
Internal Report TCS-97-4

September, 1997

Message-Passing Automata and Asynhronous Communiation

(Preliminary Version)

Madhavan Mukund

1

Jaikumar Radhakrishnan

2

K Narayan Kumar

1

Milind Sohoni

3

Abstrat

This paper is a step towards developing a new automata-theoreti framework for

desribing distributed �nite-state systems with asynhronous ommuniation. If we

assume that messages an be delayed arbitrarily in transit, it is reasonable to model

the global behaviour of suh systems in terms of �nite-state automata equipped

with blind ounters|that is, ounters whih annot be tested for zero.

We analyse the languages aepted by suh automata and show that it is de-

idable whether the language of suh an automaton is empty. We also develop a

variety of pumping lemmas whih an be used to show that ertain languages are

not aepted by these automata.

Our main result is that the sublass of languages aepted by these automata

whih is losed under omplementation is preisely the lass of regular languages.

In the ontext of asynhronous protools, our result implies that robust �nite-state

protools use bounded bu�ers. In other words, messages are used only for hand-

shaking|that is, for oordinating the interation between di�erent proesses and

the environment.

It is well known that automata with blind ounters are losely related to Petri

nets. However, our de�nition of languages is more appropriate for reasoning about

asynhronous ommuniation and is di�erent from the de�nition used in the theory

of Petri nets.

1

SPIC Mathematial Institute, 92 G.N. Chetty Road, Madras 600 017, India. E-mail:

fmadhavan,kumarg�smi.ernet.in

2

Computer Siene Group, Tata Institute of Fundamental Researh, Homi Bhabha Road, Bombay

400 005, India. E-mail: jaikumar�ts.tifr.res.in

3

Dept of Computer S. and Engg., Indian Institute of Tehnology, Bombay 400 076, India. E-mail:

sohoni�se.iitb.ernet.in

1 Introdution

Today, distributed systems whih use asynhronous ommuniation are ubiquitous|the

Internet is a prime example. However, there has been very little work on studying

the �nite-state behaviour of suh systems. In partiular, this area laks a satisfa-

tory automata-theoreti framework. In ontrast, automata theory for systems with syn-

hronous ommuniation is well developed via Zielonka's asynhronous automata [Z87℄

and the onnetions to Mazurkiewiz trae theory [M78℄.

This paper is a step towards developing an automata-theoreti framework for de-

sribing distributed �nite-state systems with asynhronous ommuniation. Earlier at-

tempts at de�ning suh models of asynhronous systems deal primarily with in�nite-state

systems|for instane, the port automaton model of Panangaden and Stark [PS88℄ and

the I/O automaton model of Lynh and Tuttle [LT87℄. Also, earlier work has foussed on

issues far removed from those whih are traditionally onsidered in the study of �nite-state

systems.

The setting for our work is as follows. Consider a system in whih a olletion of

�nite-state mahines ommuniate by sending messages via bu�ered hannels. Suppose

that there are only �nitely many di�erent kinds of messages. Messages may experiene

arbitrary delays in transit, though they always eventually reah their reipient. At an

abstrat level, Internet protools suh as the SMTP mail protool �t into this paradigm.

Another example is the protool used in a banking network to exhange information

between ATMs and the bank's distributed databases.

Sine messages may get reordered in transit, the state of suh a system is ompletely

desribed by the state of the omponents and the number of messages of eah kind whih

have been sent but are as yet undelivered. Thus, at a global level, suh systems an

be treated as �nite-state automata equipped with a �nite number of ounters, one for

eah type of message. The only operations permitted on the ounters are inrement

and derement (orresponding to sending and reeiving the appropriate type of message

respetively). The automaton annot test if a ounter's value is zero|this restrition

aptures the intuition that it is not pratial for a omponent to make a deision based

on the assumption that another proess has not sent a message, sine messages may be

delayed arbitrarily.

With this motivation, we de�ne ounter automata and study the languages they a-

ept. Eah move of a ounter automaton onsists of either reading a letter from the

input or manipulating a ounter. Reading from the input represents the interation of

the underlying distributed system with its environment. We study the languages (over

the input alphabet) aepted by these automata.

Our main onern is when suh a language is regular. An automaton whih aepts

a regular language represents a ommuniation protool whose interation with the en-

vironment is regular. Suh a protool essentially uses only bounded bu�ers. Our main

result is that a language L aepted by a ounter automaton is regular if and only if the

omplement of L is also aepted by a ounter automaton. In the ontext of asynhronous

protools, our result implies that robust �nite-state protools use only bounded bu�ers.

In other words, messages are used only for hand-shaking, to oordinate the interation

between di�erent proesses and the environment. Along the way, we develop a variety of

tools and tehniques for reasoning about ounter automata, inluding a number of pump-

ing lemmas whih are useful for showing when languages are not reognisable by ounter

1

automata.

The automata we onsider are losely related to automata with blind ounters, studied

by Greibah [G78℄. In turn, these automata are losely related to Petri nets [J86a, J86b℄.

Some of the tehniques we develop are analogous to well-known results in Petri net theory,

suh as the overing tree onstrution of Karp and Miller [KM69℄. However, our de�nition

of languages is more appropriate for reasoning about asynhronous ommuniation and

is di�erent from the de�nition used in Petri net theory. Towards the end of the paper,

we disuss the onnetion between our framework and Petri net languages.

Reently, Abdulla and Jonsson have also studied deision problems for distributed

systems with asynhronous ommuniation [AJ93, AJ94℄. However, they work in a setting

where messages are delivered in the order in whih they are sent. This means that the

hannels are unbounded, �fo bu�ers. With suh a strong model, most interesting questions

beome undeidable. The results of [AJ93℄ show that the �fo model an be made tratable

by assuming that messages may be lost in transit. With lossy hannels, questions suh as

reahability of on�gurations and equivalene with respet to �nite-state automata an be

deided, though ertain other questions remain undeidable [AJ94℄. While their results

are inomparable with ours, sine the two models are orthogonal, we remark that all their

positive results hold for our model as well.

The paper is organised as follows. In the next setion we de�ne ounter automata and

prove some basi results about them. In Setion 3 we prove a Contration Lemma whih

leads to deidability of the emptiness problem and the fat that the languages aepted

by ounter automata are not losed under omplementation. Setion 4 develops a family

of pumping lemmas whih are exploited in Setion 5 to prove our main result onerning

the regularity of languages aepted by ounter automata. In the �nal setion, we disuss

in detail the onnetion between our results and those in Petri net theory and point out

diretions for future work.

2 Counter Automata

Natural numbers and tuples As usual, N denotes the set f0; 1; 2; : : :g of natural

numbers. If i; j 2 N , [i::j℄ denotes the set fi; i+1; : : : ; jg with the onvention that

[i::j℄ = ; if i > j. We ompare k-tuples of natural numbers omponent-wise: let

m = hm

1

; m

2

; : : : ; m

k

i and n = hn

1

; n

2

; : : : ; n

k

i be k-tuples of natural numbers. Then

m � n i� m

i

� n

i

for eah i 2 [1::k℄.

Counter automata A ounter automaton A is a tuple (Q;�;�; T; q

in

; F), where:

� Q is a �nite set of states, with initial state q

in

and aepting states F � Q.

� � is a �nite input alphabet.

� � is a �nite set of ounters. We use C;C

0

; : : : to denote ounters. With eah ounter

C, we assoiate two symbols, C

+

and C

�

. We write �

+

for the set fC

+

jC 2 �g, �

�

for fC

�

jC 2 �g and �

�

for �

+

[�

�

.

� T � Q� (� [�

�

)�Q is the transition relation.

2

Con�gurations A on�guration of A is a pair (q; f) where q 2 Q and f : � ! N is a

funtion whih reords the values stored in the ounters. If the ounters are C

1

; C

2

; : : : ; C

k

then we represent f by an element hf(C

1

); f(C

2

); : : : ; f(C

k

)i of N

k

. By abuse of nota-

tion, the k-tuple h0; 0; : : : ; 0i, representing the funtion whih assigns 0 to all ounters, is

uniformly denoted 0, for all values of k.

The funtion f dominates the funtion f

0

, written f � f

0

, if f(C) � f

0

(C) for every

ounter C. The funtion f stritly dominates the funtion f

0

, written f > f

0

, if f � f

0

and there is a ounter C suh that f(C) > f

0

(C).

We use � to denote on�gurations. If � = (q; f), Q(�) denotes q and F (�) denotes f .

Further, for eah ounter C, C(�) denotes the value f(C).

Moves The automaton moves from on�guration � to on�guration �

0

on d 2 � [�

�

if (Q(�); d; Q(�

0

)) 2 T and one of the following holds:

� d 2 � and F (�) = F (�

0

).

� d = C

+

, C(�

0

) = C(�) + 1 and C

0

(�) = C

0

(�

0

) for every C

0

6= C.

� d = C

�

, C(�

0

) = C(�)� 1 � 0 and C

0

(�) = C

0

(�

0

) for every C

0

6= C.

Suh a move is denoted �

(q;d;q

0

)

�! �

0

|in other words, transitions are labelled by ele-

ments of T rather than elements of � [�

�

. Given a sequene of transitions t

1

t

2

: : : t

n

=

(q

1

; d

1

; q

2

)(q

2

; d

2

; q

3

) : : : (q

n

; d

n

; q

n+1

), the orresponding sequene of letters d

1

d

2

: : : d

n

from

� [�

�

is denoted �(t

1

t

2

: : : t

n

).

Computations, runs and languages A omputation ofA is a sequene �

0

t

1

�! �

1

t

2

�!

: : :

t

n

�! �

n

. We also write �

0

t

1

t

2

:::t

n

=) �

n

to indiate that there is a omputation labelled

t

1

t

2

: : : t

n

from �

0

to �

n

. Notie that �

0

and t

1

t

2

: : : t

n

uniquely determine all the inter-

mediate on�gurations �

1

; �

2

; : : : ; �

n

. If the transition sequene is not relevant, we just

write �

0

=) �

n

. As usual, �

t

1

t

2

:::t

n

=) denotes that there exists �

0

suh that �

t

1

t

2

:::t

n

=) �

0

and

� =) denotes that there exists �

0

suh that � =) �

0

.

For K 2 N , a K-run of A is a omputation �

0

=) �

n

where C(�

0

) � K for eah

C 2 �.

If Æ is a string over � [�

�

, Æ�

�

denotes the subsequene of letters from � in Æ. Let

w = a

1

a

2

: : : a

k

be a string over �. A run of A over w is a 0-run �

0

t

1

t

2

:::t

n

=) �

n

where

Q(�

0

) = q

in

and �(t

1

t

2

: : : t

n

)�

�

= w. The run is said to be aepting if Q(�

n

) 2 F . The

string w is aepted by A if A has an aepting run over w. The language aepted by A,

denoted L(A), is the set of all strings over � aepted by A.

A language over � is said to be ounter reognisable if there is a ounter automaton

with input alphabet � that aepts this language.

Example 2.1 Let L

ge

� fa; bg

�

be given by fa

m

b

n

j m � ng. This language is ounter

reognisable. Here is an automaton for L

ge

. The initial state is indiated by + and the

�nal states have an extra irle around them.

a

C

+

b

C

�

b

+

3

2.1 Non-determinism versus determinism

Deterministi Counter Automata A ounter automaton A = (Q;�;�; T; q

in

; F) is

said to be deterministi if the following two onditions hold:

� If (q; d

1

; q

1

); (q; d

2

; q

2

) 2 T , with d

1

; d

2

2 �, then d

1

= d

2

implies q

1

= q

2

.

� If (q; d

1

; q

1

); (q; d

2

; q

2

) 2 T , with d

1

2 �

�

, then d

1

= d

2

and q

1

= q

2

.

Though this notion of determinism seems rather strong, it is easy to see that any

relaxation of the de�nition will allow deterministi automata to simulate non-deterministi

automata in a trivial manner.

For instane, suppose we na��vely de�ne a deterministi automaton to be one in whih

no state has two outgoing transitions with the same label. This de�nition would permit

a deterministi automaton to hoose between a ounter move and another transition

(whih may or may not be a ounter move). We an then simulate a hoie between

two transitions t

1

= (q; d; q

1

) and t

2

= (q; d; q

2

) with the same label by adding a dummy

ounter C. Instead of hoosing diretly between t

1

and t

2

, the new automaton will �rst

hoose between t

1

and a move (q; C

+

; q

0

) leading to a new state q

0

. We an then simulate

t

2

by adding a transition (q

0

; d; q

2

). Thus, the original hoie between t

1

and t

2

is replaed

by a asaded hoie involving the dummy ounter C.

It is interesting to observe that a similar strong de�nition of determinism is used in

the study of Petri net languages [J86a℄.

We have the following haraterisation of languages aepted by deterministi ounter

automata.

Proposition 2.2 Let A be a deterministi ounter automaton. Then, either L(A) is

regular or there exists a word w =2 L(A) suh that every extension of w also does not

belong to L(A).

