,Int)

Madras Christian College, 8 December 2003 – p.7

Pairs, triples, . . .

� Can form n-tuples of types
� (x,y,z) :: (Float,Float,Float)

represents a point in 3D
� Can define a function
distance3D ::
(Float,Float,Float) ->
(Float,Float,Float) -> Float

� Functions can return n-tuples
maxAndMinOf3 ::
Int -> Int -> Int -> (Int,Int)

Madras Christian College, 8 December 2003 – p.7

Pairs, triples, . . .

� Can form n-tuples of types
� (x,y,z) :: (Float,Float,Float)

represents a point in 3D
� Can define a function
distance3D ::
(Float,Float,Float) ->
(Float,Float,Float) -> Float

� Functions can return n-tuples
maxAndMinOf3 ::
Int -> Int -> Int -> (Int,Int)

Madras Christian College, 8 December 2003 – p.7

Local definitions using where

Example: Compute distance between two points in 2D

distance ::
(Float,Float)->(Float,Float)->Float

distance (x1,y1) (x2,y2) =
sqrt((sqr xdistance) + (sqr ydistance))
where

xdistance = x2 - x1

ydistance = y2 - y1

sqr :: Float -> Float

sqr z = z*z
Madras Christian College, 8 December 2003 – p.8

Computation is rewriting

� Use definitions to simplify expressions till no further
simplification is possible

� Builtin simplifications
3 + 5 ; 8 True || False ; True

� Simplifications based on user defined functions

; 3.0 * (power 3.0 (2-1))

; 3.0 * (power 3.0 1)

; 3.0 * 3.0 * (power 3.0 (1-1))

; 3.0 * 3.0 * (power 3.0 0)

; 3.0 * 3.0 * 1.0

; 9.0 * 1.0 ; 9.0

Madras Christian College, 8 December 2003 – p.9

Computation is rewriting

� Use definitions to simplify expressions till no further
simplification is possible

� Builtin simplifications
3 + 5 ; 8 True || False ; True

� Simplifications based on user defined functions

; 3.0 * (power 3.0 (2-1))

; 3.0 * (power 3.0 1)

; 3.0 * 3.0 * (power 3.0 (1-1))

; 3.0 * 3.0 * (power 3.0 0)

; 3.0 * 3.0 * 1.0

; 9.0 * 1.0 ; 9.0

Madras Christian College, 8 December 2003 – p.9

Computation is rewriting

� Use definitions to simplify expressions till no further
simplification is possible

� Builtin simplifications
3 + 5 ; 8 True || False ; True

� Simplifications based on user defined functions
power 3.0 2

; 3.0 * (power 3.0 (2-1))

; 3.0 * (power 3.0 1)

; 3.0 * 3.0 * (power 3.0 (1-1))

; 3.0 * 3.0 * (power 3.0 0)

; 3.0 * 3.0 * 1.0

; 9.0 * 1.0 ; 9.0

Madras Christian College, 8 December 2003 – p.9

Computation is rewriting

� Use definitions to simplify expressions till no further
simplification is possible

� Builtin simplifications
3 + 5 ; 8 True || False ; True

� Simplifications based on user defined functions
power 3.0 2
; 3.0 * (power 3.0 (2-1))

; 3.0 * (power 3.0 1)

; 3.0 * 3.0 * (power 3.0 (1-1))

; 3.0 * 3.0 * (power 3.0 0)

; 3.0 * 3.0 * 1.0

; 9.0 * 1.0 ; 9.0

Madras Christian College, 8 December 2003 – p.9

Computation is rewriting

� Use definitions to simplify expressions till no further
simplification is possible

� Builtin simplifications
3 + 5 ; 8 True || False ; True

� Simplifications based on user defined functions
power 3.0 2
; 3.0 * (power 3.0 (2-1))

; 3.0 * (power 3.0 1)

; 3.0 * 3.0 * (power 3.0 (1-1))

; 3.0 * 3.0 * (power 3.0 0)

; 3.0 * 3.0 * 1.0

; 9.0 * 1.0 ; 9.0

Madras Christian College, 8 December 2003 – p.9

Computation is rewriting

� Use definitions to simplify expressions till no further
simplification is possible

