Temporal Logics over Mazurkiewicz Traces A Quick Tour

Madhavan Mukund

Chennai Mathematical Institute 92 G N Chetty Rd, Chennai 600 017, India http://www.cmi.ac.in/~madhavan

Arcachon, 23 May 2002

Motivation

- Temporal logic convenient specification language
- Formulas interpreted over sequences
 - For concurrent systems, sets of interleaved behaviours
 - Combinatorial explosion in verification
- Can we directly reason about a single structure that describes the entire behaviour of a concurrent system?

Mazurkiewicz traces

- An alphabet with an independence relation, (Σ, I)
- Independent letters can be commuted.

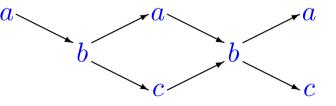
If $(a,b) \in I$, then $wabw' \sim w'abw$

- A trace is an equivalence class of words—a single concurrent behaviour with different, equivalent linearizations
- Traces faithfully model behaviour of concurrent systems with static architecture —e.g., safe Petri nets

Traces revisited

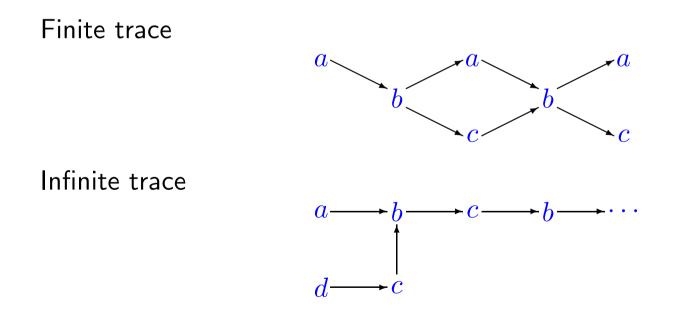
- Dependence alphabet (Σ, D): D is the complement of I
 Dependence graph; e.g., (Σ, D) = a b c d
 Here, (a, c), (b, d), (a, d) are independent pairs
- A trace is a labelled partial order

The trace $\{abacbac, abcabac, \dots, abcabca\}$ is the (set of linearizations of the) labelled partial order



Finite and infinite traces

$$(\Sigma,D)=a-b-c-d$$



Traces as partial orders

A trace over (Σ, D) is a labelled partial order $t = (E, \leq, \lambda)$ such that

• $e \not\leq f$ and $f \not\leq e$ implies $(\lambda(e), \lambda(f)) \notin D$

Concurrent (unordered) events correspond to independent actions

• $e \lessdot f$ implies $(\lambda(e), \lambda(f)) \in D$

The causality order on events is generated by \boldsymbol{D}

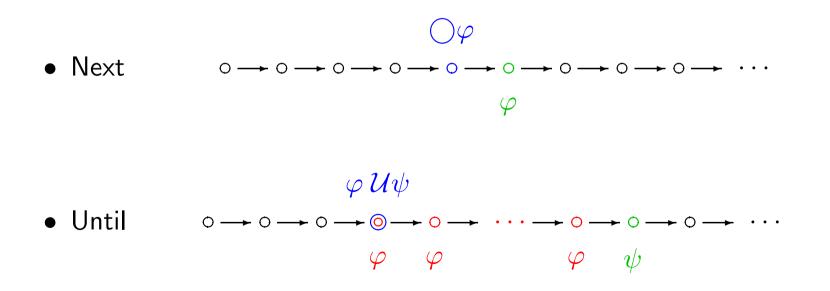
• For all $e \in E$, $\downarrow e = \{f \mid f \leq e\}$ is finite

Each event has a finite past (infinite traces are "real")

Key fact For each (Σ, D) , the width of traces over (Σ, D) is bounded.

Linear-time temporal logic over sequences

• Atomic propositions, boolean connectives, temporal modalities

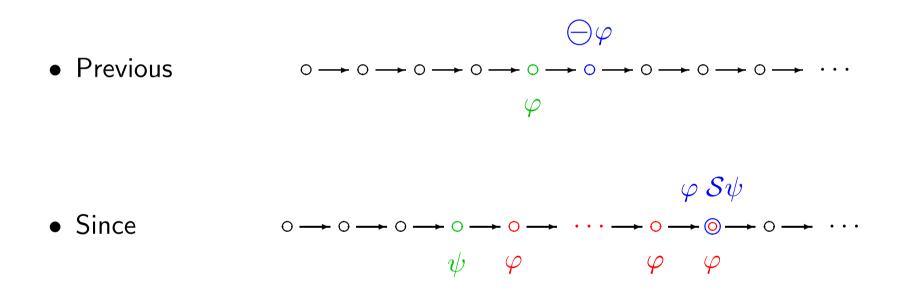


Linear-time temporal logic over sequences . . .

