
Who’s afraid of concurrent programming?

Madhavan Mukund

Chennai Mathematical Institute
http://www.cmi.ac.in/~madhavan

ACM, Chennai Professional Chapter
13 November 2010

http://www.cmi.ac.in/~madhavan

Concurrent programming

Multiprocessing

Single processor executes several computations “in parallel”
Time-slicing to share access

Logically parallel actions within a single application

Clicking Stop terminates a download in a browser
User-interface is running in parallel with network access

Process

Private set of local variables
Time-slicing involves saving the state of one process and
loading the suspended state of another

Threads

Operated on same local variables
Communicate via “shared memory”
Context switches are easier

Concurrent programming

Multiprocessing

Single processor executes several computations “in parallel”
Time-slicing to share access

Logically parallel actions within a single application

Clicking Stop terminates a download in a browser
User-interface is running in parallel with network access

Process

Private set of local variables
Time-slicing involves saving the state of one process and
loading the suspended state of another

Threads

Operated on same local variables
Communicate via “shared memory”
Context switches are easier

The challenge of concurrent programming

Concurrent programming is difficult

Carefully coordinate access to shared data
Race conditions may create scheduler-dependent bugs

Hard to detect and reproduce

Programming languages offer features to support concurrent
programming

Synchronization mechanisms: semaphores, locks, monitors
Still have to deal with deadlocks, granularity issues

Fortunately, concurrent programming is usually left to
“specialists”

Operating system schedulers
Webservers
. . .

The challenge of concurrent programming

Concurrent programming is difficult

Carefully coordinate access to shared data
Race conditions may create scheduler-dependent bugs

Hard to detect and reproduce

Programming languages offer features to support concurrent
programming

Synchronization mechanisms: semaphores, locks, monitors
Still have to deal with deadlocks, granularity issues

Fortunately, concurrent programming is usually left to
“specialists”

Operating system schedulers
Webservers
. . .

The challenge of concurrent programming

Concurrent programming is difficult

Carefully coordinate access to shared data
Race conditions may create scheduler-dependent bugs

Hard to detect and reproduce

Programming languages offer features to support concurrent
programming

Synchronization mechanisms: semaphores, locks, monitors
Still have to deal with deadlocks, granularity issues

Fortunately, concurrent programming is usually left to
“specialists”

Operating system schedulers
Webservers
. . .

Multicore architectures

Physical constraints make it impossible to further shrink and
speed up CPUs

Instead, pack multiple CPU “cores” on a single chip

2 cores are standard today (“dual core”)

To speed up applications, need to exploit the underlying
parallelism in hardware

School of thought

Multicore architectures will make concurrent programming more
ubiquitous

If so, we’d better make it easier to write and debug
concurrent programs!

Multicore architectures

Physical constraints make it impossible to further shrink and
speed up CPUs

Instead, pack multiple CPU “cores” on a single chip

2 cores are standard today (“dual core”)

To speed up applications, need to exploit the underlying
parallelism in hardware

School of thought

Multicore architectures will make concurrent programming more
ubiquitous

If so, we’d better make it easier to write and debug
concurrent programs!

Multicore architectures

Physical constraints make it impossible to further shrink and
speed up CPUs

Instead, pack multiple CPU “cores” on a single chip

2 cores are standard today (“dual core”)

To speed up applications, need to exploit the underlying
parallelism in hardware

School of thought

Multicore architectures will make concurrent programming more
ubiquitous

If so, we’d better make it easier to write and debug
concurrent programs!

Race conditions

Shared variables must be updated consistently

Thread 0

...

m = n;

m++;

n = m;

Thread 1

...

k = n;

k++;

n = k;

Expect n to increase by 2 . . .

. . . but, time-slicing may order execution as follows

Thread 1: m = n;

Thread 1: m++;

Thread 2: k = n; // k gets the original value of n

Thread 2: k++;

Thread 1: n = m;

Thread 2: n = k; // Same value as that set by Thread 1

Race conditions

Shared variables must be updated consistently

Thread 0

...

m = n;

m++;

n = m;

Thread 1

...

k = n;

k++;

n = k;

Expect n to increase by 2 . . .

