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Abstra
t

This paper is a step towards developing a new automata-theoreti
 framework for

des
ribing distributed �nite-state systems with asyn
hronous 
ommuni
ation. If we

assume that messages 
an be delayed arbitrarily in transit, it is reasonable to model

the global behaviour of su
h systems in terms of �nite-state automata equipped

with blind 
ounters|that is, 
ounters whi
h 
annot be tested for zero.

We analyse the languages a

epted by su
h automata and show that it is de-


idable whether the language of su
h an automaton is empty. We also develop a

variety of pumping lemmas whi
h 
an be used to show that 
ertain languages are

not a

epted by these automata.

Our main result is that the sub
lass of languages a

epted by these automata

whi
h is 
losed under 
omplementation is pre
isely the 
lass of regular languages.

In the 
ontext of asyn
hronous proto
ols, our result implies that robust �nite-state

proto
ols use bounded bu�ers. In other words, messages are used only for hand-

shaking|that is, for 
oordinating the intera
tion between di�erent pro
esses and

the environment.

It is well known that automata with blind 
ounters are 
losely related to Petri

nets. However, our de�nition of languages is more appropriate for reasoning about

asyn
hronous 
ommuni
ation and is di�erent from the de�nition used in the theory

of Petri nets.
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1 Introdu
tion

Today, distributed systems whi
h use asyn
hronous 
ommuni
ation are ubiquitous|the

Internet is a prime example. However, there has been very little work on studying

the �nite-state behaviour of su
h systems. In parti
ular, this area la
ks a satisfa
-

tory automata-theoreti
 framework. In 
ontrast, automata theory for systems with syn-


hronous 
ommuni
ation is well developed via Zielonka's asyn
hronous automata [Z87℄

and the 
onne
tions to Mazurkiewi
z tra
e theory [M78℄.

This paper is a step towards developing an automata-theoreti
 framework for de-

s
ribing distributed �nite-state systems with asyn
hronous 
ommuni
ation. Earlier at-

tempts at de�ning su
h models of asyn
hronous systems deal primarily with in�nite-state

systems|for instan
e, the port automaton model of Panangaden and Stark [PS88℄ and

the I/O automaton model of Lyn
h and Tuttle [LT87℄. Also, earlier work has fo
ussed on

issues far removed from those whi
h are traditionally 
onsidered in the study of �nite-state

systems.

The setting for our work is as follows. Consider a system in whi
h a 
olle
tion of

�nite-state ma
hines 
ommuni
ate by sending messages via bu�ered 
hannels. Suppose

that there are only �nitely many di�erent kinds of messages. Messages may experien
e

arbitrary delays in transit, though they always eventually rea
h their re
ipient. At an

abstra
t level, Internet proto
ols su
h as the SMTP mail proto
ol �t into this paradigm.

Another example is the proto
ol used in a banking network to ex
hange information

between ATMs and the bank's distributed databases.

Sin
e messages may get reordered in transit, the state of su
h a system is 
ompletely

des
ribed by the state of the 
omponents and the number of messages of ea
h kind whi
h

have been sent but are as yet undelivered. Thus, at a global level, su
h systems 
an

be treated as �nite-state automata equipped with a �nite number of 
ounters, one for

ea
h type of message. The only operations permitted on the 
ounters are in
rement

and de
rement (
orresponding to sending and re
eiving the appropriate type of message

respe
tively). The automaton 
annot test if a 
ounter's value is zero|this restri
tion


aptures the intuition that it is not pra
ti
al for a 
omponent to make a de
ision based

on the assumption that another pro
ess has not sent a message, sin
e messages may be

delayed arbitrarily.

With this motivation, we de�ne 
ounter automata and study the languages they a
-


ept. Ea
h move of a 
ounter automaton 
onsists of either reading a letter from the

input or manipulating a 
ounter. Reading from the input represents the intera
tion of

the underlying distributed system with its environment. We study the languages (over

the input alphabet) a

epted by these automata.

Our main 
on
ern is when su
h a language is regular. An automaton whi
h a

epts

a regular language represents a 
ommuni
ation proto
ol whose intera
tion with the en-

vironment is regular. Su
h a proto
ol essentially uses only bounded bu�ers. Our main

result is that a language L a

epted by a 
ounter automaton is regular if and only if the


omplement of L is also a

epted by a 
ounter automaton. In the 
ontext of asyn
hronous

proto
ols, our result implies that robust �nite-state proto
ols use only bounded bu�ers.

In other words, messages are used only for hand-shaking, to 
oordinate the intera
tion

between di�erent pro
esses and the environment. Along the way, we develop a variety of

tools and te
hniques for reasoning about 
ounter automata, in
luding a number of pump-

ing lemmas whi
h are useful for showing when languages are not re
ognisable by 
ounter
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automata.

The automata we 
onsider are 
losely related to automata with blind 
ounters, studied

by Greiba
h [G78℄. In turn, these automata are 
losely related to Petri nets [J86a, J86b℄.

Some of the te
hniques we develop are analogous to well-known results in Petri net theory,

su
h as the 
overing tree 
onstru
tion of Karp and Miller [KM69℄. However, our de�nition

of languages is more appropriate for reasoning about asyn
hronous 
ommuni
ation and

is di�erent from the de�nition used in Petri net theory. Towards the end of the paper,

we dis
uss the 
onne
tion between our framework and Petri net languages.

Re
ently, Abdulla and Jonsson have also studied de
ision problems for distributed

systems with asyn
hronous 
ommuni
ation [AJ93, AJ94℄. However, they work in a setting

where messages are delivered in the order in whi
h they are sent. This means that the


hannels are unbounded, �fo bu�ers. With su
h a strong model, most interesting questions

be
ome unde
idable. The results of [AJ93℄ show that the �fo model 
an be made tra
table

by assuming that messages may be lost in transit. With lossy 
hannels, questions su
h as

rea
hability of 
on�gurations and equivalen
e with respe
t to �nite-state automata 
an be

de
ided, though 
ertain other questions remain unde
idable [AJ94℄. While their results

are in
omparable with ours, sin
e the two models are orthogonal, we remark that all their

positive results hold for our model as well.

The paper is organised as follows. In the next se
tion we de�ne 
ounter automata and

prove some basi
 results about them. In Se
tion 3 we prove a Contra
tion Lemma whi
h

leads to de
idability of the emptiness problem and the fa
t that the languages a

epted

by 
ounter automata are not 
losed under 
omplementation. Se
tion 4 develops a family

of pumping lemmas whi
h are exploited in Se
tion 5 to prove our main result 
on
erning

the regularity of languages a

epted by 
ounter automata. In the �nal se
tion, we dis
uss

in detail the 
onne
tion between our results and those in Petri net theory and point out

dire
tions for future work.

2 Counter Automata

Natural numbers and tuples As usual, N denotes the set f0; 1; 2; : : :g of natural

numbers. If i; j 2 N , [i::j℄ denotes the set fi; i+1; : : : ; jg with the 
onvention that

[i::j℄ = ; if i > j. We 
ompare k-tuples of natural numbers 
omponent-wise: let

m = hm

1

; m

2

; : : : ; m

k

i and n = hn

1

; n

2

; : : : ; n

k

i be k-tuples of natural numbers. Then

m � n i� m

i

� n

i

for ea
h i 2 [1::k℄.

Counter automata A 
ounter automaton A is a tuple (Q;�;�; T; q

in

; F ), where:

� Q is a �nite set of states, with initial state q

in

and a

epting states F � Q.

� � is a �nite input alphabet.

� � is a �nite set of 
ounters. We use C;C

0

; : : : to denote 
ounters. With ea
h 
ounter

C, we asso
iate two symbols, C

+

and C

�

. We write �

+

for the set fC

+

jC 2 �g, �

�

for fC

�

jC 2 �g and �

�

for �

+

[ �

�

.

� T � Q� (� [ �

�

)�Q is the transition relation.
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Con�gurations A 
on�guration of A is a pair (q; f) where q 2 Q and f : � ! N is a

fun
tion whi
h re
ords the values stored in the 
ounters. If the 
ounters are C

1

; C

2

; : : : ; C

k

then we represent f by an element hf(C

1

); f(C

2

); : : : ; f(C

k

)i of N

k

. By abuse of nota-

tion, the k-tuple h0; 0; : : : ; 0i, representing the fun
tion whi
h assigns 0 to all 
ounters, is

uniformly denoted 0, for all values of k.

The fun
tion f dominates the fun
tion f

0

, written f � f

0

, if f(C) � f

0

(C) for every


ounter C. The fun
tion f stri
tly dominates the fun
tion f

0

, written f > f

0

, if f � f

0

and there is a 
ounter C su
h that f(C) > f

0

(C).

We use � to denote 
on�gurations. If � = (q; f), Q(�) denotes q and F (�) denotes f .

Further, for ea
h 
ounter C, C(�) denotes the value f(C).

Moves The automaton moves from 
on�guration � to 
on�guration �

0

on d 2 � [ �

�

if (Q(�); d; Q(�

0

)) 2 T and one of the following holds:

� d 2 � and F (�) = F (�

0

).

� d = C

+

, C(�

0

) = C(�) + 1 and C

0

(�) = C

0

(�

0

) for every C

0

6= C.

� d = C

�

, C(�

0

) = C(�)� 1 � 0 and C

0

(�) = C

0

(�

0

) for every C

0

6= C.

Su
h a move is denoted �

(q;d;q

0

)

�! �

0

|in other words, transitions are labelled by ele-

ments of T rather than elements of � [ �

�

. Given a sequen
e of transitions t

1

t

2

: : : t

n

=

(q

1

; d

1

; q

2

)(q

2

; d

2

; q

3

) : : : (q

n

; d

n

; q

n+1

), the 
orresponding sequen
e of letters d

1

d

2

: : : d

n

from

� [ �

�

is denoted �(t

1

t

2

: : : t

n

).

Computations, runs and languages A 
omputation ofA is a sequen
e �

0

t

1

�! �

1

t

2

�!

: : :

t

n

�! �

n

. We also write �

0

t

1

t

2

:::t

n

=) �

n

to indi
ate that there is a 
omputation labelled

t

1

t

2

: : : t

n

from �

0

to �

n

. Noti
e that �

0

and t

1

t

2

: : : t

n

uniquely determine all the inter-

mediate 
on�gurations �

1

; �

2

; : : : ; �

n

. If the transition sequen
e is not relevant, we just

write �

0

=) �

n

. As usual, �

t

1

t

2

:::t

n

=) denotes that there exists �

0

su
h that �

t

1

t

2

:::t

n

=) �

0

and

� =) denotes that there exists �

0

su
h that � =) �

0

.

For K 2 N , a K-run of A is a 
omputation �

0

=) �

n

where C(�

0

) � K for ea
h

C 2 �.

If Æ is a string over � [ �

�

, Æ�

�

denotes the subsequen
e of letters from � in Æ. Let

w = a

1

a

2

: : : a

k

be a string over �. A run of A over w is a 0-run �

0

t

1

t

2

:::t

n

=) �

n

where

Q(�

0

) = q

in

and �(t

1

t

2

: : : t

n

)�

�

= w. The run is said to be a

epting if Q(�

n

) 2 F . The

string w is a

epted by A if A has an a

epting run over w. The language a

epted by A,

denoted L(A), is the set of all strings over � a

epted by A.

A language over � is said to be 
ounter re
ognisable if there is a 
ounter automaton

with input alphabet � that a

epts this language.

Example 2.1 Let L

ge

� fa; bg

�

be given by fa

m

b

n

j m � ng. This language is 
ounter

re
ognisable. Here is an automaton for L

ge

. The initial state is indi
ated by + and the

�nal states have an extra 
ir
le around them.

a

C

+

b

C

�

b

+

3



2.1 Non-determinism versus determinism

Deterministi
 Counter Automata A 
ounter automaton A = (Q;�;�; T; q

in

; F ) is

said to be deterministi
 if the following two 
onditions hold:

� If (q; d

1

; q

1

); (q; d

2

; q

2

) 2 T , with d

1

; d

2

2 �, then d

1

= d

2

implies q

1

= q

2

.

� If (q; d

1

; q

1

); (q; d

2

; q

2

) 2 T , with d

1

2 �

�

, then d

1

= d

2

and q

1

= q

2

.

Though this notion of determinism seems rather strong, it is easy to see that any

relaxation of the de�nition will allow deterministi
 automata to simulate non-deterministi


automata in a trivial manner.