� Builtin simplifications
3 + 5 ; 8 True || False ; True

� Simplifications based on user defined functions
power 3.0 2
; 3.0 * (power 3.0 (2-1))

; 3.0 * (power 3.0 1)

; 3.0 * 3.0 * (power 3.0 (1-1))

; 3.0 * 3.0 * (power 3.0 0)

; 3.0 * 3.0 * 1.0

; 9.0 * 1.0 ; 9.0

Madras Christian College, 8 December 2003 – p.9

Computation is rewriting

� Use definitions to simplify expressions till no further
simplification is possible

� Builtin simplifications
3 + 5 ; 8 True || False ; True

� Simplifications based on user defined functions
power 3.0 2
; 3.0 * (power 3.0 (2-1))

; 3.0 * (power 3.0 1)

; 3.0 * 3.0 * (power 3.0 (1-1))

; 3.0 * 3.0 * (power 3.0 0)

; 3.0 * 3.0 * 1.0

; 9.0 * 1.0 ; 9.0

Madras Christian College, 8 December 2003 – p.9

Computation is rewriting

� Use definitions to simplify expressions till no further
simplification is possible

� Builtin simplifications
3 + 5 ; 8 True || False ; True

� Simplifications based on user defined functions
power 3.0 2
; 3.0 * (power 3.0 (2-1))

; 3.0 * (power 3.0 1)

; 3.0 * 3.0 * (power 3.0 (1-1))

; 3.0 * 3.0 * (power 3.0 0)

; 3.0 * 3.0 * 1.0

; 9.0 * 1.0 ; 9.0

Madras Christian College, 8 December 2003 – p.9

Computation is rewriting

� Use definitions to simplify expressions till no further
simplification is possible

� Builtin simplifications
3 + 5 ; 8 True || False ; True

� Simplifications based on user defined functions
power 3.0 2
; 3.0 * (power 3.0 (2-1))

; 3.0 * (power 3.0 1)

; 3.0 * 3.0 * (power 3.0 (1-1))

; 3.0 * 3.0 * (power 3.0 0)

; 3.0 * 3.0 * 1.0

; 9.0 * 1.0

; 9.0

Madras Christian College, 8 December 2003 – p.9

Computation is rewriting

� Use definitions to simplify expressions till no further
simplification is possible

� Builtin simplifications
3 + 5 ; 8 True || False ; True

� Simplifications based on user defined functions
power 3.0 2
; 3.0 * (power 3.0 (2-1))

; 3.0 * (power 3.0 1)

; 3.0 * 3.0 * (power 3.0 (1-1))

; 3.0 * 3.0 * (power 3.0 0)

; 3.0 * 3.0 * 1.0

; 9.0 * 1.0 ; 9.0
Madras Christian College, 8 December 2003 – p.9

Functions that manipulate functions

� A function with input type a and output type b has type
a -> b

� Recall useful convention that all functions read one
argument at a time!

� A function can take another function as argument

� apply :: (Int -> Int) -> Int -> Int

apply f n = f n

� twice :: (Int -> Int) -> Int -> Int

twice f n = f (f n)

� twice sqr 7 ; sqr (sqr 7) ;sqr (7*7) · · ·
; 49*49 ; 2401

Madras Christian College, 8 December 2003 – p.10

Functions that manipulate functions

� A function with input type a and output type b has type
a -> b

� Recall useful convention that all functions read one
argument at a time!

� A function can take another function as argument

� apply :: (Int -> Int) -> Int -> Int

apply f n = f n

� twice :: (Int -> Int) -> Int -> Int

twice f n = f (f n)

� twice sqr 7 ; sqr (sqr 7) ;sqr (7*7) · · ·
; 49*49 ; 2401

Madras Christian College, 8 December 2003 – p.10

Functions that manipulate functions

� A function with input type a and output type b has type
a -> b

� Recall useful convention that all functions read one
argument at a time!

� A function can take another function as argument

� apply :: (Int -> Int) -> Int -> Int

apply f n = f n

� twice :: (Int -> Int) -> Int -> Int

twice f n = f (f n)

� twice sqr 7 ; sqr (sqr 7) ;sqr (7*7) · · ·
; 49*49 ; 2401

Madras Christian College, 8 December 2003 – p.10

Functions that manipulate functions

� A function with input type a and output type b has type
a -> b

� Recall useful convention that all functions read one
argument at a time!