Derived modalities

Linear-time temporal logic over sequences . . .

Past modalities



Linear-time temporal logic over sequences . . .

• Theorem (Kamp '68)

LTL has the same expressive power as $FO(\mathbb{N}, <)$.

• Theorem (Gabbay, Pnueli, Shelah & Stavi '80)

LTL with only future modalities has the same expressive power as $FO(\mathbb{N}, <)$.

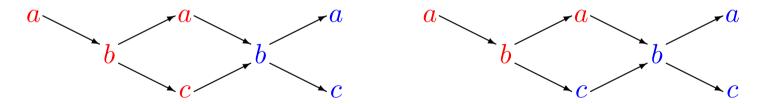
• Theorem (Sistla & Clarke '82)

Model checking LTL is PSPACE-complete.

– Do all sequences generated by a finite-state system S satisfy an LTL formula $\varphi?$

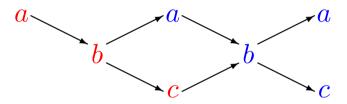
LTL over traces

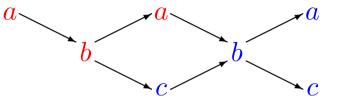
- Points on a sequence \Leftrightarrow prefixes of the sequence
- A prefix of a trace is a downward closed subset of events



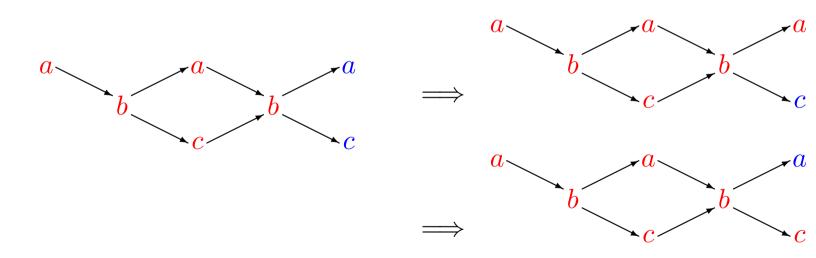
- Interpret formulas at prefixes
- Prefixes can be ordered in the obvious way— $c \leq c'$ iff $c \subseteq c'$

• Two prefixes may be unordered



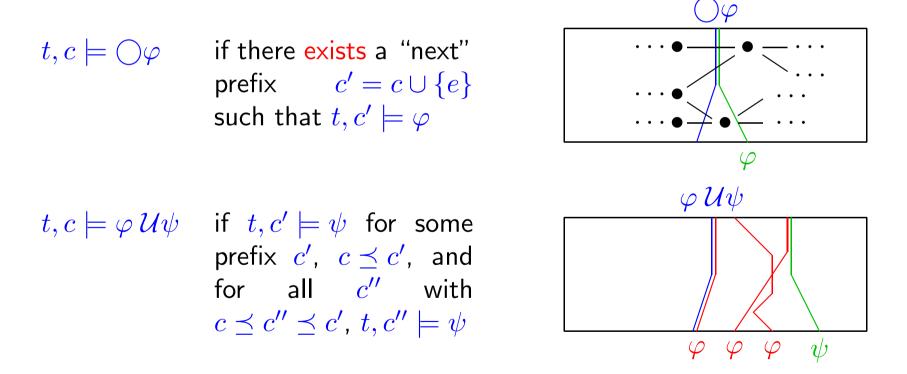


• A prefix may have more than one "next" prefix



Trace modalities

For a trace $t = (E, \leq, \lambda)$ over (Σ, D) , let $c \subseteq E$ be a prefix.



Fix a trace alphabet (Σ, D) .

- When interpreted on traces over (Σ, D), what is the expressive power of LTL(○, U) with respect to FO(<)?
 - LTL(\bigcirc , \mathcal{U}) is within FO(<) because width of a trace is bounded!
- Theorem (Thiagarajan & Walukiewicz, LICS '97)

Expressively complete, if you add past formulas $\bigcirc a$

 $-t, c \models \bigcirc a$ if c contains a maximal event labelled a

• Theorem (Diekert & Gastin, ICALP '00)

Expressively complete with just \bigcirc and \mathcal{U} .

Generalizes the GPSS '80 result from sequences to traces.