For instan
e, suppose we na��vely de�ne a deterministi
 automaton to be one in whi
h

no state has two outgoing transitions with the same label. This de�nition would permit

a deterministi
 automaton to 
hoose between a 
ounter move and another transition

(whi
h may or may not be a 
ounter move). We 
an then simulate a 
hoi
e between

two transitions t

1

= (q; d; q

1

) and t

2

= (q; d; q

2

) with the same label by adding a dummy


ounter C. Instead of 
hoosing dire
tly between t

1

and t

2

, the new automaton will �rst


hoose between t

1

and a move (q; C

+

; q

0

) leading to a new state q

0

. We 
an then simulate

t

2

by adding a transition (q

0

; d; q

2

). Thus, the original 
hoi
e between t

1

and t

2

is repla
ed

by a 
as
aded 
hoi
e involving the dummy 
ounter C.

It is interesting to observe that a similar strong de�nition of determinism is used in

the study of Petri net languages [J86a℄.

We have the following 
hara
terisation of languages a

epted by deterministi
 
ounter

automata.

Proposition 2.2 Let A be a deterministi
 
ounter automaton. Then, either L(A) is

regular or there exists a word w =2 L(A) su
h that every extension of w also does not

belong to L(A).

Proof: Let A be a deterministi
 
ounter automaton. For ea
h input word w, either A

admits no run over w or it admits a unique sequen
e of runs �

1

; �

2

; : : : ; (whi
h may be

in�nite) over w su
h that for ea
h i � 1, �

i+1

extends �

i

by one transition involving a


ounter operation.

A word w is said to be blo
ked in the automaton A if A does not permit an in�nite

sequen
e of runs �

1

; �

2

; : : : ; over w. If w is blo
ked, there exists a unique state where A

\gets stu
k" when pro
essing w. We denote this state q

w

.

Sin
e A is deterministi
, we know that if q

w

has any outgoing transitions, either the

set of outgoing transitions at q

w

is labelled by distin
t letters from � or there is only a

single outgoing transition labelled by an element of �

�

. In the latter 
ase, it must be

that the transition is labelled C

�

, for some C 2 �, be
ause a move labelled C

+

is always

enabled. We say that w is �-blo
ked in A if w is blo
ked in A and q

w

has an outgoing

transition labelled C

�

, for some C 2 �.

Returning to the statement to be proved, if L(A) = �

�

, then L(A) is regular. Thus,

the interesting 
ase is when L(A) = �

�

n L(A) is non-empty.

Case 1: If there exists w in �

�

n L(A) whi
h is �-blo
ked, then any extension of w must

also be �-blo
ked. Thus all extensions of w also lie outside L(A).
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Case 2: Suppose that no word w in L(A) is �-blo
ked. Then, from A we 
an 
onstru
t

a �nite-state automaton A

0

over the alphabet � whi
h has "-transitions. The automaton

A

0

has the same set of states, initial state and �nal states as A. For ea
h transition t

of the form (q; d; q

0

) in A, we have a 
orresponding transition t

0

= (q; d

0

; q

0

) in A

0

, where

d

0

= d if d 2 � and d

0

= " if d 2 �

�

.

Sin
e A is deterministi
, at ea
h state of A

0

whi
h has outgoing transitions, either

the set of outgoing transitions is labelled by distin
t letters from � or there is a single

outgoing transition labelled ". In other words, for every word w, either A

0

does not admit

a run over w or A

0

admits a unique sequen
e of runs �

1

; �

2

; : : : ; over w su
h that for ea
h

i � 1, �

i+1

extends �

i

by a transition labelled ".

We 
laim that L(A

0

) = L(A) and hen
e L(A) is regular. It is easy to see that

ea
h 
omputation �

0

t

1

�! �

1

t

2

�! � � �

t

n

�! �

n

of A 
an be simulated by a run Q(�

0

)

t

0

1

�!

Q(�

1

)

t

0

2

�! � � �

t

0

n

�! Q(�

n

) of A

0

, where for ea
h i 2 [1::n℄, t

0

i

is the transition 
orresponding

to t

i

as des
ribed above. Sin
e the initial and �nal states of A

0

are the same as those of

A, it follows that L(A) � L(A

0

).

To see that L(A

0

) � L(A), assume that there is a word w 2 L(A

0

) n L(A). Then, A

0

admits an a

epting run �

0

: q

in

t

0

1

�! q

1

t

0

2

�! � � �

t

0

n

�! q

n

over w, with q

n

a �nal state. From

our 
onstru
tion of A

0

, it follows that there is a maximal pre�x �

0

: q

in

t

0

1

�! q

1

t

0

2

�! � � �

t

0

k

�!

q

k

of �

0

, with k < n, su
h that A admits a 0-run � : �

0

t

1

�! �

1

t

2

�! � � �

t

k

�! �

k

over w

with the following properties:

� Q(�

0

) = q

in

.

� For ea
h i 2 [1::k℄, Q(�

i

) = q

i

and t

0

i

is the transition 
orresponding to t

i

as spe
i�ed

in the 
onstru
tion of A

0

.

� w is blo
ked in A and q

w

= q

k

.

Sin
e � 
annot be extended in A while �

0


an be extended in A

0

, it must be the 
ase that

t

k+1


orresponds to a move of the form C

�

for a 
ounter C whose value at �

k

is 0. This

implies that w is �-blo
ked in A, whi
h is a 
ontradi
tion.

Hen
e, L(A

0

) = L(A) and L(A) is regular.

2

Corollary 2.3 Non-deterministi
 
ounter automata are stri
tly more powerful than de-

terministi
 
ounter automata.

Proof: Consider the language L � fa; bg

�

given by

L = fw j w = w

1

a

m

b

n

aw

2

; where w

1

; w

2

2 fa; bg

�

and m � n � 1g:

It is not diÆ
ult to transform the automaton whi
h a

epts L

ge

= fa

m

b

n

j m � ng into

a non-deterministi
 
ounter automaton whi
h a

epts L. We argue that L 
annot be

a

epted by any deterministi
 
ounter automaton. L is 
learly not regular. Thus, by the

previous proposition, for L to be a

epted by a deterministi
 automaton, it must be the

5




ase that there is a word w =2 L su
h that every suÆx of w is also not in L. However, for

any word w =2 L, we 
an always �nd an extension of w in L|for instan
e, waba 2 L for

all w 2 fa; bg

�

. 2

Observe, however, that even deterministi
 
ounter automata are stri
tly more powerful

than normal �nite-state automata. For instan
e, the language L

ge

of Example 2.1 is not

regular but the automaton a

epting the language is deterministi
.

2.2 Some useful results

The following observations are basi
 to analysing the behaviour of 
ounter automata. We

�rst need the following terminology: a sequen
e n

1

; n

2

; : : : of k-tuples of natural numbers

is said to be non-de
reasing if n

1

� n

2

� � � �.

Proposition 2.4 Every in�nite sequen
e of k-tuples of natural numbers has an in�nite

non-de
reasing subsequen
e.

Proof: The proof is by indu
tion on k.

Basis: When k = 1, we have a sequen
e of natural numbers. If the sequen
e is bounded

then some value appears in�nitely often (by the pigeon-hole prin
iple). On the other

hand, if the sequen
e is unbounded, it is obvious that it 
ontains a stri
tly in
reasing

in�nite subsequen
e.

Indu
tion step: If we proje
t the sequen
e of k-tuples onto its �rst k�1 
omponents, we


an apply the indu
tion hypothesis to extra
t an in�nite subsequen
e whi
h is nonde
reas-

ing in these k�1 
oordinates. We look at the 
orresponding subsequen
e in our original

sequen
e of k-tuples and examine the kth 
oordinate of ea
h element in the sequen
e.

By an argument similar to the basis 
ase, there must be an in�nite subsequen
e whi
h is

non-de
reasing on the kth 
oordinate as well.

2

Corollary 2.5 There is no in�nite set of k-tuples of natural numbers that is pairwise

in
omparable.

Lemma 2.6 Let T be a �nitely bran
hing in�nite tree whose nodes are labelled by k-tuples

from N. For ea
h i 2 N there is a number �

i

su
h that along any path of length �

i

starting

at the root of T , the 
orresponding sequen
e of labels n

1

; n

2

; : : : ; n

�

i

has a nonde
reasing

subsequen
e of length i.

Proof: Suppose there exists i 2 N for whi
h there is no su
h �

i

. In other words, for

ea
h j 2 N there is a path of length j starting at the root whose labels n

1

; n

2

; : : : ; n

j

do

not 
ontain a non-de
reasing subsequen
e of length i.

Call a node t in T bad if the labels along the unique path from the root to t do not

have a non-de
reasing subsequen
e of length i. Clearly the parent of a bad node is also

bad. Thus the set of bad nodes forms a subtree of T . By our assumption that there is no

6



�

i


orresponding to i, there must be bad nodes at ea
h level in the tree. Hen
e the set of

bad nodes forms an in�nite subtree of T .

By K�onig's Lemma there is an in�nite path in T all of whose nodes are bad. The

labels along this path do not have any non-de
reasing subsequen
e of length greater than

or equal to i. This 
ontradi
ts Proposition 2.4. 2

Lemma 2.7 Let A be a 
ounter automaton withM states and N 
ounters and let K 2 N.

Then, there exists ` 2 N, su
h that for any K-run �

0

t

1

�! �

1

: : :

t

`

�! �

`

of A, there are

two 
on�gurations �

i

and �

j

, 0 � i < j � `, su
h that Q(�

i

) = Q(�

j

) and F (�

i

) � F (�

j

).

Proof: Constru
t a tree T whose nodes are labelled by N

N

as follows.

� The root x

0

is labelled h0i.

� For ea
h ve
tor v = hm;ni where m 2 [1::M ℄ and n(i) � K for all i 2 [1::N ℄,


onstru
t a 
hild x

v

0

of the root labelled by n.

� Let x be a node labelled hm;ni. For ea
h ve
tor v = hm

0

; n

0

i where m

0

2 [1::M ℄ and

n

0

di�ers from n in at most one 
oordinate by at most 1, 
onstru
t a 
hild x

v

of x

labelled v.

Clearly, T is a �nitely bran
hing tree. Hen
e, by Lemma 2.6, for ea
h natural number p

there is a number �

p

su
h that, if x

0

x

1

: : : x

p

t

1

�! �

1

t

2

�! � � �

t

�

p

�! �

�

p

is a K-run of A then

the sequen
e F (�

0

); F (�

1

); : : : ; F (�

�

p

) has a non-de
reasing subsequen
e of length p.

Thus, if �

0

=) �

�

M+1

is any run of A, then there are positions 0 � k

1

< k

2

< : : : <

k

M+1

� �

M+1

su
h that F (�

k

1

) � F (�

k

2

) : : : � F (�

k

M+1

). By the pigeon-hole prin
iple,

there are positions k

r

and k

s

, 1 � r < s � M+1, su
h that Q(�

k

r

) = Q(�

k

s

). To prove

the lemma, set ` = �

M+1

, �

i

= �

k

r

and �

j

= �

k

s

.

2

Weak pumping 
onstant Noti
e that the bound ` established in the pre
eding lemma

depends only on the values M , N and K and is independent of the a
tual stru
ture

of the automaton. Let �

M;N;K

denote the bound `. We refer to �

M;N;K

as the weak

pumping 
onstant for (M;N;K). It is easy to see that if hM

0

; N

0

; Ki � hM;N;Ki, then

�

M

0

;N

0

;K

0

� �

M;N;K

.

3 A Contra
tion Lemma

Lemma 3.1 (Contra
tion) For every 
ounter automaton A, there is a 
onstant k su
h

that if �

0

t

1

t

2

:::t

m

=) �

m

is a 
omputation of A, with m > k, then there exist i and j,

m�k � i < j � m, su
h that �

0

0

t

1

:::t

i

t

j+1

:::t

m

=) �

0

m�(j�i)

is also a 
omputation of A, with

with �

0

`

= �

`

for ` 2 [0::i℄ and Q(�

`

) = Q(�

0

`�(j�i)

) for all ` 2 [j::m℄.
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Proof: Let A have M states and N 
ounters. We show that k 
an be 
hosen to be

�

M;N;0

.

Let �

0

t

1

t

2

:::t

m

=) �

m

be a 
omputation of A, with m > �

M;N;0

. We de�ne a sequen
e

f

m

; f

m�1

; : : : ; f

0

of N -tuples of natural numbers as follows:

f

m

(n) = 0; for all n 2 [1::N ℄

For i 2 [0::m�1℄; f

i

(n) =

8

<

:

f

i+1

(n) if �(t

i+1

) =2 fC

+

n

; C

�

n

g

f

i+1

(n)+1 if �(t

i+1

) = C

�

n

max(0; f

i+1

(n)�1) if �(t

i+1

) = C

+

n

We next show that the fun
tion f

i

represents the minimum 
ounter values required to

exe
ute the transition sequen
e t

i+1

t

i+2

: : : t

m

.

Claim: 8i 2 [1::m℄, (Q(�

i

); f)

t

i+1

t

i+2

:::t

m

=) i� f � f

i

.