� A function can take another function as argument

� apply :: (Int -> Int) -> Int -> Int

apply f n = f n

� twice :: (Int -> Int) -> Int -> Int

twice f n = f (f n)

� twice sqr 7 ; sqr (sqr 7) ;sqr (7*7) · · ·
; 49*49 ; 2401

Madras Christian College, 8 December 2003 – p.10

Functions that manipulate functions

� A function with input type a and output type b has type
a -> b

� Recall useful convention that all functions read one
argument at a time!

� A function can take another function as argument

� apply :: (Int -> Int) -> Int -> Int

apply f n = f n

� twice :: (Int -> Int) -> Int -> Int

twice f n = f (f n)

� twice sqr 7 ; sqr (sqr 7) ;sqr (7*7) · · ·
; 49*49 ; 2401

Madras Christian College, 8 December 2003 – p.10

Functions that manipulate functions

� A function with input type a and output type b has type
a -> b

� Recall useful convention that all functions read one
argument at a time!

� A function can take another function as argument

� apply :: (Int -> Int) -> Int -> Int

apply f n = f n

� twice :: (Int -> Int) -> Int -> Int

twice f n = f (f n)

� twice sqr 7 ; sqr (sqr 7) ;sqr (7*7) · · ·
; 49*49 ; 2401

Madras Christian College, 8 December 2003 – p.10

Running Haskell programs

� hugs — A Haskell interpreter
Available for Linux, Windows, . . .

� ghc — the Glasgow Haskell Compiler
� Look at http://www.haskell.org

Madras Christian College, 8 December 2003 – p.11

Collections

� Basic collective type is a list

� All items of a list must be of the same type
[Int] — list of Int,
[(Float,Float)] — list of pairs of Float

� Lists are written as follows:
[2,3,1,7]

[(3.0,7.5),(7.6,9.2),(3.3,7.868)]

� Empty list is denoted [] (for all types)
� Can have lists of lists (to any depth)
[[Int]] — list of [Int]
[[2,3,1,7],[],[8,3],[9]]

Madras Christian College, 8 December 2003 – p.12

Collections

� Basic collective type is a list
� All items of a list must be of the same type
[Int] — list of Int,
[(Float,Float)] — list of pairs of Float

� Lists are written as follows:
[2,3,1,7]

[(3.0,7.5),(7.6,9.2),(3.3,7.868)]

� Empty list is denoted [] (for all types)
� Can have lists of lists (to any depth)
[[Int]] — list of [Int]
[[2,3,1,7],[],[8,3],[9]]

Madras Christian College, 8 December 2003 – p.12

Collections

� Basic collective type is a list
� All items of a list must be of the same type
[Int] — list of Int,
[(Float,Float)] — list of pairs of Float

� Lists are written as follows:
[2,3,1,7]

[(3.0,7.5),(7.6,9.2),(3.3,7.868)]

� Empty list is denoted [] (for all types)
� Can have lists of lists (to any depth)
[[Int]] — list of [Int]
[[2,3,1,7],[],[8,3],[9]]

Madras Christian College, 8 December 2003 – p.12

Collections

� Basic collective type is a list
� All items of a list must be of the same type
[Int] — list of Int,
[(Float,Float)] — list of pairs of Float

� Lists are written as follows:
[2,3,1,7]

[(3.0,7.5),(7.6,9.2),(3.3,7.868)]

� Empty list is denoted [] (for all types)

� Can have lists of lists (to any depth)
[[Int]] — list of [Int]
[[2,3,1,7],[],[8,3],[9]]

Madras Christian College, 8 December 2003 – p.12

Basic operations on lists

� ++ concatenates lists
[1,3] ++ [5,7] = [1,3,5,7]

� Unique way of decomposing a nonempty list

� head : first element of the list
� tail : the rest (may be empty!) —
head [1,3,5,7] = 1
tail [1,3,5,7] = [3,5,7]

� Note the types: head is an element, tail is a list
� Write x:l to denote the list with head x, tail l

Madras Christian College, 8 December 2003 – p.13

Basic operations on lists

� ++ concatenates lists
[1,3] ++ [5,7] = [1,3,5,7]