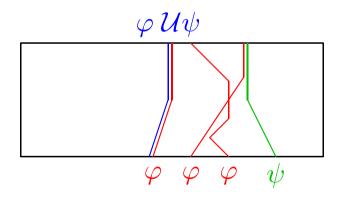
Trace modalities . . .

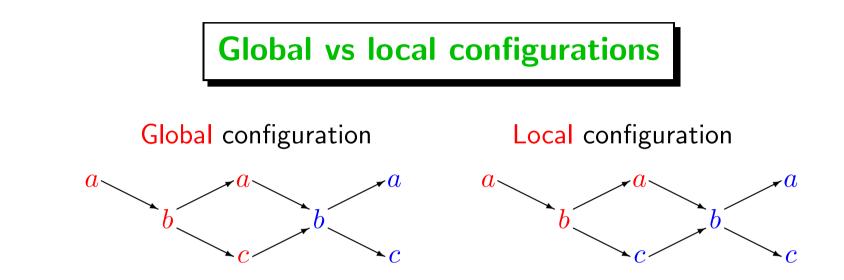
Unfortunately, . . .

• Theorem (Walukiewicz, ICALP '98)

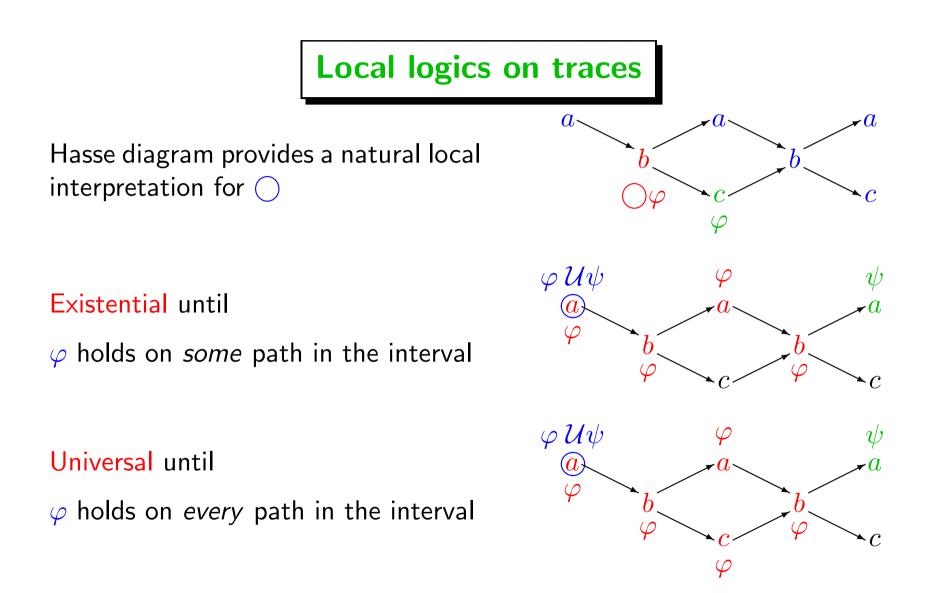
Model checking is non elementary.

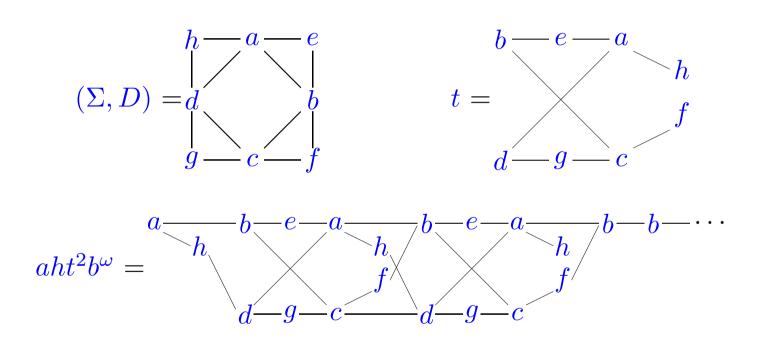
"Too many" configurations between φ and ψ .