Proof of Claim: By indu
tion on m�i.

Basis: If i = m there is nothing to prove.

Indu
tion step:

By the indu
tion hypothesis, (Q(�

i+1

); f

0

)

t

i+2

t

i+3

:::t

m

=) i� f

0

� f

i+1

.

Suppose that f � f

i

. We have to show that (Q(�

i

); f)

t

i+1

t

i+2

:::t

m

=) . We �rst

argue that there is a move (Q(�

i

); f)

t

i+1

�! (Q(�

i+1

); f

0

). Sin
e we know that

(Q(�

i

); t

i+1

; Q(�

i+1

)) is a transition of A, the only reason for forbidding su
h

a move is that �(t

i+1

) = C

�

n

for some 
ounter C

n

and f(n) = 0. However, if

�(t

i+1

) = C

�

n

, we know that f

i

(n) = f

i+1

(n) + 1 � 1. Sin
e f � f

i

, f(n) � 1

as well.

Consider the fun
tion f

0

. We shall show that f

0

� f

i+1

. From the indu
-

tion hypothesis, it then follows that (Q(�

i

); f)

t

i+1

�! (Q(�

i+1

); f

0

)

t

i+2

t

i+3

:::t

m

=) ,

whereby (Q(�

i

); f)

t

i+1

t

i+2

:::t

m

=) .

To 
he
k that f

0

� f

i+1

, we 
onsider all possible values for �(t

i+1

).

(i) �(t

i+1

) 2 �: Then f

0

= f � f

i

= f

i+1

.

(ii) �(t

i+1

) 2 fC

�

n

; C

+

n

g: Then

� For ` 6= n, f

0

(`) = f(`) � f

i

(`) = f

i+1

(`).

� If �(t

i+1

) = C

�

n

, then f

0

(n) = f(n)� 1 � f

i

(n)� 1 = f

i+1

(n).

� If �(t

i+1

) = C

+

n

, then f

0

(n) = f(n)+1 � f

i

(n)+1 = max(1; f

i+1

(n)) �

f

i+1

(n).

Thus, for ea
h ` 2 [1::n℄, f

0

(`) � f

i+1

(`).

Conversely, suppose that (Q(�

i

); f)

t

i+1

t

i+2

:::t

m

=) . We have to establish that

f � f

i

. We know that (Q(�

i

); f)

t

i+1

�! (Q(�

i+1

); f

0

)

t

i+2

t

i+3

:::t

m

=) and, by the

indu
tion hypothesis, f

0

� f

i+1

. As before, we examine all possible values of

�(t

i+1

).
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(i) �(t

i+1

) 2 �: Then f = f

0

� f

i+1

= f

i

.

(ii) �(t

i+1

) 2 fC

�

n

; C

+

n

g: Then

� For ` 6= n, f(`) = f

0

(`) � f

i+1

(`) = f

i

(`).

� If �(t

i+1

) = C

�

n

, then f(n) = f

0

(n) + 1 � f

i+1

(n) + 1 = f

i

(n).

� If �(t

i+1

) = C

+

n

, then f(n) = f

0

(n)�1 � f

i+1

(n)�1. Sin
e f(n) � 0

and f

i

(n) = max(0; f

i+1

(n)� 1), f(n) � f

i

(n).

Thus, for ea
h ` 2 [1::n℄, f(`) � f

i

(`).

Corollary to Claim: For ea
h 
ounter C

n

and for ea
h position i 2 [1::m℄,

C

n

(�

i

) � f

i

(n).

Consider the sequen
e f

m

; f

m�1

; : : : f

0

. Sin
e its length ex
eeds �

M;N;0

, by Lemma 2.7

there exist positions i and j, m � j > i � m��

M;N;0

su
h that f

j

� f

i

and Q(�

j

) =

Q(�

i

). By the Corollary to Claim, for ea
h 
ounter C

n

, C

n

(�

i

) � f

i

(n) � f

j

(n). Thus,

�

i

t

j+1

t

j+2

:::t

m

=) whereby �

0

t

1

t

2

:::t

i

=) �

i

t

j+1

t

j+2

:::t

m

=) �

0

m�(j�i)

is a valid 
omputation of A for some


on�guration �

0

m�(j�i)

. Sin
e Q(�

j

) = Q(�

i

) and the 
omputations �

j

t

j+1

t

j+2

:::t

m

=) �

m

and

�

i

t

j+1

t

j+2

:::t

m

=) �

0

m�(j�i)

are labelled by the same sequen
e of transitions, it follows that

Q(�

`

) = Q(�

0

`�(j�i)

) for ea
h ` 2 [j::m℄, as required.

2

Corollary 3.2 A 
ounter automaton A with M states and N 
ounters has an a

epting


omputation i� it has an a

epting 
omputation whose length is bounded by �

M;N;0

.

In the Appendix, we give a 
onstru
tive proof of Lemma 2.7 whi
h provides an expli
it

upper bound for �

M;N;K

for all values of M , N , and K. This fa
t, 
oupled with the

pre
eding observation, yields the following result.

Corollary 3.3 The emptiness problem for 
ounter automata is de
idable.

We remark, however, that a result of Lipton [L76℄ from the theory of Petri net lan-

guages implies that the emptiness problem for 
ounter re
ognisable languages is EXPSPACE-

hard.

Corollary 3.4 Counter re
ognisable languages are not 
losed under 
omplementation.

Proof: We saw earlier that L

ge

= fa

m

b

n

j m � ng is 
ounter re
ognisable. Let A

be an automaton whi
h a

epts L

ge

. We 
an easily extend A to a

ept L

0

ge

= L

ge

[

fw j w is not of the form a

m

b

n

g: The 
omplement of the language L

0

ge

is the language

L

lt

= fa

m

b

n

j m < ng.

Suppose that L

lt

were 
ounter re
ognisable. Let A

lt

be an automaton whi
h a

epts

L

lt

. Let M be the number of states in A

lt

and N the number of 
ounters used by A

lt

.

Consider the string w = a

J

b

J+1

where J = �

M;N;0

and let � : �

0

t

1

t

2

:::t

n

=) �

n

be an a

epting

run of A

lt

on w. By applying the Contra
tion Lemma (repeatedly, if ne
essary) to �, we


an obtain an a

epting run �

0

of A

lt

over a word of the form a

J

b

K

, where K � J , thus

9




ontradi
ting the assumption that L(A

lt

) = L

lt

. (The reason we may need to use the

Contra
tion Lemma more than on
e to obtain a suitable �

0

is that when we apply the

Lemma on
e, the sequen
e of moves deleted may fail to 
ontain any transition labelled

b. However, if this happens, the resulting run will 
ontinue to have a suÆx 
ontaining

�

M;N;0

+ 1 moves labelled b, so we 
an apply the Contra
tion Lemma repeatedly until at

least one transition labelled b is deleted.) 2

4 A Colle
tion of Pumping Lemmas

Change ve
tors For a string w over a set X and a symbol x 2 X, #

x

(w) denotes

the number of times x o

urs in w. Let v be a sequen
e of transitions. Re
all that �(v)

denotes the 
orresponding sequen
e of letters. For ea
h 
ounter C, de�ne �

C

(v) to be

#

C

+

(�(v))�#

C

�

(�(v)). The 
hange ve
tor asso
iated with v, denoted �v, is given by

h�

C

(v)i

C2�

.

Proposition 4.1 Let A = (Q;�;�; T; q

in

; F ) be a 
ounter automaton.

(i) For any 
omputation �

v

=) �

0

of A and any 
ounter C 2 �, j�

C

(v)j � jvj.

(ii) For any 
on�guration � and sequen
e of transitions v, �

v

=) i� for ea
h pre�x u of

v and ea
h 
ounter C 2 �, C(�) + �

C

(u) � 0.

(iii) Let �

u

=) �

0

v

=) with Q(�) = Q(�

0

) and n 2 N su
h that, for every 
ounter C 2 �,

either �

C

(u) � 0 or C(�) � njuj+ jvj. Then, �

u

n

v

=).

Proof:

(i) This follows from the fa
t that ea
h move 
an 
hange a 
ounter value by at most 1.

(ii) This follows immediately from the de�nition of a 
omputation.

(iii) The proof is by indu
tion on n.

Basis: For n = 0, there is nothing to prove.

Indu
tion step: Let n > 0 and assume the result holds for n�1. We will show that

�

u

=) �

0

u

n�1

v

=) .

From the assumption, we know that �

u

=) �

0

. To show that �

0

u

n�1

v

=) , we examine

the value of ea
h 
ounter C at �

0

. If �

C

(u) < 0, then C(�) � njuj + v. Sin
e

C(�

0

) = C(�

0

) + �

C

(u) and j�

C

(u)j � juj, it follows that C(�

0

) � (n�1)juj + v.

From the indu
tion hypothesis, we 
an then 
on
lude that �

0

u

n�1

v

=) .

2
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Pumpable de
omposition Let A be a 
ounter automaton with N 
ounters and let

� : �

0

t

1

t

2

:::t

m

=) �

m

be a 
omputation of A. A de
omposition �

0

u

1

=) �

i

1

v

1

=) �

j

1

u

2

=) �

i

2

v

2

=)

�

j

2

u

3

=) � � �

u

n

=) �

i

n

v

n

=) �

j

n

u

n+1

=) �

m

of � is said to be pumpable if it satis�es the following


onditions:

(i) n � N .

(ii) For ea
h k 2 [1::n℄, Q(�

i

k

) = Q(�

j

k

).

(iii) For ea
h v

k

, k 2 [1::n℄, �v

k

is non-zero and has at least one positive entry.

(iv) Let C be a 
ounter and k 2 [1::n℄ su
h that �

C

(v

k

) is negative. Then, there exists

` < k su
h that �

C

(v

`

) is positive.

We refer to v

1

; v

2

; : : : ; v

n

as the pumpable blo
ks of the de
omposition. If C is a 
ounter

su
h that �

C

(v

i

) > 0 for some pumpable blo
k v

i

, we say that C is a pumpable 
ounter.

Proposition 4.2 Let A be a 
ounter automaton and � : �

0

t

1

t

2

:::t

m

=) �

m

be a 
omputation

of A. Consider a pumpable de
omposition �

0

u

1

=) �

i

1

v

1

=) �

j

1

u

2

=) � � �

u

n

=) �

i

n

v

n

=) �

j

n

u

n+1

=)

�

m

of �. Then, for r 2 [1::n℄, �

0

u

1

=) �

i

1

v

1

=) �

j

1

u

2

=) � � �

u

r

=) �

i

r

v

r

=) �

j

r

u

r+1

=) �

i

r+1

is a

pumpable de
omposition of �

r

: �

0

u

1

v

1

:::u

r

v

r

u

r+1

=) �

i

r+1

.

Proof: Immediate, from the de�nition of pumpable de
ompositions. 2

Lemma 4.3 (Counter Pumping) Let A be an automaton and � a K-run of A, K 2 N,

with a pumpable de
omposition of the form

�

0

u

1

=) �

i

1

v

1

=) �

j

1

u

2

=) �

i

2

v

2

=) �

j

2

� � �

u

n

=) �

i

n

v

n

=) �

j

n

u

n+1

=) �

m

:

Then, for any I; J 2 N, with I � 1, there exist `

1

; `

2

; : : : ; `

n

2 N and a K-run �

0

of A

of the form

�

0

0

u

1

=) �

0

i

0

1

v

`

1

1

=) �

0

j

0

1

u

2

=) �

0

i

0

2

v

`

2

2

=) �

0

j

0

2

� � �

u

n

=) �

0

i

0

n

v

`

n

n

=) �

0

j

0

n

u

n+1

=) �

0

p

su
h that �

0

satis�es the following properties:

(i) �

0

= �

0

0

.

(ii) Q(�

0

p

) = Q(�

m

).

(iii) For i 2 [1::n℄, `

i

� I.

(iv) For every 
ounter C, C(�

0

p

) � C(�

m

).

(v) Let �

pos

be the set of pumpable 
ounters in the pumpable de
omposition of �. For

ea
h 
ounter C 2 �

pos

, C(�

0

p

) � J .
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Proof: The proof is by indu
tion on n, the number of pumpable blo
ks in the de
om-

position.

Basis: If n = 0, there is nothing to prove.

Indu
tion step: Let n > 0 and assume the lemma holds for all de
ompositions with n�1

pumpable blo
ks. For ea
h 
ounter C, let J

C

= max(J; C(�

m

)).