� Unique way of decomposing a nonempty list

� head : first element of the list
� tail : the rest (may be empty!) —
head [1,3,5,7] = 1
tail [1,3,5,7] = [3,5,7]

� Note the types: head is an element, tail is a list
� Write x:l to denote the list with head x, tail l

Madras Christian College, 8 December 2003 – p.13

Basic operations on lists

� ++ concatenates lists
[1,3] ++ [5,7] = [1,3,5,7]

� Unique way of decomposing a nonempty list

� head : first element of the list
� tail : the rest (may be empty!) —
head [1,3,5,7] = 1
tail [1,3,5,7] = [3,5,7]

� Note the types: head is an element, tail is a list

� Write x:l to denote the list with head x, tail l

Madras Christian College, 8 December 2003 – p.13

Basic operations on lists

� ++ concatenates lists
[1,3] ++ [5,7] = [1,3,5,7]

� Unique way of decomposing a nonempty list

� head : first element of the list
� tail : the rest (may be empty!) —
head [1,3,5,7] = 1
tail [1,3,5,7] = [3,5,7]

� Note the types: head is an element, tail is a list
� Write x:l to denote the list with head x, tail l

Madras Christian College, 8 December 2003 – p.13

Functions on lists

� Define functions by induction on list structure

� length :: [Int] -> Int

length [] = 0

length (x:l) = 1 + length l

� reverse :: [Int] -> [Int]

reverse [] = []

reverse (x:l) = (reverse l) ++ [x]

Madras Christian College, 8 December 2003 – p.14

Functions on lists

� Define functions by induction on list structure

� Base case
Value of f on []

� Step
Extend value of f on l to f on x:l

� length :: [Int] -> Int

length [] = 0

length (x:l) = 1 + length l

� reverse :: [Int] -> [Int]

reverse [] = []

reverse (x:l) = (reverse l) ++ [x]

Madras Christian College, 8 December 2003 – p.14

Functions on lists

� Define functions by induction on list structure

� Base case
Value of f on []

� Step
Extend value of f on l to f on x:l

� length :: [Int] -> Int

length [] = 0

length (x:l) = 1 + length l

� reverse :: [Int] -> [Int]

reverse [] = []

reverse (x:l) = (reverse l) ++ [x]

Madras Christian College, 8 December 2003 – p.14

Functions on lists

� Define functions by induction on list structure

� Base case
Value of f on []

� Step
Extend value of f on l to f on x:l

� length :: [Int] -> Int

length [] = 0

length (x:l) = 1 + length l

� reverse :: [Int] -> [Int]

reverse [] = []

reverse (x:l) = (reverse l) ++ [x]

Madras Christian College, 8 December 2003 – p.14

Some builtin list functions

� length l, reverse l, sum l, ...

� head l, tail l

� Dually, init l, last l

init [1,2,3] = [1,2], last [1,2,3] = 3

� take n l — extract the first n elements of l
drop n l — drop the first n elements of l

� Shortcut list notation

� [m..n] abbreviates the list [m,m+1,...,n]
Example [3..7] = [3,4,5,6,7]

� Arithmetic progressions
[1,3..8] = [1,3,5,7]
[9,8..5] = [9,8,7,6,5]

Madras Christian College, 8 December 2003 – p.15

Some builtin list functions

� length l, reverse l, sum l, ...

� head l, tail l

� Dually, init l, last l

init [1,2,3] = [1,2], last [1,2,3] = 3

� take n l — extract the first n elements of l
drop n l — drop the first n elements of l

� Shortcut list notation

� [m..n] abbreviates the list [m,m+1,...,n]
Example [3..7] = [3,4,5,6,7]

� Arithmetic progressions
[1,3..8] = [1,3,5,7]
[9,8..5] = [9,8,7,6,5]

Madras Christian College, 8 December 2003 – p.15

Some builtin list functions

� length l, reverse l, sum l, ...

� head l, tail l

� Dually, init l, last l

init [1,2,3] = [1,2], last [1,2,3] = 3

� take n l — extract the first n elements of l
drop n l — drop the first n elements of l

� Shortcut list notation

� [m..n] abbreviates the list [m,m+1,...,n]
Example [3..7] = [3,4,5,6,7]

� Arithmetic progressions
[1,3..8] = [1,3,5,7]
[9,8..5] = [9,8,7,6,5]

Madras Christian College, 8 December 2003 – p.15

Some builtin list functions

� length l, reverse l, sum l, ...