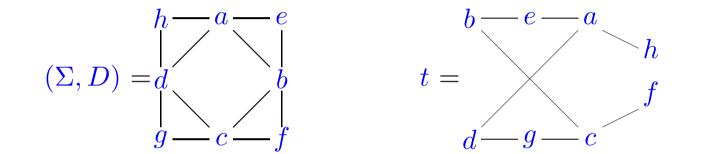


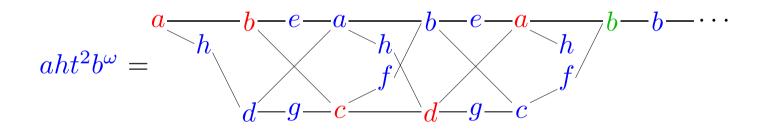
- Local configuration represents local history of an event.
 - Events $e \in E$ \Leftrightarrow Local configurations $\downarrow e \subseteq E$
- Variables in FO(<) are interpreted as events
- Can we evaluate temporal formulas at local configurations and still be as expressive as FO(<)?



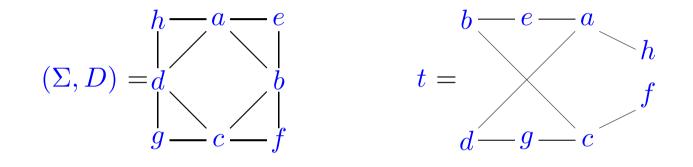


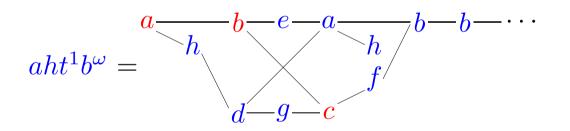
Example (independently) due to Gastin and Walukiewicz



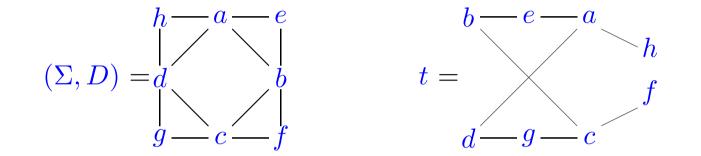


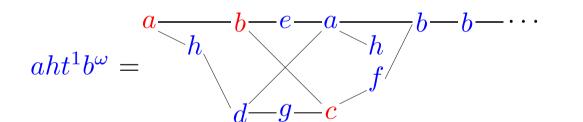
 $\varphi = a \lor b \lor c \lor d \mathcal{U} \Box b$





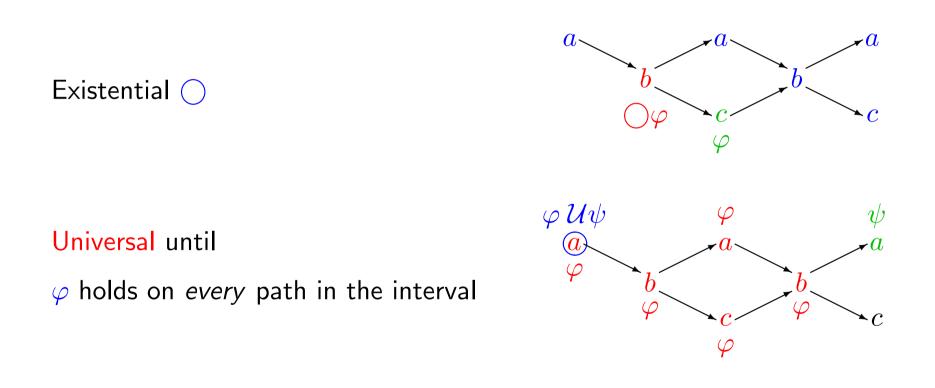
 $\varphi = a \lor b \lor c \lor d \mathcal{U} \Box b$



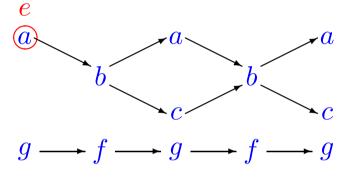


 $\varphi = a \lor b \lor c \lor d \mathcal{U} \Box b$ $aht^*b^{\omega} \cap \mathcal{L}(\varphi) = ah(t^2)^*b^{\omega}$

Local logics on traces



• Need some way of globally combining local formulas to span disjoint components



Formula at e cannot "reach" the disconnected chain gfgfg

• Global formulas

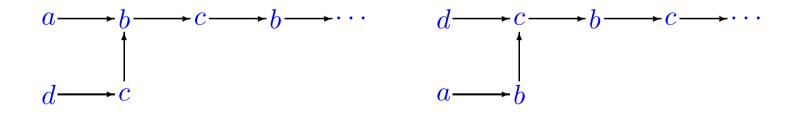
Boolean combinations of $EM\varphi$, φ a local formula

 $t \models EM\varphi$ if there is a minimal event e in t such that $t, e \models \varphi$

