
Internal Report TCS-97-4

September, 1997

Message-Passing Automata and Asyn
hronous Communi
ation

(Preliminary Version)

Madhavan Mukund

1

Jaikumar Radhakrishnan

2

K Narayan Kumar

1

Milind Sohoni

3

Abstra
t

This paper is a step towards developing a new automata-theoreti
 framework for

des
ribing distributed �nite-state systems with asyn
hronous
ommuni
ation. If we

assume that messages
an be delayed arbitrarily in transit, it is reasonable to model

the global behaviour of su
h systems in terms of �nite-state automata equipped

with blind
ounters|that is,
ounters whi
h
annot be tested for zero.

We analyse the languages a

epted by su
h automata and show that it is de-

idable whether the language of su
h an automaton is empty. We also develop a

variety of pumping lemmas whi
h
an be used to show that
ertain languages are

not a

epted by these automata.

Our main result is that the sub
lass of languages a

epted by these automata

whi
h is
losed under
omplementation is pre
isely the
lass of regular languages.

In the
ontext of asyn
hronous proto
ols, our result implies that robust �nite-state

proto
ols use bounded bu�ers. In other words, messages are used only for hand-

shaking|that is, for
oordinating the intera
tion between di�erent pro
esses and

the environment.

It is well known that automata with blind
ounters are
losely related to Petri

nets. However, our de�nition of languages is more appropriate for reasoning about

asyn
hronous
ommuni
ation and is di�erent from the de�nition used in the theory

of Petri nets.

1

SPIC Mathemati
al Institute, 92 G.N. Chetty Road, Madras 600 017, India. E-mail:

fmadhavan,kumarg�smi.ernet.in

2

Computer S
ien
e Group, Tata Institute of Fundamental Resear
h, Homi Bhabha Road, Bombay

400 005, India. E-mail: jaikumar�t
s.tifr.res.in

3

Dept of Computer S
. and Engg., Indian Institute of Te
hnology, Bombay 400 076, India. E-mail:

sohoni�
se.iitb.ernet.in

1 Introdu
tion

Today, distributed systems whi
h use asyn
hronous
ommuni
ation are ubiquitous|the

Internet is a prime example. However, there has been very little work on studying

the �nite-state behaviour of su
h systems. In parti
ular, this area la
ks a satisfa
-

tory automata-theoreti
 framework. In
ontrast, automata theory for systems with syn-

hronous
ommuni
ation is well developed via Zielonka's asyn
hronous automata [Z87℄

and the
onne
tions to Mazurkiewi
z tra
e theory [M78℄.

This paper is a step towards developing an automata-theoreti
 framework for de-

s
ribing distributed �nite-state systems with asyn
hronous
ommuni
ation. Earlier at-

tempts at de�ning su
h models of asyn
hronous systems deal primarily with in�nite-state

systems|for instan
e, the port automaton model of Panangaden and Stark [PS88℄ and

the I/O automaton model of Lyn
h and Tuttle [LT87℄. Also, earlier work has fo
ussed on

issues far removed from those whi
h are traditionally
onsidered in the study of �nite-state

systems.

The setting for our work is as follows. Consider a system in whi
h a
olle
tion of

�nite-state ma
hines
ommuni
ate by sending messages via bu�ered
hannels. Suppose

that there are only �nitely many di�erent kinds of messages. Messages may experien
e

arbitrary delays in transit, though they always eventually rea
h their re
ipient. At an

abstra
t level, Internet proto
ols su
h as the SMTP mail proto
ol �t into this paradigm.

Another example is the proto
ol used in a banking network to ex
hange information

between ATMs and the bank's distributed databases.

Sin
e messages may get reordered in transit, the state of su
h a system is
ompletely

des
ribed by the state of the
omponents and the number of messages of ea
h kind whi
h

have been sent but are as yet undelivered. Thus, at a global level, su
h systems
an

be treated as �nite-state automata equipped with a �nite number of
ounters, one for

ea
h type of message. The only operations permitted on the
ounters are in
rement

and de
rement (
orresponding to sending and re
eiving the appropriate type of message

respe
tively). The automaton
annot test if a
ounter's value is zero|this restri
tion

aptures the intuition that it is not pra
ti
al for a
omponent to make a de
ision based

on the assumption that another pro
ess has not sent a message, sin
e messages may be

delayed arbitrarily.

With this motivation, we de�ne
ounter automata and study the languages they a
-

ept. Ea
h move of a
ounter automaton
onsists of either reading a letter from the

input or manipulating a
ounter. Reading from the input represents the intera
tion of

the underlying distributed system with its environment. We study the languages (over

the input alphabet) a

epted by these automata.

Our main
on
ern is when su
h a language is regular. An automaton whi
h a

epts

a regular language represents a
ommuni
ation proto
ol whose intera
tion with the en-

vironment is regular. Su
h a proto
ol essentially uses only bounded bu�ers. Our main

result is that a language L a

epted by a
ounter automaton is regular if and only if the

omplement of L is also a

epted by a
ounter automaton. In the
ontext of asyn
hronous

proto
ols, our result implies that robust �nite-state proto
ols use only bounded bu�ers.

In other words, messages are used only for hand-shaking, to
oordinate the intera
tion

between di�erent pro
esses and the environment. Along the way, we develop a variety of

tools and te
hniques for reasoning about
ounter automata, in
luding a number of pump-

ing lemmas whi
h are useful for showing when languages are not re
ognisable by
ounter

1

automata.

The automata we
onsider are
losely related to automata with blind
ounters, studied

by Greiba
h [G78℄. In turn, these automata are
losely related to Petri nets [J86a, J86b℄.

Some of the te
hniques we develop are analogous to well-known results in Petri net theory,

su
h as the
overing tree
onstru
tion of Karp and Miller [KM69℄. However, our de�nition

of languages is more appropriate for reasoning about asyn
hronous
ommuni
ation and

is di�erent from the de�nition used in Petri net theory. Towards the end of the paper,

we dis
uss the
onne
tion between our framework and Petri net languages.

Re
ently, Abdulla and Jonsson have also studied de
ision problems for distributed

systems with asyn
hronous
ommuni
ation [AJ93, AJ94℄. However, they work in a setting

where messages are delivered in the order in whi
h they are sent. This means that the

hannels are unbounded, �fo bu�ers. With su
h a strong model, most interesting questions

be
ome unde
idable. The results of [AJ93℄ show that the �fo model
an be made tra
table

by assuming that messages may be lost in transit. With lossy
hannels, questions su
h as

rea
hability of
on�gurations and equivalen
e with respe
t to �nite-state automata
an be

de
ided, though
ertain other questions remain unde
idable [AJ94℄. While their results

are in
omparable with ours, sin
e the two models are orthogonal, we remark that all their

positive results hold for our model as well.

The paper is organised as follows. In the next se
tion we de�ne
ounter automata and

prove some basi
 results about them. In Se
tion 3 we prove a Contra
tion Lemma whi
h

leads to de
idability of the emptiness problem and the fa
t that the languages a

epted

by
ounter automata are not
losed under
omplementation. Se
tion 4 develops a family

of pumping lemmas whi
h are exploited in Se
tion 5 to prove our main result
on
erning

the regularity of languages a

epted by
ounter automata. In the �nal se
tion, we dis
uss

in detail the
onne
tion between our results and those in Petri net theory and point out

dire
tions for future work.

2 Counter Automata

Natural numbers and tuples As usual, N denotes the set f0; 1; 2; : : :g of natural

numbers. If i; j 2 N , [i::j℄ denotes the set fi; i+1; : : : ; jg with the
onvention that

[i::j℄ = ; if i > j. We
ompare k-tuples of natural numbers
omponent-wise: let

m = hm

1

; m

2

; : : : ; m

k

i and n = hn

1

; n

2

; : : : ; n

k

i be k-tuples of natural numbers. Then

m � n i� m

i

� n

i

for ea
h i 2 [1::k℄.

Counter automata A
ounter automaton A is a tuple (Q;�;�; T; q

in

; F), where:

� Q is a �nite set of states, with initial state q

in

and a

epting states F � Q.

� � is a �nite input alphabet.

� � is a �nite set of
ounters. We use C;C

0

; : : : to denote
ounters. With ea
h
ounter

C, we asso
iate two symbols, C

+

and C

�

. We write �

+

for the set fC

+

jC 2 �g, �

�

for fC

�

jC 2 �g and �

�

for �

+

[�

�

.

� T � Q� (� [�

�

)�Q is the transition relation.

2

Con�gurations A
on�guration of A is a pair (q; f) where q 2 Q and f : � ! N is a

fun
tion whi
h re
ords the values stored in the
ounters. If the
ounters are C

1

; C

2

; : : : ; C

k

then we represent f by an element hf(C

1

); f(C

2

); : : : ; f(C

k

)i of N

k

. By abuse of nota-

tion, the k-tuple h0; 0; : : : ; 0i, representing the fun
tion whi
h assigns 0 to all
ounters, is

uniformly denoted 0, for all values of k.

The fun
tion f dominates the fun
tion f

0

, written f � f

0

, if f(C) � f

0

(C) for every

ounter C. The fun
tion f stri
tly dominates the fun
tion f

0

, written f > f

0

, if f � f

0

and there is a
ounter C su
h that f(C) > f

0

(C).

We use � to denote
on�gurations. If � = (q; f), Q(�) denotes q and F (�) denotes f .

Further, for ea
h
ounter C, C(�) denotes the value f(C).

Moves The automaton moves from
on�guration � to
on�guration �

0

on d 2 � [�

�

if (Q(�); d; Q(�

0

)) 2 T and one of the following holds:

� d 2 � and F (�) = F (�

0

).

� d = C

+

, C(�

0

) = C(�) + 1 and C

0

(�) = C

0

(�

0

) for every C

0

6= C.

� d = C

�

, C(�

0

) = C(�)� 1 � 0 and C

0

(�) = C

0

(�

0

) for every C

0

6= C.

Su
h a move is denoted �

(q;d;q

0

)

�! �

0

|in other words, transitions are labelled by ele-

ments of T rather than elements of � [�

�

. Given a sequen
e of transitions t

1

t

2

: : : t

n

=

(q

1

; d

1

; q

2

)(q

2

; d

2

; q

3

) : : : (q

n

; d

n

; q

n+1

), the
orresponding sequen
e of letters d

1

d

2

: : : d

n

from

� [�

�

is denoted �(t

1

t

2

: : : t

n

).

Computations, runs and languages A
omputation ofA is a sequen
e �

0

t

1

�! �

1

t

2

�!

: : :

t

n

�! �

n

. We also write �

0

t

1

t

2

:::t

n

=) �

n

to indi
ate that there is a
omputation labelled

t

1

t

2

: : : t

n

from �

0

to �

n

. Noti
e that �

0

and t

1

t

2

: : : t

n

uniquely determine all the inter-

mediate
on�gurations �

1

; �

2

; : : : ; �

n

. If the transition sequen
e is not relevant, we just

write �

0

=) �

n

. As usual, �

t

1

t

2

:::t

n

=) denotes that there exists �

0

su
h that �

t

1

t

2

:::t

n

=) �

0

and

� =) denotes that there exists �

0

su
h that � =) �

0

.

For K 2 N , a K-run of A is a
omputation �

0

=) �

n

where C(�

0

) � K for ea
h

C 2 �.

If Æ is a string over � [�

�

, Æ�

�

denotes the subsequen
e of letters from � in Æ. Let

w = a

1

a

2

: : : a

k

be a string over �. A run of A over w is a 0-run �

0

t

1

t

2

:::t

n

=) �

n

where

Q(�

0

) = q

in

and �(t

1

t

2

: : : t

n

)�

�

= w. The run is said to be a

epting if Q(�

n

) 2 F . The

string w is a

epted by A if A has an a

epting run over w. The language a

epted by A,

denoted L(A), is the set of all strings over � a

epted by A.

A language over � is said to be
ounter re
ognisable if there is a
ounter automaton

with input alphabet � that a

epts this language.

Example 2.1 Let L

ge

� fa; bg

�

be given by fa

m

b

n

j m � ng. This language is
ounter

re
ognisable. Here is an automaton for L

ge

. The initial state is indi
ated by + and the

�nal states have an extra
ir
le around them.

a

C

+

b

C

�

b

+

3

2.1 Non-determinism versus determinism

Deterministi
 Counter Automata A
ounter automaton A = (Q;�;�; T; q

in

; F) is

said to be deterministi
 if the following two
onditions hold:

� If (q; d

1

; q

1

); (q; d

2

; q

2

) 2 T , with d

1

; d

2

2 �, then d

1

= d

2

implies q

1

= q

2

.

� If (q; d

1

; q

1

); (q; d

2

; q

2

) 2 T , with d

1

2 �

�

, then d

1

= d

2

and q

1

= q

2

.

Though this notion of determinism seems rather strong, it is easy to see that any

relaxation of the de�nition will allow deterministi
 automata to simulate non-deterministi

automata in a trivial manner.

For instan
e, suppose we na��vely de�ne a deterministi
 automaton to be one in whi
h

no state has two outgoing transitions with the same label. This de�nition would permit

a deterministi
 automaton to
hoose between a
ounter move and another transition

(whi
h may or may not be a
ounter move). We
an then simulate a
hoi
e between

two transitions t

1

= (q; d; q

1

) and t

2

= (q; d; q

2

) with the same label by adding a dummy

ounter C. Instead of
hoosing dire
tly between t

1

and t

2

, the new automaton will �rst

hoose between t

1

and a move (q; C

+

; q

0

) leading to a new state q

0

. We
an then simulate

t

2

by adding a transition (q

0

; d; q

2

). Thus, the original
hoi
e between t

1

and t

2

is repla
ed

by a
as
aded
hoi
e involving the dummy
ounter C.