� head l, tail l

� Dually, init l, last l

init [1,2,3] = [1,2], last [1,2,3] = 3

� take n l — extract the first n elements of l
drop n l — drop the first n elements of l

� Shortcut list notation

� [m..n] abbreviates the list [m,m+1,...,n]
Example [3..7] = [3,4,5,6,7]

� Arithmetic progressions
[1,3..8] = [1,3,5,7]
[9,8..5] = [9,8,7,6,5]

Madras Christian College, 8 December 2003 – p.15

Some builtin list functions

� length l, reverse l, sum l, ...

� head l, tail l

� Dually, init l, last l

init [1,2,3] = [1,2], last [1,2,3] = 3

� take n l — extract the first n elements of l
drop n l — drop the first n elements of l

� Shortcut list notation

� [m..n] abbreviates the list [m,m+1,...,n]
Example [3..7] = [3,4,5,6,7]

� Arithmetic progressions
[1,3..8] = [1,3,5,7]
[9,8..5] = [9,8,7,6,5]

Madras Christian College, 8 December 2003 – p.15

Some builtin list functions

� length l, reverse l, sum l, ...

� head l, tail l

� Dually, init l, last l

init [1,2,3] = [1,2], last [1,2,3] = 3

� take n l — extract the first n elements of l
drop n l — drop the first n elements of l

� Shortcut list notation

� [m..n] abbreviates the list [m,m+1,...,n]
Example [3..7] = [3,4,5,6,7]

� Arithmetic progressions
[1,3..8] = [1,3,5,7]
[9,8..5] = [9,8,7,6,5]

Madras Christian College, 8 December 2003 – p.15

Some builtin list functions

� length l, reverse l, sum l, ...

� head l, tail l

� Dually, init l, last l

init [1,2,3] = [1,2], last [1,2,3] = 3

� take n l — extract the first n elements of l
drop n l — drop the first n elements of l

� Shortcut list notation

� [m..n] abbreviates the list [m,m+1,...,n]
Example [3..7] = [3,4,5,6,7]

� Arithmetic progressions
[1,3..8] = [1,3,5,7]
[9,8..5] = [9,8,7,6,5]

Madras Christian College, 8 December 2003 – p.15

Operating on each element of a list

� map f l applies f to each item of l

square :: Int -> Int
square n = n*n
map square [1,2,4,9] ; [2,4,9,81]

� filter p l selects items from l that satisfy p

even :: Int -> Bool
even x = (mod x 2 == 0)
filter even [1,2,4,9] ; [2,4]

� Can compose these functions

map square (filter even [1..10]) ;

[4,16,36,64,100]

Madras Christian College, 8 December 2003 – p.16

Operating on each element of a list

� map f l applies f to each item of l

square :: Int -> Int
square n = n*n
map square [1,2,4,9] ; [2,4,9,81]

� filter p l selects items from l that satisfy p

even :: Int -> Bool
even x = (mod x 2 == 0)
filter even [1,2,4,9] ; [2,4]

� Can compose these functions

map square (filter even [1..10]) ;

[4,16,36,64,100]

Madras Christian College, 8 December 2003 – p.16

Operating on each element of a list

� map f l applies f to each item of l

square :: Int -> Int
square n = n*n
map square [1,2,4,9] ; [2,4,9,81]

� filter p l selects items from l that satisfy p

even :: Int -> Bool
even x = (mod x 2 == 0)
filter even [1,2,4,9] ; [2,4]

� Can compose these functions

map square (filter even [1..10]) ;

[4,16,36,64,100]

Madras Christian College, 8 December 2003 – p.16

Operating on each element of a list

� map f l applies f to each item of l

square :: Int -> Int
square n = n*n
map square [1,2,4,9] ; [2,4,9,81]

� filter p l selects items from l that satisfy p

even :: Int -> Bool
even x = (mod x 2 == 0)
filter even [1,2,4,9] ; [2,4]

� Can compose these functions

map square (filter even [1..10]) ;

[4,16,36,64,100]

Madras Christian College, 8 December 2003 – p.16

Operating on each element of a list

� map f l applies f to each item of l

square :: Int -> Int
square n = n*n
map square [1,2,4,9] ; [2,4,9,81]