Pure future local logics are not sufficient

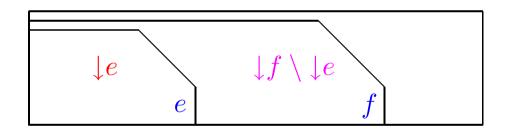
 φ is a pure future formula if $t, e \models \varphi$ implies that $t't, e \models \varphi$ for any t', t, eExample (Walukiewicz)

The following traces over a - b - c - d cannot be distinguished by pure future local formulas



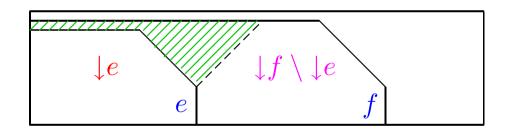
A stronger until

• For events $e \leq f$, the interval between e and f is more properly defined as ${\downarrow}f \setminus {\downarrow}e$



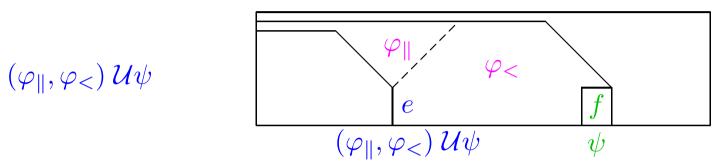
A stronger until

• For events $e \leq f$, the interval between e and f is more properly defined as $\downarrow f \setminus \downarrow e$



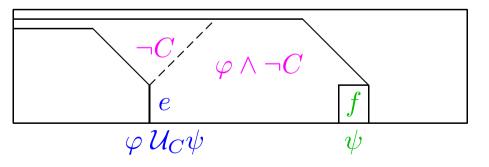
• This interval includes events that do not lie above *e*

• A ternary until

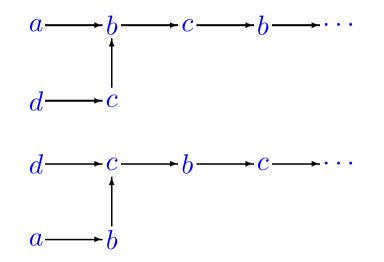


- A weaker version filtered until
 - $arphi \; \mathcal{U}_C \psi$, $C \subseteq \Sigma$

- φ holds above e and below f
- No action from C occurs in $\downarrow f \setminus \downarrow e$



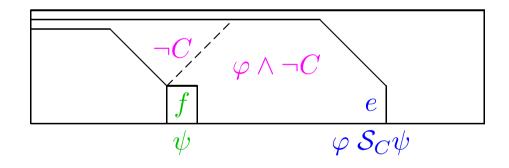
Filtered until can distinguish these traces



The formula $EMd U_{\{a\}}c$ is true in the first trace, but not in the second.

A dual modality — filtered since

- φ holds above f and below e
- No action from C occurs in $\downarrow e \setminus \downarrow f$



 $\varphi \, \mathcal{S}_C \psi, \, C \subseteq \Sigma$

Theorem (Gastin & Mukund, ICALP '02)

 $LTL(\bigcirc, \bigcirc, \mathcal{U}_C, \mathcal{S}_C)$ has the same expressive power as FO(<).

For each fixed alphabet (Σ, D) , the model-checking problem is in PSPACE (and hence PSPACE-complete).

Corollary

 $FO_3(<)$, FO with 3 variables, is as expressive as FO(<) for traces.

Independent of the width of the trace!

Arcachon, 23 May 2002

Pure future modalities

Theorem (Diekert & Gastin, LPAR '01)

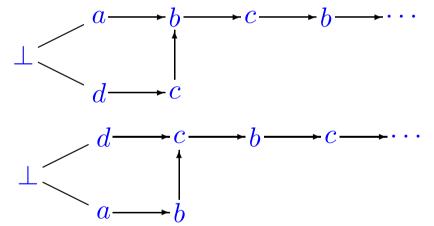
 $LTL(\bigcirc, \mathcal{U})$, where \mathcal{U} is the universal pure future local until, has the same expressive power as FO(<) for cographs.

Cographs—traces where the alphabet (Σ, D) is series-parallel.

- (Σ, D) is built from singletons using
 - $\Sigma_1\cdot\Sigma_2$ all actions in Σ_1 are dependent on all actions Σ_2
 - $\Sigma_1 \parallel \Sigma_2$ all actions in Σ_1 are independent of all actions Σ_2
- (Σ, D) is N-free, does not embed a b c d.
- Traces generated by (Σ, D) are series-parallel graphs.

What if . . .