. . . but, time-slicing may order execution as follows

Thread 1: m = n;

Thread 1: m++;

Thread 2: k = n; // k gets the original value of n

Thread 2: k++;

Thread 1: n = m;

Thread 2: n = k; // Same value as that set by Thread 1

Race conditions

Even a direct update to a single variable is problematic

Thread 0

...

n++;

Thread 1

...

n++;

n++ typically breaks up as three steps

Load n from memory to register r
Increment r
Store value of r back at memory location n

Uncontrolled interleaving can again produce inconsistent
updates

Peterson’s algorithm

Thread 0

...

request_0 = true;

turn = 1;

while (request_1 &&

turn != 0){}

// "Busy" wait

// Enter critical section

...

// Leave critical section

request_0 = false;

...

Thread 1

...

request_1 = true;

turn = 0;

while (request_0 &&

turn != 1){}

// "Busy" wait

// Enter critical section

...

// Leave critical section

request_1 = false;

...

If both try simultaneously, turn decides who goes through

If only one is alive, request for that process is stuck at false
and turn is irrelevant

Peterson experiment

Two parallel threads

Each increments a shared integer accumulate in a loop
500,000 times

Critical section protected by Peterson’s algorithms

Expected final value of accumulate is 1,000,000

Implementation using pthreads in C

Intel Core 2 Duo, MacOS

20–30% of runs show inconsistent updates

Intel Xeon, single core, Linux

80% of runs show inconsistent updates!

What’s going on?

Peterson experiment

Two parallel threads

Each increments a shared integer accumulate in a loop
500,000 times

Critical section protected by Peterson’s algorithms

Expected final value of accumulate is 1,000,000

Implementation using pthreads in C

Intel Core 2 Duo, MacOS

20–30% of runs show inconsistent updates

Intel Xeon, single core, Linux

80% of runs show inconsistent updates!

What’s going on?

A simpler example

Initially, shared values x = y = 0.

Thread 0

x = 1;

r0 = y;

Thread 1

y = 1;

r1 = x;

Possible outcomes

r0 r1

0 1

1 0

1 1

Thread 0 completes before Thread 1 starts
Thread 1 completes before Thread 0 starts
Interleaving occurs

Experimentally, r0 = 0 and r1 = 0 are also observed!

Instructions are being reordered!

A simpler example

Initially, shared values x = y = 0.

Thread 0

x = 1;

r0 = y;

Thread 1

y = 1;

r1 = x;

Possible outcomes

r0 r1

0 1

1 0

1 1

Thread 0 completes before Thread 1 starts
Thread 1 completes before Thread 0 starts
Interleaving occurs

Experimentally, r0 = 0 and r1 = 0 are also observed!

Instructions are being reordered!

A simpler example

Initially, shared values x = y = 0.

Thread 0

x = 1;

r0 = y;

Thread 1

y = 1;

r1 = x;

Possible outcomes

r0 r1

0 1

1 0

1 1

Thread 0 completes before Thread 1 starts
Thread 1 completes before Thread 0 starts
Interleaving occurs

Experimentally, r0 = 0 and r1 = 0 are also observed!

Instructions are being reordered!

Sequential consistency

Multiple sequential threads read and write to shared memory

Sequential Consistency [Lamport 1979]

. . . the result of any execution is the same as if the operations of
all the processors were executed in some sequential order, and the
operations of each individual processor appear in this sequence in
the order specified by its program.

In other words . . .

Computations of different processes are interleaved

Program order is preserved for each process

Relaxing sequential consistency

Instructions in a process may be executed out of order

Compiler optimization

r1 = x

r2 = x

if (r1 == r2)

y = 1

y = 1

r1 = x

r2 = x

if (true)

Hardware: reduce latency of writes

Relaxing program order

Thread 0

x = 1

r0 = y

Thread 1

r1 = x

Sequentially consistent schedule requires 3 steps

x = 1 [Step 1]

r0 = y [Step 3]

r1 = x [Step 2]

Reordering allows parallel access to disjoint variables, 2 step
schedule

r0 = y [Step 1]

x = 1 [Step 2]

r1 = x [Step 1]

Relaxing program order

Thread 0

x = 1

r0 = y

Thread 1

r1 = x

Sequentially consistent schedule requires 3 steps

x = 1 [Step 1]

r0 = y [Step 3]

r1 = x [Step 2]

Reordering allows parallel access to disjoint variables, 2 step
schedule

r0 = y [Step 1]

x = 1 [Step 2]

r1 = x [Step 1]

Relaxing program order

Thread 0

x = 1

r0 = y

Thread 1

r1 = x

Sequentially consistent schedule requires 3 steps

x = 1 [Step 1]

r0 = y [Step 3]

r1 = x [Step 2]

Reordering allows parallel access to disjoint variables, 2 step
schedule

r0 = y [Step 1]

x = 1 [Step 2]

r1 = x [Step 1]

Relaxing memory models

Relaxed hardware memory models in use for years!