It is interesting to observe that a similar strong de�nition of determinism is used in

the study of Petri net languages [J86a℄.

We have the following
hara
terisation of languages a

epted by deterministi

ounter

automata.

Proposition 2.2 Let A be a deterministi

ounter automaton. Then, either L(A) is

regular or there exists a word w =2 L(A) su
h that every extension of w also does not

belong to L(A).

Proof: Let A be a deterministi

ounter automaton. For ea
h input word w, either A

admits no run over w or it admits a unique sequen
e of runs �

1

; �

2

; : : : ; (whi
h may be

in�nite) over w su
h that for ea
h i � 1, �

i+1

extends �

i

by one transition involving a

ounter operation.

A word w is said to be blo
ked in the automaton A if A does not permit an in�nite

sequen
e of runs �

1

; �

2

; : : : ; over w. If w is blo
ked, there exists a unique state where A

\gets stu
k" when pro
essing w. We denote this state q

w

.

Sin
e A is deterministi
, we know that if q

w

has any outgoing transitions, either the

set of outgoing transitions at q

w

is labelled by distin
t letters from � or there is only a

single outgoing transition labelled by an element of �

�

. In the latter
ase, it must be

that the transition is labelled C

�

, for some C 2 �, be
ause a move labelled C

+

is always

enabled. We say that w is �-blo
ked in A if w is blo
ked in A and q

w

has an outgoing

transition labelled C

�

, for some C 2 �.

Returning to the statement to be proved, if L(A) = �

�

, then L(A) is regular. Thus,

the interesting
ase is when L(A) = �

�

n L(A) is non-empty.

Case 1: If there exists w in �

�

n L(A) whi
h is �-blo
ked, then any extension of w must

also be �-blo
ked. Thus all extensions of w also lie outside L(A).

4

Case 2: Suppose that no word w in L(A) is �-blo
ked. Then, from A we
an
onstru
t

a �nite-state automaton A

0

over the alphabet � whi
h has "-transitions. The automaton

A

0

has the same set of states, initial state and �nal states as A. For ea
h transition t

of the form (q; d; q

0

) in A, we have a
orresponding transition t

0

= (q; d

0

; q

0

) in A

0

, where

d

0

= d if d 2 � and d

0

= " if d 2 �

�

.

Sin
e A is deterministi
, at ea
h state of A

0

whi
h has outgoing transitions, either

the set of outgoing transitions is labelled by distin
t letters from � or there is a single

outgoing transition labelled ". In other words, for every word w, either A

0

does not admit

a run over w or A

0

admits a unique sequen
e of runs �

1

; �

2

; : : : ; over w su
h that for ea
h

i � 1, �

i+1

extends �

i

by a transition labelled ".

We
laim that L(A

0

) = L(A) and hen
e L(A) is regular. It is easy to see that

ea
h
omputation �

0

t

1

�! �

1

t

2

�! � � �

t

n

�! �

n

of A
an be simulated by a run Q(�

0

)

t

0

1

�!

Q(�

1

)

t

0

2

�! � � �

t

0

n

�! Q(�

n

) of A

0

, where for ea
h i 2 [1::n℄, t

0

i

is the transition
orresponding

to t

i

as des
ribed above. Sin
e the initial and �nal states of A

0

are the same as those of

A, it follows that L(A) � L(A

0

).

To see that L(A

0

) � L(A), assume that there is a word w 2 L(A

0

) n L(A). Then, A

0

admits an a

epting run �

0

: q

in

t

0

1

�! q

1

t

0

2

�! � � �

t

0

n

�! q

n

over w, with q

n

a �nal state. From

our
onstru
tion of A

0

, it follows that there is a maximal pre�x �

0

: q

in

t

0

1

�! q

1

t

0

2

�! � � �

t

0

k

�!

q

k

of �

0

, with k < n, su
h that A admits a 0-run � : �

0

t

1

�! �

1

t

2

�! � � �

t

k

�! �

k

over w

with the following properties:

� Q(�

0

) = q

in

.

� For ea
h i 2 [1::k℄, Q(�

i

) = q

i

and t

0

i

is the transition
orresponding to t

i

as spe
i�ed

in the
onstru
tion of A

0

.

� w is blo
ked in A and q

w

= q

k

.

Sin
e �
annot be extended in A while �

0

an be extended in A

0

, it must be the
ase that

t

k+1

orresponds to a move of the form C

�

for a
ounter C whose value at �

k

is 0. This

implies that w is �-blo
ked in A, whi
h is a
ontradi
tion.

Hen
e, L(A

0

) = L(A) and L(A) is regular.

2

Corollary 2.3 Non-deterministi

ounter automata are stri
tly more powerful than de-

terministi

ounter automata.

Proof: Consider the language L � fa; bg

�

given by

L = fw j w = w

1

a

m

b

n

aw

2

; where w

1

; w

2

2 fa; bg

�

and m � n � 1g:

It is not diÆ
ult to transform the automaton whi
h a

epts L

ge

= fa

m

b

n

j m � ng into

a non-deterministi

ounter automaton whi
h a

epts L. We argue that L
annot be

a

epted by any deterministi

ounter automaton. L is
learly not regular. Thus, by the

previous proposition, for L to be a

epted by a deterministi
 automaton, it must be the

5

ase that there is a word w =2 L su
h that every suÆx of w is also not in L. However, for

any word w =2 L, we
an always �nd an extension of w in L|for instan
e, waba 2 L for

all w 2 fa; bg

�

. 2

Observe, however, that even deterministi

ounter automata are stri
tly more powerful

than normal �nite-state automata. For instan
e, the language L

ge

of Example 2.1 is not

regular but the automaton a

epting the language is deterministi
.

2.2 Some useful results

The following observations are basi
 to analysing the behaviour of
ounter automata. We

�rst need the following terminology: a sequen
e n

1

; n

2

; : : : of k-tuples of natural numbers

is said to be non-de
reasing if n

1

� n

2

� � � �.

Proposition 2.4 Every in�nite sequen
e of k-tuples of natural numbers has an in�nite

non-de
reasing subsequen
e.

Proof: The proof is by indu
tion on k.

Basis: When k = 1, we have a sequen
e of natural numbers. If the sequen
e is bounded

then some value appears in�nitely often (by the pigeon-hole prin
iple). On the other

hand, if the sequen
e is unbounded, it is obvious that it
ontains a stri
tly in
reasing

in�nite subsequen
e.

Indu
tion step: If we proje
t the sequen
e of k-tuples onto its �rst k�1
omponents, we

an apply the indu
tion hypothesis to extra
t an in�nite subsequen
e whi
h is nonde
reas-

ing in these k�1
oordinates. We look at the
orresponding subsequen
e in our original

sequen
e of k-tuples and examine the kth
oordinate of ea
h element in the sequen
e.

By an argument similar to the basis
ase, there must be an in�nite subsequen
e whi
h is

non-de
reasing on the kth
oordinate as well.

2

Corollary 2.5 There is no in�nite set of k-tuples of natural numbers that is pairwise

in
omparable.

Lemma 2.6 Let T be a �nitely bran
hing in�nite tree whose nodes are labelled by k-tuples

from N. For ea
h i 2 N there is a number �

i

su
h that along any path of length �

i

starting

at the root of T , the
orresponding sequen
e of labels n

1

; n

2

; : : : ; n

�

i

has a nonde
reasing

subsequen
e of length i.

Proof: Suppose there exists i 2 N for whi
h there is no su
h �

i

. In other words, for

ea
h j 2 N there is a path of length j starting at the root whose labels n

1

; n

2

; : : : ; n

j

do

not
ontain a non-de
reasing subsequen
e of length i.

Call a node t in T bad if the labels along the unique path from the root to t do not

have a non-de
reasing subsequen
e of length i. Clearly the parent of a bad node is also

bad. Thus the set of bad nodes forms a subtree of T . By our assumption that there is no

6

�

i

orresponding to i, there must be bad nodes at ea
h level in the tree. Hen
e the set of

bad nodes forms an in�nite subtree of T .

By K�onig's Lemma there is an in�nite path in T all of whose nodes are bad. The

labels along this path do not have any non-de
reasing subsequen
e of length greater than

or equal to i. This
ontradi
ts Proposition 2.4. 2

Lemma 2.7 Let A be a
ounter automaton withM states and N
ounters and let K 2 N.

Then, there exists ` 2 N, su
h that for any K-run �

0

t

1

�! �

1

: : :

t

`

�! �

`

of A, there are

two
on�gurations �

i

and �

j

, 0 � i < j � `, su
h that Q(�

i

) = Q(�

j

) and F (�

i

) � F (�

j

).

Proof: Constru
t a tree T whose nodes are labelled by N

N

as follows.

� The root x

0

is labelled h0i.

� For ea
h ve
tor v = hm;ni where m 2 [1::M ℄ and n(i) � K for all i 2 [1::N ℄,

onstru
t a
hild x

v

0

of the root labelled by n.

� Let x be a node labelled hm;ni. For ea
h ve
tor v = hm

0

; n

0

i where m

0

2 [1::M ℄ and

n

0

di�ers from n in at most one
oordinate by at most 1,
onstru
t a
hild x

v

of x

labelled v.

Clearly, T is a �nitely bran
hing tree. Hen
e, by Lemma 2.6, for ea
h natural number p

there is a number �

p

su
h that, if x

0

x

1

: : : x

p

t

1

�! �

1

t

2

�! � � �

t

�

p

�! �

�

p

is a K-run of A then

the sequen
e F (�

0

); F (�

1

); : : : ; F (�

�

p

) has a non-de
reasing subsequen
e of length p.

Thus, if �

0

=) �

�

M+1

is any run of A, then there are positions 0 � k

1

< k

2

< : : : <

k

M+1

� �

M+1

su
h that F (�

k

1

) � F (�

k

2

) : : : � F (�

k

M+1

). By the pigeon-hole prin
iple,

there are positions k

r

and k

s

, 1 � r < s � M+1, su
h that Q(�

k

r

) = Q(�

k

s

). To prove

the lemma, set ` = �

M+1

, �

i

= �

k

r

and �

j

= �

k

s

.

2

Weak pumping
onstant Noti
e that the bound ` established in the pre
eding lemma

depends only on the values M , N and K and is independent of the a
tual stru
ture

of the automaton. Let �

M;N;K

denote the bound `. We refer to �

M;N;K

as the weak

pumping
onstant for (M;N;K). It is easy to see that if hM

0

; N

0

; Ki � hM;N;Ki, then

�

M

0

;N

0

;K

0

� �

M;N;K

.

3 A Contra
tion Lemma

Lemma 3.1 (Contra
tion) For every
ounter automaton A, there is a
onstant k su
h

that if �

0

t

1

t

2

:::t

m

=) �

m

is a
omputation of A, with m > k, then there exist i and j,

m�k � i < j � m, su
h that �

0

0

t

1

:::t

i

t

j+1

:::t

m

=) �

0

m�(j�i)

is also a
omputation of A, with

with �

0

`

= �

`

for ` 2 [0::i℄ and Q(�

`

) = Q(�

0

`�(j�i)

) for all ` 2 [j::m℄.

7

Proof: Let A have M states and N
ounters. We show that k
an be
hosen to be

�

M;N;0

.

Let �

0

t

1

t

2

:::t

m

=) �

m

be a
omputation of A, with m > �

M;N;0

. We de�ne a sequen
e

f

m

; f

m�1

; : : : ; f

0

of N -tuples of natural numbers as follows:

f

m

(n) = 0; for all n 2 [1::N ℄

For i 2 [0::m�1℄; f

i

(n) =

8

<

:

f

i+1

(n) if �(t

i+1

) =2 fC

+

n

; C

�

n

g

f

i+1

(n)+1 if �(t

i+1

) = C

�

n

max(0; f

i+1

(n)�1) if �(t

i+1

) = C

+

n

We next show that the fun
tion f

i

represents the minimum
ounter values required to

exe
ute the transition sequen
e t

i+1

t

i+2

: : : t

m

.

Claim: 8i 2 [1::m℄, (Q(�

i

); f)

t

i+1

t

i+2

:::t

m

=) i� f � f

i

.

Proof of Claim: By indu
tion on m�i.

Basis: If i = m there is nothing to prove.

Indu
tion step:

By the indu
tion hypothesis, (Q(�

i+1

); f

0

)

t

i+2

t

i+3

:::t

m

=) i� f

0

� f

i+1

.

Suppose that f � f

i

. We have to show that (Q(�

i

); f)

t

i+1

t

i+2

:::t

m

=) . We �rst

argue that there is a move (Q(�

i

); f)

t

i+1

�! (Q(�

i+1

); f

0

). Sin
e we know that

(Q(�

i

); t

i+1

; Q(�

i+1

)) is a transition of A, the only reason for forbidding su
h

a move is that �(t

i+1

) = C

�

n

for some
ounter C

n

and f(n) = 0. However, if

�(t

i+1

) = C

�

n

, we know that f

i

(n) = f

i+1

(n) + 1 � 1. Sin
e f � f

i

, f(n) � 1

as well.

Consider the fun
tion f

0

. We shall show that f

0

� f

i+1

. From the indu
-

tion hypothesis, it then follows that (Q(�

i

); f)

t

i+1

�! (Q(�

i+1

); f

0

)

t

i+2

t

i+3

:::t

m

=) ,

whereby (Q(�

i

); f)

t

i+1

t

i+2

:::t

m

=) .

To
he
k that f

0

� f

i+1

, we
onsider all possible values for �(t

i+1

).

(i) �(t

i+1

) 2 �: Then f

0

= f � f

i

= f

i+1

.

(ii) �(t

i+1

) 2 fC

�

n

; C

+

n

g: Then

� For ` 6= n, f

0

(`) = f(`) � f

i

(`) = f

i+1

(`).