Proof: Let A be a deterministi ounter automaton. For eah input word w, either A

admits no run over w or it admits a unique sequene of runs �

1

; �

2

; : : : ; (whih may be

in�nite) over w suh that for eah i � 1, �

i+1

extends �

i

by one transition involving a

ounter operation.

A word w is said to be bloked in the automaton A if A does not permit an in�nite

sequene of runs �

1

; �

2

; : : : ; over w. If w is bloked, there exists a unique state where A

\gets stuk" when proessing w. We denote this state q

w

.

Sine A is deterministi, we know that if q

w

has any outgoing transitions, either the

set of outgoing transitions at q

w

is labelled by distint letters from � or there is only a

single outgoing transition labelled by an element of �

�

. In the latter ase, it must be

that the transition is labelled C

�

, for some C 2 �, beause a move labelled C

+

is always

enabled. We say that w is �-bloked in A if w is bloked in A and q

w

has an outgoing

transition labelled C

�

, for some C 2 �.

Returning to the statement to be proved, if L(A) = �

�

, then L(A) is regular. Thus,

the interesting ase is when L(A) = �

�

n L(A) is non-empty.

Case 1: If there exists w in �

�

n L(A) whih is �-bloked, then any extension of w must

also be �-bloked. Thus all extensions of w also lie outside L(A).

4

Case 2: Suppose that no word w in L(A) is �-bloked. Then, from A we an onstrut

a �nite-state automaton A

0

over the alphabet � whih has "-transitions. The automaton

A

0

has the same set of states, initial state and �nal states as A. For eah transition t

of the form (q; d; q

0

) in A, we have a orresponding transition t

0

= (q; d

0

; q

0

) in A

0

, where

d

0

= d if d 2 � and d

0

= " if d 2 �

�

.

Sine A is deterministi, at eah state of A

0

whih has outgoing transitions, either

the set of outgoing transitions is labelled by distint letters from � or there is a single

outgoing transition labelled ". In other words, for every word w, either A

0

does not admit

a run over w or A

0

admits a unique sequene of runs �

1

; �

2

; : : : ; over w suh that for eah

i � 1, �

i+1

extends �

i

by a transition labelled ".

We laim that L(A

0

) = L(A) and hene L(A) is regular. It is easy to see that

eah omputation �

0

t

1

�! �

1

t

2

�! � � �

t

n

�! �

n

of A an be simulated by a run Q(�

0

)

t

0

1

�!

Q(�

1

)

t

0

2

�! � � �

t

0

n

�! Q(�

n

) of A

0

, where for eah i 2 [1::n℄, t

0

i

is the transition orresponding

to t

i

as desribed above. Sine the initial and �nal states of A

0

are the same as those of

A, it follows that L(A) � L(A

0

).

To see that L(A

0

) � L(A), assume that there is a word w 2 L(A

0

) n L(A). Then, A

0

admits an aepting run �

0

: q

in

t

0

1

�! q

1

t

0

2

�! � � �

t

0

n

�! q

n

over w, with q

n

a �nal state. From

our onstrution of A

0

, it follows that there is a maximal pre�x �

0

: q

in

t

0

1

�! q

1

t

0

2

�! � � �

t

0

k

�!

q

k

of �

0

, with k < n, suh that A admits a 0-run � : �

0

t

1

�! �

1

t

2

�! � � �

t

k

�! �

k

over w

with the following properties:

� Q(�

0

) = q

in

.

� For eah i 2 [1::k℄, Q(�

i

) = q

i

and t

0

i

is the transition orresponding to t

i

as spei�ed

in the onstrution of A

0

.

� w is bloked in A and q

w

= q

k

.

Sine � annot be extended in A while �

0

an be extended in A

0

, it must be the ase that

t

k+1

orresponds to a move of the form C

�

for a ounter C whose value at �

k

is 0. This

implies that w is �-bloked in A, whih is a ontradition.

Hene, L(A

0

) = L(A) and L(A) is regular.

2

Corollary 2.3 Non-deterministi ounter automata are stritly more powerful than de-

terministi ounter automata.

Proof: Consider the language L � fa; bg

�

given by

L = fw j w = w

1

a

m

b

n

aw

2

; where w

1

; w

2

2 fa; bg

�

and m � n � 1g:

It is not diÆult to transform the automaton whih aepts L

ge

= fa

m

b

n

j m � ng into

a non-deterministi ounter automaton whih aepts L. We argue that L annot be

aepted by any deterministi ounter automaton. L is learly not regular. Thus, by the

previous proposition, for L to be aepted by a deterministi automaton, it must be the

5

ase that there is a word w =2 L suh that every suÆx of w is also not in L. However, for

any word w =2 L, we an always �nd an extension of w in L|for instane, waba 2 L for

all w 2 fa; bg

�

. 2

Observe, however, that even deterministi ounter automata are stritly more powerful

than normal �nite-state automata. For instane, the language L

ge

of Example 2.1 is not

regular but the automaton aepting the language is deterministi.

2.2 Some useful results

The following observations are basi to analysing the behaviour of ounter automata. We

�rst need the following terminology: a sequene n

1

; n

2

; : : : of k-tuples of natural numbers

is said to be non-dereasing if n

1

� n

2

� � � �.

Proposition 2.4 Every in�nite sequene of k-tuples of natural numbers has an in�nite

non-dereasing subsequene.

Proof: The proof is by indution on k.

Basis: When k = 1, we have a sequene of natural numbers. If the sequene is bounded

then some value appears in�nitely often (by the pigeon-hole priniple). On the other

hand, if the sequene is unbounded, it is obvious that it ontains a stritly inreasing

in�nite subsequene.

Indution step: If we projet the sequene of k-tuples onto its �rst k�1 omponents, we

an apply the indution hypothesis to extrat an in�nite subsequene whih is nondereas-

ing in these k�1 oordinates. We look at the orresponding subsequene in our original

sequene of k-tuples and examine the kth oordinate of eah element in the sequene.

By an argument similar to the basis ase, there must be an in�nite subsequene whih is

non-dereasing on the kth oordinate as well.

2

Corollary 2.5 There is no in�nite set of k-tuples of natural numbers that is pairwise

inomparable.

Lemma 2.6 Let T be a �nitely branhing in�nite tree whose nodes are labelled by k-tuples

from N. For eah i 2 N there is a number �

i

suh that along any path of length �

i

starting

at the root of T , the orresponding sequene of labels n

1

; n

2

; : : : ; n

�

i

has a nondereasing

subsequene of length i.

Proof: Suppose there exists i 2 N for whih there is no suh �

i

. In other words, for

eah j 2 N there is a path of length j starting at the root whose labels n

1

; n

2

; : : : ; n

j

do

not ontain a non-dereasing subsequene of length i.

Call a node t in T bad if the labels along the unique path from the root to t do not

have a non-dereasing subsequene of length i. Clearly the parent of a bad node is also

bad. Thus the set of bad nodes forms a subtree of T . By our assumption that there is no

6

�

i

orresponding to i, there must be bad nodes at eah level in the tree. Hene the set of

bad nodes forms an in�nite subtree of T .

By K�onig's Lemma there is an in�nite path in T all of whose nodes are bad. The

labels along this path do not have any non-dereasing subsequene of length greater than

or equal to i. This ontradits Proposition 2.4. 2

Lemma 2.7 Let A be a ounter automaton withM states and N ounters and let K 2 N.

Then, there exists ` 2 N, suh that for any K-run �

0

t

1

�! �

1

: : :

t

`

�! �

`

of A, there are

two on�gurations �

i

and �

j

, 0 � i < j � `, suh that Q(�

i

) = Q(�

j

) and F (�

i

) � F (�

j

).

Proof: Construt a tree T whose nodes are labelled by N

N

as follows.

� The root x

0

is labelled h0i.

� For eah vetor v = hm;ni where m 2 [1::M ℄ and n(i) � K for all i 2 [1::N ℄,

onstrut a hild x

v

0

of the root labelled by n.

� Let x be a node labelled hm;ni. For eah vetor v = hm

0

; n

0

i where m

0

2 [1::M ℄ and

n

0

di�ers from n in at most one oordinate by at most 1, onstrut a hild x

v

of x

labelled v.

Clearly, T is a �nitely branhing tree. Hene, by Lemma 2.6, for eah natural number p

there is a number �

p

suh that, if x

0

x

1

: : : x

p

t

1

�! �

1

t

2

�! � � �

t

�

p

�! �

�

p

is a K-run of A then

the sequene F (�

0

); F (�

1

); : : : ; F (�

�

p

) has a non-dereasing subsequene of length p.

Thus, if �

0

=) �

�

M+1

is any run of A, then there are positions 0 � k

1

< k

2

< : : : <

k

M+1

� �

M+1

suh that F (�

k

1

) � F (�

k

2

) : : : � F (�

k

M+1

). By the pigeon-hole priniple,

there are positions k

r

and k

s

, 1 � r < s � M+1, suh that Q(�

k

r

) = Q(�

k

s

). To prove

the lemma, set ` = �

M+1

, �

i

= �

k

r

and �

j

= �

k

s

.

2

Weak pumping onstant Notie that the bound ` established in the preeding lemma

depends only on the values M , N and K and is independent of the atual struture

of the automaton. Let �

M;N;K

denote the bound `. We refer to �

M;N;K

as the weak

pumping onstant for (M;N;K). It is easy to see that if hM

0

; N

0

; Ki � hM;N;Ki, then

�

M

0

;N

0

;K

0

� �

M;N;K

.

3 A Contration Lemma

Lemma 3.1 (Contration) For every ounter automaton A, there is a onstant k suh

that if �

0

t

1

t

2

:::t

m

=) �

m

is a omputation of A, with m > k, then there exist i and j,

m�k � i < j � m, suh that �

0

0

t

1

:::t

i

t

j+1

:::t

m

=) �

0

m�(j�i)

is also a omputation of A, with

with �

0

`

= �

`

for ` 2 [0::i℄ and Q(�

`

) = Q(�

0

`�(j�i)

) for all ` 2 [j::m℄.

7

Proof: Let A have M states and N ounters. We show that k an be hosen to be

�

M;N;0

.

Let �

0

t

1

t

2

:::t

m

=) �

m

be a omputation of A, with m > �

M;N;0

. We de�ne a sequene

f

m

; f

m�1

; : : : ; f

0

of N -tuples of natural numbers as follows:

f

m

(n) = 0; for all n 2 [1::N ℄

For i 2 [0::m�1℄; f

i

(n) =

8

<

:

f

i+1

(n) if �(t

i+1

) =2 fC

+

n

; C

�

n

g

f

i+1

(n)+1 if �(t

i+1

) = C

�

n

max(0; f

i+1

(n)�1) if �(t

i+1

) = C

+

n

We next show that the funtion f

i

represents the minimum ounter values required to

exeute the transition sequene t

i+1

t

i+2

: : : t

m

.

Claim: 8i 2 [1::m℄, (Q(�

i

); f)

t

i+1

t

i+2

:::t

m

=) i� f � f

i

.

Proof of Claim: By indution on m�i.

Basis: If i = m there is nothing to prove.

Indution step:

By the indution hypothesis, (Q(�

i+1

); f

0

)

t

i+2

t

i+3

:::t

m

=) i� f

0

� f

i+1

.

Suppose that f � f

i

. We have to show that (Q(�

i

); f)

t

i+1

t

i+2

:::t

m

=) . We �rst

argue that there is a move (Q(�

i

); f)

t

i+1

�! (Q(�

i+1

); f

0

). Sine we know that

(Q(�

i

); t

i+1

; Q(�

i+1

)) is a transition of A, the only reason for forbidding suh

a move is that �(t

i+1

) = C

�

n

for some ounter C

n

and f(n) = 0. However, if

�(t

i+1

) = C

�

n

, we know that f

i

(n) = f

i+1

(n) + 1 � 1. Sine f � f

i

, f(n) � 1

as well.

Consider the funtion f

0

. We shall show that f

0

� f

i+1

. From the indu-

tion hypothesis, it then follows that (Q(�

i

); f)

t

i+1

�! (Q(�

i+1

); f

0

)

t

i+2

t

i+3

:::t

m

=) ,

whereby (Q(�

i

); f)

t

i+1

t

i+2

:::t

m

=) .

To hek that f

0

� f

i+1

, we onsider all possible values for �(t

i+1

).

(i) �(t

i+1

) 2 �: Then f

0

= f � f

i

= f

i+1

.

(ii) �(t

i+1

) 2 fC

�

n

; C

+

n

g: Then

� For ` 6= n, f

0

(`) = f(`) � f

i

(`) = f

i+1

(`).

� If �(t

i+1

) = C

�

n

, then f

0

(n) = f(n)� 1 � f

i

(n)� 1 = f

i+1

(n).

� If �(t

i+1

) = C

+

n

, then f

0

(n) = f(n)+1 � f

i

(n)+1 = max(1; f

i+1

(n)) �

f

i+1

(n).

Thus, for eah ` 2 [1::n℄, f

0

(`) � f

i+1

(`).