� filter p l selects items from l that satisfy p

even :: Int -> Bool
even x = (mod x 2 == 0)
filter even [1,2,4,9] ; [2,4]

� Can compose these functions

map square (filter even [1..10]) ;

[4,16,36,64,100]

Madras Christian College, 8 December 2003 – p.16

Operating on each element of a list

� map f l applies f to each item of l

square :: Int -> Int
square n = n*n
map square [1,2,4,9] ; [2,4,9,81]

� filter p l selects items from l that satisfy p

even :: Int -> Bool
even x = (mod x 2 == 0)
filter even [1,2,4,9] ; [2,4]

� Can compose these functions

map square (filter even [1..10]) ;

[4,16,36,64,100]

Madras Christian College, 8 December 2003 – p.16

List comprehension: New lists from old

� The set of squares of the even numbers between 1
and 10

{x
2 | x ∈ {1, . . . ,10}, even(x)}

� The list of squares of the even numbers between 1
and 10
[square x | x <- [1..10], even x]

where even x = (mod x 2 == 0)

square x = x*x

Madras Christian College, 8 December 2003 – p.17

List comprehension: New lists from old

� The set of squares of the even numbers between 1
and 10

{x
2 | x ∈ {1, . . . ,10}, even(x)}

� The list of squares of the even numbers between 1
and 10
[square x | x <- [1..10], even x]

where even x = (mod x 2 == 0)

square x = x*x

Madras Christian College, 8 December 2003 – p.17

Using list comprehensions . . .

� divisors :: Int -> [Int]

divisors n = [m | m <- [1..n],

mod n m == 0]

� prime :: Int -> Bool

prime n = (divisors n == [1,n])

Madras Christian College, 8 December 2003 – p.18

Using list comprehensions . . .

� divisors :: Int -> [Int]

divisors n = [m | m <- [1..n],

mod n m == 0]

� prime :: Int -> Bool

prime n = (divisors n == [1,n])

Madras Christian College, 8 December 2003 – p.18

Example: Quicksort

� Choose an element of the list as a splitter and create
sublists of elements smaller than the splitter and larger
than the splitter

� Recursively sort these sublists and combine

qsort [] = []

qsort l =

qsort lower ++ [splitter] ++ qsort upper

where

splitter = head l

lower = [i | i <- tail l, i <= splitter]

upper = [i | i <- tail l, i > splitter]

Madras Christian College, 8 December 2003 – p.19

Example: Quicksort

� Choose an element of the list as a splitter and create
sublists of elements smaller than the splitter and larger
than the splitter

� Recursively sort these sublists and combine

qsort [] = []

qsort l =

qsort lower ++ [splitter] ++ qsort upper

where

splitter = head l

lower = [i | i <- tail l, i <= splitter]

upper = [i | i <- tail l, i > splitter]

Madras Christian College, 8 December 2003 – p.19

Polymorphism

� Are
length :: [Int] -> Int

length :: [Float] -> Int

different functions?

� length only looks at the “structure” of the list, not
“into” individual elements

For any underlying type t, length :: [t] -> Int

� Use a,b,... to denote generic types

So, length :: [a] -> Int

� Similarly, the most general type of reverse is
reverse :: [a] -> [a]

Madras Christian College, 8 December 2003 – p.20

Polymorphism

� Are
length :: [Int] -> Int

length :: [Float] -> Int

different functions?
� length only looks at the “structure” of the list, not

“into” individual elements

For any underlying type t, length :: [t] -> Int

� Use a,b,... to denote generic types

So, length :: [a] -> Int

� Similarly, the most general type of reverse is
reverse :: [a] -> [a]

Madras Christian College, 8 December 2003 – p.20

Polymorphism

� Are
length :: [Int] -> Int

length :: [Float] -> Int

different functions?
� length only looks at the “structure” of the list, not

“into” individual elements

For any underlying type t, length :: [t] -> Int

� Use a,b,... to denote generic types

So, length :: [a] -> Int

� Similarly, the most general type of reverse is
reverse :: [a] -> [a]

Madras Christian College, 8 December 2003 – p.20

Polymorphism

� Are
length :: [Int] -> Int

length :: [Float] -> Int

different functions?
� length only looks at the “structure” of the list, not

“into” individual elements

For any underlying type t, length :: [t] -> Int

� Use a,b,... to denote generic types

So, length :: [a] -> Int

� Similarly, the most general type of reverse is
reverse :: [a] -> [a]

Madras Christian College, 8 December 2003 – p.20

Polymorphism versus overloading

� “True” polymorphism

The same computation is performed for different types

� Overloading

Same symbol or function name denotes different
computations for different types

� Example Arithmetic operators

At bit level, algorithms for Int + Int and
Float + Float are different

� What about subclass polymorphism in OO
programming?