� If �(t

i+1

) = C

�

n

, then f

0

(n) = f(n)� 1 � f

i

(n)� 1 = f

i+1

(n).

� If �(t

i+1

) = C

+

n

, then f

0

(n) = f(n)+1 � f

i

(n)+1 = max(1; f

i+1

(n)) �

f

i+1

(n).

Thus, for ea
h ` 2 [1::n℄, f

0

(`) � f

i+1

(`).

Conversely, suppose that (Q(�

i

); f)

t

i+1

t

i+2

:::t

m

=) . We have to establish that

f � f

i

. We know that (Q(�

i

); f)

t

i+1

�! (Q(�

i+1

); f

0

)

t

i+2

t

i+3

:::t

m

=) and, by the

indu
tion hypothesis, f

0

� f

i+1

. As before, we examine all possible values of

�(t

i+1

).

8

(i) �(t

i+1

) 2 �: Then f = f

0

� f

i+1

= f

i

.

(ii) �(t

i+1

) 2 fC

�

n

; C

+

n

g: Then

� For ` 6= n, f(`) = f

0

(`) � f

i+1

(`) = f

i

(`).

� If �(t

i+1

) = C

�

n

, then f(n) = f

0

(n) + 1 � f

i+1

(n) + 1 = f

i

(n).

� If �(t

i+1

) = C

+

n

, then f(n) = f

0

(n)�1 � f

i+1

(n)�1. Sin
e f(n) � 0

and f

i

(n) = max(0; f

i+1

(n)� 1), f(n) � f

i

(n).

Thus, for ea
h ` 2 [1::n℄, f(`) � f

i

(`).

Corollary to Claim: For ea
h
ounter C

n

and for ea
h position i 2 [1::m℄,

C

n

(�

i

) � f

i

(n).

Consider the sequen
e f

m

; f

m�1

; : : : f

0

. Sin
e its length ex
eeds �

M;N;0

, by Lemma 2.7

there exist positions i and j, m � j > i � m��

M;N;0

su
h that f

j

� f

i

and Q(�

j

) =

Q(�

i

). By the Corollary to Claim, for ea
h
ounter C

n

, C

n

(�

i

) � f

i

(n) � f

j

(n). Thus,

�

i

t

j+1

t

j+2

:::t

m

=) whereby �

0

t

1

t

2

:::t

i

=) �

i

t

j+1

t

j+2

:::t

m

=) �

0

m�(j�i)

is a valid
omputation of A for some

on�guration �

0

m�(j�i)

. Sin
e Q(�

j

) = Q(�

i

) and the
omputations �

j

t

j+1

t

j+2

:::t

m

=) �

m

and

�

i

t

j+1

t

j+2

:::t

m

=) �

0

m�(j�i)

are labelled by the same sequen
e of transitions, it follows that

Q(�

`

) = Q(�

0

`�(j�i)

) for ea
h ` 2 [j::m℄, as required.

2

Corollary 3.2 A
ounter automaton A with M states and N
ounters has an a

epting

omputation i� it has an a

epting
omputation whose length is bounded by �

M;N;0

.

In the Appendix, we give a
onstru
tive proof of Lemma 2.7 whi
h provides an expli
it

upper bound for �

M;N;K

for all values of M , N , and K. This fa
t,
oupled with the

pre
eding observation, yields the following result.

Corollary 3.3 The emptiness problem for
ounter automata is de
idable.

We remark, however, that a result of Lipton [L76℄ from the theory of Petri net lan-

guages implies that the emptiness problem for
ounter re
ognisable languages is EXPSPACE-

hard.

Corollary 3.4 Counter re
ognisable languages are not
losed under
omplementation.

Proof: We saw earlier that L

ge

= fa

m

b

n

j m � ng is
ounter re
ognisable. Let A

be an automaton whi
h a

epts L

ge

. We
an easily extend A to a

ept L

0

ge

= L

ge

[

fw j w is not of the form a

m

b

n

g: The
omplement of the language L

0

ge

is the language

L

lt

= fa

m

b

n

j m < ng.

Suppose that L

lt

were
ounter re
ognisable. Let A

lt

be an automaton whi
h a

epts

L

lt

. Let M be the number of states in A

lt

and N the number of
ounters used by A

lt

.

Consider the string w = a

J

b

J+1

where J = �

M;N;0

and let � : �

0

t

1

t

2

:::t

n

=) �

n

be an a

epting

run of A

lt

on w. By applying the Contra
tion Lemma (repeatedly, if ne
essary) to �, we

an obtain an a

epting run �

0

of A

lt

over a word of the form a

J

b

K

, where K � J , thus

9

ontradi
ting the assumption that L(A

lt

) = L

lt

. (The reason we may need to use the

Contra
tion Lemma more than on
e to obtain a suitable �

0

is that when we apply the

Lemma on
e, the sequen
e of moves deleted may fail to
ontain any transition labelled

b. However, if this happens, the resulting run will
ontinue to have a suÆx
ontaining

�

M;N;0

+ 1 moves labelled b, so we
an apply the Contra
tion Lemma repeatedly until at

least one transition labelled b is deleted.) 2

4 A Colle
tion of Pumping Lemmas

Change ve
tors For a string w over a set X and a symbol x 2 X, #

x

(w) denotes

the number of times x o

urs in w. Let v be a sequen
e of transitions. Re
all that �(v)

denotes the
orresponding sequen
e of letters. For ea
h
ounter C, de�ne �

C

(v) to be

#

C

+

(�(v))�#

C

�

(�(v)). The
hange ve
tor asso
iated with v, denoted �v, is given by

h�

C

(v)i

C2�

.

Proposition 4.1 Let A = (Q;�;�; T; q

in

; F) be a
ounter automaton.

(i) For any
omputation �

v

=) �

0

of A and any
ounter C 2 �, j�

C

(v)j � jvj.

(ii) For any
on�guration � and sequen
e of transitions v, �

v

=) i� for ea
h pre�x u of

v and ea
h
ounter C 2 �, C(�) + �

C

(u) � 0.

(iii) Let �

u

=) �

0

v

=) with Q(�) = Q(�

0

) and n 2 N su
h that, for every
ounter C 2 �,

either �

C

(u) � 0 or C(�) � njuj+ jvj. Then, �

u

n

v

=).

Proof:

(i) This follows from the fa
t that ea
h move
an
hange a
ounter value by at most 1.

(ii) This follows immediately from the de�nition of a
omputation.

(iii) The proof is by indu
tion on n.

Basis: For n = 0, there is nothing to prove.

Indu
tion step: Let n > 0 and assume the result holds for n�1. We will show that

�

u

=) �

0

u

n�1

v

=) .

From the assumption, we know that �

u

=) �

0

. To show that �

0

u

n�1

v

=) , we examine

the value of ea
h
ounter C at �

0

. If �

C

(u) < 0, then C(�) � njuj + v. Sin
e

C(�

0

) = C(�

0

) + �

C

(u) and j�

C

(u)j � juj, it follows that C(�

0

) � (n�1)juj + v.

From the indu
tion hypothesis, we
an then
on
lude that �

0

u

n�1

v

=) .

2

10

Pumpable de
omposition Let A be a
ounter automaton with N
ounters and let

� : �

0

t

1

t

2

:::t

m

=) �

m

be a
omputation of A. A de
omposition �

0

u

1

=) �

i

1

v

1

=) �

j

1

u

2

=) �

i

2

v

2

=)

�

j

2

u

3

=) � � �

u

n

=) �

i

n

v

n

=) �

j

n

u

n+1

=) �

m

of � is said to be pumpable if it satis�es the following

onditions:

(i) n � N .

(ii) For ea
h k 2 [1::n℄, Q(�

i

k

) = Q(�

j

k

).

(iii) For ea
h v

k

, k 2 [1::n℄, �v

k

is non-zero and has at least one positive entry.

(iv) Let C be a
ounter and k 2 [1::n℄ su
h that �

C

(v

k

) is negative. Then, there exists

` < k su
h that �

C

(v

`

) is positive.

We refer to v

1

; v

2

; : : : ; v

n

as the pumpable blo
ks of the de
omposition. If C is a
ounter

su
h that �

C

(v

i

) > 0 for some pumpable blo
k v

i

, we say that C is a pumpable
ounter.

Proposition 4.2 Let A be a
ounter automaton and � : �

0

t

1

t

2

:::t

m

=) �

m

be a
omputation

of A. Consider a pumpable de
omposition �

0

u

1

=) �

i

1

v

1

=) �

j

1

u

2

=) � � �

u

n

=) �

i

n

v

n

=) �

j

n

u

n+1

=)

�

m

of �. Then, for r 2 [1::n℄, �

0

u

1

=) �

i

1

v

1

=) �

j

1

u

2

=) � � �

u

r

=) �

i

r

v

r

=) �

j

r

u

r+1

=) �

i

r+1

is a

pumpable de
omposition of �

r

: �

0

u

1

v

1

:::u

r

v

r

u

r+1

=) �

i

r+1

.

Proof: Immediate, from the de�nition of pumpable de
ompositions. 2

Lemma 4.3 (Counter Pumping) Let A be an automaton and � a K-run of A, K 2 N,

with a pumpable de
omposition of the form

�

0

u

1

=) �

i

1

v

1

=) �

j

1

u

2

=) �

i

2

v

2

=) �

j

2

� � �

u

n

=) �

i

n

v

n

=) �

j

n

u

n+1

=) �

m

:

Then, for any I; J 2 N, with I � 1, there exist `

1

; `

2

; : : : ; `

n

2 N and a K-run �

0

of A

of the form

�

0

0

u

1

=) �

0

i

0

1

v

`

1

1

=) �

0

j

0

1

u

2

=) �

0

i

0

2

v

`

2

2

=) �

0

j

0

2

� � �

u

n

=) �

0

i

0

n

v

`

n

n

=) �

0

j

0

n

u

n+1

=) �

0

p

su
h that �

0

satis�es the following properties:

(i) �

0

= �

0

0

.

(ii) Q(�

0

p

) = Q(�

m

).

(iii) For i 2 [1::n℄, `

i

� I.

(iv) For every
ounter C, C(�

0

p

) � C(�

m

).

(v) Let �

pos

be the set of pumpable
ounters in the pumpable de
omposition of �. For

ea
h
ounter C 2 �

pos

, C(�

0

p

) � J .

11

Proof: The proof is by indu
tion on n, the number of pumpable blo
ks in the de
om-

position.

Basis: If n = 0, there is nothing to prove.

Indu
tion step: Let n > 0 and assume the lemma holds for all de
ompositions with n�1

pumpable blo
ks. For ea
h
ounter C, let J

C

= max(J; C(�

m

)).

By the indu
tion hypothesis, for all I

0

; J

0

2 N , I

0

� 1, we
an transform the pre�x

� : �

0

u

1

=) �

i

1

v

1

=) �

j

1

u

2

=) � � �

v

n�1

=) �

j

n�1

u

n

=) �

i

n

of � into a K-run �

0

: �

0

0

u

1

=) �

0

i

0

1

v

`

1

1

=)

�

0

j

0

1

u

2

=) � � �

v

`

n�1

n�1

=) �

0

j

0

n�1

u

n

=) �

0

i

0

n

satisfying the
onditions of the lemma. We shall
hoose

I

0

and J

0

so that the transition sequen
e v

`

n

n

u

n+1

an be appended to �

0

to yield the run

laimed by the lemma.

To �x values for I

0

and J

0

, we �rst estimate the value of `

n

, the number of times we

need to pump v

n

to satisfy all the
onditions of the lemma. Let �

n

pos

= fC j �

C

(v

n

) > 0g.

It is suÆ
ient if the number `

n

is large enough for ea
h
ounter C 2 �

n

pos

to ex
eed J

C

at the end of the new
omputation. For a
ounter C 2 �

n

pos

to be above J

C

at the end

of the
omputation, it is suÆ
ient for C to have the value J

C

+ ju

n+1

j after v

`

n

n

. By the

indu
tion hypothesis, the value of C before v

`

n

n

is at least C(�

i

n

). Hen
e, it would take

d

J

C

+ju

n+1

j�C(�

i

n

)

�

C

(v

n

)

e iterations of v

n

for C to rea
h the required value after v

`

n

n

. On the other

hand, we should also ensure that `

n

� I. Thus, it is safe to set `

n

to be the maximum of

I and max

C2�

n

pos

d

J

C

+ju

n+1

j�C(�

i

n

)

�

C

(v

n

)

e.

We set I

0

= I and estimate a value for J

0

su
h that �

0

i

0

n

v

`

n

n

u

n+1

=) �

0

p

with ea
h
ounter

C 2 (� n�

n

pos

) a
hieving a value of at least C(�

m

) at �

0

p

and ea
h
ounter C 2 (�

pos

n�

n

pos

)

a
hieving a value of at least J

C

at �

0

p

.

By the indu
tion hypothesis, Q(�

0

i

0

n

) = Q(�

i

n

) and F (�

0

i

0

n

) � F (�

i

n

). Sin
e �

i

n

v

n

u

n+1

=) ,

it follows that �

0

i

0

n

v

n

u

n+1

=) . By Proposition 4.1 (iii), to ensure that �

0

i

0

n

v

`

n

n

u

n+1

=) �

0

p

, it is

suÆ
ient to raise ea
h
ounter C with �

C

(v

n

) < 0 to a value of at least `

n

jv

n

j+ ju

n+1

j at

�

0

i

0

n

. If �

C

(v

n

) < 0 then, by the de�nition of pumpable de
ompositions, �

C

(v

i

) > 0 for

some i 2 [1::n�1℄, so C gets pumped above J

0

in �

0

.