Conversely, suppose that (Q(�

i

); f)

t

i+1

t

i+2

:::t

m

=) . We have to establish that

f � f

i

. We know that (Q(�

i

); f)

t

i+1

�! (Q(�

i+1

); f

0

)

t

i+2

t

i+3

:::t

m

=) and, by the

indution hypothesis, f

0

� f

i+1

. As before, we examine all possible values of

�(t

i+1

).

8

(i) �(t

i+1

) 2 �: Then f = f

0

� f

i+1

= f

i

.

(ii) �(t

i+1

) 2 fC

�

n

; C

+

n

g: Then

� For ` 6= n, f(`) = f

0

(`) � f

i+1

(`) = f

i

(`).

� If �(t

i+1

) = C

�

n

, then f(n) = f

0

(n) + 1 � f

i+1

(n) + 1 = f

i

(n).

� If �(t

i+1

) = C

+

n

, then f(n) = f

0

(n)�1 � f

i+1

(n)�1. Sine f(n) � 0

and f

i

(n) = max(0; f

i+1

(n)� 1), f(n) � f

i

(n).

Thus, for eah ` 2 [1::n℄, f(`) � f

i

(`).

Corollary to Claim: For eah ounter C

n

and for eah position i 2 [1::m℄,

C

n

(�

i

) � f

i

(n).

Consider the sequene f

m

; f

m�1

; : : : f

0

. Sine its length exeeds �

M;N;0

, by Lemma 2.7

there exist positions i and j, m � j > i � m��

M;N;0

suh that f

j

� f

i

and Q(�

j

) =

Q(�

i

). By the Corollary to Claim, for eah ounter C

n

, C

n

(�

i

) � f

i

(n) � f

j

(n). Thus,

�

i

t

j+1

t

j+2

:::t

m

=) whereby �

0

t

1

t

2

:::t

i

=) �

i

t

j+1

t

j+2

:::t

m

=) �

0

m�(j�i)

is a valid omputation of A for some

on�guration �

0

m�(j�i)

. Sine Q(�

j

) = Q(�

i

) and the omputations �

j

t

j+1

t

j+2

:::t

m

=) �

m

and

�

i

t

j+1

t

j+2

:::t

m

=) �

0

m�(j�i)

are labelled by the same sequene of transitions, it follows that

Q(�

`

) = Q(�

0

`�(j�i)

) for eah ` 2 [j::m℄, as required.

2

Corollary 3.2 A ounter automaton A with M states and N ounters has an aepting

omputation i� it has an aepting omputation whose length is bounded by �

M;N;0

.

In the Appendix, we give a onstrutive proof of Lemma 2.7 whih provides an expliit

upper bound for �

M;N;K

for all values of M , N , and K. This fat, oupled with the

preeding observation, yields the following result.

Corollary 3.3 The emptiness problem for ounter automata is deidable.

We remark, however, that a result of Lipton [L76℄ from the theory of Petri net lan-

guages implies that the emptiness problem for ounter reognisable languages is EXPSPACE-

hard.

Corollary 3.4 Counter reognisable languages are not losed under omplementation.

Proof: We saw earlier that L

ge

= fa

m

b

n

j m � ng is ounter reognisable. Let A

be an automaton whih aepts L

ge

. We an easily extend A to aept L

0

ge

= L

ge

[

fw j w is not of the form a

m

b

n

g: The omplement of the language L

0

ge

is the language

L

lt

= fa

m

b

n

j m < ng.

Suppose that L

lt

were ounter reognisable. Let A

lt

be an automaton whih aepts

L

lt

. Let M be the number of states in A

lt

and N the number of ounters used by A

lt

.

Consider the string w = a

J

b

J+1

where J = �

M;N;0

and let � : �

0

t

1

t

2

:::t

n

=) �

n

be an aepting

run of A

lt

on w. By applying the Contration Lemma (repeatedly, if neessary) to �, we

an obtain an aepting run �

0

of A

lt

over a word of the form a

J

b

K

, where K � J , thus

9

ontraditing the assumption that L(A

lt

) = L

lt

. (The reason we may need to use the

Contration Lemma more than one to obtain a suitable �

0

is that when we apply the

Lemma one, the sequene of moves deleted may fail to ontain any transition labelled

b. However, if this happens, the resulting run will ontinue to have a suÆx ontaining

�

M;N;0

+ 1 moves labelled b, so we an apply the Contration Lemma repeatedly until at

least one transition labelled b is deleted.) 2

4 A Colletion of Pumping Lemmas

Change vetors For a string w over a set X and a symbol x 2 X, #

x

(w) denotes

the number of times x ours in w. Let v be a sequene of transitions. Reall that �(v)

denotes the orresponding sequene of letters. For eah ounter C, de�ne �

C

(v) to be

#

C

+

(�(v))�#

C

�

(�(v)). The hange vetor assoiated with v, denoted �v, is given by

h�

C

(v)i

C2�

.

Proposition 4.1 Let A = (Q;�;�; T; q

in

; F) be a ounter automaton.

(i) For any omputation �

v

=) �

0

of A and any ounter C 2 �, j�

C

(v)j � jvj.

(ii) For any on�guration � and sequene of transitions v, �

v

=) i� for eah pre�x u of

v and eah ounter C 2 �, C(�) + �

C

(u) � 0.

(iii) Let �

u

=) �

0

v

=) with Q(�) = Q(�

0

) and n 2 N suh that, for every ounter C 2 �,

either �

C

(u) � 0 or C(�) � njuj+ jvj. Then, �

u

n

v

=).

Proof:

(i) This follows from the fat that eah move an hange a ounter value by at most 1.

(ii) This follows immediately from the de�nition of a omputation.

(iii) The proof is by indution on n.

Basis: For n = 0, there is nothing to prove.

Indution step: Let n > 0 and assume the result holds for n�1. We will show that

�

u

=) �

0

u

n�1

v

=) .

From the assumption, we know that �

u

=) �

0

. To show that �

0

u

n�1

v

=) , we examine

the value of eah ounter C at �

0

. If �

C

(u) < 0, then C(�) � njuj + v. Sine

C(�

0

) = C(�

0

) + �

C

(u) and j�

C

(u)j � juj, it follows that C(�

0

) � (n�1)juj + v.

From the indution hypothesis, we an then onlude that �

0

u

n�1

v

=) .

2

10

Pumpable deomposition Let A be a ounter automaton with N ounters and let

� : �

0

t

1

t

2

:::t

m

=) �

m

be a omputation of A. A deomposition �

0

u

1

=) �

i

1

v

1

=) �

j

1

u

2

=) �

i

2

v

2

=)

�

j

2

u

3

=) � � �

u

n

=) �

i

n

v

n

=) �

j

n

u

n+1

=) �

m

of � is said to be pumpable if it satis�es the following

onditions:

(i) n � N .

(ii) For eah k 2 [1::n℄, Q(�

i

k

) = Q(�

j

k

).

(iii) For eah v

k

, k 2 [1::n℄, �v

k

is non-zero and has at least one positive entry.

(iv) Let C be a ounter and k 2 [1::n℄ suh that �

C

(v

k

) is negative. Then, there exists

` < k suh that �

C

(v

`

) is positive.

We refer to v

1

; v

2

; : : : ; v

n

as the pumpable bloks of the deomposition. If C is a ounter

suh that �

C

(v

i

) > 0 for some pumpable blok v

i

, we say that C is a pumpable ounter.

Proposition 4.2 Let A be a ounter automaton and � : �

0

t

1

t

2

:::t

m

=) �

m

be a omputation

of A. Consider a pumpable deomposition �

0

u

1

=) �

i

1

v

1

=) �

j

1

u

2

=) � � �

u

n

=) �

i

n

v

n

=) �

j

n

u

n+1

=)

�

m

of �. Then, for r 2 [1::n℄, �

0

u

1

=) �

i

1

v

1

=) �

j

1

u

2

=) � � �

u

r

=) �

i

r

v

r

=) �

j

r

u

r+1

=) �

i

r+1

is a

pumpable deomposition of �

r

: �

0

u

1

v

1

:::u

r

v

r

u

r+1

=) �

i

r+1

.

Proof: Immediate, from the de�nition of pumpable deompositions. 2

Lemma 4.3 (Counter Pumping) Let A be an automaton and � a K-run of A, K 2 N,

with a pumpable deomposition of the form

�

0

u

1

=) �

i

1

v

1

=) �

j

1

u

2

=) �

i

2

v

2

=) �

j

2

� � �

u

n

=) �

i

n

v

n

=) �

j

n

u

n+1

=) �

m

:

Then, for any I; J 2 N, with I � 1, there exist `

1

; `

2

; : : : ; `

n

2 N and a K-run �

0

of A

of the form

�

0

0

u

1

=) �

0

i

0

1

v

`

1

1

=) �

0

j

0

1

u

2

=) �

0

i

0

2

v

`

2

2

=) �

0

j

0

2

� � �

u

n

=) �

0

i

0

n

v

`

n

n

=) �

0

j

0

n

u

n+1

=) �

0

p

suh that �

0

satis�es the following properties:

(i) �

0

= �

0

0

.

(ii) Q(�

0

p

) = Q(�

m

).

(iii) For i 2 [1::n℄, `

i

� I.

(iv) For every ounter C, C(�

0

p

) � C(�

m

).

(v) Let �

pos

be the set of pumpable ounters in the pumpable deomposition of �. For

eah ounter C 2 �

pos

, C(�

0

p

) � J .

11

Proof: The proof is by indution on n, the number of pumpable bloks in the deom-

position.

Basis: If n = 0, there is nothing to prove.

Indution step: Let n > 0 and assume the lemma holds for all deompositions with n�1

pumpable bloks. For eah ounter C, let J

C

= max(J; C(�

m

)).

By the indution hypothesis, for all I

0

; J

0

2 N , I

0

� 1, we an transform the pre�x

� : �

0

u

1

=) �

i

1

v

1

=) �

j

1

u

2

=) � � �

v

n�1

=) �

j

n�1

u

n

=) �

i

n

of � into a K-run �

0

: �

0

0

u

1

=) �

0

i

0

1

v

`

1

1

=)

�

0

j

0

1

u

2

=) � � �

v

`

n�1

n�1

=) �

0

j

0

n�1

u

n

=) �

0

i

0

n

satisfying the onditions of the lemma. We shall hoose

I

0

and J

0

so that the transition sequene v

`

n

n

u

n+1

an be appended to �

0

to yield the run

laimed by the lemma.

To �x values for I

0

and J

0

, we �rst estimate the value of `

n

, the number of times we

need to pump v

n

to satisfy all the onditions of the lemma. Let �

n

pos

= fC j �

C

(v

n

) > 0g.

It is suÆient if the number `

n

is large enough for eah ounter C 2 �

n

pos

to exeed J

C

at the end of the new omputation. For a ounter C 2 �

n

pos

to be above J

C

at the end

of the omputation, it is suÆient for C to have the value J

C

+ ju

n+1

j after v

`

n

n

. By the

indution hypothesis, the value of C before v

`

n

n

is at least C(�

i

n

). Hene, it would take

d

J

C

+ju

n+1

j�C(�

i

n

)

�

C

(v

n

)

e iterations of v

n

for C to reah the required value after v

`

n

n

. On the other

hand, we should also ensure that `

n

� I. Thus, it is safe to set `

n

to be the maximum of

I and max

C2�

n

pos

d

J

C

+ju

n+1

j�C(�

i

n

)

�

C

(v

n

)

e.

We set I

0

= I and estimate a value for J

0

suh that �

0

i

0

n

v

`

n

n

u

n+1

=) �

0

p

with eah ounter

C 2 (� n�

n

pos

) ahieving a value of at least C(�

m

) at �

0

p

and eah ounter C 2 (�

pos

n�

n

pos

)

ahieving a value of at least J

C

at �

0

p

.

By the indution hypothesis, Q(�

0

i

0

n

) = Q(�

i

n

) and F (�

0

i

0

n

) � F (�

i

n

). Sine �

i

n

v

n

u

n+1

=) ,

it follows that �

0

i

0

n

v

n

u

n+1

=) . By Proposition 4.1 (iii), to ensure that �

0

i

0

n

v

`

n

n

u

n+1

=) �

0

p

, it is

suÆient to raise eah ounter C with �

C

(v

n

) < 0 to a value of at least `

n

jv

n

j+ ju

n+1

j at

�

0

i

0

n

. If �

C

(v

n

) < 0 then, by the de�nition of pumpable deompositions, �

C

(v

i

) > 0 for

some i 2 [1::n�1℄, so C gets pumped above J

0

in �

0

.

Any ounter C suh that �

C

(v

n

) � 0 will surely exeed C(�

m

) at �

0

p

. On the other

hand, a ounter C suh that �

C

(v

n

) < 0 an derease by at most `

n

jv

n

j+ ju

n+1

j after �

0

i

0

n

.

Putting these two fats together, it suÆes to set J

0

to `

n

jv

n

j+ju

n+1

j+max

fCj�

C

(v

n

)<0g

J

C

.