By the indu
tion hypothesis, for all I

0

; J

0

2 N , I

0

� 1, we 
an transform the pre�x

� : �

0

u

1

=) �

i

1

v

1

=) �

j

1

u

2

=) � � �

v

n�1

=) �

j

n�1

u

n

=) �

i

n

of � into a K-run �

0

: �

0

0

u

1

=) �

0

i

0

1

v

`

1

1

=)

�

0

j

0

1

u

2

=) � � �

v

`

n�1

n�1

=) �

0

j

0

n�1

u

n

=) �

0

i

0

n

satisfying the 
onditions of the lemma. We shall 
hoose

I

0

and J

0

so that the transition sequen
e v

`

n

n

u

n+1


an be appended to �

0

to yield the run


laimed by the lemma.

To �x values for I

0

and J

0

, we �rst estimate the value of `

n

, the number of times we

need to pump v

n

to satisfy all the 
onditions of the lemma. Let �

n

pos

= fC j �

C

(v

n

) > 0g.

It is suÆ
ient if the number `

n

is large enough for ea
h 
ounter C 2 �

n

pos

to ex
eed J

C

at the end of the new 
omputation. For a 
ounter C 2 �

n

pos

to be above J

C

at the end

of the 
omputation, it is suÆ
ient for C to have the value J

C

+ ju

n+1

j after v

`

n

n

. By the

indu
tion hypothesis, the value of C before v

`

n

n

is at least C(�

i

n

). Hen
e, it would take

d

J

C

+ju

n+1

j�C(�

i

n

)

�

C

(v

n

)

e iterations of v

n

for C to rea
h the required value after v

`

n

n

. On the other

hand, we should also ensure that `

n

� I. Thus, it is safe to set `

n

to be the maximum of

I and max

C2�

n

pos

d

J

C

+ju

n+1

j�C(�

i

n

)

�

C

(v

n

)

e.

We set I

0

= I and estimate a value for J

0

su
h that �

0

i

0

n

v

`

n

n

u

n+1

=) �

0

p

with ea
h 
ounter

C 2 (� n�

n

pos

) a
hieving a value of at least C(�

m

) at �

0

p

and ea
h 
ounter C 2 (�

pos

n�

n

pos

)

a
hieving a value of at least J

C

at �

0

p

.

By the indu
tion hypothesis, Q(�

0

i

0

n

) = Q(�

i

n

) and F (�

0

i

0

n

) � F (�

i

n

). Sin
e �

i

n

v

n

u

n+1

=) ,

it follows that �

0

i

0

n

v

n

u

n+1

=) . By Proposition 4.1 (iii), to ensure that �

0

i

0

n

v

`

n

n

u

n+1

=) �

0

p

, it is

suÆ
ient to raise ea
h 
ounter C with �

C

(v

n

) < 0 to a value of at least `

n

jv

n

j+ ju

n+1

j at

�

0

i

0

n

. If �

C

(v

n

) < 0 then, by the de�nition of pumpable de
ompositions, �

C

(v

i

) > 0 for

some i 2 [1::n�1℄, so C gets pumped above J

0

in �

0

.

Any 
ounter C su
h that �

C

(v

n

) � 0 will surely ex
eed C(�

m

) at �

0

p

. On the other

hand, a 
ounter C su
h that �

C

(v

n

) < 0 
an de
rease by at most `

n

jv

n

j+ ju

n+1

j after �

0

i

0

n

.

Putting these two fa
ts together, it suÆ
es to set J

0

to `

n

jv

n

j+ju

n+1

j+max

fCj�

C

(v

n

)<0g

J

C

.

Let �

0

: �

0

0

u

1

=) �

0

i

0

1

v

`

1

1

=) �

0

j

0

1

u

2

=) � � �

u

n

=) �

0

i

0

n

v

`

n

n

=) �

0

j

0

n

u

n+1

=) �

0

p

. By the indu
tion

hypothesis, we know that �

0

0

= �

0

and for i 2 [1::n�1℄, `

i

� I. By 
onstru
tion, `

n

� I

as well. We have also ensured that for every 
ounter C, C(�

0

p

) � C(�

m

) and for every


ounter C 2 �

pos

, C(�

0

p

) � J . The fa
t that Q(�

0

p

) = Q(�

m

) follows from the fa
t that

ea
h v

n

loop brings the automaton ba
k to Q(�

0

i

0

n

) = Q(�

i

n

), and the fa
t that both �

and �

0

go through the same sequen
e of transitions u

n+1

at the end of the 
omputation.

2

The pre
eding lemma shows that all the pumpable 
ounters in a pumpable de
ompo-

sition are simultaneously unbounded. This is analogous to a well-known result of Karp

and Miller in the theory of ve
tor addition systems [KM69℄. They show how to asso
iate

a �nite obje
t 
alled a 
overing tree with ea
h ve
tor addition system. The 
overing tree
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an be used to de
ide whether a set of 
oordinates of the ve
tor addition system is simul-

taneously unbounded. See Se
tion 6 for a more detailed dis
ussion of the 
onne
tion of

our work to ve
tor addition systems.

Corollary 4.4 Let A be an automaton and � a K-run of A, K 2 N, with a pumpable

de
omposition of the form

�

0

u

1

=) �

i

1

v

1

=) �

j

1

u

2

=) �

i

2

v

2

=) �

j

2

� � �

u

n

=) �

i

n

v

n

=) �

j

n

u

n+1

=) �

m

:

(i) For any I 2 N, with I � 1, there exist `

1

; `

2

; : : : ; `

n�1

2 N and a K-run �

0

of A of

the form

�

0

0

u

1

=) �

0

i

0

1

v

`

1

1

=) �

0

j

0

1

u

2

=) �

0

i

0

2

v

`

2

2

=) �

0

j

0

2

� � �

u

n�1

=) �

0

i

0

n�1

v

`

n�1

n�1

=) �

0

j

0

n�1

u

n

=) �

0

i

0

n

v

I

n

=) �

0

j

0

n

u

n+1

=) �

0

p

su
h that �

0

= �

0

0

, Q(�

0

p

) = Q(�

m

) and F (�

0

p

) � F (�

m

).

(ii) For any I 2 N, with I � 1 and any k 2 [1::n℄, there exist `

1

; `

2

; : : : ; `

k�1

2 N and a

K-run �

0

of A of the form

�

0

0

u

1

=) �

0

i

0

1

v

`

1

1

=) �

0

j

0

1

u

2

=) � � �

u

k�1

=) �

0

i

0

k�1

v

`

k�1

k�1

=) �

0

j

0

k�1

u

k

=) �

0

i

0

k

v

I

k

=) �

0

j

0

k

u

k+1

v

k+1

:::u

n

v

n

u

n+1

=) �

0

p

su
h that �

0

= �

0

0

, Q(�

0

p

) = Q(�

m

) and F (�

0

p

) � F (�

m

).

Proof: The �rst statement follows by setting J = 0 when de�ning `

n

in the proof of the

Counter Pumping Lemma. The se
ond result is then immediate. We omit the details. 2

We have shown that all 
ounters whi
h in
rease within the pumpable blo
ks of a

pumpable de
omposition 
an be simultaneously raised to arbitrarily high values. We next

des
ribe a suÆ
ient 
ondition for aK-run to admit a non-trivial pumpable de
omposition.

Strong pumping 
onstant For ea
h M;N;K 2 N , we de�ne the strong pumping


onstant �

M;N;K

by indu
tion on N as follows (re
all that �

M;N;K

denotes the weak

pumping 
onstant for (M;N;K)):

8M;K 2 N : �

M;0;K

= 1

8M;N;K 2 N : �

M;N+1;K

= �

M;N;�

M;N+1;K

+K

+ �

M;N+1;K

+K

Lemma 4.5 (De
omposition) Let A be an automaton with M states and N 
ounters

and let K 2 N. Let � : �

0

t

1

t

2

:::t

m

=) �

m

be any K-run of A. Then, there is a pumpable

de
omposition

�

0

u

1

=) �

i

1

v

1

=) �

j

1

u

2

=) �

i

2

v

2

=) �

j

2

� � �

u

n

=) �

i

n

v

n

=) �

j

n

u

n+1

=) �

m

of � su
h that for every 
ounter C, if C(�

j

) > �

M;N;K

for some j 2 [0::m℄, then there

exists k 2 [1::n℄, su
h that �

C

(v

k

) is positive.

To prove this lemma, we need the following result.
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Proposition 4.6 Let A be a 
ounter automaton with M states and N 
ounters and let

� : �

0

=) �

n

be a K-run of A in whi
h some 
ounter value ex
eeds �

M;N;K

+K. Then,

there is a pre�x � : �

0

=) �

s

of � su
h that:

� For ea
h m 2 [0::s℄ and every 
ounter C, C(�

m

) < �

M;N;K

+K.

� There exists r 2 [0::s�1℄, su
h that � : �

0

=) �

r

=) �

s

, Q(�

r

) = Q(�

s

) and

F (�

r

) < F (�

s

).

Proof: Suppose that the lemma does not hold. Let � : �

0

t

1

t

2

:::t

n

=) �

n

be a 
omputation

of minimum length whi
h fails to satisfy the lemma. Sin
e the initial 
ounter values in �

are bounded by K and some 
ounter value ex
eeds �

M;N;K

+K in �, it must be the 
ase

that the length of � is at least �

M;N;K

.

By the de�nition of �

M;N;K

, there exist i and j, i < j � �

M;N;K

su
h that Q(�

i

) =

Q(�

j

) and F (�

i

) � F (�

j

). Sin
e � is a K-run and j � �

M;N;K

, all 
ounter values at the


on�gurations �

0

; �

1

; : : : ; �

j

must be bounded by �

M;N;K

+K. If F (�

i

) < F (�

j

), � would

satisfy the lemma with r = i and s = j, so it must be the 
ase F (�

i

) = F (�

j

).

Sin
e �

i

= �

j

, we 
an 
onstru
t a shorter 
omputation �

0

= �

0

t

1

t

2

:::t

i

=) �

i

t

j+1

�! �

j+1

t

j+2

�!

� � �

t

n

�! �

n

. It is easy to see that the same 
ounter whose value ex
eeded �

M;N;K

+K in

� must also ex
eed �

M;N;K

+K in �

0

|the only 
on�gurations visited by � whi
h are not

visited by �

0

are those in the interval �

i+1

; �

i+2

; : : : �

j

. However, we have already seen

that all 
ounter values in �

0

; �

1

; : : : ; �

j

are bounded by �

M;N;K

+K.

It is 
lear that if �

0

satis�es the lemma, then so does �. On the other hand, if �

0

does

not satisfy the lemma, then � is not a minimum length 
ounterexample to the lemma. In

either 
ase we obtain a 
ontradi
tion. 2

We now return to the proof of the De
omposition Lemma.

Proof: (of Lemma 4.5) The proof is by indu
tion on N , the number of 
ounters.

Basis: If N = 0, set n = 0 and u

1

= �.

Indu
tion step: Let �

gt

denote the set of 
ounters whose values ex
eed �

M;N;K

in the

K-run �.

If �

gt

= ;, we set n = 0 and u

1

= �.

Otherwise, by Proposition 4.6, we 
an �nd positions r and s in � su
h that �

0

u

0

=)

�

r

v

0

=) �

s

=) �

m

, with Q(�

r

) = Q(�

s

), F (�

r

) < F (�

s

) and all 
ounter values at

�

0

; �

1

; : : : ; �

s

bounded by �

M;N;K

+K.

Let � be the input alphabet of A and � its set of 
ounters. Fix a 
ounter C

0

in

whi
h in
reases stri
tly between �

r

and �

s

|that is, C

0

(�

s

) > C

0

(�

r

). By our 
hoi
e of

�

r

and �

s

, su
h a 
ounter must exist. Constru
t an automaton A

0

with input alphabet

� [ fC

0+

; C

0�

g and 
ounters � n fC

0

g. The states and transitions of A

0

are the same as

those of A. In other words, A

0

behaves like A ex
ept that it treats moves involving the


ounter C

0

as input letters.
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Consider the 
omputation �

s

t

s+1

t

s+2

:::t

m

=) �

m

of A. It is easy to see that there is a


orresponding 
omputation �

0

: �

0

s

t

s+1

t

s+2

:::t

m

=) �

0

m

of A

0

su
h that for ea
h k 2 [s::m℄,

Q(�

k

) = Q(�

0

k

) and for ea
h 
ounter C 6= C

0

, C(�

k

) = C(�

0

k

).