Any
ounter C su
h that �

C

(v

n

) � 0 will surely ex
eed C(�

m

) at �

0

p

. On the other

hand, a
ounter C su
h that �

C

(v

n

) < 0
an de
rease by at most `

n

jv

n

j+ ju

n+1

j after �

0

i

0

n

.

Putting these two fa
ts together, it suÆ
es to set J

0

to `

n

jv

n

j+ju

n+1

j+max

fCj�

C

(v

n

)<0g

J

C

.

Let �

0

: �

0

0

u

1

=) �

0

i

0

1

v

`

1

1

=) �

0

j

0

1

u

2

=) � � �

u

n

=) �

0

i

0

n

v

`

n

n

=) �

0

j

0

n

u

n+1

=) �

0

p

. By the indu
tion

hypothesis, we know that �

0

0

= �

0

and for i 2 [1::n�1℄, `

i

� I. By
onstru
tion, `

n

� I

as well. We have also ensured that for every
ounter C, C(�

0

p

) � C(�

m

) and for every

ounter C 2 �

pos

, C(�

0

p

) � J . The fa
t that Q(�

0

p

) = Q(�

m

) follows from the fa
t that

ea
h v

n

loop brings the automaton ba
k to Q(�

0

i

0

n

) = Q(�

i

n

), and the fa
t that both �

and �

0

go through the same sequen
e of transitions u

n+1

at the end of the
omputation.

2

The pre
eding lemma shows that all the pumpable
ounters in a pumpable de
ompo-

sition are simultaneously unbounded. This is analogous to a well-known result of Karp

and Miller in the theory of ve
tor addition systems [KM69℄. They show how to asso
iate

a �nite obje
t
alled a
overing tree with ea
h ve
tor addition system. The
overing tree

12

an be used to de
ide whether a set of
oordinates of the ve
tor addition system is simul-

taneously unbounded. See Se
tion 6 for a more detailed dis
ussion of the
onne
tion of

our work to ve
tor addition systems.

Corollary 4.4 Let A be an automaton and � a K-run of A, K 2 N, with a pumpable

de
omposition of the form

�

0

u

1

=) �

i

1

v

1

=) �

j

1

u

2

=) �

i

2

v

2

=) �

j

2

� � �

u

n

=) �

i

n

v

n

=) �

j

n

u

n+1

=) �

m

:

(i) For any I 2 N, with I � 1, there exist `

1

; `

2

; : : : ; `

n�1

2 N and a K-run �

0

of A of

the form

�

0

0

u

1

=) �

0

i

0

1

v

`

1

1

=) �

0

j

0

1

u

2

=) �

0

i

0

2

v

`

2

2

=) �

0

j

0

2

� � �

u

n�1

=) �

0

i

0

n�1

v

`

n�1

n�1

=) �

0

j

0

n�1

u

n

=) �

0

i

0

n

v

I

n

=) �

0

j

0

n

u

n+1

=) �

0

p

su
h that �

0

= �

0

0

, Q(�

0

p

) = Q(�

m

) and F (�

0

p

) � F (�

m

).

(ii) For any I 2 N, with I � 1 and any k 2 [1::n℄, there exist `

1

; `

2

; : : : ; `

k�1

2 N and a

K-run �

0

of A of the form

�

0

0

u

1

=) �

0

i

0

1

v

`

1

1

=) �

0

j

0

1

u

2

=) � � �

u

k�1

=) �

0

i

0

k�1

v

`

k�1

k�1

=) �

0

j

0

k�1

u

k

=) �

0

i

0

k

v

I

k

=) �

0

j

0

k

u

k+1

v

k+1

:::u

n

v

n

u

n+1

=) �

0

p

su
h that �

0

= �

0

0

, Q(�

0

p

) = Q(�

m

) and F (�

0

p

) � F (�

m

).

Proof: The �rst statement follows by setting J = 0 when de�ning `

n

in the proof of the

Counter Pumping Lemma. The se
ond result is then immediate. We omit the details. 2

We have shown that all
ounters whi
h in
rease within the pumpable blo
ks of a

pumpable de
omposition
an be simultaneously raised to arbitrarily high values. We next

des
ribe a suÆ
ient
ondition for aK-run to admit a non-trivial pumpable de
omposition.

Strong pumping
onstant For ea
h M;N;K 2 N , we de�ne the strong pumping

onstant �

M;N;K

by indu
tion on N as follows (re
all that �

M;N;K

denotes the weak

pumping
onstant for (M;N;K)):

8M;K 2 N : �

M;0;K

= 1

8M;N;K 2 N : �

M;N+1;K

= �

M;N;�

M;N+1;K

+K

+ �

M;N+1;K

+K

Lemma 4.5 (De
omposition) Let A be an automaton with M states and N
ounters

and let K 2 N. Let � : �

0

t

1

t

2

:::t

m

=) �

m

be any K-run of A. Then, there is a pumpable

de
omposition

�

0

u

1

=) �

i

1

v

1

=) �

j

1

u

2

=) �

i

2

v

2

=) �

j

2

� � �

u

n

=) �

i

n

v

n

=) �

j

n

u

n+1

=) �

m

of � su
h that for every
ounter C, if C(�

j

) > �

M;N;K

for some j 2 [0::m℄, then there

exists k 2 [1::n℄, su
h that �

C

(v

k

) is positive.

To prove this lemma, we need the following result.

13

Proposition 4.6 Let A be a
ounter automaton with M states and N
ounters and let

� : �

0

=) �

n

be a K-run of A in whi
h some
ounter value ex
eeds �

M;N;K

+K. Then,

there is a pre�x � : �

0

=) �

s

of � su
h that:

� For ea
h m 2 [0::s℄ and every
ounter C, C(�

m

) < �

M;N;K

+K.

� There exists r 2 [0::s�1℄, su
h that � : �

0

=) �

r

=) �

s

, Q(�

r

) = Q(�

s

) and

F (�

r

) < F (�

s

).

Proof: Suppose that the lemma does not hold. Let � : �

0

t

1

t

2

:::t

n

=) �

n

be a
omputation

of minimum length whi
h fails to satisfy the lemma. Sin
e the initial
ounter values in �

are bounded by K and some
ounter value ex
eeds �

M;N;K

+K in �, it must be the
ase

that the length of � is at least �

M;N;K

.

By the de�nition of �

M;N;K

, there exist i and j, i < j � �

M;N;K

su
h that Q(�

i

) =

Q(�

j

) and F (�

i

) � F (�

j

). Sin
e � is a K-run and j � �

M;N;K

, all
ounter values at the

on�gurations �

0

; �

1

; : : : ; �

j

must be bounded by �

M;N;K

+K. If F (�

i

) < F (�

j

), � would

satisfy the lemma with r = i and s = j, so it must be the
ase F (�

i

) = F (�

j

).

Sin
e �

i

= �

j

, we
an
onstru
t a shorter
omputation �

0

= �

0

t

1

t

2

:::t

i

=) �

i

t

j+1

�! �

j+1

t

j+2

�!

� � �

t

n

�! �

n

. It is easy to see that the same
ounter whose value ex
eeded �

M;N;K

+K in

� must also ex
eed �

M;N;K

+K in �

0

|the only
on�gurations visited by � whi
h are not

visited by �

0

are those in the interval �

i+1

; �

i+2

; : : : �

j

. However, we have already seen

that all
ounter values in �

0

; �

1

; : : : ; �

j

are bounded by �

M;N;K

+K.

It is
lear that if �

0

satis�es the lemma, then so does �. On the other hand, if �

0

does

not satisfy the lemma, then � is not a minimum length
ounterexample to the lemma. In

either
ase we obtain a
ontradi
tion. 2

We now return to the proof of the De
omposition Lemma.

Proof: (of Lemma 4.5) The proof is by indu
tion on N , the number of
ounters.

Basis: If N = 0, set n = 0 and u

1

= �.

Indu
tion step: Let �

gt

denote the set of
ounters whose values ex
eed �

M;N;K

in the

K-run �.

If �

gt

= ;, we set n = 0 and u

1

= �.

Otherwise, by Proposition 4.6, we
an �nd positions r and s in � su
h that �

0

u

0

=)

�

r

v

0

=) �

s

=) �

m

, with Q(�

r

) = Q(�

s

), F (�

r

) < F (�

s

) and all
ounter values at

�

0

; �

1

; : : : ; �

s

bounded by �

M;N;K

+K.

Let � be the input alphabet of A and � its set of
ounters. Fix a
ounter C

0

in

whi
h in
reases stri
tly between �

r

and �

s

|that is, C

0

(�

s

) > C

0

(�

r

). By our
hoi
e of

�

r

and �

s

, su
h a
ounter must exist. Constru
t an automaton A

0

with input alphabet

� [fC

0+

; C

0�

g and
ounters � n fC

0

g. The states and transitions of A

0

are the same as

those of A. In other words, A

0

behaves like A ex
ept that it treats moves involving the

ounter C

0

as input letters.

14

Consider the
omputation �

s

t

s+1

t

s+2

:::t

m

=) �

m

of A. It is easy to see that there is a

orresponding
omputation �

0

: �

0

s

t

s+1

t

s+2

:::t

m

=) �

0

m

of A

0

su
h that for ea
h k 2 [s::m℄,

Q(�

k

) = Q(�

0

k

) and for ea
h
ounter C 6= C

0

, C(�

k

) = C(�

0

k

).

From Proposition 4.6, we know that �

0

is in fa
t a (�

M;N;K

+K)-run of A

0

. Further,

for every
ounter C in �

gt

n fC

0

g, there exists a j 2 [s::m℄, su
h that C(�

0

j

) = C(�

j

) >

�

M;N;K

> �

M;N�1;�

M;N;K

+K

. (In the K-run �, no
ounter
ould have ex
eeded �

M;N;K

before �

s

be
ause Proposition 4.6 guarantees that all
ounter values at �

0

; �

1

; : : : ; �

s

are bounded by �

M;N;K

+ K.) By the indu
tion hypothesis, we
an �nd a pumpable

de
ompostion

�

0

s

u

0

1

=) �

0

i

0

1

v

0

1

=) �

0

j

0

1

u

0

2

=) �

0

i

0

2

v

0

2

=) �

0

j

0

2

u

0

3

=) � � �

u

0

p

=) �

0

i

0

p

v

0

p

=) �

0

j

0

p

u

0

p+1

=) �

m

of �

0

su
h that if C is a
ounter with C(�

0

j

) > �

M;N�1;�

M;N;K

+K

for some j 2 [s::m℄, then

there exists k 2 [1::p℄ su
h that �

C

(v

0

k

) is positive.

Consider the
orresponding
omputation

�

s

u

0

1

=) �

i

0

1

v

0

1

=) �

j

0

1

u

0

2

=) �

i

0

2

v

0

2

=) �

j

0

2

� � �

u

0

p

=) �

i

0

p

v

0

p

=) �

j

0

p

u

0

p+1

=) �

m

of A. In this
omputation, for ea
h k 2 [1::p℄, Q(�

i

0

k

) = Q(�

0

i

0

k

) = Q(�

0

j

0

k

) = Q(�

j

0

k

).

Further, for ea
h C 2 �

gt

n fC

0

g, C(�

i

0

k

) = C(�

0

i

0

k

) and C(�

j

0

k

) = C(�

0

j

0

k

).

We pre�x the
omputation �

s

u

0

1

v

0

1

:::u

0

p+1

=) �

m

with the K-run �

0

u

0

=) �

r

v

0

=) �

s

whi
h

we used to identify �

s

and �

r

. We then assert that the
omposite K-run

�

0

u

0

=) �

r

v

0

=) �

s

u

0

1

=) �

i

00

1

v

0

1

=) �

j

00

1

u

0

2

=) �

i

00

2

v

0

2

=) �

j

00

2

� � �

u

0

p

=) �

i

00

p

v

0

p

=) �

j

00

p

u

0

p+1

=) �

m

:

provides the de
omposition

�

0

u

1

=) �

i

1

v

1

=) �

j

1

u

2

=) �

i

2

v

2

=) �

j

2

� � �

u

n

=) �

i

n

v

n

=) �

j

n

u

n+1

=) �

m

of �
laimed in the statement of the lemma. In other words, u

1

= u

0

, v

1

= v

0

, �

i

1

= �

r

and �

j

1

= �

s

, while for k 2 [2::n℄, u

k

= u

0

k�1

, v

k

= v

0

k�1

, �

i

k

= �

i

0

k�1

and �

j

k

= �

j

0

k�1

.

Let us verify that this de
omposition satis�es all the
onditions required by the lemma.

First we verify that this de
omposition is pumpable.

� Sin
e p � N�1, it is
lear than n = p+1 � N .

� By
onstru
tion Q(�

i

1

) = Q(�

r

) = Q(�

s

) = Q(�

j

1

). For k 2 [2::n℄, Q(�

i

k

) =

Q(�

i

0

k�1

) = Q(�

j

0

k�1

) = Q(�

j

k

).

� We know that �v

1

= �v

0

is non-zero and stri
tly positive by the
hoi
e of v

0

. For

k 2 [2::n℄, we know that �

C

(v

k

) = �

C

(v

0

k�1

) for C 6= C

0

. Sin
e we have already

established that �v

0

k�1

is non-zero and has at least one positive entry for k 2 [2::n℄,

it follows that the
orresponding
hange ve
tors �v

k

are also non-zero and have at

least one positive entry.

� Let C be a
ounter and k 2 [1::n℄ su
h that �

C

(v

k

) is negative. Sin
e �v

1

= �v

0

is

positive by the
hoi
e of v, it must be that k 2 [2::n℄. If C 6= C

0

, then �

C

(v

0

k�1

) =

15

�

C

(v

k

) is negative. In this
ase, we already know that there exists ` 2 [2::k�1℄,

su
h that �

C

(v

0

`�1

) = �

C

(v

`

) is positive.