Let �

0

: �

0

0

u

1

=) �

0

i

0

1

v

`

1

1

=) �

0

j

0

1

u

2

=) � � �

u

n

=) �

0

i

0

n

v

`

n

n

=) �

0

j

0

n

u

n+1

=) �

0

p

. By the indution

hypothesis, we know that �

0

0

= �

0

and for i 2 [1::n�1℄, `

i

� I. By onstrution, `

n

� I

as well. We have also ensured that for every ounter C, C(�

0

p

) � C(�

m

) and for every

ounter C 2 �

pos

, C(�

0

p

) � J . The fat that Q(�

0

p

) = Q(�

m

) follows from the fat that

eah v

n

loop brings the automaton bak to Q(�

0

i

0

n

) = Q(�

i

n

), and the fat that both �

and �

0

go through the same sequene of transitions u

n+1

at the end of the omputation.

2

The preeding lemma shows that all the pumpable ounters in a pumpable deompo-

sition are simultaneously unbounded. This is analogous to a well-known result of Karp

and Miller in the theory of vetor addition systems [KM69℄. They show how to assoiate

a �nite objet alled a overing tree with eah vetor addition system. The overing tree

12

an be used to deide whether a set of oordinates of the vetor addition system is simul-

taneously unbounded. See Setion 6 for a more detailed disussion of the onnetion of

our work to vetor addition systems.

Corollary 4.4 Let A be an automaton and � a K-run of A, K 2 N, with a pumpable

deomposition of the form

�

0

u

1

=) �

i

1

v

1

=) �

j

1

u

2

=) �

i

2

v

2

=) �

j

2

� � �

u

n

=) �

i

n

v

n

=) �

j

n

u

n+1

=) �

m

:

(i) For any I 2 N, with I � 1, there exist `

1

; `

2

; : : : ; `

n�1

2 N and a K-run �

0

of A of

the form

�

0

0

u

1

=) �

0

i

0

1

v

`

1

1

=) �

0

j

0

1

u

2

=) �

0

i

0

2

v

`

2

2

=) �

0

j

0

2

� � �

u

n�1

=) �

0

i

0

n�1

v

`

n�1

n�1

=) �

0

j

0

n�1

u

n

=) �

0

i

0

n

v

I

n

=) �

0

j

0

n

u

n+1

=) �

0

p

suh that �

0

= �

0

0

, Q(�

0

p

) = Q(�

m

) and F (�

0

p

) � F (�

m

).

(ii) For any I 2 N, with I � 1 and any k 2 [1::n℄, there exist `

1

; `

2

; : : : ; `

k�1

2 N and a

K-run �

0

of A of the form

�

0

0

u

1

=) �

0

i

0

1

v

`

1

1

=) �

0

j

0

1

u

2

=) � � �

u

k�1

=) �

0

i

0

k�1

v

`

k�1

k�1

=) �

0

j

0

k�1

u

k

=) �

0

i

0

k

v

I

k

=) �

0

j

0

k

u

k+1

v

k+1

:::u

n

v

n

u

n+1

=) �

0

p

suh that �

0

= �

0

0

, Q(�

0

p

) = Q(�

m

) and F (�

0

p

) � F (�

m

).

Proof: The �rst statement follows by setting J = 0 when de�ning `

n

in the proof of the

Counter Pumping Lemma. The seond result is then immediate. We omit the details. 2

We have shown that all ounters whih inrease within the pumpable bloks of a

pumpable deomposition an be simultaneously raised to arbitrarily high values. We next

desribe a suÆient ondition for aK-run to admit a non-trivial pumpable deomposition.

Strong pumping onstant For eah M;N;K 2 N , we de�ne the strong pumping

onstant �

M;N;K

by indution on N as follows (reall that �

M;N;K

denotes the weak

pumping onstant for (M;N;K)):

8M;K 2 N : �

M;0;K

= 1

8M;N;K 2 N : �

M;N+1;K

= �

M;N;�

M;N+1;K

+K

+ �

M;N+1;K

+K

Lemma 4.5 (Deomposition) Let A be an automaton with M states and N ounters

and let K 2 N. Let � : �

0

t

1

t

2

:::t

m

=) �

m

be any K-run of A. Then, there is a pumpable

deomposition

�

0

u

1

=) �

i

1

v

1

=) �

j

1

u

2

=) �

i

2

v

2

=) �

j

2

� � �

u

n

=) �

i

n

v

n

=) �

j

n

u

n+1

=) �

m

of � suh that for every ounter C, if C(�

j

) > �

M;N;K

for some j 2 [0::m℄, then there

exists k 2 [1::n℄, suh that �

C

(v

k

) is positive.

To prove this lemma, we need the following result.

13

Proposition 4.6 Let A be a ounter automaton with M states and N ounters and let

� : �

0

=) �

n

be a K-run of A in whih some ounter value exeeds �

M;N;K

+K. Then,

there is a pre�x � : �

0

=) �

s

of � suh that:

� For eah m 2 [0::s℄ and every ounter C, C(�

m

) < �

M;N;K

+K.

� There exists r 2 [0::s�1℄, suh that � : �

0

=) �

r

=) �

s

, Q(�

r

) = Q(�

s

) and

F (�

r

) < F (�

s

).

Proof: Suppose that the lemma does not hold. Let � : �

0

t

1

t

2

:::t

n

=) �

n

be a omputation

of minimum length whih fails to satisfy the lemma. Sine the initial ounter values in �

are bounded by K and some ounter value exeeds �

M;N;K

+K in �, it must be the ase

that the length of � is at least �

M;N;K

.

By the de�nition of �

M;N;K

, there exist i and j, i < j � �

M;N;K

suh that Q(�

i

) =

Q(�

j

) and F (�

i

) � F (�

j

). Sine � is a K-run and j � �

M;N;K

, all ounter values at the

on�gurations �

0

; �

1

; : : : ; �

j

must be bounded by �

M;N;K

+K. If F (�

i

) < F (�

j

), � would

satisfy the lemma with r = i and s = j, so it must be the ase F (�

i

) = F (�

j

).

Sine �

i

= �

j

, we an onstrut a shorter omputation �

0

= �

0

t

1

t

2

:::t

i

=) �

i

t

j+1

�! �

j+1

t

j+2

�!

� � �

t

n

�! �

n

. It is easy to see that the same ounter whose value exeeded �

M;N;K

+K in

� must also exeed �

M;N;K

+K in �

0

|the only on�gurations visited by � whih are not

visited by �

0

are those in the interval �

i+1

; �

i+2

; : : : �

j

. However, we have already seen

that all ounter values in �

0

; �

1

; : : : ; �

j

are bounded by �

M;N;K

+K.

It is lear that if �

0

satis�es the lemma, then so does �. On the other hand, if �

0

does

not satisfy the lemma, then � is not a minimum length ounterexample to the lemma. In

either ase we obtain a ontradition. 2

We now return to the proof of the Deomposition Lemma.

Proof: (of Lemma 4.5) The proof is by indution on N , the number of ounters.

Basis: If N = 0, set n = 0 and u

1

= �.

Indution step: Let �

gt

denote the set of ounters whose values exeed �

M;N;K

in the

K-run �.

If �

gt

= ;, we set n = 0 and u

1

= �.

Otherwise, by Proposition 4.6, we an �nd positions r and s in � suh that �

0

u

0

=)

�

r

v

0

=) �

s

=) �

m

, with Q(�

r

) = Q(�

s

), F (�

r

) < F (�

s

) and all ounter values at

�

0

; �

1

; : : : ; �

s

bounded by �

M;N;K

+K.

Let � be the input alphabet of A and � its set of ounters. Fix a ounter C

0

in

whih inreases stritly between �

r

and �

s

|that is, C

0

(�

s

) > C

0

(�

r

). By our hoie of

�

r

and �

s

, suh a ounter must exist. Construt an automaton A

0

with input alphabet

� [fC

0+

; C

0�

g and ounters � n fC

0

g. The states and transitions of A

0

are the same as

those of A. In other words, A

0

behaves like A exept that it treats moves involving the

ounter C

0

as input letters.

14

Consider the omputation �

s

t

s+1

t

s+2

:::t

m

=) �

m

of A. It is easy to see that there is a

orresponding omputation �

0

: �

0

s

t

s+1

t

s+2

:::t

m

=) �

0

m

of A

0

suh that for eah k 2 [s::m℄,

Q(�

k

) = Q(�

0

k

) and for eah ounter C 6= C

0

, C(�

k

) = C(�

0

k

).

From Proposition 4.6, we know that �

0

is in fat a (�

M;N;K

+K)-run of A

0

. Further,

for every ounter C in �

gt

n fC

0

g, there exists a j 2 [s::m℄, suh that C(�

0

j

) = C(�

j

) >

�

M;N;K

> �

M;N�1;�

M;N;K

+K

. (In the K-run �, no ounter ould have exeeded �

M;N;K

before �

s

beause Proposition 4.6 guarantees that all ounter values at �

0

; �

1

; : : : ; �

s

are bounded by �

M;N;K

+ K.) By the indution hypothesis, we an �nd a pumpable

deompostion

�

0

s

u

0

1

=) �

0

i

0

1

v

0

1

=) �

0

j

0

1

u

0

2

=) �

0

i

0

2

v

0

2

=) �

0

j

0

2

u

0

3

=) � � �

u

0

p

=) �

0

i

0

p

v

0

p

=) �

0

j

0

p

u

0

p+1

=) �

m

of �

0

suh that if C is a ounter with C(�

0

j

) > �

M;N�1;�

M;N;K

+K

for some j 2 [s::m℄, then

there exists k 2 [1::p℄ suh that �

C

(v

0

k

) is positive.

Consider the orresponding omputation

�

s

u

0

1

=) �

i

0

1

v

0

1

=) �

j

0

1

u

0

2

=) �

i

0

2

v

0

2

=) �

j

0

2

� � �

u

0

p

=) �

i

0

p

v

0

p

=) �

j

0

p

u

0

p+1

=) �

m

of A. In this omputation, for eah k 2 [1::p℄, Q(�

i

0

k

) = Q(�

0

i

0

k

) = Q(�

0

j

0

k

) = Q(�

j

0

k

).

Further, for eah C 2 �

gt

n fC

0

g, C(�

i

0

k

) = C(�

0

i

0

k

) and C(�

j

0

k

) = C(�

0

j

0

k

).

We pre�x the omputation �

s

u

0

1

v

0

1

:::u

0

p+1

=) �

m

with the K-run �

0

u

0

=) �

r

v

0

=) �

s

whih

we used to identify �

s

and �

r

. We then assert that the omposite K-run

�

0

u

0

=) �

r

v

0

=) �

s

u

0

1

=) �

i

00

1

v

0

1

=) �

j

00

1

u

0

2

=) �

i

00

2

v

0

2

=) �

j

00

2

� � �

u

0

p

=) �

i

00

p

v

0

p

=) �

j

00

p

u

0

p+1

=) �

m

:

provides the deomposition

�

0

u

1

=) �

i

1

v

1

=) �

j

1

u

2

=) �

i

2

v

2

=) �

j

2

� � �

u

n

=) �

i

n

v

n

=) �

j

n

u

n+1

=) �

m

of � laimed in the statement of the lemma. In other words, u

1

= u

0

, v

1

= v

0

, �

i

1

= �

r

and �

j

1

= �

s

, while for k 2 [2::n℄, u

k

= u

0

k�1

, v

k

= v

0

k�1

, �

i

k

= �

i

0

k�1

and �

j

k

= �

j

0

k�1

.

Let us verify that this deomposition satis�es all the onditions required by the lemma.

First we verify that this deomposition is pumpable.

� Sine p � N�1, it is lear than n = p+1 � N .

� By onstrution Q(�

i

1

) = Q(�

r

) = Q(�

s

) = Q(�

j

1

). For k 2 [2::n℄, Q(�

i

k

) =

Q(�

i

0

k�1

) = Q(�

j

0

k�1

) = Q(�

j

k

).

� We know that �v

1

= �v

0

is non-zero and stritly positive by the hoie of v

0

. For

k 2 [2::n℄, we know that �

C

(v

k

) = �

C

(v

0

k�1

) for C 6= C

0

. Sine we have already

established that �v

0

k�1

is non-zero and has at least one positive entry for k 2 [2::n℄,

it follows that the orresponding hange vetors �v

k

are also non-zero and have at

least one positive entry.

� Let C be a ounter and k 2 [1::n℄ suh that �

C

(v

k

) is negative. Sine �v

1

= �v

0

is

positive by the hoie of v, it must be that k 2 [2::n℄. If C 6= C

0

, then �

C

(v

0

k�1

) =

15

�

C

(v

k

) is negative. In this ase, we already know that there exists ` 2 [2::k�1℄,

suh that �

C

(v

0

`�1

) = �

C

(v

`

) is positive.

On the other hand, if C = C

0

, it ould be that �

C

0

(v

0

z

) is negative for all z 2 [1::p℄,

sine C

0

is treated as an input letter rather than as a ounter in the automaton A

0

.