TSO Total Store Ordering
read(y) can “overtake” write(x)

x = 5; r = y 7→ r = y; x = 5

As though all writes are buffered in a single queue

PSO Partial Store Ordering
write(y) can “overtake” write(x)

x = 5; y = 7 7→ y = 7; x = 5

Each location has a separate write buffer

RMO Relaxed Memory Ordering
read(y) can “overtake” read(x) and read(y)

x = 5; r = x; y = 7 7→ y = 7; x = 5; r = x

Relaxing memory models

Relaxed hardware memory models in use for years!

TSO Total Store Ordering
read(y) can “overtake” write(x)

x = 5; r = y 7→ r = y; x = 5

As though all writes are buffered in a single queue

PSO Partial Store Ordering
write(y) can “overtake” write(x)

x = 5; y = 7 7→ y = 7; x = 5

Each location has a separate write buffer

RMO Relaxed Memory Ordering
read(y) can “overtake” read(x) and read(y)

x = 5; r = x; y = 7 7→ y = 7; x = 5; r = x

Relaxing memory models

Relaxed hardware memory models in use for years!

TSO Total Store Ordering
read(y) can “overtake” write(x)

x = 5; r = y 7→ r = y; x = 5

As though all writes are buffered in a single queue

PSO Partial Store Ordering
write(y) can “overtake” write(x)

x = 5; y = 7 7→ y = 7; x = 5

Each location has a separate write buffer

RMO Relaxed Memory Ordering
read(y) can “overtake” read(x) and read(y)

x = 5; r = x; y = 7 7→ y = 7; x = 5; r = x

Examples

Intel x86, SPARC, AMD typically implement TSO

PowerPC typically implements RMO

Hardware manufacturers reluctant to fully document memory
models they implement

Avoid commitment to maintain compatibility as hardware
evolves!

Examples

Intel x86, SPARC, AMD typically implement TSO

PowerPC typically implements RMO

Hardware manufacturers reluctant to fully document memory
models they implement

Avoid commitment to maintain compatibility as hardware
evolves!

The memory model zoo

Programming with weak memory models

How can programming languages implement constructs like
locks etc which require sequential consistency?

Hardware provides special instructions (mfence, . . .) to
restrict relaxation

Compilers can use these “fence” instructions to build
“barriers” that guarantee sensible semantics sychronization
constructs provided in the programming language

Programming with weak memory models

How can programming languages implement constructs like
locks etc which require sequential consistency?

Hardware provides special instructions (mfence, . . .) to
restrict relaxation

Compilers can use these “fence” instructions to build
“barriers” that guarantee sensible semantics sychronization
constructs provided in the programming language

Data races

Using fences, etc, programming languages can provide their
own memory models

Data race

Two adjacent conflicting operations that can be swapped

Conflicting memory operations

Affect same location, at least one is a write

Interleave operations of all threads

Adjacent operations from different threads can be swapped

Java memory model guarantee

Programs free of data races respect sequential consistency

Data races

Using fences, etc, programming languages can provide their
own memory models

Data race

Two adjacent conflicting operations that can be swapped

Conflicting memory operations

Affect same location, at least one is a write

Interleave operations of all threads

Adjacent operations from different threads can be swapped

Java memory model guarantee

Programs free of data races respect sequential consistency

Data races

Using fences, etc, programming languages can provide their
own memory models

Data race

Two adjacent conflicting operations that can be swapped

Conflicting memory operations

Affect same location, at least one is a write

Interleave operations of all threads

Adjacent operations from different threads can be swapped

Java memory model guarantee

Programs free of data races respect sequential consistency

Java Memory Model

If the program is not data race-free, all bets are off!

Can signal to Java that a shared variable should be
synchronized across threads: volatile

Declare request_0, request_1, turn as volatile to
implement Peterson’s algorithm

Java memory model is very complex, not completely robust

Check if P1 || P2 is admissible by incrementally building up a
valid execution

There are examples where P1 || P2 has no valid execution,
but P1 ; P2 is admissible!

Sequentialization of parallel threads should correspond to a
valid schedule!

Java Memory Model

If the program is not data race-free, all bets are off!