On the other hand, if C = C

0

, it
ould be that �

C

0

(v

0

z

) is negative for all z 2 [1::p℄,

sin
e C

0

is treated as an input letter rather than as a
ounter in the automaton A

0

.

However, we know that �

C

0

(v

1

) = �

C

0

(v

0

) is positive by the
hoi
e of v

0

and C

0

, so

C

0

also satis�es the
ondition of the lemma.

Finally, let C be a
ounter su
h that C(�

j

) > �

M;N;K

for some j 2 [1::m℄. If C 6= C

0

,

then C(�

j

) > �

M;N�1;�

M;N;K

+K

for some j 2 [s::m℄, so we already know that �

C

(v

0

k�1

) =

�

C

(v

k

) is positive for some k 2 [2::n℄. On the other hand, if C = C

0

, we know that

�

C

(v

1

) = �

C

(v

0

) is positive by the
hoi
e of v

0

and C

0

.

2

The Counter Pumping Lemma we stated earlier allows us to pump blo
ks of transitions

in a
omputation. However, it is possible for a pumpable blo
k to
onsist solely of invisible

transitions whi
h in
rement and de
rement
ounters. Using the De
omposition Lemma,

we
an prove a more traditional kind of pumping lemma, stated in terms of input strings.

Lemma 4.7 (Visible Pumping) Let L be a
ounter re
ognisable language. There exists

n 2 N su
h that for all input strings w, if w 2 L and jwj � n then w
an be written as

w

1

w

2

w

3

su
h that jw

1

w

2

j � n, jw

2

j � 1 and w

1

w

i

2

w

3

2 L for all i � 1.

Proof: Let A = (Q;�;�; T; q

in

; F) be a
ounter automaton whi
h a

epts L. From A,

we
onstru
t a new automaton A

0

by adding a new
ounter C

vis

whi
h is in
remented

ea
h time an input letter is read.

Formally, A

0

= (Q

0

;�;�

0

; T

0

; q

in

; F) where:

� Q

0

= Q [fq

t

j t = (q; d; q

0

) 2 T and d 2 �g.

� �

0

= � [fC

vis

g.

� T

0

= f(q; d; q

0

) 2 T j d =2 �g [f(q; C

+

vis

; q

t

); (q

t

; d; q

0

) j t = (q; d; q

0

) 2 T; d 2 �g.

It is
lear that L(A

0

) = L(A) = L. Let M = jQ

0

j and N = j�

0

j. Set n = �

M;N;0

.

Let �

0

x

=) �

f

y

=) �

g

be an a

epting run of A

0

on w, where jwj � �

M;N;0

and

j�(x)�

�

j = �

M;N;0

. Let �

0

u

1

v

1

:::u

n

v

n

u

m+1

=) �

f

be the pumpable de
omposition of �

0

x

=) �

f

given by the De
omposition Lemma.

Sin
e C

vis

attains the value �

M;N;0

along �

0

x

=) �

f

, there is a pumpable blo
k v

i

,

i 2 [1::m℄, su
h that �

C

vis

(v

i

) > 0. Choose the �rst su
h blo
k. Then �

C

vis

(v

j

) = 0 for

all j < i.

Ea
h pumpable blo
k de�nes a
y
le in A

0

. However, the stru
ture of A

0

ensures that

a
y
le has a move labelled C

+

vis

i� it also has a move labelled by an input letter. Thus,

v

i

ontains at least one move with a label from �, while �(v

j

)�

�

is empty for ea
h j < i.

Let w

1

= �(u

1

v

1

u

2

: : : u

i

), w

2

= �(v

i

) and w

3

= �(u

i+1

v

i+1

: : : v

n

u

n+1

y).

By Corollary 4.4 (ii), for ea
h I 2 N , there is a run �

0

u

1

v

`

1

1

:::u

i

v

I

i

u

i+1

v

i+1

:::u

m

v

m

u

m+1

=) �

0

f

with Q(�

0

f

) = Q(�

f

) and F (�

0

f

) � F (�

f

).

16

This means that � : �

0

u

1

v

`

1

1

:::u

i

v

I

i

u

i+1

v

i+1

:::u

m

v

m

u

m+1

=) �

0

f

y

=) �

0

g

is an a

epting run on

�(u

1

v

`

1

1

: : : u

i

v

I

i

u

i+1

: : : u

m

v

m

u

m+1

z) �

�

. Sin
e �(v

j

) = " for all j < i, it follows that

�(u

1

v

`

1

1

: : : u

i�1

v

`

i�1

i�1

u

i

) = �(u

1

v

1

: : : u

i�1

v

i�1

u

i

) = w

1

. Thus, � is an a

epting run over

w

1

w

I

2

w

3

, as
laimed by the lemma.

2

Example 4.8 The language L = fa

p

j p is primeg is not
ounter re
ognisable.

Proof: Suppose L is
ounter re
ognisable. Let p be a prime larger that n, the pump-

ing
onstant for L spe
i�ed by Lemma 4.7. Then, we
an write p as x + y + z su
h

that a

x+my+z

2 L for all m � 1. Choose m = p + 1. Then a

x+(p+1)y+z

2 L, though

x+ (p+ 1)y + z = x + y + z + py = (1 + y)p is not a prime! 2

One di�eren
e between the pre
eding lemma and the traditional pumping lemma for

regular languages is that in the
ontext of
ounter re
ognisable languages, for a pumpable

string uvw, we must have at least one iteration of the pumpable segment v to ensure that

the resulting string uv

i

w is in the language, whereas for regular languages, uv

0

w = uw is

also guaranteed to be in the language.

Lemma 4.9 (Counter Hierar
hy) For k 2 N, let L

k

be the set of languages re
ognis-

able by
ounter automata with k
ounters. Then, for all k, L

k

(L

k+1

.

Proof: De�ne L

k+1

= fa

n

0

0

a

n

1

1

� � �a

n

k

k

a

n

k+1

k+1

j n

0

� n

1

� � � � � n

k+1

g. It is not diÆ
ult to

onstru
t a
ounter automaton with k+1
ounters whi
h a

epts L

k+1

. However, there is

no k-
ounter ma
hine whi
h a

epts this language.

Suppose A is a k-
ounter ma
hine whi
h a

epts L

k+1

. As in the proof of Lemma 4.7,

we extend A with a new
ounter C

k+1

whi
h is in
remented pre
isely when a

k+1

is read

from the input. Let the new ma
hine A

0

have M states.

Consider an a

epting run � of A

0

on a string w = a

n

0

0

a

n

1

1

: : : a

n

k+1

k+1

with n

k+1

�

�

M;k+1;0

. By Lemma 4.5, the run � has a pumpable de
omposition �

0

u

1

v

1

:::u

m

v

m

u

m+1

=) �

f

su
h that m � k+1 and �

C

k+1

(v

i

) > 0 for some i 2 [1::m℄.

By Lemma 4.3, for ea
h I � 1, there exist `

1

; `

2

; : : : ; `

m

2 N su
h that ea
h `

j

� I

and �

0

u

1

v

`

1

1

:::u

m

v

`

m

m

u

m+1

=) �

0

f

is an a

epting run. From the stru
ture of words in L

k+1

, it

follows that for ea
h pumpable blo
k v

i

, �(v

i

)
ontains at most one of the visible letters

fa

0

; a

1

; : : : ; a

k+1

g. Sin
e m � k+1 at least one letter from fa

0

; a

1

; : : : ; a

k+1

g does not

appear in

S

i2[1::m℄

�(v

i

). Also, sin
e �

C

k+1

(v

i

) > 0 for some i 2 [1::m℄, from the stru
ture

of A

0

it follows that a

k+1

does appear in

S

i2[1::m℄

�(v

i

).

Let a

r

be a letter whi
h does not appear in

S

i2[1::m℄

�(v

i

) and let v

j

be the blo
k su
h

that a

k+1

appears in �(v

j

). By Corollary 4.4 (ii), for all I � 1, there exist `

1

; `

2

; : : : ; `

j�1

with ea
h `

j

� I su
h that �

0

u

1

v

`

1

1

:::v

`

j�1

j�1

u

j

v

I

j

u

j+1

v

j+1

:::u

m

v

`

m

m

u

m+1

=) �

0

g

is an a

epting run of

A

0

. Choose I = n

r

+ 1.

Thus w

0

= �(u

1

v

`

1

1

: : : v

`

j�1

j�1

u

j

v

n

r

+1

j

u

j+1

v

j+1

: : : u

m

v

`

m

m

u

m+1

)) �

�

2 L(A

0

). But, w

0

has

only n

r

a

r

's and at least n

r

+1 a

k+1

's, whi
h violates the de�nition of L

k+1

.

17

Thus, there is no k-
ounter ma
hine whi
h a

epts L

k+1

.

2

The proof above requires alphabets of size k+2 to separate L

k

from L

k+1

. However, it is

not diÆ
ult to tighten the proof to establish a stri
t hierar
hy for alphabets of size 3.

5 Chara
terising Regularity of Counter Re
ognisable

Languages

Automata with bounded
ounters

Let A = (Q;�;�; T; q

in

; F) be a
ounter automaton. For K 2 N , de�ne A[K℄ =

(Q[K℄; T [K℄; Q[K℄

in

; F [K℄) to be the �nite-state automaton over the alphabet � [�

�

given by:

� Q[K℄ = Q� ff j f : � �! [0::K℄g.

� Q[K℄

in

= (q

in

; 0).

� F [K℄ = Q

f

� ff j f : � �! [0::K℄g.

� If (q; d; q

0

) 2 T , then ((q; f); d; (q

0

; f

0

)) 2 T [K℄ where:

{ If d 2 �, f

0

= f .

{ If d = C

+

, f

0

(C

0

) = f(C

0

) for allC

0

6= C and f

0

(C) =

�

f(C)+1 if f(C) < K

K otherwise

{ If d = C

�

, f

0

(C

0

) = f(C

0

) for all C

0

6= C, f(C) � 1 and

f

0

(C) =

�

f(C)�1 if f(C) < K

K otherwise

Noti
e that ea
h transition t = ((q; f); d; (q

0

; f

0

)) 2 T [K℄
orresponds to a unique tran-

sition (q; d; q

0

) 2 T , whi
h we denote t

�1

. For a sequen
e of transitions t

1

t

2

: : : t

n

, we

write (t

1

t

2

: : : t

n

)

�1

for t

�1

1

t

�1

2

: : : t

�1

n

. Note that for any sequen
e t

1

t

2

: : : t

n

of transi-

tions in T [K℄, �(t

1

t

2

: : : t

n

) = �((t

1

t

2

: : : t

n

)

�1

). Moreover, if (q

0

; f

0

0

)

t

1

t

2

:::t

n

=) (q

n

; f

0

n

) and

(q

0

; f

0

)

(t

1

t

2

:::t

n

)

�1

=) �

n

, then Q(�

n

) = q

n

.

Thus, the �nite-state automatonA[K℄ behaves like a
ounter automaton ex
ept that it

deems any
ounter whose value attains a value K to be \full" . On
e a
ounter is de
lared

to be full, it
an be de
remented as many times as desired. The following observations

are immediate.

Proposition 5.1

(i) If (q

0

; f

0

0

)

t

0

1

�! (q

1

; f

0

1

)

t

0

2

�! � � �

t

0

n

�! (q

n

; f

0

n

) is a
omputation of A then, (q

0

; f

0

)

t

1

�!

(q

1

; f

1

)

t

2

�! � � �

t

n

�! (q

n

; f

n

) is a
omputation of A[K℄ where

� t

0

1

t

0

2

: : : t

0

n

= (t

1

t

2

: : : t

n

)

�1

.

18

� 8C 2 �: 8i 2 [1::n℄: f

i

(C) =

�

f

0

i

(C) if f

0

j

(C) < K for all j � i

K otherwise

(ii) Let (q

0

; f

0

)

t

1

�! (q

1

; f

1

)

t

2

�! � � �

t

n

�! (q

n

; f

n

) be a
omputation of A[K℄. Then

there is a maximal pre�x t

1

t

2

: : : t

`

of t

1

t

2

: : : t

n

su
h that there is a
omputation

(q

0

; f

0

0

)

t

�1

1

�! (q

1

; f

0

1

)

t

�1

2

�! : : :

t

�1

`

�! (q

`

; f

0

`

) of A with f

0

= f

0

0

. Moreover, if ` < n,

then for some
ounter C, �(t

0

`+1

) = C

�

, f

0

`

(C) = 0 and there is a j < ` su
h that

f

0

j

(C) = K.

(iii) Let L(A[K℄) be the language over � [�

�

a

epted by A[K℄. Let L

�

(A[K℄) = fw�

�

j w 2 L(A[K℄)g. Then, L(A) � L

�

(A[K℄).

Syn
hronised produ
ts of
ounter automata

Produ
t automaton Let A

1

= (Q

1

;�

1

;�

1

; T

1

; q

1

in

; F

1

) andA

2

= (Q

2

;�

2

;�

2

; T

2

; q

2

in

; F

2

)

be two
ounter automata. The produ
t automaton A

1

�A

2

is the stru
ture (Q

1

�Q

2

;�

1

[

�

2

;�

1

[�

2

; T

1

� T

2

; (q

1

in

; q

2

in

); F

1

� F

2

), where ((q

1

; q

2

); d; (q

0

1

; q

0

2

)) 2 T

1

� T

2

i� one of the

following holds:

� d 2 (�

1

[�

1

) \ (�

2

[�

2

) and (q

i

; d; q

0

i

) 2 T

i

for i 2 f1; 2g.

� d 2 (�

1

[�

1

) n (�

2

[�

2

), (q

1

; d; q

0

1

) 2 T

1

and q

2

= q

0

2

.