However, we know that �

C

0

(v

1

) = �

C

0

(v

0

) is positive by the hoie of v

0

and C

0

, so

C

0

also satis�es the ondition of the lemma.

Finally, let C be a ounter suh that C(�

j

) > �

M;N;K

for some j 2 [1::m℄. If C 6= C

0

,

then C(�

j

) > �

M;N�1;�

M;N;K

+K

for some j 2 [s::m℄, so we already know that �

C

(v

0

k�1

) =

�

C

(v

k

) is positive for some k 2 [2::n℄. On the other hand, if C = C

0

, we know that

�

C

(v

1

) = �

C

(v

0

) is positive by the hoie of v

0

and C

0

.

2

The Counter Pumping Lemma we stated earlier allows us to pump bloks of transitions

in a omputation. However, it is possible for a pumpable blok to onsist solely of invisible

transitions whih inrement and derement ounters. Using the Deomposition Lemma,

we an prove a more traditional kind of pumping lemma, stated in terms of input strings.

Lemma 4.7 (Visible Pumping) Let L be a ounter reognisable language. There exists

n 2 N suh that for all input strings w, if w 2 L and jwj � n then w an be written as

w

1

w

2

w

3

suh that jw

1

w

2

j � n, jw

2

j � 1 and w

1

w

i

2

w

3

2 L for all i � 1.

Proof: Let A = (Q;�;�; T; q

in

; F) be a ounter automaton whih aepts L. From A,

we onstrut a new automaton A

0

by adding a new ounter C

vis

whih is inremented

eah time an input letter is read.

Formally, A

0

= (Q

0

;�;�

0

; T

0

; q

in

; F) where:

� Q

0

= Q [fq

t

j t = (q; d; q

0

) 2 T and d 2 �g.

� �

0

= � [fC

vis

g.

� T

0

= f(q; d; q

0

) 2 T j d =2 �g [f(q; C

+

vis

; q

t

); (q

t

; d; q

0

) j t = (q; d; q

0

) 2 T; d 2 �g.

It is lear that L(A

0

) = L(A) = L. Let M = jQ

0

j and N = j�

0

j. Set n = �

M;N;0

.

Let �

0

x

=) �

f

y

=) �

g

be an aepting run of A

0

on w, where jwj � �

M;N;0

and

j�(x)�

�

j = �

M;N;0

. Let �

0

u

1

v

1

:::u

n

v

n

u

m+1

=) �

f

be the pumpable deomposition of �

0

x

=) �

f

given by the Deomposition Lemma.

Sine C

vis

attains the value �

M;N;0

along �

0

x

=) �

f

, there is a pumpable blok v

i

,

i 2 [1::m℄, suh that �

C

vis

(v

i

) > 0. Choose the �rst suh blok. Then �

C

vis

(v

j

) = 0 for

all j < i.

Eah pumpable blok de�nes a yle in A

0

. However, the struture of A

0

ensures that

a yle has a move labelled C

+

vis

i� it also has a move labelled by an input letter. Thus,

v

i

ontains at least one move with a label from �, while �(v

j

)�

�

is empty for eah j < i.

Let w

1

= �(u

1

v

1

u

2

: : : u

i

), w

2

= �(v

i

) and w

3

= �(u

i+1

v

i+1

: : : v

n

u

n+1

y).

By Corollary 4.4 (ii), for eah I 2 N , there is a run �

0

u

1

v

`

1

1

:::u

i

v

I

i

u

i+1

v

i+1

:::u

m

v

m

u

m+1

=) �

0

f

with Q(�

0

f

) = Q(�

f

) and F (�

0

f

) � F (�

f

).

16

This means that � : �

0

u

1

v

`

1

1

:::u

i

v

I

i

u

i+1

v

i+1

:::u

m

v

m

u

m+1

=) �

0

f

y

=) �

0

g

is an aepting run on

�(u

1

v

`

1

1

: : : u

i

v

I

i

u

i+1

: : : u

m

v

m

u

m+1

z) �

�

. Sine �(v

j

) = " for all j < i, it follows that

�(u

1

v

`

1

1

: : : u

i�1

v

`

i�1

i�1

u

i

) = �(u

1

v

1

: : : u

i�1

v

i�1

u

i

) = w

1

. Thus, � is an aepting run over

w

1

w

I

2

w

3

, as laimed by the lemma.

2

Example 4.8 The language L = fa

p

j p is primeg is not ounter reognisable.

Proof: Suppose L is ounter reognisable. Let p be a prime larger that n, the pump-

ing onstant for L spei�ed by Lemma 4.7. Then, we an write p as x + y + z suh

that a

x+my+z

2 L for all m � 1. Choose m = p + 1. Then a

x+(p+1)y+z

2 L, though

x+ (p+ 1)y + z = x + y + z + py = (1 + y)p is not a prime! 2

One di�erene between the preeding lemma and the traditional pumping lemma for

regular languages is that in the ontext of ounter reognisable languages, for a pumpable

string uvw, we must have at least one iteration of the pumpable segment v to ensure that

the resulting string uv

i

w is in the language, whereas for regular languages, uv

0

w = uw is

also guaranteed to be in the language.

Lemma 4.9 (Counter Hierarhy) For k 2 N, let L

k

be the set of languages reognis-

able by ounter automata with k ounters. Then, for all k, L

k

(L

k+1

.

Proof: De�ne L

k+1

= fa

n

0

0

a

n

1

1

� � �a

n

k

k

a

n

k+1

k+1

j n

0

� n

1

� � � � � n

k+1

g. It is not diÆult to

onstrut a ounter automaton with k+1 ounters whih aepts L

k+1

. However, there is

no k-ounter mahine whih aepts this language.

Suppose A is a k-ounter mahine whih aepts L

k+1

. As in the proof of Lemma 4.7,

we extend A with a new ounter C

k+1

whih is inremented preisely when a

k+1

is read

from the input. Let the new mahine A

0

have M states.

Consider an aepting run � of A

0

on a string w = a

n

0

0

a

n

1

1

: : : a

n

k+1

k+1

with n

k+1

�

�

M;k+1;0

. By Lemma 4.5, the run � has a pumpable deomposition �

0

u

1

v

1

:::u

m

v

m

u

m+1

=) �

f

suh that m � k+1 and �

C

k+1

(v

i

) > 0 for some i 2 [1::m℄.

By Lemma 4.3, for eah I � 1, there exist `

1

; `

2

; : : : ; `

m

2 N suh that eah `

j

� I

and �

0

u

1

v

`

1

1

:::u

m

v

`

m

m

u

m+1

=) �

0

f

is an aepting run. From the struture of words in L

k+1

, it

follows that for eah pumpable blok v

i

, �(v

i

) ontains at most one of the visible letters

fa

0

; a

1

; : : : ; a

k+1

g. Sine m � k+1 at least one letter from fa

0

; a

1

; : : : ; a

k+1

g does not

appear in

S

i2[1::m℄

�(v

i

). Also, sine �

C

k+1

(v

i

) > 0 for some i 2 [1::m℄, from the struture

of A

0

it follows that a

k+1

does appear in

S

i2[1::m℄

�(v

i

).

Let a

r

be a letter whih does not appear in

S

i2[1::m℄

�(v

i

) and let v

j

be the blok suh

that a

k+1

appears in �(v

j

). By Corollary 4.4 (ii), for all I � 1, there exist `

1

; `

2

; : : : ; `

j�1

with eah `

j

� I suh that �

0

u

1

v

`

1

1

:::v

`

j�1

j�1

u

j

v

I

j

u

j+1

v

j+1

:::u

m

v

`

m

m

u

m+1

=) �

0

g

is an aepting run of

A

0

. Choose I = n

r

+ 1.

Thus w

0

= �(u

1

v

`

1

1

: : : v

`

j�1

j�1

u

j

v

n

r

+1

j

u

j+1

v

j+1

: : : u

m

v

`

m

m

u

m+1

)) �

�

2 L(A

0

). But, w

0

has

only n

r

a

r

's and at least n

r

+1 a

k+1

's, whih violates the de�nition of L

k+1

.

17

Thus, there is no k-ounter mahine whih aepts L

k+1

.

2

The proof above requires alphabets of size k+2 to separate L

k

from L

k+1

. However, it is

not diÆult to tighten the proof to establish a strit hierarhy for alphabets of size 3.

5 Charaterising Regularity of Counter Reognisable

Languages

Automata with bounded ounters

Let A = (Q;�;�; T; q

in

; F) be a ounter automaton. For K 2 N , de�ne A[K℄ =

(Q[K℄; T [K℄; Q[K℄

in

; F [K℄) to be the �nite-state automaton over the alphabet � [�

�

given by:

� Q[K℄ = Q� ff j f : � �! [0::K℄g.

� Q[K℄

in

= (q

in

; 0).

� F [K℄ = Q

f

� ff j f : � �! [0::K℄g.

� If (q; d; q

0

) 2 T , then ((q; f); d; (q

0

; f

0

)) 2 T [K℄ where:

{ If d 2 �, f

0

= f .

{ If d = C

+

, f

0

(C

0

) = f(C

0

) for allC

0

6= C and f

0

(C) =

�

f(C)+1 if f(C) < K

K otherwise

{ If d = C

�

, f

0

(C

0

) = f(C

0

) for all C

0

6= C, f(C) � 1 and

f

0

(C) =

�

f(C)�1 if f(C) < K

K otherwise

Notie that eah transition t = ((q; f); d; (q

0

; f

0

)) 2 T [K℄ orresponds to a unique tran-

sition (q; d; q

0

) 2 T , whih we denote t

�1

. For a sequene of transitions t

1

t

2

: : : t

n

, we

write (t

1

t

2

: : : t

n

)

�1

for t

�1

1

t

�1

2

: : : t

�1

n

. Note that for any sequene t

1

t

2

: : : t

n

of transi-

tions in T [K℄, �(t

1

t

2

: : : t

n

) = �((t

1

t

2

: : : t

n

)

�1

). Moreover, if (q

0

; f

0

0

)

t

1

t

2

:::t

n

=) (q

n

; f

0

n

) and

(q

0

; f

0

)

(t

1

t

2

:::t

n

)

�1

=) �

n

, then Q(�

n

) = q

n

.

Thus, the �nite-state automatonA[K℄ behaves like a ounter automaton exept that it

deems any ounter whose value attains a value K to be \full" . One a ounter is delared

to be full, it an be deremented as many times as desired. The following observations

are immediate.

Proposition 5.1

(i) If (q

0

; f

0

0

)

t

0

1

�! (q

1

; f

0

1

)

t

0

2

�! � � �

t

0

n

�! (q

n

; f

0

n

) is a omputation of A then, (q

0

; f

0

)

t

1

�!

(q

1

; f

1

)

t

2

�! � � �

t

n

�! (q

n

; f

n

) is a omputation of A[K℄ where

� t

0

1

t

0

2

: : : t

0

n

= (t

1

t

2

: : : t

n

)

�1

.

18

� 8C 2 �: 8i 2 [1::n℄: f

i

(C) =

�

f

0

i

(C) if f

0

j

(C) < K for all j � i

K otherwise

(ii) Let (q

0

; f

0

)

t

1

�! (q

1

; f

1

)

t

2

�! � � �

t

n

�! (q

n

; f

n

) be a omputation of A[K℄. Then

there is a maximal pre�x t

1

t

2

: : : t

`

of t

1

t

2

: : : t

n

suh that there is a omputation

(q

0

; f

0

0

)

t

�1

1

�! (q

1

; f

0

1

)

t

�1

2

�! : : :

t

�1

`

�! (q

`

; f

0

`

) of A with f

0

= f

0

0

. Moreover, if ` < n,

then for some ounter C, �(t

0

`+1

) = C

�

, f

0

`

(C) = 0 and there is a j < ` suh that

f

0

j

(C) = K.

(iii) Let L(A[K℄) be the language over � [�

�

aepted by A[K℄. Let L

�

(A[K℄) = fw�

�

j w 2 L(A[K℄)g. Then, L(A) � L

�

(A[K℄).

Synhronised produts of ounter automata

Produt automaton Let A

1

= (Q

1

;�

1

;�

1

; T

1

; q

1

in

; F

1

) andA

2

= (Q

2

;�

2

;�

2

; T

2

; q

2

in

; F

2

)

be two ounter automata. The produt automaton A

1

�A

2

is the struture (Q

1

�Q

2

;�

1

[

�

2

;�

1

[�

2

; T

1

� T

2

; (q

1

in

; q

2

in

); F

1

� F

2

), where ((q

1

; q

2

); d; (q

0

1

; q

0

2

)) 2 T

1

� T

2

i� one of the

following holds:

� d 2 (�

1

[�

1

) \ (�

2

[�

2

) and (q

i

; d; q

0

i

) 2 T

i

for i 2 f1; 2g.

� d 2 (�

1

[�

1

) n (�

2

[�

2

), (q

1

; d; q

0

1

) 2 T

1

and q

2

= q

0

2

.