Madras Christian College, 8 December 2003 – p.21

Polymorphism versus overloading

� “True” polymorphism

The same computation is performed for different types
� Overloading

Same symbol or function name denotes different
computations for different types

� Example Arithmetic operators

At bit level, algorithms for Int + Int and
Float + Float are different

� What about subclass polymorphism in OO
programming?

Madras Christian College, 8 December 2003 – p.21

Polymorphism versus overloading

� “True” polymorphism

The same computation is performed for different types
� Overloading

Same symbol or function name denotes different
computations for different types

� Example Arithmetic operators

At bit level, algorithms for Int + Int and
Float + Float are different

� What about subclass polymorphism in OO
programming?

Madras Christian College, 8 December 2003 – p.21

Polymorphism versus overloading

� “True” polymorphism

The same computation is performed for different types
� Overloading

Same symbol or function name denotes different
computations for different types

� Example Arithmetic operators

At bit level, algorithms for Int + Int and
Float + Float are different

� What about subclass polymorphism in OO
programming?

Madras Christian College, 8 December 2003 – p.21

Polymorphism versus overloading in OO

�

class Shape {
}
class Circle extends Shape {
double size {return pi*radius*radius}

}
class Square extends Shape {
double size {return side*side}

}
Shape s1 = new Circle; print s1.size();
Shape s2 = new Square; print s2.size();

� Implementation of size is different!!

Madras Christian College, 8 December 2003 – p.22

Polymorphism versus overloading in OO

�

class Shape {
}
class Circle extends Shape {
double size {return pi*radius*radius}

}
class Square extends Shape {
double size {return side*side}

}
Shape s1 = new Circle; print s1.size();
Shape s2 = new Square; print s2.size();

� Implementation of size is different!!

Madras Christian College, 8 December 2003 – p.22

Conditional polymorphism

� What about
member x [] = False
member x (y:l) | (x == y) = True

| otherwise = member x l

� Is member :: a -> [a] -> Bool a valid
description of the type?

� What is the value of
member qsort [qsort, mergesort, plus]?

Equality of functions cannot be checked effectively
� The underlying type should support equality

Madras Christian College, 8 December 2003 – p.23

Conditional polymorphism

� What about
member x [] = False
member x (y:l) | (x == y) = True

| otherwise = member x l

� Is member :: a -> [a] -> Bool a valid
description of the type?

� What is the value of
member qsort [qsort, mergesort, plus]?

Equality of functions cannot be checked effectively
� The underlying type should support equality

Madras Christian College, 8 December 2003 – p.23

Conditional polymorphism

� What about
member x [] = False
member x (y:l) | (x == y) = True

| otherwise = member x l

� Is member :: a -> [a] -> Bool a valid
description of the type?

� What is the value of
member qsort [qsort, mergesort, plus]?

Equality of functions cannot be checked effectively

� The underlying type should support equality

Madras Christian College, 8 December 2003 – p.23

Conditional polymorphism

� What about
member x [] = False
member x (y:l) | (x == y) = True

| otherwise = member x l

� Is member :: a -> [a] -> Bool a valid
description of the type?

� What is the value of
member qsort [qsort, mergesort, plus]?

Equality of functions cannot be checked effectively
� The underlying type should support equality

Madras Christian College, 8 December 2003 – p.23

Type classes

� Haskell organizes types into classes. A type class is a
subset of all types.

� The class Eq contains all types that support == on
their elements.