� d 2 (�

2

[�

2

) n (�

1

[�

1

), (q

2

; d; q

0

2

) 2 T

2

and q

1

= q

0

1

.

For t = ((q

1

; q

2

); d; (q

0

1

; q

0

2

)) 2 T and i 2 f1; 2g, let �

i

(t) denote (q

i

; d; q

0

i

) if d 2 (�

i

[�

i

)

and the empty string " otherwise. As usual, �

i

(t

1

t

2

: : : t

n

) is just �

i

(t

1

)�

i

(t

2

) : : : �

i

(t

n

).

Thus, for a sequen
e of transitions � = t

1

t

2

: : : t

n

over T

1

�T

2

, �

1

(�) and �

2

(�) denote the

proje
tions of � onto the transitions ofA

1

andA

2

respe
tively. Clearly, �(t

1

t

2

: : : t

n

)�

(�

i

[�

i

)

= �(�

i

(t

1

t

2

: : : t

n

)) for i 2 f1; 2g.

We shall often write a
on�guration ((q

1

; q

2

); f) of A

1

� A

2

as a pair of
on�gura-

tions ((q

1

; f

1

); (q

2

; f

2

)) of A

1

and A

2

, where f

1

and f

2

are restri
tions of f to �

1

and �

2

respe
tively.

The following observations are easy
onsequen
es of the de�nition of produ
t au-

tomata.

Proposition 5.2

(i) ((q

1

in

; 0); (q

2

in

; 0))

t

1

t

2

:::t

n

=) ((q

1

; f

1

); (q

2

; f

2

)) is a
omputation of A

1

� A

2

if and only if

(q

1

in

; 0)

�

1

(t

1

t

2

:::t

n

)

=) (q

1

; f

1

) and (q

2

in

; 0)

�

2

(t

1

t

2

:::t

n

)

=) (q

2

; f

2

) are
omputations of A

1

and

A

2

respe
tively.

(ii) If �

1

= �

2

and �

1

\ �

2

= ;, then L(A

1

�A

2

) = L(A

1

) \ L(A

2

).

19

Regularity and
losure under
omplementation

Let L � �

�

be a language su
h that both L and its
omplement L are a

epted by
ounter

automata. Let L = L(A) and L = L(A), where we
an assume that A and A use disjoint

sets of
ounters. Then the language a

epted by A�A must be empty.

LetM be the number of states of A�A and N be the number of
ounters that it uses.

LetK be a number greater than �

M;N;0

, the strong pumping
onstant for (M;N; 0). Re
all

that A[K℄ = (Q[K℄; T [K℄; Q[K℄

in

; F [K℄) is a �nite-state automaton without
ounters

working on the input alphabet � [�

�

.

Lemma 5.3 L(A[K℄�A) = ;.

Proof: Let A[K℄ = (Q[K℄; T [K℄; Q[K℄

in

; F [K℄) and A = (Q;�;�; T ; q

in

F). Ea
h
om-

putation � of A[K℄ � A is of the form ((q

0

; 0); (q

0

; 0))

u

1

�! ((q

1

; f

1

); (q

1

; f

1

))

u

2

�! � � �

u

n

�!

((q

n

; f

n

); (q

n

; f

n

)), where, for i 2 [0::n℄, u

i

2 T [K℄� T .

By Propositions 5.1 and 5.2,
orresponding to the sequen
e u

1

u

2

: : : u

n

there exists a

maximal sequen
e of transitions v

1

v

2

: : : v

m

of A�A where:

� Ea
h v

i

belongs to T � T .

� For ea
h i 2 [1::m℄, �

2

(v

i

) = �

2

(u

i

).

� For ea
h i 2 [1::m℄, �

1

(v

i

) =

�

(�

1

(u

i

))

�1

if �

1

(u

i

) 6= "

" otherwise

� �

0

: ((q

0

; 0); (q

0

; 0))

v

1

�! ((q

1

; f

0

1

); (q

1

; f

1

))

v

2

�! � � �

v

m

�! ((q

m

; f

0

m

); (q

m

; f

m

)) is a
om-

putation of A�A.

� If m < n, then for some

^

C 2 �, �(u

m+1

) =

^

C

�

, f

0

m

(

^

C) = 0 and f

0

j

(

^

C) = K for some

j 2 [0::m℄.

Let us de�ne the residue length of � to be n�m.

Suppose that L(A[K℄�A) is non-empty. Sin
e L(A�A) is empty, it is easy to see that

any a

epting run of A[K℄�A has a non-zero residue length. Without loss of generality,

assume that the run �
onsidered earlier is an a

epting run of A[K℄� A whose residue

length is minimal. Then, in the
orresponding run �

0

of A�A, the
ounter

^

C 2 � attains

the value K along �

0

and then goes to 0 at the end of the run so that the move labelled

^

C

�

is not enabled at ((q

m

; f

0

m

); (q

m

; f

m

)).

Sin
e K ex
eeds the strong pumping
onstant for A� A, by Lemma 4.3 we
an �nd

an alternative run �̂

0

: ((q

0

; 0); (q

0

; 0))

v

0

1

v

0

2

:::v

0

`

=) ((q

0

`

; f

0

`

); (q

0

`

; f

0

`

)) with (q

0

`

; q

0

`

) = (q

m

; q

m

),

f

0

`

(

^

C) � K, and all other
ounter values at (f

0

`

; f

0

`

) at least as large as at (f

m

; f

0

m

). In

parti
ular, every
ounter whi
h ex
eeded the
uto� value K along �

0

is pumpable and

thus ex
eeds K along �̂

0

as well.

By Propositions 5.1 and 5.2, we
an
onstru
t a
orresponding sequen
e of transitions

u

0

1

u

0

2

: : : u

0

`

over T [K℄�T su
h that �

1

(v

0

1

v

0

2

: : : v

0

`

) = (�

1

(u

0

1

u

0

2

: : : u

0

`

))

�1

and �

2

(v

0

1

v

0

2

: : : v

0

`

) =

�

2

(u

0

1

u

0

2

: : : u

0

`

), where �̂ : ((q

0

; 0); (q

0

; 0))

u

0

1

u

0

2

:::u

0

`

=) ((q

00

`

; f

00

`

); (q

0

`

; f

0

`

)) is a run of A[K℄ � A

with (q

00

`

; q

0

`

) = (q

m

; q

m

) and f

00

`

(C) � f

m

(C) for ea
h C 2 �.

20

We already know that f

0

`

(C) � f

m

(C) for ea
h C 2 �. Further, sin
e every
ounter

whi
h ex
eeded the
uto� value K along �

0

also ex
eeds K along �̂

0

, we know that any

ounter whi
h has be
ome full along � would also have be
ome full along �̂. Thus, we
an

extend �̂ to an a

epting run � by appending the sequen
e of transitions u

m+1

u

m+2

: : : u

n

whi
h o

ur at the end of the a

epting run �.

Re
all that �(u

m+1

) =

^

C

�

and f

0

`

(

^

C) � 1 by our
hoi
e of �̂

0

. From this, it follows

that the residue length of the newly
onstru
ted a

epting run � is at least one less than

the residue length of �, whi
h is a
ontradi
tion, sin
e � was assumed to be an a

epting

run of minimal residue length. 2

Theorem 5.4 Let L be a language over �. L and L are
ounter re
ognisable i� L is

regular.

Proof: Let L = L(A) and L = L(A). De�ne A[K℄ as above. We
laim that L

�

(A[K℄) =

L(A).

By Proposition 5.1, we know that L(A) � L

�

(A[K℄).

On the other hand, from the previous lemma it follows that L

�

(A[K℄) \ L(A) = ;.

This implies that L

�

(A[K℄) � L(A), whi
h means that L

�

(A[K℄) � L(A).

So L(A) = L

�

(A[K℄). Sin
e A[K℄ is a �nite- state automaton, it follows that L(A)

is regular. Therefore, if a language and its
omplement are
ounter re
ognisable then the

language is regular.

The
onverse is obvious: if L is a regular language, we
an �nd �nite-state automata

re
ognising both L and L. Sin
e �nite-state automata are trivial examples of
ounter

automata, both L and L are
ounter re
ognisable. 2

Observe that our
onstru
tion is e�e
tive|given automata A and A for L and L respe
-

tively, we
an
onstru
t a �nite-state automaton A[K℄ for L.

Regularity and
losure under reversal

Suppose L is re
ognised by the deterministi

ounter automaton A and L-reverse is

a

epted by the
ounter automaton B. We will show that there is a
onstant � , depending

on the number of states M and the number of
ounters N of A, su
h that A[� ℄ re
ognises

L.

Overview

The proof has two parts.

Part 1. We assume that L(A[� ℄) 6= L and
on
lude from this that there exist strings

�;
 2 �

�

su
h that

8i � 1: 9� 2 �

�

: 9n: [��

i

 2 L & 8j � n: ��

j

 62 L℄:

21

Part 2. We
onsider the reverse of the language L. Part 1 shows that there exist strings

^

�;
̂ 2 �

�

su
h that

8i � 1: 9� 2 �

�

: 9n: [
̂

^

�

i

�̂ 2 L-reverse & 8j � n:
̂

^

�

j

�̂ 62 L-reverse℄: (1)

On the other hand, we will show that for all
ounter automata B and all �;
 2 �

�

,

there exists an n su
h that if
�

i

� 2 L(B) for some i � n, then
�

j

� 2 L(B) for

in�nitely many j. Thus, it follows from (1) that L-reverse is not
ounter re
ognisable.

This
ontradi
tion shows that our assumption L 6= L(A[� ℄) (of Part 1) is false. We thus

have L = L(A[� ℄), and in parti
ular, that L is regular.

Notation.

� While analysing the
omputation of
ounter automata, we will permit
ounters

to assume negative values. We refer to su
h
omputations as free runs, and use

�

0

t

; �

m

to denote the free run
orresponding to the sequen
e of transitions t,

starting from
on�guration �

0

and ending at
on�guration �

m

, passing through

on�gurations �

i

.

� Let A be a
ounter automaton with M states and N
ounters. We say that the

ounter C is saturated in the free run �

0

u

; �

m

, if for some i 2 [0::m℄, C(�

i

) �

�

M;N;0

, and for all j < i, C(�

j

) � 0.

Constants. In the rest of this se
tion we write � for �

M;N;0

. Let

� = M ��

N

+ 1;

� = N � �:

Part 1

Lemma 5.5 Suppose t is a sequen
e of transitions su
h that (q

in

; 0)

t

=) is an a

epting

run of A[� ℄ but not of A. Then, we have t = uvw with the free run

�

0

u

; �

i

v

; �

j

w

; �

n

;

where 0 < i < j < n, su
h that

(i) For some
ounter

^

C, �

^

C

(v) < 0.

(ii) Q(�

i

) = Q(�

j

).

(iii) If for some
ounter C, �

C

(v) 6= 0 or C assumes a negative value on the free run of

A
orresponding to t, then C is saturated in the free run A

u

;.

22

Proof: Let t = t

1

t

2

: : : t

n

. Consider the free run
orresponding to t,

� : (q

in

; 0) = �

0

t

1

; �

1

t

2

; � � �

t

n

; �

n

:

Sin
e this is not an a

epting run of A, there is a j < n and a
ounter C su
h that

C(�

j

) < 0. Sin
e (q

in

; 0)

t

=) is an a

epting run of A[� ℄, there must be an i < j, where

C(�

i

) = � . Choose ` to be the maximum i su
h that there is a
ounter

^

C satisfying the

following two
onditions.

�

^

C(�

i

) = � .

� For some j > i,

^

C(�

j

) < 0.

Let m be the minimum j > ` su
h that

^

C(�

j

) = 0. Note that m < n, be
ause there is a

j > ` where

^

C(�

j

) < 0.

Let x = t

1

t

2

: : : t

`

, y = t

`+1

t

`+2

: : : t

m

and z = t

m+1

t

m+2

: : : t

n

. Sin
e

^

C(�

`

) = � and

^

C(�

m

) = 0, in the
omputation

�

`

t

`+1

; �

`+1

t

`+2

; � � �

t

m

; �

m

;

^

C takes all values in the range [0::� ℄. For j 2 [0; N ℄, let k

j

be the minimum k 2 [`::m℄

su
h that

^

C(�

k

) = � � j�. The
omputation on xy
an then be written as

�

0

: �

0

y

0

=x

; �

`

= �

k

0

y

1

; �

k

1

y

2

; � � �

y

N

; �

k

N

= �

m

:

Let �

0

be the set of
ounters that assume a value � or bigger somewhere in �

0

. For C 2 �

0

,

let j

C

be the minimum j su
h that C assumes a value � or bigger in the segment of the

above
omputation
orresponding to y

j

. In parti
ular, j

^

C

= 0 be
ause

^

C(�

`

) = � � �

and �

0

y

0

; �

`

. There are only j�

0

j � N
ounters, whereas there are N +1 segments. Thus,

there is a j 2 [0::N ℄ su
h that j 6= j

C

for all C 2 �

0

. Let |̂ be the minimum su
h j; sin
e

j

^

C

= 0, we have |̂ 6= 0. Consider the
omputation
orresponding to y

|̂

,

�

00

: �

0

0

t

0

1

; �

0

1

t

0

2

; � � �

t

0

h

; �

0

h

;

where t

0

i

= t

k

|̂�1

+i

, �

0

i

= �

k

|̂�1

+i

and h = k

|̂

�k

|̂�1

. In this
omputation the value of

^

C falls

from � � (|̂� 1)� to � � |̂�, that is, by �. For i 2 [0::�℄, let p

i

be the minimum p 2 [0::h℄

su
h that

^

C(�

0

p

) =

^

C(�

0

0

)� i = � � (|̂� 1)�� i. Then, �

00

an be written as

�

00

= �

00

0

y

0

1

; �

00

1

y

0

2

; �

00

2

y

0

3

; � � �

y

0

�

; �

00

�

;

where �

00

i

= �

0

p

i

for i 2 [0::�℄. Let �

00

be the set of
ounters whose values in �

00

after �

00

0

are less than �. Sin
e � = M�

N

+ 1, there exist r; s 2 [1::�℄, r < s, su
h that

(C1) C(�

00

r

) = C(�

00

s

), for all C 2 �

00

.