From Proposition 4.6, we know that �

0

is in fa
t a (�

M;N;K

+K)-run of A

0

. Further,

for every 
ounter C in �

gt

n fC

0

g, there exists a j 2 [s::m℄, su
h that C(�

0

j

) = C(�

j

) >

�

M;N;K

> �

M;N�1;�

M;N;K

+K

. (In the K-run �, no 
ounter 
ould have ex
eeded �

M;N;K

before �

s

be
ause Proposition 4.6 guarantees that all 
ounter values at �

0

; �

1

; : : : ; �

s

are bounded by �

M;N;K

+ K.) By the indu
tion hypothesis, we 
an �nd a pumpable

de
ompostion

�

0

s

u

0

1

=) �

0

i

0

1

v

0

1

=) �

0

j

0

1

u

0

2

=) �

0

i

0

2

v

0

2

=) �

0

j

0

2

u

0

3

=) � � �

u

0

p

=) �

0

i

0

p

v

0

p

=) �

0

j

0

p

u

0

p+1

=) �

m

of �

0

su
h that if C is a 
ounter with C(�

0

j

) > �

M;N�1;�

M;N;K

+K

for some j 2 [s::m℄, then

there exists k 2 [1::p℄ su
h that �

C

(v

0

k

) is positive.

Consider the 
orresponding 
omputation

�

s

u

0

1

=) �

i

0

1

v

0

1

=) �

j

0

1

u

0

2

=) �

i

0

2

v

0

2

=) �

j

0

2

� � �

u

0

p

=) �

i

0

p

v

0

p

=) �

j

0

p

u

0

p+1

=) �

m

of A. In this 
omputation, for ea
h k 2 [1::p℄, Q(�

i

0

k

) = Q(�

0

i

0

k

) = Q(�

0

j

0

k

) = Q(�

j

0

k

).

Further, for ea
h C 2 �

gt

n fC

0

g, C(�

i

0

k

) = C(�

0

i

0

k

) and C(�

j

0

k

) = C(�

0

j

0

k

).

We pre�x the 
omputation �

s

u

0

1

v

0

1

:::u

0

p+1

=) �

m

with the K-run �

0

u

0

=) �

r

v

0

=) �

s

whi
h

we used to identify �

s

and �

r

. We then assert that the 
omposite K-run

�

0

u

0

=) �

r

v

0

=) �

s

u

0

1

=) �

i

00

1

v

0

1

=) �

j

00

1

u

0

2

=) �

i

00

2

v

0

2

=) �

j

00

2

� � �

u

0

p

=) �

i

00

p

v

0

p

=) �

j

00

p

u

0

p+1

=) �

m

:

provides the de
omposition

�

0

u

1

=) �

i

1

v

1

=) �

j

1

u

2

=) �

i

2

v

2

=) �

j

2

� � �

u

n

=) �

i

n

v

n

=) �

j

n

u

n+1

=) �

m

of � 
laimed in the statement of the lemma. In other words, u

1

= u

0

, v

1

= v

0

, �

i

1

= �

r

and �

j

1

= �

s

, while for k 2 [2::n℄, u

k

= u

0

k�1

, v

k

= v

0

k�1

, �

i

k

= �

i

0

k�1

and �

j

k

= �

j

0

k�1

.

Let us verify that this de
omposition satis�es all the 
onditions required by the lemma.

First we verify that this de
omposition is pumpable.

� Sin
e p � N�1, it is 
lear than n = p+1 � N .

� By 
onstru
tion Q(�

i

1

) = Q(�

r

) = Q(�

s

) = Q(�

j

1

). For k 2 [2::n℄, Q(�

i

k

) =

Q(�

i

0

k�1

) = Q(�

j

0

k�1

) = Q(�

j

k

).

� We know that �v

1

= �v

0

is non-zero and stri
tly positive by the 
hoi
e of v

0

. For

k 2 [2::n℄, we know that �

C

(v

k

) = �

C

(v

0

k�1

) for C 6= C

0

. Sin
e we have already

established that �v

0

k�1

is non-zero and has at least one positive entry for k 2 [2::n℄,

it follows that the 
orresponding 
hange ve
tors �v

k

are also non-zero and have at

least one positive entry.

� Let C be a 
ounter and k 2 [1::n℄ su
h that �

C

(v

k

) is negative. Sin
e �v

1

= �v

0

is

positive by the 
hoi
e of v, it must be that k 2 [2::n℄. If C 6= C

0

, then �

C

(v

0

k�1

) =
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�

C

(v

k

) is negative. In this 
ase, we already know that there exists ` 2 [2::k�1℄,

su
h that �

C

(v

0

`�1

) = �

C

(v

`

) is positive.

On the other hand, if C = C

0

, it 
ould be that �

C

0

(v

0

z

) is negative for all z 2 [1::p℄,

sin
e C

0

is treated as an input letter rather than as a 
ounter in the automaton A

0

.

However, we know that �

C

0

(v

1

) = �

C

0

(v

0

) is positive by the 
hoi
e of v

0

and C

0

, so

C

0

also satis�es the 
ondition of the lemma.

Finally, let C be a 
ounter su
h that C(�

j

) > �

M;N;K

for some j 2 [1::m℄. If C 6= C

0

,

then C(�

j

) > �

M;N�1;�

M;N;K

+K

for some j 2 [s::m℄, so we already know that �

C

(v

0

k�1

) =

�

C

(v

k

) is positive for some k 2 [2::n℄. On the other hand, if C = C

0

, we know that

�

C

(v

1

) = �

C

(v

0

) is positive by the 
hoi
e of v

0

and C

0

.

2

The Counter Pumping Lemma we stated earlier allows us to pump blo
ks of transitions

in a 
omputation. However, it is possible for a pumpable blo
k to 
onsist solely of invisible

transitions whi
h in
rement and de
rement 
ounters. Using the De
omposition Lemma,

we 
an prove a more traditional kind of pumping lemma, stated in terms of input strings.

Lemma 4.7 (Visible Pumping) Let L be a 
ounter re
ognisable language. There exists

n 2 N su
h that for all input strings w, if w 2 L and jwj � n then w 
an be written as

w

1

w

2

w

3

su
h that jw

1

w

2

j � n, jw

2

j � 1 and w

1

w

i

2

w

3

2 L for all i � 1.

Proof: Let A = (Q;�;�; T; q

in

; F ) be a 
ounter automaton whi
h a

epts L. From A,

we 
onstru
t a new automaton A

0

by adding a new 
ounter C

vis

whi
h is in
remented

ea
h time an input letter is read.

Formally, A

0

= (Q

0

;�;�

0

; T

0

; q

in

; F ) where:

� Q

0

= Q [ fq

t

j t = (q; d; q

0

) 2 T and d 2 �g.

� �

0

= � [ fC

vis

g.

� T

0

= f(q; d; q

0

) 2 T j d =2 �g [ f(q; C

+

vis

; q

t

); (q

t

; d; q

0

) j t = (q; d; q

0

) 2 T; d 2 �g.

It is 
lear that L(A

0

) = L(A) = L. Let M = jQ

0

j and N = j�

0

j. Set n = �

M;N;0

.

Let �

0

x

=) �

f

y

=) �

g

be an a

epting run of A

0

on w, where jwj � �

M;N;0

and

j�(x)�

�

j = �

M;N;0

. Let �

0

u

1

v

1

:::u

n

v

n

u

m+1

=) �

f

be the pumpable de
omposition of �

0

x

=) �

f

given by the De
omposition Lemma.

Sin
e C

vis

attains the value �

M;N;0

along �

0

x

=) �

f

, there is a pumpable blo
k v

i

,

i 2 [1::m℄, su
h that �

C

vis

(v

i

) > 0. Choose the �rst su
h blo
k. Then �

C

vis

(v

j

) = 0 for

all j < i.

Ea
h pumpable blo
k de�nes a 
y
le in A

0

. However, the stru
ture of A

0

ensures that

a 
y
le has a move labelled C

+

vis

i� it also has a move labelled by an input letter. Thus,

v

i


ontains at least one move with a label from �, while �(v

j

)�

�

is empty for ea
h j < i.

Let w

1

= �(u

1

v

1

u

2

: : : u

i

), w

2

= �(v

i

) and w

3

= �(u

i+1

v

i+1

: : : v

n

u

n+1

y).

By Corollary 4.4 (ii), for ea
h I 2 N , there is a run �

0

u

1

v

`

1

1

:::u

i

v

I

i

u

i+1

v

i+1

:::u

m

v

m

u

m+1

=) �

0

f

with Q(�

0

f

) = Q(�

f

) and F (�

0

f

) � F (�

f

).
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This means that � : �

0

u

1

v

`

1

1

:::u

i

v

I

i

u

i+1

v

i+1

:::u

m

v

m

u

m+1

=) �

0

f

y

=) �

0

g

is an a

epting run on

�(u

1

v

`

1

1

: : : u

i

v

I

i

u

i+1

: : : u

m

v

m

u

m+1

z) �

�

. Sin
e �(v

j

) = " for all j < i, it follows that

�(u

1

v

`

1

1

: : : u

i�1

v

`

i�1

i�1

u

i

) = �(u

1

v

1

: : : u

i�1

v

i�1

u

i

) = w

1

. Thus, � is an a

epting run over

w

1

w

I

2

w

3

, as 
laimed by the lemma.

2

Example 4.8 The language L = fa

p

j p is primeg is not 
ounter re
ognisable.

Proof: Suppose L is 
ounter re
ognisable. Let p be a prime larger that n, the pump-

ing 
onstant for L spe
i�ed by Lemma 4.7. Then, we 
an write p as x + y + z su
h

that a

x+my+z

2 L for all m � 1. Choose m = p + 1. Then a

x+(p+1)y+z

2 L, though

x+ (p+ 1)y + z = x + y + z + py = (1 + y)p is not a prime! 2

One di�eren
e between the pre
eding lemma and the traditional pumping lemma for

regular languages is that in the 
ontext of 
ounter re
ognisable languages, for a pumpable

string uvw, we must have at least one iteration of the pumpable segment v to ensure that

the resulting string uv

i

w is in the language, whereas for regular languages, uv

0

w = uw is

also guaranteed to be in the language.

Lemma 4.9 (Counter Hierar
hy) For k 2 N, let L

k

be the set of languages re
ognis-

able by 
ounter automata with k 
ounters. Then, for all k, L

k

( L

k+1

.

Proof: De�ne L

k+1

= fa

n

0

0

a

n

1

1

� � �a

n

k

k

a

n

k+1

k+1

j n

0

� n

1

� � � � � n

k+1

g. It is not diÆ
ult to


onstru
t a 
ounter automaton with k+1 
ounters whi
h a

epts L

k+1

. However, there is

no k-
ounter ma
hine whi
h a

epts this language.

Suppose A is a k-
ounter ma
hine whi
h a

epts L

k+1

. As in the proof of Lemma 4.7,

we extend A with a new 
ounter C

k+1

whi
h is in
remented pre
isely when a

k+1

is read

from the input. Let the new ma
hine A

0

have M states.

Consider an a

epting run � of A

0

on a string w = a

n

0

0

a

n

1

1

: : : a

n

k+1

k+1

with n

k+1

�

�

M;k+1;0

. By Lemma 4.5, the run � has a pumpable de
omposition �

0

u

1

v

1

:::u

m

v

m

u

m+1

=) �

f

su
h that m � k+1 and �

C

k+1

(v

i

) > 0 for some i 2 [1::m℄.

By Lemma 4.3, for ea
h I � 1, there exist `

1

; `

2

; : : : ; `

m

2 N su
h that ea
h `

j

� I

and �

0

u

1

v

`

1

1

:::u

m

v

`

m

m

u

m+1

=) �

0

f

is an a

epting run. From the stru
ture of words in L

k+1

, it

follows that for ea
h pumpable blo
k v

i

, �(v

i

) 
ontains at most one of the visible letters

fa

0

; a

1

; : : : ; a

k+1

g. Sin
e m � k+1 at least one letter from fa

0

; a

1

; : : : ; a

k+1

g does not

appear in

S

i2[1::m℄

�(v

i

). Also, sin
e �

C

k+1

(v

i

) > 0 for some i 2 [1::m℄, from the stru
ture

of A

0

it follows that a

k+1

does appear in

S

i2[1::m℄

�(v

i

).

Let a

r

be a letter whi
h does not appear in

S

i2[1::m℄

�(v

i

) and let v

j

be the blo
k su
h

that a

k+1

appears in �(v

j

). By Corollary 4.4 (ii), for all I � 1, there exist `

1

; `

2

; : : : ; `

j�1

with ea
h `

j

� I su
h that �

0

u

1

v

`

1

1

:::v

`

j�1

j�1

u

j

v

I

j

u

j+1

v

j+1

:::u

m

v

`

m

m

u

m+1

=) �

0

g

is an a

epting run of

A

0

. Choose I = n

r

+ 1.

Thus w

0

= �(u

1

v

`

1

1

: : : v

`

j�1

j�1

u

j

v

n

r

+1

j

u

j+1

v

j+1

: : : u

m

v

`

m

m

u

m+1

)) �

�

2 L(A

0

). But, w

0

has

only n

r

a

r

's and at least n

r

+1 a

k+1

's, whi
h violates the de�nition of L

k+1

.