The “predicate” Eq a tells whether or not a belongs to
Eq

� Haskell would type this as

member :: Eq a => a -> [a] -> Bool

� Likewise Ord a is the set of types that support
comparison, so

quickSort: Ord a => [a] -> [a]
Madras Christian College, 8 December 2003 – p.24

Examples of declarative programming

Compute all initial segments of a list

� Initial segments of [] are empty
� Initial segments of x:l — all initial segments of l with

x in front, plus the empty segment
� initial :: [a] -> [[a]]
initial [] = [[]]
initial (x:l) = [[]] ++

[x:z | z <- initial l]

Madras Christian College, 8 December 2003 – p.25

Examples of declarative programming

Compute all initial segments of a list

� Initial segments of [] are empty

� Initial segments of x:l — all initial segments of l with
x in front, plus the empty segment

� initial :: [a] -> [[a]]
initial [] = [[]]
initial (x:l) = [[]] ++

[x:z | z <- initial l]

Madras Christian College, 8 December 2003 – p.25

Examples of declarative programming

Compute all initial segments of a list

� Initial segments of [] are empty
� Initial segments of x:l — all initial segments of l with

x in front, plus the empty segment

� initial :: [a] -> [[a]]
initial [] = [[]]
initial (x:l) = [[]] ++

[x:z | z <- initial l]

Madras Christian College, 8 December 2003 – p.25

Examples of declarative programming

Compute all initial segments of a list

� Initial segments of [] are empty
� Initial segments of x:l — all initial segments of l with

x in front, plus the empty segment
� initial :: [a] -> [[a]]
initial [] = [[]]
initial (x:l) = [[]] ++

[x:z | z <- initial l]

Madras Christian College, 8 December 2003 – p.25

Examples of declarative programming . . .

� The empty list [] has no permutations

� Permutations of x:l
“Interleave” x through each permutation of l

� interleave :: a -> [a] -> [[a]]
interleave x [] = [[x]]
interleave x (y:l) =
[x:y:l] ++

[y:l2 | l2 <- (interleave x l)]

perms :: [a] -> [[a]]
perms [] = [[]]
perms (x:l) =
[z | y <- perms l, z <- interleave x y]

Madras Christian College, 8 December 2003 – p.26

Examples of declarative programming . . .

� The empty list [] has no permutations
� Permutations of x:l

“Interleave” x through each permutation of l

� interleave :: a -> [a] -> [[a]]
interleave x [] = [[x]]
interleave x (y:l) =
[x:y:l] ++

[y:l2 | l2 <- (interleave x l)]

perms :: [a] -> [[a]]
perms [] = [[]]
perms (x:l) =
[z | y <- perms l, z <- interleave x y]

Madras Christian College, 8 December 2003 – p.26

Examples of declarative programming . . .

� The empty list [] has no permutations
� Permutations of x:l

“Interleave” x through each permutation of l
� interleave :: a -> [a] -> [[a]]
interleave x [] = [[x]]
interleave x (y:l) =
[x:y:l] ++

[y:l2 | l2 <- (interleave x l)]

perms :: [a] -> [[a]]
perms [] = [[]]
perms (x:l) =
[z | y <- perms l, z <- interleave x y]

Madras Christian College, 8 December 2003 – p.26

Second lecture

� User defined datatypes

Stacks, queues, trees, . . .
� Hiding implementation details using modules
� “Infinite” data structures

Madras Christian College, 8 December 2003 – p.27

	Grey {Functions}
	Grey {Functional programming}
	Grey {Functional programming in Haskell}
	Grey {Ways of defining functions}
	Grey {Ways of defining functions ldots }
	Grey {Pairs, triples, ldots }
	Grey {Local definitions using Code {where}}
	Grey {Computation is rewriting}
	Grey {Functions that manipulate functions}
	Grey {Running Haskell programs}
	Grey {Collections}
	Grey {Basic operations on lists}
	Grey {Functions on lists}
	Grey {Some builtin list functions}
	Grey {Operating on each element of a list}
	Grey {List comprehension: New lists from old}
	Grey {Using list comprehensions ldots }
	Grey {Example: Cyan {Quicksort}}
	Grey {Polymorphism}
	Grey {Polymorphism versus overloading}
	Grey {Polymorphism versus overloading in OO}
	Grey {Conditional polymorphism}
	Grey {Type classes}
	Grey {Examples of declarative programming}
	Grey {Examples of declarative programming ldots }
	Grey {Second lecture}