� d 2 (�

2

[�

2

) n (�

1

[�

1

), (q

2

; d; q

0

2

) 2 T

2

and q

1

= q

0

1

.

For t = ((q

1

; q

2

); d; (q

0

1

; q

0

2

)) 2 T and i 2 f1; 2g, let �

i

(t) denote (q

i

; d; q

0

i

) if d 2 (�

i

[�

i

)

and the empty string " otherwise. As usual, �

i

(t

1

t

2

: : : t

n

) is just �

i

(t

1

)�

i

(t

2

) : : : �

i

(t

n

).

Thus, for a sequene of transitions � = t

1

t

2

: : : t

n

over T

1

�T

2

, �

1

(�) and �

2

(�) denote the

projetions of � onto the transitions ofA

1

andA

2

respetively. Clearly, �(t

1

t

2

: : : t

n

)�

(�

i

[�

i

)

= �(�

i

(t

1

t

2

: : : t

n

)) for i 2 f1; 2g.

We shall often write a on�guration ((q

1

; q

2

); f) of A

1

� A

2

as a pair of on�gura-

tions ((q

1

; f

1

); (q

2

; f

2

)) of A

1

and A

2

, where f

1

and f

2

are restritions of f to �

1

and �

2

respetively.

The following observations are easy onsequenes of the de�nition of produt au-

tomata.

Proposition 5.2

(i) ((q

1

in

; 0); (q

2

in

; 0))

t

1

t

2

:::t

n

=) ((q

1

; f

1

); (q

2

; f

2

)) is a omputation of A

1

� A

2

if and only if

(q

1

in

; 0)

�

1

(t

1

t

2

:::t

n

)

=) (q

1

; f

1

) and (q

2

in

; 0)

�

2

(t

1

t

2

:::t

n

)

=) (q

2

; f

2

) are omputations of A

1

and

A

2

respetively.

(ii) If �

1

= �

2

and �

1

\ �

2

= ;, then L(A

1

�A

2

) = L(A

1

) \ L(A

2

).

19

Regularity and losure under omplementation

Let L � �

�

be a language suh that both L and its omplement L are aepted by ounter

automata. Let L = L(A) and L = L(A), where we an assume that A and A use disjoint

sets of ounters. Then the language aepted by A�A must be empty.

LetM be the number of states of A�A and N be the number of ounters that it uses.

LetK be a number greater than �

M;N;0

, the strong pumping onstant for (M;N; 0). Reall

that A[K℄ = (Q[K℄; T [K℄; Q[K℄

in

; F [K℄) is a �nite-state automaton without ounters

working on the input alphabet � [�

�

.

Lemma 5.3 L(A[K℄�A) = ;.

Proof: Let A[K℄ = (Q[K℄; T [K℄; Q[K℄

in

; F [K℄) and A = (Q;�;�; T ; q

in

F). Eah om-

putation � of A[K℄ � A is of the form ((q

0

; 0); (q

0

; 0))

u

1

�! ((q

1

; f

1

); (q

1

; f

1

))

u

2

�! � � �

u

n

�!

((q

n

; f

n

); (q

n

; f

n

)), where, for i 2 [0::n℄, u

i

2 T [K℄� T .

By Propositions 5.1 and 5.2, orresponding to the sequene u

1

u

2

: : : u

n

there exists a

maximal sequene of transitions v

1

v

2

: : : v

m

of A�A where:

� Eah v

i

belongs to T � T .

� For eah i 2 [1::m℄, �

2

(v

i

) = �

2

(u

i

).

� For eah i 2 [1::m℄, �

1

(v

i

) =

�

(�

1

(u

i

))

�1

if �

1

(u

i

) 6= "

" otherwise

� �

0

: ((q

0

; 0); (q

0

; 0))

v

1

�! ((q

1

; f

0

1

); (q

1

; f

1

))

v

2

�! � � �

v

m

�! ((q

m

; f

0

m

); (q

m

; f

m

)) is a om-

putation of A�A.

� If m < n, then for some

^

C 2 �, �(u

m+1

) =

^

C

�

, f

0

m

(

^

C) = 0 and f

0

j

(

^

C) = K for some

j 2 [0::m℄.

Let us de�ne the residue length of � to be n�m.

Suppose that L(A[K℄�A) is non-empty. Sine L(A�A) is empty, it is easy to see that

any aepting run of A[K℄�A has a non-zero residue length. Without loss of generality,

assume that the run � onsidered earlier is an aepting run of A[K℄� A whose residue

length is minimal. Then, in the orresponding run �

0

of A�A, the ounter

^

C 2 � attains

the value K along �

0

and then goes to 0 at the end of the run so that the move labelled

^

C

�

is not enabled at ((q

m

; f

0

m

); (q

m

; f

m

)).

Sine K exeeds the strong pumping onstant for A� A, by Lemma 4.3 we an �nd

an alternative run �̂

0

: ((q

0

; 0); (q

0

; 0))

v

0

1

v

0

2

:::v

0

`

=) ((q

0

`

; f

0

`

); (q

0

`

; f

0

`

)) with (q

0

`

; q

0

`

) = (q

m

; q

m

),

f

0

`

(

^

C) � K, and all other ounter values at (f

0

`

; f

0

`

) at least as large as at (f

m

; f

0

m

). In

partiular, every ounter whih exeeded the uto� value K along �

0

is pumpable and

thus exeeds K along �̂

0

as well.

By Propositions 5.1 and 5.2, we an onstrut a orresponding sequene of transitions

u

0

1

u

0

2

: : : u

0

`

over T [K℄�T suh that �

1

(v

0

1

v

0

2

: : : v

0

`

) = (�

1

(u

0

1

u

0

2

: : : u

0

`

))

�1

and �

2

(v

0

1

v

0

2

: : : v

0

`

) =

�

2

(u

0

1

u

0

2

: : : u

0

`

), where �̂ : ((q

0

; 0); (q

0

; 0))

u

0

1

u

0

2

:::u

0

`

=) ((q

00

`

; f

00

`

); (q

0

`

; f

0

`

)) is a run of A[K℄ � A

with (q

00

`

; q

0

`

) = (q

m

; q

m

) and f

00

`

(C) � f

m

(C) for eah C 2 �.

20

We already know that f

0

`

(C) � f

m

(C) for eah C 2 �. Further, sine every ounter

whih exeeded the uto� value K along �

0

also exeeds K along �̂

0

, we know that any

ounter whih has beome full along � would also have beome full along �̂. Thus, we an

extend �̂ to an aepting run � by appending the sequene of transitions u

m+1

u

m+2

: : : u

n

whih our at the end of the aepting run �.

Reall that �(u

m+1

) =

^

C

�

and f

0

`

(

^

C) � 1 by our hoie of �̂

0

. From this, it follows

that the residue length of the newly onstruted aepting run � is at least one less than

the residue length of �, whih is a ontradition, sine � was assumed to be an aepting

run of minimal residue length. 2

Theorem 5.4 Let L be a language over �. L and L are ounter reognisable i� L is

regular.

Proof: Let L = L(A) and L = L(A). De�ne A[K℄ as above. We laim that L

�

(A[K℄) =

L(A).

By Proposition 5.1, we know that L(A) � L

�

(A[K℄).

On the other hand, from the previous lemma it follows that L

�

(A[K℄) \ L(A) = ;.

This implies that L

�

(A[K℄) � L(A), whih means that L

�

(A[K℄) � L(A).

So L(A) = L

�

(A[K℄). Sine A[K℄ is a �nite- state automaton, it follows that L(A)

is regular. Therefore, if a language and its omplement are ounter reognisable then the

language is regular.

The onverse is obvious: if L is a regular language, we an �nd �nite-state automata

reognising both L and L. Sine �nite-state automata are trivial examples of ounter

automata, both L and L are ounter reognisable. 2

Observe that our onstrution is e�etive|given automata A and A for L and L respe-

tively, we an onstrut a �nite-state automaton A[K℄ for L.

Regularity and losure under reversal

Suppose L is reognised by the deterministi ounter automaton A and L-reverse is

aepted by the ounter automaton B. We will show that there is a onstant � , depending

on the number of states M and the number of ounters N of A, suh that A[� ℄ reognises

L.

Overview

The proof has two parts.

Part 1. We assume that L(A[� ℄) 6= L and onlude from this that there exist strings

�; 2 �

�

suh that

8i � 1: 9� 2 �

�

: 9n: [��

i

 2 L & 8j � n: ��

j

 62 L℄:

21

Part 2. We onsider the reverse of the language L. Part 1 shows that there exist strings

^

�; ̂ 2 �

�

suh that

8i � 1: 9� 2 �

�

: 9n: [̂

^

�

i

�̂ 2 L-reverse & 8j � n: ̂

^

�

j

�̂ 62 L-reverse℄: (1)

On the other hand, we will show that for all ounter automata B and all �; 2 �

�

,

there exists an n suh that if �

i

� 2 L(B) for some i � n, then �

j

� 2 L(B) for

in�nitely many j. Thus, it follows from (1) that L-reverse is not ounter reognisable.

This ontradition shows that our assumption L 6= L(A[� ℄) (of Part 1) is false. We thus

have L = L(A[� ℄), and in partiular, that L is regular.

Notation.

� While analysing the omputation of ounter automata, we will permit ounters

to assume negative values. We refer to suh omputations as free runs, and use

�

0

t

; �

m

to denote the free run orresponding to the sequene of transitions t,

starting from on�guration �

0

and ending at on�guration �

m

, passing through

on�gurations �

i

.

� Let A be a ounter automaton with M states and N ounters. We say that the

ounter C is saturated in the free run �

0

u

; �

m

, if for some i 2 [0::m℄, C(�

i

) �

�

M;N;0

, and for all j < i, C(�

j

) � 0.

Constants. In the rest of this setion we write � for �

M;N;0

. Let

� = M ��

N

+ 1;

� = N � �:

Part 1

Lemma 5.5 Suppose t is a sequene of transitions suh that (q

in

; 0)

t

=) is an aepting

run of A[� ℄ but not of A. Then, we have t = uvw with the free run

�

0

u

; �

i

v

; �

j

w

; �

n

;

where 0 < i < j < n, suh that

(i) For some ounter

^

C, �

^

C

(v) < 0.

(ii) Q(�

i

) = Q(�

j

).

(iii) If for some ounter C, �

C

(v) 6= 0 or C assumes a negative value on the free run of

A orresponding to t, then C is saturated in the free run A

u

;.

22

Proof: Let t = t

1

t

2

: : : t

n

. Consider the free run orresponding to t,

� : (q

in

; 0) = �

0

t

1

; �

1

t

2

; � � �

t

n

; �

n

:

Sine this is not an aepting run of A, there is a j < n and a ounter C suh that

C(�

j

) < 0. Sine (q

in

; 0)

t

=) is an aepting run of A[� ℄, there must be an i < j, where

C(�

i

) = � . Choose ` to be the maximum i suh that there is a ounter

^

C satisfying the

following two onditions.

�

^

C(�

i

) = � .

� For some j > i,

^

C(�

j

) < 0.

Let m be the minimum j > ` suh that

^

C(�

j

) = 0. Note that m < n, beause there is a

j > ` where

^

C(�

j

) < 0.

Let x = t

1

t

2

: : : t

`

, y = t

`+1

t

`+2

: : : t

m

and z = t

m+1

t

m+2

: : : t

n

. Sine

^

C(�

`

) = � and

^

C(�

m

) = 0, in the omputation

�

`

t

`+1

; �

`+1

t

`+2

; � � �

t

m

; �

m

;

^

C takes all values in the range [0::� ℄. For j 2 [0; N ℄, let k

j

be the minimum k 2 [`::m℄

suh that

^

C(�

k

) = � � j�. The omputation on xy an then be written as

�

0

: �

0

y

0

=x

; �

`

= �

k

0

y

1

; �

k

1

y

2

; � � �

y

N

; �

k

N

= �

m

:

Let �

0

be the set of ounters that assume a value � or bigger somewhere in �

0

. For C 2 �

0

,

let j

C

be the minimum j suh that C assumes a value � or bigger in the segment of the

above omputation orresponding to y

j

. In partiular, j

^

C

= 0 beause

^

C(�

`

) = � � �

and �

0

y

0

; �

`

. There are only j�

0

j � N ounters, whereas there are N +1 segments. Thus,

there is a j 2 [0::N ℄ suh that j 6= j

C

for all C 2 �

0

. Let |̂ be the minimum suh j; sine

j

^

C

= 0, we have |̂ 6= 0. Consider the omputation orresponding to y

|̂

,

�

00

: �

0

0

t

0

1

; �

0

1

t

0

2

; � � �

t

0

h

; �

0

h

;

where t

0

i

= t

k

|̂�1

+i

, �

0

i

= �

k

|̂�1

+i

and h = k

|̂

�k

|̂�1

. In this omputation the value of

^

C falls

from � � (|̂� 1)� to � � |̂�, that is, by �. For i 2 [0::�℄, let p

i

be the minimum p 2 [0::h℄

suh that

^

C(�

0

p

) =

^

C(�

0

0

)� i = � � (|̂� 1)�� i. Then, �

00

an be written as

�

00

= �

00

0

y

0

1

; �

00

1

y

0

2

; �

00

2

y

0

3

; � � �

y

0

�

; �

00

�

;

where �

00

i

= �

0

p

i

for i 2 [0::�℄. Let �

00

be the set of ounters whose values in �

00

after �

00

0

are less than �. Sine � = M�

N

+ 1, there exist r; s 2 [1::�℄, r < s, suh that

(C1) C(�

00

r

) = C(�

00

s

), for all C 2 �

00

.