17



Thus, there is no k-
ounter ma
hine whi
h a

epts L

k+1

.

2

The proof above requires alphabets of size k+2 to separate L

k

from L

k+1

. However, it is

not diÆ
ult to tighten the proof to establish a stri
t hierar
hy for alphabets of size 3.

5 Chara
terising Regularity of Counter Re
ognisable

Languages

Automata with bounded 
ounters

Let A = (Q;�;�; T; q

in

; F ) be a 
ounter automaton. For K 2 N , de�ne A[K℄ =

(Q[K℄; T [K℄; Q[K℄

in

; F [K℄) to be the �nite-state automaton over the alphabet � [ �

�

given by:

� Q[K℄ = Q� ff j f : � �! [0::K℄g.

� Q[K℄

in

= (q

in

; 0).

� F [K℄ = Q

f

� ff j f : � �! [0::K℄g.

� If (q; d; q

0

) 2 T , then ((q; f); d; (q

0

; f

0

)) 2 T [K℄ where:

{ If d 2 �, f

0

= f .

{ If d = C

+

, f

0

(C

0

) = f(C

0

) for allC

0

6= C and f

0

(C) =

�

f(C)+1 if f(C) < K

K otherwise

{ If d = C

�

, f

0

(C

0

) = f(C

0

) for all C

0

6= C, f(C) � 1 and

f

0

(C) =

�

f(C)�1 if f(C) < K

K otherwise

Noti
e that ea
h transition t = ((q; f); d; (q

0

; f

0

)) 2 T [K℄ 
orresponds to a unique tran-

sition (q; d; q

0

) 2 T , whi
h we denote t

�1

. For a sequen
e of transitions t

1

t

2

: : : t

n

, we

write (t

1

t

2

: : : t

n

)

�1

for t

�1

1

t

�1

2

: : : t

�1

n

. Note that for any sequen
e t

1

t

2

: : : t

n

of transi-

tions in T [K℄, �(t

1

t

2

: : : t

n

) = �((t

1

t

2

: : : t

n

)

�1

). Moreover, if (q

0

; f

0

0

)

t

1

t

2

:::t

n

=) (q

n

; f

0

n

) and

(q

0

; f

0

)

(t

1

t

2

:::t

n

)

�1

=) �

n

, then Q(�

n

) = q

n

.

Thus, the �nite-state automatonA[K℄ behaves like a 
ounter automaton ex
ept that it

deems any 
ounter whose value attains a value K to be \full" . On
e a 
ounter is de
lared

to be full, it 
an be de
remented as many times as desired. The following observations

are immediate.

Proposition 5.1

(i) If (q

0

; f

0

0

)

t

0

1

�! (q

1

; f

0

1

)

t

0

2

�! � � �

t

0

n

�! (q

n

; f

0

n

) is a 
omputation of A then, (q

0

; f

0

)

t

1

�!

(q

1

; f

1

)

t

2

�! � � �

t

n

�! (q

n

; f

n

) is a 
omputation of A[K℄ where

� t

0

1

t

0

2

: : : t

0

n

= (t

1

t

2

: : : t

n

)

�1

.
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� 8C 2 �: 8i 2 [1::n℄: f

i

(C) =

�

f

0

i

(C) if f

0

j

(C) < K for all j � i

K otherwise

(ii) Let (q

0

; f

0

)

t

1

�! (q

1

; f

1

)

t

2

�! � � �

t

n

�! (q

n

; f

n

) be a 
omputation of A[K℄. Then

there is a maximal pre�x t

1

t

2

: : : t

`

of t

1

t

2

: : : t

n

su
h that there is a 
omputation

(q

0

; f

0

0

)

t

�1

1

�! (q

1

; f

0

1

)

t

�1

2

�! : : :

t

�1

`

�! (q

`

; f

0

`

) of A with f

0

= f

0

0

. Moreover, if ` < n,

then for some 
ounter C, �(t

0

`+1

) = C

�

, f

0

`

(C) = 0 and there is a j < ` su
h that

f

0

j

(C) = K.

(iii) Let L(A[K℄) be the language over � [ �

�

a

epted by A[K℄. Let L

�

(A[K℄) = fw�

�

j w 2 L(A[K℄)g. Then, L(A) � L

�

(A[K℄).

Syn
hronised produ
ts of 
ounter automata

Produ
t automaton Let A

1

= (Q

1

;�

1

;�

1

; T

1

; q

1

in

; F

1

) andA

2

= (Q

2

;�

2

;�

2

; T

2

; q

2

in

; F

2

)

be two 
ounter automata. The produ
t automaton A

1

�A

2

is the stru
ture (Q

1

�Q

2

;�

1

[

�

2

;�

1

[ �

2

; T

1

� T

2

; (q

1

in

; q

2

in

); F

1

� F

2

), where ((q

1

; q

2

); d; (q

0

1

; q

0

2

)) 2 T

1

� T

2

i� one of the

following holds:

� d 2 (�

1

[ �

1

) \ (�

2

[ �

2

) and (q

i

; d; q

0

i

) 2 T

i

for i 2 f1; 2g.

� d 2 (�

1

[ �

1

) n (�

2

[ �

2

), (q

1

; d; q

0

1

) 2 T

1

and q

2

= q

0

2

.

� d 2 (�

2

[ �

2

) n (�

1

[ �

1

), (q

2

; d; q

0

2

) 2 T

2

and q

1

= q

0

1

.

For t = ((q

1

; q

2

); d; (q

0

1

; q

0

2

)) 2 T and i 2 f1; 2g, let �

i

(t) denote (q

i

; d; q

0

i

) if d 2 (�

i

[�

i

)

and the empty string " otherwise. As usual, �

i

(t

1

t

2

: : : t

n

) is just �

i

(t

1

)�

i

(t

2

) : : : �

i

(t

n

).

Thus, for a sequen
e of transitions � = t

1

t

2

: : : t

n

over T

1

�T

2

, �

1

(�) and �

2

(�) denote the

proje
tions of � onto the transitions ofA

1

andA

2

respe
tively. Clearly, �(t

1

t

2

: : : t

n

)�

(�

i

[�

i

)

= �(�

i

(t

1

t

2

: : : t

n

)) for i 2 f1; 2g.

We shall often write a 
on�guration ((q

1

; q

2

); f) of A

1

� A

2

as a pair of 
on�gura-

tions ((q

1

; f

1

); (q

2

; f

2

)) of A

1

and A

2

, where f

1

and f

2

are restri
tions of f to �

1

and �

2

respe
tively.

The following observations are easy 
onsequen
es of the de�nition of produ
t au-

tomata.

Proposition 5.2

(i) ((q

1

in

; 0); (q

2

in

; 0))

t

1

t

2

:::t

n

=) ((q

1

; f

1

); (q

2

; f

2

)) is a 
omputation of A

1

� A

2

if and only if

(q

1

in

; 0)

�

1

(t

1

t

2

:::t

n

)

=) (q

1

; f

1

) and (q

2

in

; 0)

�

2

(t

1

t

2

:::t

n

)

=) (q

2

; f

2

) are 
omputations of A

1

and

A

2

respe
tively.

(ii) If �

1

= �

2

and �

1

\ �

2

= ;, then L(A

1

�A

2

) = L(A

1

) \ L(A

2

).
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Regularity and 
losure under 
omplementation

Let L � �

�

be a language su
h that both L and its 
omplement L are a

epted by 
ounter

automata. Let L = L(A) and L = L(A), where we 
an assume that A and A use disjoint

sets of 
ounters. Then the language a

epted by A�A must be empty.

LetM be the number of states of A�A and N be the number of 
ounters that it uses.

LetK be a number greater than �

M;N;0

, the strong pumping 
onstant for (M;N; 0). Re
all

that A[K℄ = (Q[K℄; T [K℄; Q[K℄

in

; F [K℄) is a �nite-state automaton without 
ounters

working on the input alphabet � [ �

�

.

Lemma 5.3 L(A[K℄�A) = ;.

Proof: Let A[K℄ = (Q[K℄; T [K℄; Q[K℄

in

; F [K℄) and A = (Q;�;�; T ; q

in

F ). Ea
h 
om-

putation � of A[K℄ � A is of the form ((q

0

; 0); (q

0

; 0))

u

1

�! ((q

1

; f

1

); (q

1

; f

1

))

u

2

�! � � �

u

n

�!

((q

n

; f

n

); (q

n

; f

n

)), where, for i 2 [0::n℄, u

i

2 T [K℄� T .

By Propositions 5.1 and 5.2, 
orresponding to the sequen
e u

1

u

2

: : : u

n

there exists a

maximal sequen
e of transitions v

1

v

2

: : : v

m

of A�A where:

� Ea
h v

i

belongs to T � T .

� For ea
h i 2 [1::m℄, �

2

(v

i

) = �

2

(u

i

).

� For ea
h i 2 [1::m℄, �

1

(v

i

) =

�

(�

1

(u

i

))

�1

if �

1

(u

i

) 6= "

" otherwise

� �

0

: ((q

0

; 0); (q

0

; 0))

v

1

�! ((q

1

; f

0

1

); (q

1

; f

1

))

v

2

�! � � �

v

m

�! ((q

m

; f

0

m

); (q

m

; f

m

)) is a 
om-

putation of A�A.

� If m < n, then for some

^

C 2 �, �(u

m+1

) =

^

C

�

, f

0

m

(

^

C) = 0 and f

0

j

(

^

C) = K for some

j 2 [0::m℄.

Let us de�ne the residue length of � to be n�m.

Suppose that L(A[K℄�A) is non-empty. Sin
e L(A�A) is empty, it is easy to see that

any a

epting run of A[K℄�A has a non-zero residue length. Without loss of generality,

assume that the run � 
onsidered earlier is an a

epting run of A[K℄� A whose residue

length is minimal. Then, in the 
orresponding run �

0

of A�A, the 
ounter

^

C 2 � attains

the value K along �

0

and then goes to 0 at the end of the run so that the move labelled

^

C

�

is not enabled at ((q

m

; f

0

m

); (q

m

; f

m

)).

Sin
e K ex
eeds the strong pumping 
onstant for A� A, by Lemma 4.3 we 
an �nd

an alternative run �̂

0

: ((q

0

; 0); (q

0

; 0))

v

0

1

v

0

2

:::v

0

`

=) ((q

0

`

; f

0

`

); (q

0

`

; f

0

`

)) with (q

0

`

; q

0

`

) = (q

m

; q

m

),

f

0

`

(

^

C) � K, and all other 
ounter values at (f

0

`

; f

0

`

) at least as large as at (f

m

; f

0

m

). In

parti
ular, every 
ounter whi
h ex
eeded the 
uto� value K along �

0

is pumpable and

thus ex
eeds K along �̂

0

as well.

By Propositions 5.1 and 5.2, we 
an 
onstru
t a 
orresponding sequen
e of transitions

u

0

1

u

0

2

: : : u

0

`

over T [K℄�T su
h that �

1

(v

0

1

v

0

2

: : : v

0

`

) = (�

1

(u

0

1

u

0

2

: : : u

0

`

))

�1

and �

2

(v

0

1

v

0

2

: : : v

0

`

) =

�

2

(u

0

1

u

0

2

: : : u

0

`

), where �̂ : ((q

0

; 0); (q

0

; 0))

u

0

1

u

0

2

:::u

0

`

=) ((q

00

`

; f

00

`

); (q

0

`

; f

0

`

)) is a run of A[K℄ � A

with (q

00

`

; q

0

`

) = (q

m

; q

m

) and f

00

`

(C) � f

m

(C) for ea
h C 2 �.
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We already know that f

0

`

(C) � f

m

(C) for ea
h C 2 �. Further, sin
e every 
ounter

whi
h ex
eeded the 
uto� value K along �

0

also ex
eeds K along �̂

0

, we know that any


ounter whi
h has be
ome full along � would also have be
ome full along �̂. Thus, we 
an

extend �̂ to an a

epting run � by appending the sequen
e of transitions u

m+1

u

m+2

: : : u

n

whi
h o

ur at the end of the a

epting run �.

Re
all that �(u

m+1

) =

^

C

�

and f

0

`

(

^

C) � 1 by our 
hoi
e of �̂

0

. From this, it follows

that the residue length of the newly 
onstru
ted a

epting run � is at least one less than

the residue length of �, whi
h is a 
ontradi
tion, sin
e � was assumed to be an a

epting

run of minimal residue length. 2

Theorem 5.4 Let L be a language over �. L and L are 
ounter re
ognisable i� L is

regular.

Proof: Let L = L(A) and L = L(A). De�ne A[K℄ as above. We 
laim that L

�

(A[K℄) =

L(A).

By Proposition 5.1, we know that L(A) � L

�

(A[K℄).

On the other hand, from the previous lemma it follows that L

�

(A[K℄) \ L(A) = ;.