(C2) Q(�

00

r

) = Q(�

00

s

).

The de�nition of �

00

i

implies

(C3)

^

C(�

00

r

) =

^

C(�

k

j�1

)� r >

^

C(�

k

j�1

)� s =

^

C(�

00

s

).

23

Now let

u = xy

1

y

2

: : : y

|̂�1

y

0

1

y

0

2

: : : y

0

r

;

v = y

0

r+1

y

0

r+2

: : : y

0

s

;

and w = y

0

s+1

y

0

s+2

: : : y

0

�

y

|̂+1

y

|̂+2

: : : y

N

z:

We
laim that this
hoi
e of u, v and w satis�es the requirements of the lemma. Clearly,

t = uvw. Part (i) of the lemma follows immediately from
ondition (C3) above; part (ii)

follows from
ondition (C2). We now
onsider part (iii).

If C be
omes negative in the free run �, then it must assume the value � somewhere

before that, be
ause (q

in

; 0)

t

=) is an a

epting run in A[� ℄. By the maximality of `, this

happens at or before �

`

. Thus, C is saturated in the free run �

0

u

;. Next, we
onsider

ounters C su
h that �

C

(v) 6= 0. We may assume that C does not be
ome negative in

�, for we have just taken
are of all su
h
ounters. By
ondition (C1) above, C 62 �

00

.

That is, C takes a value � or bigger after �

00

0

in the
omputation �

00

. Thus, j

C

� |̂. Sin
e

|̂ 6= j

C

for all C, we have j

C

< |̂. Hen
e, C is saturated in the free run �

0

u

;. 2

We need the following pumping lemma for free runs.

Lemma 5.6 Suppose �

0

t

; �

m

is a free run of A, where every
ounter that assumes a

negative value is saturated. Let �

0

be the set of
ounters saturated in this run. Then, for

all K, A has a run �

0

0

t

0

=) �

0

m

0

su
h that �

0

= �

0

0

, Q(�

0

m

0

) = Q(�

m

), F (�

0

m

0

) � F (�

m

)

and C(�

0

m

0

) � K for all C 2 �

0

.

Proof: Similar to the proof of the Counter Pumping Lemma. Omitted. 2

Proof of Part 1. If L 6= L(A[� ℄), then there exists a string a 2 L(A[� ℄) n L. Let

(q

in

; 0)

t

=) be the shortest a

epting run of A[� ℄ su
h that �(t)�

�

= a. Clearly, �

0

t

; is

a free run of A, but sin
e a 62 L, this is not an a

epting run of A. Using Lemma 5.5, we

obtain a de
omposition t = uvw su
h that the free run

�

0

u

; �

`

v

; �

m

w

; �

n

;

(0 < ` < m < n) satis�es (i), (ii) and (iii). Let � = �(v)�

�

and
 = �(w)�

�

. We �rst

show that for all i � 1 there is an � su
h that ��

i

 2 L.

Fix i � 1. Part (ii) implies that there is a free run of the form

�

0

0

u

; �

0

`

0

v

i

; �

0

m

0

w

; �

0

n

0

;

where �

0

= �

0

0

and Q(�

0

n

0

) = Q(�

n

). Part (iii) implies that all
ounters that assume

a negative value in this run are saturated in the initial segment �

0

0

u

; �

0

`

0

. We apply

Lemma 5.6 to this initial segment with

K = max

C;l

0

�j�n

0

jC(�

0

j

)j:

24

We obtain u

0

su
h that in the run �

0

u

0

=) �

00

, Q(�

00

) = Q(�

0

`

0

), C(�

00

) � C(�

0

`

) for all C

and C(�

00

) � K for all
ounters saturated in �

0

0

u

; �

0

`

0

. Then, A

u

0

v

i

w

=) is an a

epting run

of A. In parti
ular, �(u

0

v

i

w) = ��

i

 2 L, where � = �(u

0

)�

�

.

It remains to show that ��

j

 62 L, for all large enough j. We �rst observe that �(v)�

�

is not empty. For otherwise, sin
e A is deterministi
, the set of states of A that appear

in the run �

m

w

; �

n

is a subset of the set of states that appear in the run �

`

v

; �

m

.

This implies that Q(�

n

) = Q(�

j

), for some j 2 [`::m℄, and, furthermore, that �(w)�

�

is

empty. But then �

0

t

; is not the shortest a

epting run of A[� ℄ with �(t)�

�

= a. This

ontradi
tion shows that �(v)�

�

is not empty.

Clearly, for all j � 1 we have the free run �

0

uv

j

w

; . Sin
e �

^

C

(v) < 0, for all large enough

j this is not an a

epting run of A. Suppose ��

j

 2 L for some su
h j. Then, sin
e A is

deterministi
, we have uv

j

w = t

1

t

2

, where �

0

t

1

=) is an a

epting run of A and �(t

2

)�

�

is

empty, whi
h implies that jt

2

j < jvwj. Let jt

2

j = k; we have 1 � k < jvwj. Now �

0

t

1

=) is

an a

epting run of A. By
omparing this run with the run �

0

t

=) �

n

, we observe that

Q(�

n�k

) is a �nal state of A. But then �(t

1

t

2

: : : t

n�k

)�

�

= a and �

0

) t

1

t

2

: : : t

n�k

is an

a

epting run of A[� ℄,
ontradi
ting the minimality of t. Hen
e, ��

j

 62 L for all large

enough j. 2

Part 2.

Lemma 5.7 There exists a fun
tion A(M;N;K; L) su
h that if � : �

0

t

=) is a K-run of

a
ounter automata A with M states and N
ounters su
h that

� j�(t)�

�

j � L and

� jtj � A(M;N;K; L),

then t = uvw su
h that

� �

0

u

=) �

0

v

=) �

00

w

=);

� Q(�

0

) = Q(�

00

) and F (�

0

) � F (�

00

);

� �(v

0

) is non-empty but has no symbols from �.

Proof: Let

A(M;N;K; L) =

�

�

M;N;K

if L = 0

�

M;N;K

+ A(M;N;K + �

M;N;K

; L� 1) if L � 1

:

We will prove by indu
tion on L that A(M;N;K; L) de�ned above satis�es the require-

ments of the lemma.

Basis: If L = 0, the
laim follows from the de�nition of the weak pumping
onstant.

Indu
tion step: Let � : �

0

t

0

=) �

1

a

�! �

2

t

00

=), where t

0

is the maximal pre�x of t with no

symbols from �, and a 2 �. If jt

0

j � �

M;N;K

, then the
laim follows from the de�nition

of the weak pumping
onstant.

Otherwise, �

2

t

00

=) is a (K + �

M;N;K

)-run. Also, j�(t

00

)�

�

j = j�(t)�

�

j � 1 and

jt

00

j � t� �

M;N;K

� A(M;N;K + �

M;N;K

; L� 1):

25

The
laim then follows from the indu
tion hypothesis. 2

Note. In the above lemma, we
an assume that juvj � A(M;N;K; L), for we
an always

restri
t ourselves to the pre�x of t of length exa
tly A(M;N;K; L).

Lemma 5.8 Suppose A is a
ounter automaton withM states and N
ounters. Let (l

i

)

1

i=0

be a sequen
e of non-negative integers. Then there exists a
onstant B = B(M;N;K; (l

i

))

su
h that if

� : �

0

v

0

=) �

1

v

1

=) � � �

v

B�1

=) �

B

;

where jv

i

j � l

i

, then there exist i; j 2 [1; B℄, i < j, su
h that Q(�

i

) = Q(�

j

) and F (�

i

) �

F (�

j

).

Proof: We will modify the proof of Lemma 2.7. Consider the following in�nite tree

T whose nodes are labelled by elements of N

N

. The root of T is labelled by F (�

0

). If

a node at level i (the root is at level 0) is labelled by f , then v has one
hild for ea
h

N -tuple obtained by performing at most l

i

in
rement and de
rement operations on the

omponents of f .

Clearly, T is �nitely bran
hing and in�nite. By Lemma 2.6 there exists �

k

su
h that

along any path in T of length �

k

starting at the root, the
orresponding sequen
e of labels

has a non-de
reasing subsequen
e of length k. Now �

k

depends only on the tree T , whi
h

is unique if the label of the root and the sequen
e (l

i

) are �xed. The label of the root has

at most (K +1)

N

possibilities; hen
e there exists a fun
tion �(k;M;N;K; (l

i

)), su
h that

in every su
h tree in every path of length �(k;M;N;K; (l

i

)) starting from the root, the

orresponding labels have a non-de
reasing sequen
e of length at least k.

We set B(M;N;K; (l

i

)) = �(M+2;M;N;K; (l

i

)) and
omplete the proof of the lemma

by arguing as in Lemma 2.7. (We have M + 2 and not M + 1 be
ause in the lemma we

want i 6= 0.) 2

Lemma 5.9 (Part 2) Let A be a
ounter automaton with M states and N
ounters.

There exists a
onstant E = E(M;N;K; `) su
h that if �

0

t

=) is an a

epting K-run of

A, where �(t)�

�

=
�

m

� (j�j; j
j � `), and m � E, then for in�nitely many j there is an

a

epting run �

0

t

j

=) with �(t

j

)�

�

=
�

j

�.

Proof: De�ne the sequen
e (`

i

(M;N;K)) by

l

0

= A(M;N;K);

l

i

= A(M;N;K + `

1

+ `

2

+ � � �+ `

i�1

):

Let D(M;N;K) = B(M;N;K; (`

i

(M;N;K))) and

`(M;N;K) =

D(M;N;K)�1

X

i=1

l

i

(M;N;K):

26

Then, E(M;N;K) is de�ned by

E(M;N;K; `) =

�

B(M;N;K; (`)) if N=0:

D(M;N;K) + E(M;N � 1; K + `(M;N;K); `) if N > 1

:

(Here (`) denotes the in�nite sequen
e all of whose terms are `.)

We will use indu
tion on the number of
ounters to show that E as de�ned above

meets the requirements of the lemma.

Basis: If N = 0, there are no
ounter moves. The
laim then follows from Lemma 5.8.

Indu
tion step: Assume t is minimal su
h that �

0

t

=) is an a

epting K-run of A with

�(t)�

�

=
�

m

� (m � E). We may write this
omputation as

�

0

v

0

=) �

1

v

1

=) �

2

v

2

=) � � �

v

m

=) �

m+1

w

=) �

f

;

where �(v

0

) �

�

=
, �(v

i

) �

�

= � for i 2 [1::m℄ and �(w) �

�

= �. If jv

i

j � `

i

for i 2

[0::D(M;N;K)� 1℄, then the
laim follows from Lemma 5.8.

Otherwise, there exists an i 2 [0::D(M;N;K) � 1℄ su
h that jv

i

j � `

i

. Let i be the

smallest with this property. By Lemma 5.7, for this i, we may write the
omputation on

v

i

as

�

i

v

=) �

0

v

0

=) �

00

v

00

=) �

i+1

;

where Q(�

0

) = Q(�

00

), F (�

0

) � F (�

00

), where �(v

0

) is nonempty but has no input symbols.

Sin
e t is minimal, we have F (�

0

) < F (�

00

). Fix a
ounter C su
h that �

C

(v

0

) > 0. Next,

onsider the
omputation after v

0

, that is

�

00

v

00

=) �

i+1

v

i+1

=) �

i+2

v

i+2

=) � � �

v

m

=) �

m+1

w

=) �

f

:

Here we treat C

+

and C

�

as elements of the input alphabet. As noted above, we may

assume jvv

0

j � `

i

. Thus, jv

0

: : : v

i�1

vv

0

j � `(M;N;K). Also, �(v

00

v

i+1

: : : v

m

w)�

�

=

0

�

j

�,

where

j � E(M;N;K; `)�D(M;N;K) � E(M;N � 1; K + `(M;N;K); `):

We apply the indu
tion hypothesis to this
omputation. For in�nitely many j we obtain

t

0

j

su
h that X

00

t

0

j

=) is an a

epting
omputation of A and �(t

j

)�

�

=

0

�

j

�.

Sin
e �

C

(v

0

) > 0, it is easily veri�ed that for suÆ
iently large k and

t = v

0

v

1

: : : v

i�1

vv

0k

v

00

t

0

j

;

�

0

t

=) is an a

epting
omputation of A. Sin
e �(v

0

) has no input symbols, this implies

that for in�nitely many j, there is a t

j

su
h that �

0

t

j

=) is an a

epting
omputation of

A and �(t

j

)�

�

=
�

j

�. 2

6 Dis
ussion

In this
on
luding dis
ussion, we point out similarities and di�eren
es between our work

and earlier results from the theory of ve
tor addition systems and Petri nets. We also

identify some dire
tions for further work in developing our model of �nite-state distributed

systems with asyn
hronous
ommuni
ation.

27

Ve
tor addition systems

An n-
oordinate ve
tor addition system (VAS)
onsists of a �nite set of initial ve
tors and

a �nite set of transition ve
tors. Ea
h initial ve
tor is an n-tuple of natural numbers and

ea
h transition ve
tor is an n-tuple of integers. An n-tuple of natural numbers is rea
hable

if it
an be generated from an initial ve
tor by performing a sequen
e of additions with

ve
tors from the set of transitions while ensuring that ea
h intermediate ve
tor generated

is non-negative.