(C2) Q(�

00

r

) = Q(�

00

s

).

The de�nition of �

00

i

implies

(C3)

^

C(�

00

r

) =

^

C(�

k

j�1

)� r >

^

C(�

k

j�1

)� s =

^

C(�

00

s

).

23

Now let

u = xy

1

y

2

: : : y

|̂�1

y

0

1

y

0

2

: : : y

0

r

;

v = y

0

r+1

y

0

r+2

: : : y

0

s

;

and w = y

0

s+1

y

0

s+2

: : : y

0

�

y

|̂+1

y

|̂+2

: : : y

N

z:

We laim that this hoie of u, v and w satis�es the requirements of the lemma. Clearly,

t = uvw. Part (i) of the lemma follows immediately from ondition (C3) above; part (ii)

follows from ondition (C2). We now onsider part (iii).

If C beomes negative in the free run �, then it must assume the value � somewhere

before that, beause (q

in

; 0)

t

=) is an aepting run in A[� ℄. By the maximality of `, this

happens at or before �

`

. Thus, C is saturated in the free run �

0

u

;. Next, we onsider

ounters C suh that �

C

(v) 6= 0. We may assume that C does not beome negative in

�, for we have just taken are of all suh ounters. By ondition (C1) above, C 62 �

00

.

That is, C takes a value � or bigger after �

00

0

in the omputation �

00

. Thus, j

C

� |̂. Sine

|̂ 6= j

C

for all C, we have j

C

< |̂. Hene, C is saturated in the free run �

0

u

;. 2

We need the following pumping lemma for free runs.

Lemma 5.6 Suppose �

0

t

; �

m

is a free run of A, where every ounter that assumes a

negative value is saturated. Let �

0

be the set of ounters saturated in this run. Then, for

all K, A has a run �

0

0

t

0

=) �

0

m

0

suh that �

0

= �

0

0

, Q(�

0

m

0

) = Q(�

m

), F (�

0

m

0

) � F (�

m

)

and C(�

0

m

0

) � K for all C 2 �

0

.

Proof: Similar to the proof of the Counter Pumping Lemma. Omitted. 2

Proof of Part 1. If L 6= L(A[� ℄), then there exists a string a 2 L(A[� ℄) n L. Let

(q

in

; 0)

t

=) be the shortest aepting run of A[� ℄ suh that �(t)�

�

= a. Clearly, �

0

t

; is

a free run of A, but sine a 62 L, this is not an aepting run of A. Using Lemma 5.5, we

obtain a deomposition t = uvw suh that the free run

�

0

u

; �

`

v

; �

m

w

; �

n

;

(0 < ` < m < n) satis�es (i), (ii) and (iii). Let � = �(v)�

�

and = �(w)�

�

. We �rst

show that for all i � 1 there is an � suh that ��

i

 2 L.

Fix i � 1. Part (ii) implies that there is a free run of the form

�

0

0

u

; �

0

`

0

v

i

; �

0

m

0

w

; �

0

n

0

;

where �

0

= �

0

0

and Q(�

0

n

0

) = Q(�

n

). Part (iii) implies that all ounters that assume

a negative value in this run are saturated in the initial segment �

0

0

u

; �

0

`

0

. We apply

Lemma 5.6 to this initial segment with

K = max

C;l

0

�j�n

0

jC(�

0

j

)j:

24

We obtain u

0

suh that in the run �

0

u

0

=) �

00

, Q(�

00

) = Q(�

0

`

0

), C(�

00

) � C(�

0

`

) for all C

and C(�

00

) � K for all ounters saturated in �

0

0

u

; �

0

`

0

. Then, A

u

0

v

i

w

=) is an aepting run

of A. In partiular, �(u

0

v

i

w) = ��

i

 2 L, where � = �(u

0

)�

�

.

It remains to show that ��

j

 62 L, for all large enough j. We �rst observe that �(v)�

�

is not empty. For otherwise, sine A is deterministi, the set of states of A that appear

in the run �

m

w

; �

n

is a subset of the set of states that appear in the run �

`

v

; �

m

.

This implies that Q(�

n

) = Q(�

j

), for some j 2 [`::m℄, and, furthermore, that �(w)�

�

is

empty. But then �

0

t

; is not the shortest aepting run of A[� ℄ with �(t)�

�

= a. This

ontradition shows that �(v)�

�

is not empty.

Clearly, for all j � 1 we have the free run �

0

uv

j

w

; . Sine �

^

C

(v) < 0, for all large enough

j this is not an aepting run of A. Suppose ��

j

 2 L for some suh j. Then, sine A is

deterministi, we have uv

j

w = t

1

t

2

, where �

0

t

1

=) is an aepting run of A and �(t

2

)�

�

is

empty, whih implies that jt

2

j < jvwj. Let jt

2

j = k; we have 1 � k < jvwj. Now �

0

t

1

=) is

an aepting run of A. By omparing this run with the run �

0

t

=) �

n

, we observe that

Q(�

n�k

) is a �nal state of A. But then �(t

1

t

2

: : : t

n�k

)�

�

= a and �

0

) t

1

t

2

: : : t

n�k

is an

aepting run of A[� ℄, ontraditing the minimality of t. Hene, ��

j

 62 L for all large

enough j. 2

Part 2.

Lemma 5.7 There exists a funtion A(M;N;K; L) suh that if � : �

0

t

=) is a K-run of

a ounter automata A with M states and N ounters suh that

� j�(t)�

�

j � L and

� jtj � A(M;N;K; L),

then t = uvw suh that

� �

0

u

=) �

0

v

=) �

00

w

=);

� Q(�

0

) = Q(�

00

) and F (�

0

) � F (�

00

);

� �(v

0

) is non-empty but has no symbols from �.

Proof: Let

A(M;N;K; L) =

�

�

M;N;K

if L = 0

�

M;N;K

+ A(M;N;K + �

M;N;K

; L� 1) if L � 1

:

We will prove by indution on L that A(M;N;K; L) de�ned above satis�es the require-

ments of the lemma.

Basis: If L = 0, the laim follows from the de�nition of the weak pumping onstant.

Indution step: Let � : �

0

t

0

=) �

1

a

�! �

2

t

00

=), where t

0

is the maximal pre�x of t with no

symbols from �, and a 2 �. If jt

0

j � �

M;N;K

, then the laim follows from the de�nition

of the weak pumping onstant.

Otherwise, �

2

t

00

=) is a (K + �

M;N;K

)-run. Also, j�(t

00

)�

�

j = j�(t)�

�

j � 1 and

jt

00

j � t� �

M;N;K

� A(M;N;K + �

M;N;K

; L� 1):

25

The laim then follows from the indution hypothesis. 2

Note. In the above lemma, we an assume that juvj � A(M;N;K; L), for we an always

restrit ourselves to the pre�x of t of length exatly A(M;N;K; L).

Lemma 5.8 Suppose A is a ounter automaton withM states and N ounters. Let (l

i

)

1

i=0

be a sequene of non-negative integers. Then there exists a onstant B = B(M;N;K; (l

i

))

suh that if

� : �

0

v

0

=) �

1

v

1

=) � � �

v

B�1

=) �

B

;

where jv

i

j � l

i

, then there exist i; j 2 [1; B℄, i < j, suh that Q(�

i

) = Q(�

j

) and F (�

i

) �

F (�

j

).

Proof: We will modify the proof of Lemma 2.7. Consider the following in�nite tree

T whose nodes are labelled by elements of N

N

. The root of T is labelled by F (�

0

). If

a node at level i (the root is at level 0) is labelled by f , then v has one hild for eah

N -tuple obtained by performing at most l

i

inrement and derement operations on the

omponents of f .

Clearly, T is �nitely branhing and in�nite. By Lemma 2.6 there exists �

k

suh that

along any path in T of length �

k

starting at the root, the orresponding sequene of labels

has a non-dereasing subsequene of length k. Now �

k

depends only on the tree T , whih

is unique if the label of the root and the sequene (l

i

) are �xed. The label of the root has

at most (K +1)

N

possibilities; hene there exists a funtion �(k;M;N;K; (l

i

)), suh that

in every suh tree in every path of length �(k;M;N;K; (l

i

)) starting from the root, the

orresponding labels have a non-dereasing sequene of length at least k.

We set B(M;N;K; (l

i

)) = �(M+2;M;N;K; (l

i

)) and omplete the proof of the lemma

by arguing as in Lemma 2.7. (We have M + 2 and not M + 1 beause in the lemma we

want i 6= 0.) 2

Lemma 5.9 (Part 2) Let A be a ounter automaton with M states and N ounters.

There exists a onstant E = E(M;N;K; `) suh that if �

0

t

=) is an aepting K-run of

A, where �(t)�

�

= �

m

� (j�j; jj � `), and m � E, then for in�nitely many j there is an

aepting run �

0

t

j

=) with �(t

j

)�

�

= �

j

�.

Proof: De�ne the sequene (`

i

(M;N;K)) by

l

0

= A(M;N;K);

l

i

= A(M;N;K + `

1

+ `

2

+ � � �+ `

i�1

):

Let D(M;N;K) = B(M;N;K; (`

i

(M;N;K))) and

`(M;N;K) =

D(M;N;K)�1

X

i=1

l

i

(M;N;K):

26

Then, E(M;N;K) is de�ned by

E(M;N;K; `) =

�

B(M;N;K; (`)) if N=0:

D(M;N;K) + E(M;N � 1; K + `(M;N;K); `) if N > 1

:

(Here (`) denotes the in�nite sequene all of whose terms are `.)

We will use indution on the number of ounters to show that E as de�ned above

meets the requirements of the lemma.

Basis: If N = 0, there are no ounter moves. The laim then follows from Lemma 5.8.

Indution step: Assume t is minimal suh that �

0

t

=) is an aepting K-run of A with

�(t)�

�

= �

m

� (m � E). We may write this omputation as

�

0

v

0

=) �

1

v

1

=) �

2

v

2

=) � � �

v

m

=) �

m+1

w

=) �

f

;

where �(v

0

) �

�

= , �(v

i

) �

�

= � for i 2 [1::m℄ and �(w) �

�

= �. If jv

i

j � `

i

for i 2

[0::D(M;N;K)� 1℄, then the laim follows from Lemma 5.8.

Otherwise, there exists an i 2 [0::D(M;N;K) � 1℄ suh that jv

i

j � `

i

. Let i be the

smallest with this property. By Lemma 5.7, for this i, we may write the omputation on

v

i

as

�

i

v

=) �

0

v

0

=) �

00

v

00

=) �

i+1

;

where Q(�

0

) = Q(�

00

), F (�

0

) � F (�

00

), where �(v

0

) is nonempty but has no input symbols.

Sine t is minimal, we have F (�

0

) < F (�

00

). Fix a ounter C suh that �

C

(v

0

) > 0. Next,

onsider the omputation after v

0

, that is

�

00

v

00

=) �

i+1

v

i+1

=) �

i+2

v

i+2

=) � � �

v

m

=) �

m+1

w

=) �

f

:

Here we treat C

+

and C

�

as elements of the input alphabet. As noted above, we may

assume jvv

0

j � `

i

. Thus, jv

0

: : : v

i�1

vv

0

j � `(M;N;K). Also, �(v

00

v

i+1

: : : v

m

w)�

�

=

0

�

j

�,

where

j � E(M;N;K; `)�D(M;N;K) � E(M;N � 1; K + `(M;N;K); `):

We apply the indution hypothesis to this omputation. For in�nitely many j we obtain

t

0

j

suh that X

00

t

0

j

=) is an aepting omputation of A and �(t

j

)�

�

=

0

�

j

�.

Sine �

C

(v

0

) > 0, it is easily veri�ed that for suÆiently large k and

t = v

0

v

1

: : : v

i�1

vv

0k

v

00

t

0

j

;

�

0

t

=) is an aepting omputation of A. Sine �(v

0

) has no input symbols, this implies

that for in�nitely many j, there is a t

j

suh that �

0

t

j

=) is an aepting omputation of

A and �(t

j

)�

�

= �

j

�. 2

6 Disussion

In this onluding disussion, we point out similarities and di�erenes between our work

and earlier results from the theory of vetor addition systems and Petri nets. We also

identify some diretions for further work in developing our model of �nite-state distributed

systems with asynhronous ommuniation.