This implies that L

�

(A[K℄) � L(A), whi
h means that L

�

(A[K℄) � L(A).

So L(A) = L

�

(A[K℄). Sin
e A[K℄ is a �nite- state automaton, it follows that L(A)

is regular. Therefore, if a language and its 
omplement are 
ounter re
ognisable then the

language is regular.

The 
onverse is obvious: if L is a regular language, we 
an �nd �nite-state automata

re
ognising both L and L. Sin
e �nite-state automata are trivial examples of 
ounter

automata, both L and L are 
ounter re
ognisable. 2

Observe that our 
onstru
tion is e�e
tive|given automata A and A for L and L respe
-

tively, we 
an 
onstru
t a �nite-state automaton A[K℄ for L.

Regularity and 
losure under reversal

Suppose L is re
ognised by the deterministi
 
ounter automaton A and L-reverse is

a

epted by the 
ounter automaton B. We will show that there is a 
onstant � , depending

on the number of states M and the number of 
ounters N of A, su
h that A[� ℄ re
ognises

L.

Overview

The proof has two parts.

Part 1. We assume that L(A[� ℄) 6= L and 
on
lude from this that there exist strings

�; 
 2 �

�

su
h that

8i � 1: 9� 2 �

�

: 9n: [��

i


 2 L & 8j � n: ��

j


 62 L℄:
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Part 2. We 
onsider the reverse of the language L. Part 1 shows that there exist strings

^

�; 
̂ 2 �

�

su
h that

8i � 1: 9� 2 �

�

: 9n: [
̂

^

�

i

�̂ 2 L-reverse & 8j � n: 
̂

^

�

j

�̂ 62 L-reverse℄: (1)

On the other hand, we will show that for all 
ounter automata B and all �; 
 2 �

�

,

there exists an n su
h that if 
�

i

� 2 L(B) for some i � n, then 
�

j

� 2 L(B) for

in�nitely many j. Thus, it follows from (1) that L-reverse is not 
ounter re
ognisable.

This 
ontradi
tion shows that our assumption L 6= L(A[� ℄) (of Part 1) is false. We thus

have L = L(A[� ℄), and in parti
ular, that L is regular.

Notation.

� While analysing the 
omputation of 
ounter automata, we will permit 
ounters

to assume negative values. We refer to su
h 
omputations as free runs, and use

�

0

t

; �

m

to denote the free run 
orresponding to the sequen
e of transitions t,

starting from 
on�guration �

0

and ending at 
on�guration �

m

, passing through


on�gurations �

i

.

� Let A be a 
ounter automaton with M states and N 
ounters. We say that the


ounter C is saturated in the free run �

0

u

; �

m

, if for some i 2 [0::m℄, C(�

i

) �

�

M;N;0

, and for all j < i, C(�

j

) � 0.

Constants. In the rest of this se
tion we write � for �

M;N;0

. Let

� = M ��

N

+ 1;

� = N � �:

Part 1

Lemma 5.5 Suppose t is a sequen
e of transitions su
h that (q

in

; 0)

t

=) is an a

epting

run of A[� ℄ but not of A. Then, we have t = uvw with the free run

�

0

u

; �

i

v

; �

j

w

; �

n

;

where 0 < i < j < n, su
h that

(i) For some 
ounter

^

C, �

^

C

(v) < 0.

(ii) Q(�

i

) = Q(�

j

).

(iii) If for some 
ounter C, �

C

(v) 6= 0 or C assumes a negative value on the free run of

A 
orresponding to t, then C is saturated in the free run A

u

;.
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Proof: Let t = t

1

t

2

: : : t

n

. Consider the free run 
orresponding to t,

� : (q

in

; 0) = �

0

t

1

; �

1

t

2

; � � �

t

n

; �

n

:

Sin
e this is not an a

epting run of A, there is a j < n and a 
ounter C su
h that

C(�

j

) < 0. Sin
e (q

in

; 0)

t

=) is an a

epting run of A[� ℄, there must be an i < j, where

C(�

i

) = � . Choose ` to be the maximum i su
h that there is a 
ounter

^

C satisfying the

following two 
onditions.

�

^

C(�

i

) = � .

� For some j > i,

^

C(�

j

) < 0.

Let m be the minimum j > ` su
h that

^

C(�

j

) = 0. Note that m < n, be
ause there is a

j > ` where

^

C(�

j

) < 0.

Let x = t

1

t

2

: : : t

`

, y = t

`+1

t

`+2

: : : t

m

and z = t

m+1

t

m+2

: : : t

n

. Sin
e

^

C(�

`

) = � and

^

C(�

m

) = 0, in the 
omputation

�

`

t

`+1

; �

`+1

t

`+2

; � � �

t

m

; �

m

;

^

C takes all values in the range [0::� ℄. For j 2 [0; N ℄, let k

j

be the minimum k 2 [`::m℄

su
h that

^

C(�

k

) = � � j�. The 
omputation on xy 
an then be written as

�

0

: �

0

y

0

=x

; �

`

= �

k

0

y

1

; �

k

1

y

2

; � � �

y

N

; �

k

N

= �

m

:

Let �

0

be the set of 
ounters that assume a value � or bigger somewhere in �

0

. For C 2 �

0

,

let j

C

be the minimum j su
h that C assumes a value � or bigger in the segment of the

above 
omputation 
orresponding to y

j

. In parti
ular, j

^

C

= 0 be
ause

^

C(�

`

) = � � �

and �

0

y

0

; �

`

. There are only j�

0

j � N 
ounters, whereas there are N +1 segments. Thus,

there is a j 2 [0::N ℄ su
h that j 6= j

C

for all C 2 �

0

. Let |̂ be the minimum su
h j; sin
e

j

^

C

= 0, we have |̂ 6= 0. Consider the 
omputation 
orresponding to y

|̂

,

�

00

: �

0

0

t

0

1

; �

0

1

t

0

2

; � � �

t

0

h

; �

0

h

;

where t

0

i

= t

k

|̂�1

+i

, �

0

i

= �

k

|̂�1

+i

and h = k

|̂

�k

|̂�1

. In this 
omputation the value of

^

C falls

from � � (|̂� 1)� to � � |̂�, that is, by �. For i 2 [0::�℄, let p

i

be the minimum p 2 [0::h℄

su
h that

^

C(�

0

p

) =

^

C(�

0

0

)� i = � � (|̂� 1)�� i. Then, �

00


an be written as

�

00

= �

00

0

y

0

1

; �

00

1

y

0

2

; �

00

2

y

0

3

; � � �

y

0

�

; �

00

�

;

where �

00

i

= �

0

p

i

for i 2 [0::�℄. Let �

00

be the set of 
ounters whose values in �

00

after �

00

0

are less than �. Sin
e � = M�

N

+ 1, there exist r; s 2 [1::�℄, r < s, su
h that

(C1) C(�

00

r

) = C(�

00

s

), for all C 2 �

00

.

(C2) Q(�

00

r

) = Q(�

00

s

).

The de�nition of �

00

i

implies

(C3)

^

C(�

00

r

) =

^

C(�

k

j�1

)� r >

^

C(�

k

j�1

)� s =

^

C(�

00

s

).
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Now let

u = xy

1

y

2

: : : y

|̂�1

y

0

1

y

0

2

: : : y

0

r

;

v = y

0

r+1

y

0

r+2

: : : y

0

s

;

and w = y

0

s+1

y

0

s+2

: : : y

0

�

y

|̂+1

y

|̂+2

: : : y

N

z:

We 
laim that this 
hoi
e of u, v and w satis�es the requirements of the lemma. Clearly,

t = uvw. Part (i) of the lemma follows immediately from 
ondition (C3) above; part (ii)

follows from 
ondition (C2). We now 
onsider part (iii).

If C be
omes negative in the free run �, then it must assume the value � somewhere

before that, be
ause (q

in

; 0)

t

=) is an a

epting run in A[� ℄. By the maximality of `, this

happens at or before �

`

. Thus, C is saturated in the free run �

0

u

;. Next, we 
onsider


ounters C su
h that �

C

(v) 6= 0. We may assume that C does not be
ome negative in

�, for we have just taken 
are of all su
h 
ounters. By 
ondition (C1) above, C 62 �

00

.

That is, C takes a value � or bigger after �

00

0

in the 
omputation �

00

. Thus, j

C

� |̂. Sin
e

|̂ 6= j

C

for all C, we have j

C

< |̂. Hen
e, C is saturated in the free run �

0

u

;. 2

We need the following pumping lemma for free runs.

Lemma 5.6 Suppose �

0

t

; �

m

is a free run of A, where every 
ounter that assumes a

negative value is saturated. Let �

0

be the set of 
ounters saturated in this run. Then, for

all K, A has a run �

0

0

t

0

=) �

0

m

0

su
h that �

0

= �

0

0

, Q(�

0

m

0

) = Q(�

m

), F (�

0

m

0

) � F (�

m

)

and C(�

0

m

0

) � K for all C 2 �

0

.

Proof: Similar to the proof of the Counter Pumping Lemma. Omitted. 2

Proof of Part 1. If L 6= L(A[� ℄), then there exists a string a 2 L(A[� ℄) n L. Let

(q

in

; 0)

t

=) be the shortest a

epting run of A[� ℄ su
h that �(t)�

�

= a. Clearly, �

0

t

; is

a free run of A, but sin
e a 62 L, this is not an a

epting run of A. Using Lemma 5.5, we

obtain a de
omposition t = uvw su
h that the free run

�

0

u

; �

`

v

; �

m

w

; �

n

;

(0 < ` < m < n) satis�es (i), (ii) and (iii). Let � = �(v)�

�

and 
 = �(w)�

�

. We �rst

show that for all i � 1 there is an � su
h that ��

i


 2 L.

Fix i � 1. Part (ii) implies that there is a free run of the form

�

0

0

u

; �

0

`

0

v

i

; �

0

m

0

w

; �

0

n

0

;

where �

0

= �

0

0

and Q(�

0

n

0

) = Q(�

n

). Part (iii) implies that all 
ounters that assume

a negative value in this run are saturated in the initial segment �

0

0

u

; �

0

`

0

. We apply

Lemma 5.6 to this initial segment with

K = max

C;l

0

�j�n

0

jC(�

0

j

)j:
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We obtain u

0

su
h that in the run �

0

u

0

=) �

00

, Q(�

00

) = Q(�

0

`

0

), C(�

00

) � C(�

0

`

) for all C

and C(�

00

) � K for all 
ounters saturated in �

0

0

u

; �

0

`

0

. Then, A

u

0

v

i

w

=) is an a

epting run

of A. In parti
ular, �(u

0

v

i

w) = ��

i


 2 L, where � = �(u

0

)�

�

.

It remains to show that ��

j


 62 L, for all large enough j. We �rst observe that �(v)�

�

is not empty. For otherwise, sin
e A is deterministi
, the set of states of A that appear

in the run �

m

w

; �

n

is a subset of the set of states that appear in the run �

`

v

; �

m

.

This implies that Q(�

n

) = Q(�

j

), for some j 2 [`::m℄, and, furthermore, that �(w)�

�

is

empty. But then �

0

t

; is not the shortest a

epting run of A[� ℄ with �(t)�

�

= a. This


ontradi
tion shows that �(v)�

�

is not empty.

Clearly, for all j � 1 we have the free run �

0

uv

j

w

; . Sin
e �

^

C

(v) < 0, for all large enough

j this is not an a

epting run of A. Suppose ��

j


 2 L for some su
h j. Then, sin
e A is

deterministi
, we have uv

j

w = t

1

t

2

, where �

0

t

1

=) is an a

epting run of A and �(t

2

)�

�

is

empty, whi
h implies that jt

2

j < jvwj. Let jt

2

j = k; we have 1 � k < jvwj. Now �

0

t

1

=) is

an a

epting run of A. By 
omparing this run with the run �

0

t

=) �

n

, we observe that

Q(�

n�k

) is a �nal state of A. But then �(t

1

t

2

: : : t

n�k

)�

�

= a and �

0

) t

1

t

2

: : : t

n�k

is an

a

epting run of A[� ℄, 
ontradi
ting the minimality of t. Hen
e, ��

j


 62 L for all large

enough j. 2

Part 2.

Lemma 5.7 There exists a fun
tion A(M;N;K; L) su
h that if � : �

0

t

=) is a K-run of

a 
ounter automata A with M states and N 
ounters su
h that

� j�(t)�

�

j � L and

� jtj � A(M;N;K; L),

then t = uvw su
h that

� �

0

u

=) �

0

v

=) �

00

w

=);

� Q(�

0

) = Q(�

00

) and F (�

0

) � F (�

00

);

� �(v

0

) is non-empty but has no symbols from �.