In [KM69℄, Karp and Miller study various de
ision problems for ve
tor addition sys-

tems. They show how to asso
iate with ea
h VAS a �nite obje
t
alled its
overing tree.

This
an be used to solve a number of other questions, in
luding whether the set of rea
h-

able ve
tors of the VAS is �nite. These results have immediate appli
ability in the theory

of Petri nets be
ause a Petri net
an be represented as a VAS. Our Counter Pumping

Lemma (Lemma 4.3) is similar in spirit to Karp and Miller's
overing tree result.

Petri net languages

It is well known that there is a strong
onne
tion between automata with blind
ounters

and Petri nets [G78, J86a℄. It is not diÆ
ult to show that we
an go ba
k and forth

between labelled Petri nets and
ounter automata in su
h a way that given a net N and

its
orresponding
ounter automaton A, there is bije
tion a between the �ring sequen
es

of N and the
omputations of A. Thus, questions about Petri net languages
an rephrased

as questions about languages a

epted by
ounter automata.

There are several ways to asso
iate a language with a Petri net [H75, J86a℄. The �rst is

to just examine all �ring sequen
es of the net. The se
ond is to �x a set of �nal markings

and look at the labels along �ring sequen
es leading to these designated markings. The

third possibility is to �x �nal markings but only require a �ring sequen
e to lead to a

marking whi
h dominates a �nal marking rather than be exa
tly equal to a �nal marking.

Following the terminology of [J86a℄, we designate the
lass of languages generated by these

three de�nitions L, L

0

and L

1

respe
tively. When transitions are allowed to have invisible

labels, the
orresponding
lasses of languages are designated L

�

, L

�

0

and L

�

1

respe
tively.

In the setting of
ounter automata, the �rst de�nition
orresponds to examining the set

of
omputations of the automaton. The se
ond de�nition yields a de�nition of a

epting

runs in terms of both �nal states and �nal
ounter values. The third de�nition
orresponds

more dire
tly to the one we use in this paper|the �nal states are �xed but the �nal

ounter values are irrelevant.

In the theory of Petri net languages, a number of positive results have been established

for the
lass L|for instan
e, regularity is de
idable [GY80, VV80℄. On the other hand,

it is quite easy to exhibit languages from the
lass L

1

(and hen
e,
ounter re
ognisable

languages) where the language itself is regular but the underlying language of transitions

is not. Hen
e the results of [GY80, VV80℄ do not
arry over to
ounter re
ognisable

languages|in fa
t, the problem of de
iding whether a
ounter re
ognisable language is

regular is open.

At the other end of the spe
trum, a number of negative results have been established

for the
lass L

0

(and hen
e also L

�

0

). For instan
e, it is unde
idable whether su
h a

language is universal|that is, whether it
onsists of all strings [VV80℄. However, this

result
ru
ially uses the fa
t that �nal markings must be rea
hed exa
tly. The problem

28

of de
iding whether a
ounter re
ognisable language is universal is open.

Few, if any, results have been proved for the
lasses L

1

and L

�

1

, whi
h
orrespond

most
losely to
ounter re
ognisable languages. Our
hara
terisation of the sub
lass

losed under
omplementation is probably the only non-trivial result known for this
lass.

Noti
e that this
hara
terisation fails for the
lass L

0

|it is possible to
onstru
t nets for

both the language L

ge

of Example 2.1 and its
omplement, though L

ge

is not regular.

Counter re
ognisable languages and message-passing

How
an we interpret our results on
ounter re
ognisable languages in terms of distributed

systems for asyn
hronous
ommuni
ation? We say that an asyn
hronous proto
ol is ro-

bust if it responds \sensibly" to any sequen
e of intera
tions with the environment|in

other words, for any su
h sequen
e, it either a

epts the sequen
e as valid or terminates

with an error. When we model asyn
hronous proto
ols by
ounter automata, the strings

a

epted by the automaton
orrespond to sequen
es of intera
tions with the environment.

For a robust proto
ol, both the set of intera
tions a

epted by the proto
ol and the set

of intera
tions reje
ted by the proto
ol are
ounter re
ognisable. Our
hara
terisation of

the
omplementation-
losed subset of
ounter re
ognisable languages then tells us that all

robust proto
ols use only bounded bu�ers. Any messages ex
hanged by pro
esses follow-

ing a robust proto
ol
an be viewed as just hand-shakes whi
h
oordinate the intera
tion

between the di�erent pro
esses and the environment.

One short
oming of our model is that we impli
itly sequentialise all the intera
tions of

a distributed system into a sequen
e of global intera
tions. It would be more satisfying to

build a theory where we separate the intera
tion of ea
h pro
ess and allow our automata

to read n-tuples of strings, where n is the number of pro
esses. It is not obvious how to

extend the notion of a robust proto
ol to this setting. One possibility is to use the fa
t

we
an keep tra
k of the latest information ea
h pro
ess has about every other pro
ess

in a message-passing system using the algorithm proposed in [MNS95℄. In the theory of

syn
hronous
ommuni
ation, an analogous result is the key to generating a distributed

�nite-state system re
ognising an n-tuple of strings from a global des
ription of su
h a

system [MS94, Z87℄. We have some preliminary results in this dire
tion.

Referen
es

[AJ93℄ P.A. Abdulla and B. Jonsson: Verifying programs with unreliable
hannels, in

Pro
. 8th IEEE Symp. Logi
 in Computer S
ien
e, Montreal, Canada (1993).

[AJ94℄ P.A. Abdulla and B. Jonsson: Unde
idability of verifying programs with unre-

liable
hannels, in S. Abiteboul, E. Shamir (eds.), Pro
. ICALP '94, Springer

LNCS 820 (1994) 316{327.

[GY80℄ A. Ginzburg and M. Yoeli: Ve
tor Addition Systems and Regular Languages,

J. Comput. System. S
i. 20 (1980) 277{284

[G78℄ S.A. Greiba
h: Remarks on Blind and Partially Blind One-Way Multi
ounter

Ma
hines, Theoret. Comput. S
i 7 (1978) 311{324.

[H75℄ M. Ha
k: Petri Net Languages, C.S.G. Memo 124, Proje
t MAC, MIT (1975).

29

[J86a℄ M. Jantzen: Language Theory of Petri Nets, in W. Brauer, W. Reisig,

G. Rozenberg (eds.), Petri Nets: Central Models and Their Properties, Ad-

van
es in Petri Nets, 1986, Vol 1, Springer LNCS 254 (1986) 397{412.

[J86b℄ M. Jantzen: Complexity of Pla
e/Transition Nets, in W. Brauer, W. Reisig,

G. Rozenberg (eds.), Petri Nets: Central Models and Their Properties, Ad-

van
es in Petri Nets, 1986, Vol 1, Springer LNCS 254 (1986) 413{434.

[KM69℄ R.M. Karp and R.E. Miller: Parallel Program S
hemata, J. Comput. System

S
i., 3 (4) (1969) 167{195.

[LT87℄ N.A. Lyn
h and M. Tuttle: Hierar
hi
al Corre
tness Proofs for Distributed

Algorithms, Te
hni
al Report MIT/LCS/TR-387, Laboratory for Computer

S
ien
e, MIT (1987).

[L76℄ R.J. Lipton: The Rea
hability Problem Requires Exponential Spa
e, Resear
h

Report No 62, Dept of Computer S
ien
e, Yale University (1976).

[M78℄ A. Mazurkiewi
z: Con
urrent Program S
hemes and their Interpretations, Re-

port DAIMI-PB-78, Computer S
ien
e Department, Aarhus University, Den-

mark (1978).

[MNS95℄ M. Mukund, K. Narayan Kumar and M. Sohoni: Keeping Tra
k of the Latest

Gossip in Message-Passing Systems, Pro
. Stru
tures in Con
urren
y The-

ory (STRICT), Berlin 1995, Workshops in Computing Series, Springer-Verlag

(1995) 249{263.

[MS94℄ M. Mukund and M. Sohoni: Gossiping, Asyn
hronous Automata and

Zielonka's Theorem, Report TCS-94-2, S
hool of Mathemati
s, SPIC S
ien
e

Foundation, Madras, India (1994).

[PS88℄ P. Panangaden and E.W. Stark: Computations, Residuals, and the Power

of Indetermina
y, in T. Lepisto and A. Salomaa (eds.), Pro
. ICALP '88,

Springer LNCS 317 (1988) 439{454.

[VV80℄ R. Valk and G. Vidal-Naquet: Petri Nets and Regular Languages, J. Comput.

System. S
i. 20 (1980) 299{325.

[Z87℄ W. Zielonka: Notes on Finite Asyn
hronous Automata, R.A.I.R.O.|Inf.

Th�eor. et Appl., 21 (1987) 99{135.

30

SPIC Mathemati
al Institute

Internal Reports (Theoreti
al Computer S
ien
e)

TCS-90-1 M. Mukund: Expressiveness and Completeness of a Logi
 for Well

Bran
hing Prime Event Stru
tures.

TCS-90-2 M. Mukund and P.S. Thiagarajan: An Axiomatization of Well Bran
hing

Prime Event Stru
tures.

TCS-90-3 K. Lodaya, M. Mukund, R. Ramanujam, P.S. Thiagarajan: Models and

Logi
s for True Con
urren
y.

TCS-91-1 P.S. Thiagarajan (ed.): Pro
eedings of National Seminar on Theoreti
al

Computer S
ien
e, Madras, India, July 4{6, 1991.

TCS-91-2 M. Mukund: A Transition System Chara
terization of Petri Nets.

TCS-91-3 P.W. Hoogers, H.C.M. Kleijn, P.S. Thiagarajan: A Tra
e Semanti
s for

Petri Nets.

TCS-91-4 M. Nielsen, G. Rozenberg, P.S. Thiagarajan: Elementary Transition Sys-

tems.

TCS-91-5 M. Nielsen, G. Rozenberg, P.S. Thiagarajan: Transition Systems, Event

Stru
tures and Unfoldings.

TCS-92-1 M. Nielsen, G. Rozenberg, P.S. Thiagarajan: Elementary Transition Sys-

tems and Re�nement.

TCS-92-2 M. Mukund and M. Nielsen: CCS, Lo
ations and Asyn
hronous Transi-

tion Systems.

TCS-92-3 M. Mukund: Transition System Models for Con
urren
y.

TCS-93-2 M. Agrawal: On the Isomorphism Problem for Weak Redu
ibilities.

TCS-93-3 M. Mukund and M. Sohoni: Keeping Tra
k of the Latest Gossip: Bounded

Time-Stamps SuÆ
e.

TCS-93-4 P.S. Thiagarajan: A Tra
e Based Extension of PTL.

TCS-93-5 N. Klarlund, M. Mukund, M. Sohoni: Determinizing Asyn
hronous Au-

tomata.

TCS-93-6 P.S. Thiagarajan: TrPTL: A Tra
e Based Extension of Linear Time

Temporal Logi
.

TCS-93-7 M. Agrawal and V. Arvind: On Quasi-Linear Truth-Table Redu
tions to

P-Sele
tive Sets.

TCS-93-8 K. Lodaya, R. Parikh, R. Ramanujam, P.S. Thiagarajan: A Logi
al Study

of Distributed Transition Systems.

TCS-94-1 P.W. Hoogers, H.C.M. Kleijn, P.S. Thiagarajan: A Event Stru
ture Se-

manti
s for General Petri Nets.

TCS-94-2 M. Mukund and M. Sohoni: Gossiping, Asyn
hronous Automata and

Zielonka's Theorem.

TCS-94-3 R. Krishnan and S. Venkatesh: Optimizing the Gossip Automaton.

TCS-94-4 M. Agrawal, R. Krishnan and S. Venkatesh: The Isomorphism Problem

for 2-DFA Redu
tions.

TCS-94-5 M. Agrawal and V. Arvind: Geometri
 Sets of Low Information Content.

TCS-95-1 M. Agrawal: Self-redu
ibility Versus Prunability.

TCS-95-2 M. Agrawal, P. Ramadevi and V Vinay: A New Link Invariant and its

Complexity.

TCS-95-3 M. Mukund, K. Narayan Kumar and M. Sohoni: Keeping Tra
k of the

Latest Gossip in Message-Passing Systems.

TCS-95-4 P.S. Thiagarajan: PTL over Produ
t State Spa
es.

TCS-95-5 M. Agrawal: DSPACE(n)

?

= NSPACE(n): A Degree Theoreti
 Chara
-

terization.

TCS-95-6 N. Klarlund, M. Mukund, M. Sohoni: Determinizing Asyn
hronous Au-

tomata on In�nite Inputs.

TCS-95-7 S. Krishnamurthy, M. Mukund: Implementing Causal Ordering with

Bounded Time-stamps.

TCS-96-1 M. Mukund, P.S. Thiagarajan: Linear Time Temporal Logi
s over

Mazurkiewi
z Tra
es.

TCS-96-2 M. Mukund: Finite-state Automata on In�nite Inputs.

TCS-97-1 Jesper G. Henriksen and P.S. Thiagarajan: Dynami
 Linear Time Tem-

poral Logi
.

TCS-97-2 P.S. Thiagarajan and I. Walukiewi
z: An Expressively Complete Linear

Time Temporal Logi
 for Mazurkiewi
z Tra
es.

TCS-97-3 Jesper G. Henriksen and P.S. Thiagarajan: A Produ
t Version of Dy-

nami
 Linear Time Temporal Logi
.

TCS-97-4 M. Mukund, K. Narayan Kumar, J. Radhakrishnan and M. Sohoni:

Message-Passing Automata and Asyn
hronous Communi
ation.

Copies of reports
an be ordered from the following address:

SPIC Mathemati
al Institute

92, G.N. Chetty Road

T. Nagar

Madras 600 017

Email: offi
e�smi.ernet.in