27

Vetor addition systems

An n-oordinate vetor addition system (VAS) onsists of a �nite set of initial vetors and

a �nite set of transition vetors. Eah initial vetor is an n-tuple of natural numbers and

eah transition vetor is an n-tuple of integers. An n-tuple of natural numbers is reahable

if it an be generated from an initial vetor by performing a sequene of additions with

vetors from the set of transitions while ensuring that eah intermediate vetor generated

is non-negative.

In [KM69℄, Karp and Miller study various deision problems for vetor addition sys-

tems. They show how to assoiate with eah VAS a �nite objet alled its overing tree.

This an be used to solve a number of other questions, inluding whether the set of reah-

able vetors of the VAS is �nite. These results have immediate appliability in the theory

of Petri nets beause a Petri net an be represented as a VAS. Our Counter Pumping

Lemma (Lemma 4.3) is similar in spirit to Karp and Miller's overing tree result.

Petri net languages

It is well known that there is a strong onnetion between automata with blind ounters

and Petri nets [G78, J86a℄. It is not diÆult to show that we an go bak and forth

between labelled Petri nets and ounter automata in suh a way that given a net N and

its orresponding ounter automaton A, there is bijetion a between the �ring sequenes

of N and the omputations of A. Thus, questions about Petri net languages an rephrased

as questions about languages aepted by ounter automata.

There are several ways to assoiate a language with a Petri net [H75, J86a℄. The �rst is

to just examine all �ring sequenes of the net. The seond is to �x a set of �nal markings

and look at the labels along �ring sequenes leading to these designated markings. The

third possibility is to �x �nal markings but only require a �ring sequene to lead to a

marking whih dominates a �nal marking rather than be exatly equal to a �nal marking.

Following the terminology of [J86a℄, we designate the lass of languages generated by these

three de�nitions L, L

0

and L

1

respetively. When transitions are allowed to have invisible

labels, the orresponding lasses of languages are designated L

�

, L

�

0

and L

�

1

respetively.

In the setting of ounter automata, the �rst de�nition orresponds to examining the set

of omputations of the automaton. The seond de�nition yields a de�nition of aepting

runs in terms of both �nal states and �nal ounter values. The third de�nition orresponds

more diretly to the one we use in this paper|the �nal states are �xed but the �nal

ounter values are irrelevant.

In the theory of Petri net languages, a number of positive results have been established

for the lass L|for instane, regularity is deidable [GY80, VV80℄. On the other hand,

it is quite easy to exhibit languages from the lass L

1

(and hene, ounter reognisable

languages) where the language itself is regular but the underlying language of transitions

is not. Hene the results of [GY80, VV80℄ do not arry over to ounter reognisable

languages|in fat, the problem of deiding whether a ounter reognisable language is

regular is open.

At the other end of the spetrum, a number of negative results have been established

for the lass L

0

(and hene also L

�

0

). For instane, it is undeidable whether suh a

language is universal|that is, whether it onsists of all strings [VV80℄. However, this

result ruially uses the fat that �nal markings must be reahed exatly. The problem

28

of deiding whether a ounter reognisable language is universal is open.

Few, if any, results have been proved for the lasses L

1

and L

�

1

, whih orrespond

most losely to ounter reognisable languages. Our haraterisation of the sublass

losed under omplementation is probably the only non-trivial result known for this lass.

Notie that this haraterisation fails for the lass L

0

|it is possible to onstrut nets for

both the language L

ge

of Example 2.1 and its omplement, though L

ge

is not regular.

Counter reognisable languages and message-passing

How an we interpret our results on ounter reognisable languages in terms of distributed

systems for asynhronous ommuniation? We say that an asynhronous protool is ro-

bust if it responds \sensibly" to any sequene of interations with the environment|in

other words, for any suh sequene, it either aepts the sequene as valid or terminates

with an error. When we model asynhronous protools by ounter automata, the strings

aepted by the automaton orrespond to sequenes of interations with the environment.

For a robust protool, both the set of interations aepted by the protool and the set

of interations rejeted by the protool are ounter reognisable. Our haraterisation of

the omplementation-losed subset of ounter reognisable languages then tells us that all

robust protools use only bounded bu�ers. Any messages exhanged by proesses follow-

ing a robust protool an be viewed as just hand-shakes whih oordinate the interation

between the di�erent proesses and the environment.

One shortoming of our model is that we impliitly sequentialise all the interations of

a distributed system into a sequene of global interations. It would be more satisfying to

build a theory where we separate the interation of eah proess and allow our automata

to read n-tuples of strings, where n is the number of proesses. It is not obvious how to

extend the notion of a robust protool to this setting. One possibility is to use the fat

we an keep trak of the latest information eah proess has about every other proess

in a message-passing system using the algorithm proposed in [MNS95℄. In the theory of

synhronous ommuniation, an analogous result is the key to generating a distributed

�nite-state system reognising an n-tuple of strings from a global desription of suh a

system [MS94, Z87℄. We have some preliminary results in this diretion.

Referenes

[AJ93℄ P.A. Abdulla and B. Jonsson: Verifying programs with unreliable hannels, in

Pro. 8th IEEE Symp. Logi in Computer Siene, Montreal, Canada (1993).

[AJ94℄ P.A. Abdulla and B. Jonsson: Undeidability of verifying programs with unre-

liable hannels, in S. Abiteboul, E. Shamir (eds.), Pro. ICALP '94, Springer

LNCS 820 (1994) 316{327.

[GY80℄ A. Ginzburg and M. Yoeli: Vetor Addition Systems and Regular Languages,

J. Comput. System. Si. 20 (1980) 277{284

[G78℄ S.A. Greibah: Remarks on Blind and Partially Blind One-Way Multiounter

Mahines, Theoret. Comput. Si 7 (1978) 311{324.

[H75℄ M. Hak: Petri Net Languages, C.S.G. Memo 124, Projet MAC, MIT (1975).

29

[J86a℄ M. Jantzen: Language Theory of Petri Nets, in W. Brauer, W. Reisig,

G. Rozenberg (eds.), Petri Nets: Central Models and Their Properties, Ad-

vanes in Petri Nets, 1986, Vol 1, Springer LNCS 254 (1986) 397{412.

[J86b℄ M. Jantzen: Complexity of Plae/Transition Nets, in W. Brauer, W. Reisig,

G. Rozenberg (eds.), Petri Nets: Central Models and Their Properties, Ad-

vanes in Petri Nets, 1986, Vol 1, Springer LNCS 254 (1986) 413{434.

[KM69℄ R.M. Karp and R.E. Miller: Parallel Program Shemata, J. Comput. System

Si., 3 (4) (1969) 167{195.

[LT87℄ N.A. Lynh and M. Tuttle: Hierarhial Corretness Proofs for Distributed

Algorithms, Tehnial Report MIT/LCS/TR-387, Laboratory for Computer

Siene, MIT (1987).

[L76℄ R.J. Lipton: The Reahability Problem Requires Exponential Spae, Researh

Report No 62, Dept of Computer Siene, Yale University (1976).

[M78℄ A. Mazurkiewiz: Conurrent Program Shemes and their Interpretations, Re-

port DAIMI-PB-78, Computer Siene Department, Aarhus University, Den-

mark (1978).

[MNS95℄ M. Mukund, K. Narayan Kumar and M. Sohoni: Keeping Trak of the Latest

Gossip in Message-Passing Systems, Pro. Strutures in Conurreny The-

ory (STRICT), Berlin 1995, Workshops in Computing Series, Springer-Verlag

(1995) 249{263.

[MS94℄ M. Mukund and M. Sohoni: Gossiping, Asynhronous Automata and

Zielonka's Theorem, Report TCS-94-2, Shool of Mathematis, SPIC Siene

Foundation, Madras, India (1994).

[PS88℄ P. Panangaden and E.W. Stark: Computations, Residuals, and the Power

of Indeterminay, in T. Lepisto and A. Salomaa (eds.), Pro. ICALP '88,

Springer LNCS 317 (1988) 439{454.

[VV80℄ R. Valk and G. Vidal-Naquet: Petri Nets and Regular Languages, J. Comput.

System. Si. 20 (1980) 299{325.

[Z87℄ W. Zielonka: Notes on Finite Asynhronous Automata, R.A.I.R.O.|Inf.

Th�eor. et Appl., 21 (1987) 99{135.

30

SPIC Mathematial Institute

Internal Reports (Theoretial Computer Siene)

TCS-90-1 M. Mukund: Expressiveness and Completeness of a Logi for Well

Branhing Prime Event Strutures.

TCS-90-2 M. Mukund and P.S. Thiagarajan: An Axiomatization of Well Branhing

Prime Event Strutures.

TCS-90-3 K. Lodaya, M. Mukund, R. Ramanujam, P.S. Thiagarajan: Models and

Logis for True Conurreny.

TCS-91-1 P.S. Thiagarajan (ed.): Proeedings of National Seminar on Theoretial

Computer Siene, Madras, India, July 4{6, 1991.

TCS-91-2 M. Mukund: A Transition System Charaterization of Petri Nets.

TCS-91-3 P.W. Hoogers, H.C.M. Kleijn, P.S. Thiagarajan: A Trae Semantis for

Petri Nets.

TCS-91-4 M. Nielsen, G. Rozenberg, P.S. Thiagarajan: Elementary Transition Sys-

tems.

TCS-91-5 M. Nielsen, G. Rozenberg, P.S. Thiagarajan: Transition Systems, Event

Strutures and Unfoldings.

TCS-92-1 M. Nielsen, G. Rozenberg, P.S. Thiagarajan: Elementary Transition Sys-

tems and Re�nement.

TCS-92-2 M. Mukund and M. Nielsen: CCS, Loations and Asynhronous Transi-

tion Systems.

TCS-92-3 M. Mukund: Transition System Models for Conurreny.

TCS-93-2 M. Agrawal: On the Isomorphism Problem for Weak Reduibilities.

TCS-93-3 M. Mukund and M. Sohoni: Keeping Trak of the Latest Gossip: Bounded

Time-Stamps SuÆe.

TCS-93-4 P.S. Thiagarajan: A Trae Based Extension of PTL.

TCS-93-5 N. Klarlund, M. Mukund, M. Sohoni: Determinizing Asynhronous Au-

tomata.

TCS-93-6 P.S. Thiagarajan: TrPTL: A Trae Based Extension of Linear Time

Temporal Logi.

TCS-93-7 M. Agrawal and V. Arvind: On Quasi-Linear Truth-Table Redutions to

P-Seletive Sets.

TCS-93-8 K. Lodaya, R. Parikh, R. Ramanujam, P.S. Thiagarajan: A Logial Study

of Distributed Transition Systems.

TCS-94-1 P.W. Hoogers, H.C.M. Kleijn, P.S. Thiagarajan: A Event Struture Se-

mantis for General Petri Nets.

TCS-94-2 M. Mukund and M. Sohoni: Gossiping, Asynhronous Automata and

Zielonka's Theorem.

TCS-94-3 R. Krishnan and S. Venkatesh: Optimizing the Gossip Automaton.

TCS-94-4 M. Agrawal, R. Krishnan and S. Venkatesh: The Isomorphism Problem

for 2-DFA Redutions.

TCS-94-5 M. Agrawal and V. Arvind: Geometri Sets of Low Information Content.

TCS-95-1 M. Agrawal: Self-reduibility Versus Prunability.

TCS-95-2 M. Agrawal, P. Ramadevi and V Vinay: A New Link Invariant and its

Complexity.

TCS-95-3 M. Mukund, K. Narayan Kumar and M. Sohoni: Keeping Trak of the

Latest Gossip in Message-Passing Systems.

TCS-95-4 P.S. Thiagarajan: PTL over Produt State Spaes.

TCS-95-5 M. Agrawal: DSPACE(n)

?

= NSPACE(n): A Degree Theoreti Chara-

terization.

TCS-95-6 N. Klarlund, M. Mukund, M. Sohoni: Determinizing Asynhronous Au-

tomata on In�nite Inputs.

TCS-95-7 S. Krishnamurthy, M. Mukund: Implementing Causal Ordering with

Bounded Time-stamps.

TCS-96-1 M. Mukund, P.S. Thiagarajan: Linear Time Temporal Logis over

Mazurkiewiz Traes.

TCS-96-2 M. Mukund: Finite-state Automata on In�nite Inputs.

TCS-97-1 Jesper G. Henriksen and P.S. Thiagarajan: Dynami Linear Time Tem-

poral Logi.

TCS-97-2 P.S. Thiagarajan and I. Walukiewiz: An Expressively Complete Linear

Time Temporal Logi for Mazurkiewiz Traes.

TCS-97-3 Jesper G. Henriksen and P.S. Thiagarajan: A Produt Version of Dy-

nami Linear Time Temporal Logi.

TCS-97-4 M. Mukund, K. Narayan Kumar, J. Radhakrishnan and M. Sohoni:

Message-Passing Automata and Asynhronous Communiation.

Copies of reports an be ordered from the following address:

SPIC Mathematial Institute

92, G.N. Chetty Road

T. Nagar

Madras 600 017

Email: offie�smi.ernet.in