Can signal to Java that a shared variable should be
synchronized across threads: volatile

Declare request_0, request_1, turn as volatile to
implement Peterson’s algorithm

Java memory model is very complex, not completely robust

Check if P1 || P2 is admissible by incrementally building up a
valid execution

There are examples where P1 || P2 has no valid execution,
but P1 ; P2 is admissible!

Sequentialization of parallel threads should correspond to a
valid schedule!

Other languages

C++ memory model still being formalized

Thread libraries like pthreads give no guarantees, as we have
seen!

Concurrent programming for the masses?

Concurrent programs are already hard to design and
implement correctly

Locks etc ensure freedom from data races and help overcome
complications of relaxed memory models

But lock-based programs are tricky to get right

Can we present a better abstraction to the programmer?

Borrow the notion of a transaction from databases

Programmer describes “indivisible” units of code

Underlying system guarantees atomicity

Transactional memory

The problem with locks

A bank account class

class Account {

Int balance;

synchronized void withdraw(int n) {

balance = balance - n;

}

synchronized void deposit(int n) {

withdraw(-n);

}

}

In Java, each object has a lock

synchronized methods acquire and release locks

The problem with locks . . .

How do we transfer money from one account to another?

void transfer(Account from,

Account to, Int amount) {

from.withdraw(amount);

to.deposit(amount);

}

Is there a problem?

Intermediate state when money has left from and not been
deposited in to should not be visible!

Having withdraw and deposit synchronized does not help

The problem with locks . . .

How do we transfer money from one account to another?

void transfer(Account from,

Account to, Int amount) {

from.withdraw(amount);

to.deposit(amount);

}

Is there a problem?

Intermediate state when money has left from and not been
deposited in to should not be visible!

Having withdraw and deposit synchronized does not help

The problem with locks . . .

To fix this, we can add more locks

void transfer(Account from,

Account to, Int amount) {

from.lock(); to.lock();

from.withdraw(amount);

to.deposit(amount);

from.unlock(); to.unlock();

}

Is there a problem?

Two concurrent transfers in opposite directions between
accounts i and j can deadlock!

The problem with locks . . .

To fix this, we can add more locks

void transfer(Account from,

Account to, Int amount) {

from.lock(); to.lock();

from.withdraw(amount);

to.deposit(amount);

from.unlock(); to.unlock();

}

Is there a problem?

Two concurrent transfers in opposite directions between
accounts i and j can deadlock!

The problem with locks . . .

Order the locks

void transfer(Account from,

Account to, Int amount) {

if (from < to)

then {from.lock(); to.lock(); }

else {to.lock(); from.lock(); }

from.withdraw(amount);

to.deposit(amount);

from.unlock(); to.unlock();

}

Is there a problem?

Need to know all possible locks in advance

The problem with locks . . .

Order the locks

void transfer(Account from,

Account to, Int amount) {

if (from < to)

then {from.lock(); to.lock(); }

else {to.lock(); from.lock(); }

from.withdraw(amount);

to.deposit(amount);

from.unlock(); to.unlock();

}

Is there a problem?

Need to know all possible locks in advance

The problem with locks . . .

void transfer(Account from,

Account to, Int amount) {

if (from < to)

then {from.lock(); to.lock(); }

else {to.lock(); from.lock(); }

from.withdraw(amount);

to.deposit(amount);

from.unlock(); to.unlock();

}

What if from is a Super Savings Account in which most of
the money is in a medium term fixed deposit fromFD?

from.withdraw(amt) may require an additional transfer
from fromFD to from

transfer may not know anything about fromFD
Even if it did, it has to acquire a third lock

The problem with locks . . .

void transfer(Account from,

Account to, Int amount) {

if (from < to)

then {from.lock(); to.lock(); }

else {to.lock(); from.lock(); }

from.withdraw(amount);

to.deposit(amount);

from.unlock(); to.unlock();

}

What if transfer can block in case of insufficient funds?

Wait on a condition variable (monitor queue)
Becomes more complex as number of locks increase

The problem with locks . . .

Take too few locks — data integrity is compromised

Take too many locks — deadlocks, lack of concurrency

Take wrong locks, or in wrong order — connection between
lock and data it protects is informal

Error recovery — how to recover from errors without leaving
system in an inconsistent state?