- For arbitrary alphabets, you have only \mathcal{U}_C , but not \mathcal{S}_C ?
- Each trace is equipped with a special bottom element.



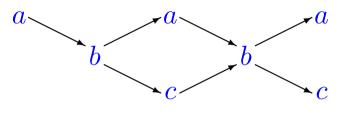
Can separate these traces using the pure future formula $\neg a \mathcal{U}c$ evaluated at \bot .

Another point of view

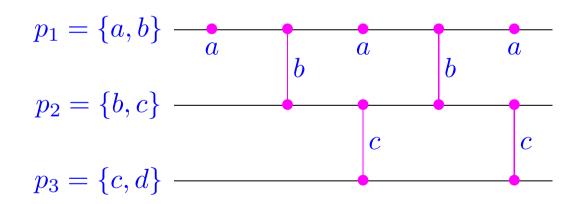
- (Σ, D) can be implemented as a distributed alphabet $(\Sigma_1, \ldots, \Sigma_n)$.
 - $-\bigcup_{1\leq i\leq n}\Sigma_i=\Sigma$
 - If $(a,b) \in D$, then for some i, $\{a,b\} \in \Sigma_i$
- Think of each i as an agent or process in a distributed system.
- Example, can implement a b c d with three agents.
 Distributed alphabet is ({a, b}, {b, c}, {c, d}).

Another point of view . . .

Can redraw the trace

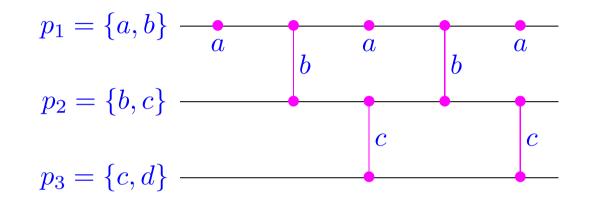


as

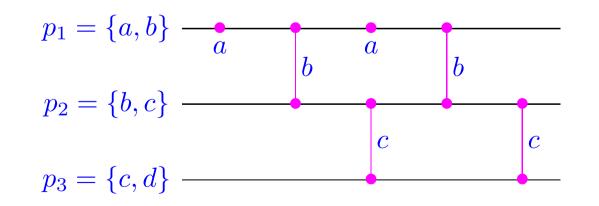


Another point of view . . .

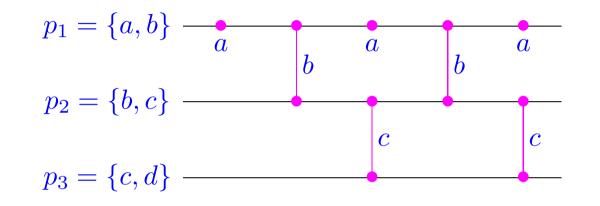
The view that p_3 has of



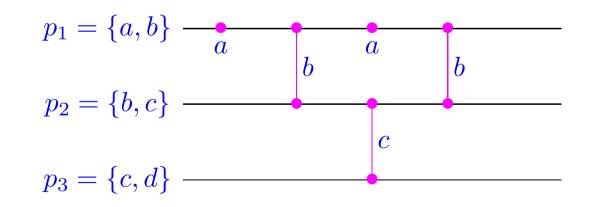
. is



The p_1 view of the p_3 view of



. is



• Define local modalities based on processes

```
(TrPTL, Thiagarajan LICS '94)
```

• $t, e \models \bigcirc_i \varphi$

With respect to the maximal *i*-event in $\downarrow e$, the next *i*-event satisfies φ

• $t, e \models \varphi \, \mathcal{U}_i \psi$

Starting with the maximal *i*-event in $\downarrow e$, the sequence of events along process *i* satisfies $\varphi U \psi$.

• Boolean combination of assertions $EM_i\varphi$ which say that there is a minimal *i*-event satisfying the local formula φ .

• Is TrPTL equivalent to FO(<)?

Probably not, but counterexample is elusive

• Using more explicit past assertions, it is possible to obtain a process-oriented temporal logic that is equivalent to FO(<)

(Adsul & Sohoni, ICALP '02)

Summary

- Temporal logics interpreted over the Hasse diagram of a trace
 - Without a special element \perp , to what extent are past modalities required?
 - With a special element \perp , are past modalities required at all?
- Temporal logics interpreted over the process view of a trace
 - Is TrPTL expressively complete?
- Not discussed at all in this talk
 - μ -calculi on traces and expressive completeness with respect to MSO (Niebert '95, Walukiewicz '01)