Proof: Let

A(M;N;K; L) =

�

�

M;N;K

if L = 0

�

M;N;K

+ A(M;N;K + �

M;N;K

; L� 1) if L � 1

:

We will prove by indu
tion on L that A(M;N;K; L) de�ned above satis�es the require-

ments of the lemma.

Basis: If L = 0, the 
laim follows from the de�nition of the weak pumping 
onstant.

Indu
tion step: Let � : �

0

t

0

=) �

1

a

�! �

2

t

00

=), where t

0

is the maximal pre�x of t with no

symbols from �, and a 2 �. If jt

0

j � �

M;N;K

, then the 
laim follows from the de�nition

of the weak pumping 
onstant.

Otherwise, �

2

t

00

=) is a (K + �

M;N;K

)-run. Also, j�(t

00

)�

�

j = j�(t)�

�

j � 1 and

jt

00

j � t� �

M;N;K

� A(M;N;K + �

M;N;K

; L� 1):
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The 
laim then follows from the indu
tion hypothesis. 2

Note. In the above lemma, we 
an assume that juvj � A(M;N;K; L), for we 
an always

restri
t ourselves to the pre�x of t of length exa
tly A(M;N;K; L).

Lemma 5.8 Suppose A is a 
ounter automaton withM states and N 
ounters. Let (l

i

)

1

i=0

be a sequen
e of non-negative integers. Then there exists a 
onstant B = B(M;N;K; (l

i

))

su
h that if

� : �

0

v

0

=) �

1

v

1

=) � � �

v

B�1

=) �

B

;

where jv

i

j � l

i

, then there exist i; j 2 [1; B℄, i < j, su
h that Q(�

i

) = Q(�

j

) and F (�

i

) �

F (�

j

).

Proof: We will modify the proof of Lemma 2.7. Consider the following in�nite tree

T whose nodes are labelled by elements of N

N

. The root of T is labelled by F (�

0

). If

a node at level i (the root is at level 0) is labelled by f , then v has one 
hild for ea
h

N -tuple obtained by performing at most l

i

in
rement and de
rement operations on the


omponents of f .

Clearly, T is �nitely bran
hing and in�nite. By Lemma 2.6 there exists �

k

su
h that

along any path in T of length �

k

starting at the root, the 
orresponding sequen
e of labels

has a non-de
reasing subsequen
e of length k. Now �

k

depends only on the tree T , whi
h

is unique if the label of the root and the sequen
e (l

i

) are �xed. The label of the root has

at most (K +1)

N

possibilities; hen
e there exists a fun
tion �(k;M;N;K; (l

i

)), su
h that

in every su
h tree in every path of length �(k;M;N;K; (l

i

)) starting from the root, the


orresponding labels have a non-de
reasing sequen
e of length at least k.

We set B(M;N;K; (l

i

)) = �(M+2;M;N;K; (l

i

)) and 
omplete the proof of the lemma

by arguing as in Lemma 2.7. (We have M + 2 and not M + 1 be
ause in the lemma we

want i 6= 0.) 2

Lemma 5.9 (Part 2) Let A be a 
ounter automaton with M states and N 
ounters.

There exists a 
onstant E = E(M;N;K; `) su
h that if �

0

t

=) is an a

epting K-run of

A, where �(t)�

�

= 
�

m

� (j�j; j
j � `), and m � E, then for in�nitely many j there is an

a

epting run �

0

t

j

=) with �(t

j

)�

�

= 
�

j

�.

Proof: De�ne the sequen
e (`

i

(M;N;K)) by

l

0

= A(M;N;K);

l

i

= A(M;N;K + `

1

+ `

2

+ � � �+ `

i�1

):

Let D(M;N;K) = B(M;N;K; (`

i

(M;N;K))) and

`(M;N;K) =

D(M;N;K)�1

X

i=1

l

i

(M;N;K):
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Then, E(M;N;K) is de�ned by

E(M;N;K; `) =

�

B(M;N;K; (`)) if N=0:

D(M;N;K) + E(M;N � 1; K + `(M;N;K); `) if N > 1

:

(Here (`) denotes the in�nite sequen
e all of whose terms are `.)

We will use indu
tion on the number of 
ounters to show that E as de�ned above

meets the requirements of the lemma.

Basis: If N = 0, there are no 
ounter moves. The 
laim then follows from Lemma 5.8.

Indu
tion step: Assume t is minimal su
h that �

0

t

=) is an a

epting K-run of A with

�(t)�

�

= 
�

m

� (m � E). We may write this 
omputation as

�

0

v

0

=) �

1

v

1

=) �

2

v

2

=) � � �

v

m

=) �

m+1

w

=) �

f

;

where �(v

0

) �

�

= 
, �(v

i

) �

�

= � for i 2 [1::m℄ and �(w) �

�

= �. If jv

i

j � `

i

for i 2

[0::D(M;N;K)� 1℄, then the 
laim follows from Lemma 5.8.

Otherwise, there exists an i 2 [0::D(M;N;K) � 1℄ su
h that jv

i

j � `

i

. Let i be the

smallest with this property. By Lemma 5.7, for this i, we may write the 
omputation on

v

i

as

�

i

v

=) �

0

v

0

=) �

00

v

00

=) �

i+1

;

where Q(�

0

) = Q(�

00

), F (�

0

) � F (�

00

), where �(v

0

) is nonempty but has no input symbols.

Sin
e t is minimal, we have F (�

0

) < F (�

00

). Fix a 
ounter C su
h that �

C

(v

0

) > 0. Next,


onsider the 
omputation after v

0

, that is

�

00

v

00

=) �

i+1

v

i+1

=) �

i+2

v

i+2

=) � � �

v

m

=) �

m+1

w

=) �

f

:

Here we treat C

+

and C

�

as elements of the input alphabet. As noted above, we may

assume jvv

0

j � `

i

. Thus, jv

0

: : : v

i�1

vv

0

j � `(M;N;K). Also, �(v

00

v

i+1

: : : v

m

w)�

�

= 


0

�

j

�,

where

j � E(M;N;K; `)�D(M;N;K) � E(M;N � 1; K + `(M;N;K); `):

We apply the indu
tion hypothesis to this 
omputation. For in�nitely many j we obtain

t

0

j

su
h that X

00

t

0

j

=) is an a

epting 
omputation of A and �(t

j

)�

�

= 


0

�

j

�.

Sin
e �

C

(v

0

) > 0, it is easily veri�ed that for suÆ
iently large k and

t = v

0

v

1

: : : v

i�1

vv

0k

v

00

t

0

j

;

�

0

t

=) is an a

epting 
omputation of A. Sin
e �(v

0

) has no input symbols, this implies

that for in�nitely many j, there is a t

j

su
h that �

0

t

j

=) is an a

epting 
omputation of

A and �(t

j

)�

�

= 
�

j

�. 2

6 Dis
ussion

In this 
on
luding dis
ussion, we point out similarities and di�eren
es between our work

and earlier results from the theory of ve
tor addition systems and Petri nets. We also

identify some dire
tions for further work in developing our model of �nite-state distributed

systems with asyn
hronous 
ommuni
ation.
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Ve
tor addition systems

An n-
oordinate ve
tor addition system (VAS) 
onsists of a �nite set of initial ve
tors and

a �nite set of transition ve
tors. Ea
h initial ve
tor is an n-tuple of natural numbers and

ea
h transition ve
tor is an n-tuple of integers. An n-tuple of natural numbers is rea
hable

if it 
an be generated from an initial ve
tor by performing a sequen
e of additions with

ve
tors from the set of transitions while ensuring that ea
h intermediate ve
tor generated

is non-negative.

In [KM69℄, Karp and Miller study various de
ision problems for ve
tor addition sys-

tems. They show how to asso
iate with ea
h VAS a �nite obje
t 
alled its 
overing tree.

This 
an be used to solve a number of other questions, in
luding whether the set of rea
h-

able ve
tors of the VAS is �nite. These results have immediate appli
ability in the theory

of Petri nets be
ause a Petri net 
an be represented as a VAS. Our Counter Pumping

Lemma (Lemma 4.3) is similar in spirit to Karp and Miller's 
overing tree result.

Petri net languages

It is well known that there is a strong 
onne
tion between automata with blind 
ounters

and Petri nets [G78, J86a℄. It is not diÆ
ult to show that we 
an go ba
k and forth

between labelled Petri nets and 
ounter automata in su
h a way that given a net N and

its 
orresponding 
ounter automaton A, there is bije
tion a between the �ring sequen
es

of N and the 
omputations of A. Thus, questions about Petri net languages 
an rephrased

as questions about languages a

epted by 
ounter automata.

There are several ways to asso
iate a language with a Petri net [H75, J86a℄. The �rst is

to just examine all �ring sequen
es of the net. The se
ond is to �x a set of �nal markings

and look at the labels along �ring sequen
es leading to these designated markings. The

third possibility is to �x �nal markings but only require a �ring sequen
e to lead to a

marking whi
h dominates a �nal marking rather than be exa
tly equal to a �nal marking.

Following the terminology of [J86a℄, we designate the 
lass of languages generated by these

three de�nitions L, L

0

and L

1

respe
tively. When transitions are allowed to have invisible

labels, the 
orresponding 
lasses of languages are designated L

�

, L

�

0

and L

�

1

respe
tively.

In the setting of 
ounter automata, the �rst de�nition 
orresponds to examining the set

of 
omputations of the automaton. The se
ond de�nition yields a de�nition of a

epting

runs in terms of both �nal states and �nal 
ounter values. The third de�nition 
orresponds

more dire
tly to the one we use in this paper|the �nal states are �xed but the �nal


ounter values are irrelevant.

In the theory of Petri net languages, a number of positive results have been established

for the 
lass L|for instan
e, regularity is de
idable [GY80, VV80℄. On the other hand,

it is quite easy to exhibit languages from the 
lass L

1

(and hen
e, 
ounter re
ognisable

languages) where the language itself is regular but the underlying language of transitions

is not. Hen
e the results of [GY80, VV80℄ do not 
arry over to 
ounter re
ognisable

languages|in fa
t, the problem of de
iding whether a 
ounter re
ognisable language is

regular is open.

At the other end of the spe
trum, a number of negative results have been established

for the 
lass L

0

(and hen
e also L

�

0

). For instan
e, it is unde
idable whether su
h a

language is universal|that is, whether it 
onsists of all strings [VV80℄. However, this

result 
ru
ially uses the fa
t that �nal markings must be rea
hed exa
tly. The problem
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of de
iding whether a 
ounter re
ognisable language is universal is open.

Few, if any, results have been proved for the 
lasses L

1

and L

�

1

, whi
h 
orrespond

most 
losely to 
ounter re
ognisable languages. Our 
hara
terisation of the sub
lass


losed under 
omplementation is probably the only non-trivial result known for this 
lass.

Noti
e that this 
hara
terisation fails for the 
lass L

0

|it is possible to 
onstru
t nets for

both the language L

ge

of Example 2.1 and its 
omplement, though L

ge

is not regular.

Counter re
ognisable languages and message-passing

How 
an we interpret our results on 
ounter re
ognisable languages in terms of distributed

systems for asyn
hronous 
ommuni
ation? We say that an asyn
hronous proto
ol is ro-

bust if it responds \sensibly" to any sequen
e of intera
tions with the environment|in

other words, for any su
h sequen
e, it either a

epts the sequen
e as valid or terminates

with an error. When we model asyn
hronous proto
ols by 
ounter automata, the strings

a

epted by the automaton 
orrespond to sequen
es of intera
tions with the environment.

For a robust proto
ol, both the set of intera
tions a

epted by the proto
ol and the set

of intera
tions reje
ted by the proto
ol are 
ounter re
ognisable. Our 
hara
terisation of

the 
omplementation-
losed subset of 
ounter re
ognisable languages then tells us that all

robust proto
ols use only bounded bu�ers. Any messages ex
hanged by pro
esses follow-

ing a robust proto
ol 
an be viewed as just hand-shakes whi
h 
oordinate the intera
tion

between the di�erent pro
esses and the environment.

One short
oming of our model is that we impli
itly sequentialise all the intera
tions of

a distributed system into a sequen
e of global intera
tions. It would be more satisfying to

build a theory where we separate the intera
tion of ea
h pro
ess and allow our automata

to read n-tuples of strings, where n is the number of pro
esses. It is not obvious how to

extend the notion of a robust proto
ol to this setting. One possibility is to use the fa
t

we 
an keep tra
k of the latest information ea
h pro
ess has about every other pro
ess

in a message-passing system using the algorithm proposed in [MNS95℄. In the theory of

syn
hronous 
ommuni
ation, an analogous result is the key to generating a distributed

�nite-state system re
ognising an n-tuple of strings from a global des
ription of su
h a

system [MS94, Z87℄. We have some preliminary results in this dire
tion.
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