Lost wake-ups, erroneous retries — Easy to forget to signal a
waiting thread, recheck condition after wake-up

Lack of modularity

Cannot easily make use of smaller programs to build larger ones

Combining withdraw and deposit to create transfer

requires exposing locks

Transactions

Import idea of transactions from databases

Hardware support for transactions in memory
[Herlihy,Moss 1993]

Instead, move transaction support to run time software

Software Transactional Memory [Shavit,Touitou 1995]

An implementation in Haskell
[Harris, Marlow, Peyton Jones, Herlihy 2005]

Tutorial presentation
Simon Peyton Jones: Beautiful concurrency,
in Beautiful code, ed. Greg Wilson, OReilly (2007)

Transactions . . .

A transaction is an indivisible unit

Execute a transaction as though it was running sequentially

Check at the end of the transaction if any shared variables
touched by the transaction have changed (due to external
updates)

Maintain a transaction log for each transaction, noting down
values that were written and read
If a value is written in a transaction and read later, look it up
in the log
At the end of the transaction, use log to check consistency

If no inconsistency was seen, commit the transaction

Otherwise, roll back and retry

Transactions . . .

Use atomic to indicate scope of transactions

void withdraw(int n) {

atomic{ balance = balance - n; }

}

void deposit(int n) {

atomic{ withdraw(-n); }

}

Now, building a correct version of transfer is not difficult

void transfer(Account from, Account to, Int amount) {

atomic { from.withdraw(amount);

to.deposit(amount); }

}

Transactions . . .

Use atomic to indicate scope of transactions

void withdraw(int n) {

atomic{ balance = balance - n; }

}

void deposit(int n) {

atomic{ withdraw(-n); }

}

Now, building a correct version of transfer is not difficult

void transfer(Account from, Account to, Int amount) {

atomic { from.withdraw(amount);

to.deposit(amount); }

}

Transaction interference

Independent transactions updating the same object

atomic{ // Transaction 1

if a.getName().equals("B")

s.setVal(8);

}

atomic{ // Transaction 2

int previous = a.getVal();

a.setVal(previous+1);

}

If Transaction 1 executes between first and second instruction
of Transation 2, transaction log shows that value of previous
is inconsistent

Transaction 2 should roll back and reexecute

Transactions . . .

What else do we need?

Blocking

If amount to be withdrawn is more than current balance, wait

void transfer(Account from, Account to, Int amount) {

atomic {

if (amount < from.balance) retry;

from.withdraw (amount);

to.deposit(amount);

}

}

retry suspends transaction without any partial, inconsistent
side-effects

Transaction log indicates possible variables that forced retry

Wait till one of these variables changes before attempting to
rerun transaction from scratch

Transactions . . .

What else do we need?

Nested atomic allows sequential composition

How about choosing between transactions with alternatives

If amount to be withdrawn is more than current balance, move
money from linked fixed deposit

void transfer(Account from, Account to, Int amount) {

atomic {

atomic{ from.withdraw (amount); }

orElse

atomic{ LinkedFD[from].withdraw (amount); }

to.deposit(amount);

}

}

What could go wrong?

void b(Account from, Account to, Int amount) {

atomic {

x = a.getVal();

y = b.getVal();

if (x > y){ launchMissiles(); }

...

}

}

If an inconsistency is found later, the transaction should roll
back and retry

How do we recall the missiles that have been launched?

Need a strong type system to ensure that transactions affect
only transactional memory

Dealing with exceptions

atomic{

a = q1.extract();

q2.insert(a);

}

Suppose q2.insert(a) fails because q2 is full

Reasonable to expect that value in a is pushed back into q1.

How about

try { atomic{

a = q1.extract(); q2.insert(a);

}

}

catch (QueueFullException e) { a = q1.extract() } ;

What is the state of q1?

STM summary

Mechanism for delimiting transactions (atomic)

Programmer writes “sequential” code
Implementation determines granularity of concurrency — e.g.
using transaction logs

Transactions can be sequentially composed — nesting of
transactions

Transactions can block — retry

Choice between transactions – orElse

Need to restrict what transactions can encompass —
LaunchMissiles()

Exceptions and transactions interact in a complex manner

Summary

Multicore technology will make concurrent programming more
ubiquitous

Concurrent programming is already difficult

Memory models that depart from sequential consistency make
life eve n more complex

Existing lock based techniques do not scale up

STMs could provide a modular framework for coordinating
shared data

Not a magic bullet, but allows us to focus on coordination
issues at higher level

Lots of areas still to be explored

