Internal Report TCS-97-4
September, 1997

Message-Passing Automata and Asynchronous Communication

(Preliminary Version)

Madhavan Mukund! K Narayan Kumar!
Jaikumar Radhakrishnan? Milind Sohoni?

Abstract

This paper is a step towards developing a new automata-theoretic framework for
describing distributed finite-state systems with asynchronous communication. If we
assume that messages can be delayed arbitrarily in transit, it is reasonable to model
the global behaviour of such systems in terms of finite-state automata equipped
with blind counters—that is, counters which cannot be tested for zero.

We analyse the languages accepted by such automata and show that it is de-
cidable whether the language of such an automaton is empty. We also develop a
variety of pumping lemmas which can be used to show that certain languages are
not accepted by these automata.

Our main result is that the subclass of languages accepted by these automata
which is closed under complementation is precisely the class of regular languages.
In the context of asynchronous protocols, our result implies that robust finite-state
protocols use bounded buffers. In other words, messages are used only for hand-
shaking—that is, for coordinating the interaction between different processes and
the environment.

It is well known that automata with blind counters are closely related to Petri
nets. However, our definition of languages is more appropriate for reasoning about
asynchronous communication and is different from the definition used in the theory
of Petri nets.

I1SPIC Mathematical Institute, 92 G.N. Chetty Road, Madras 600 017, India. E-mail:
{madhavan kumar}@smi.ernet.in

2Computer Science Group, Tata Institute of Fundamental Research, Homi Bhabha Road, Bombay
400 005, India. E-mail: jaikumar@tcs.tifr.res.in

3Dept of Computer Sc. and Engg., Indian Institute of Technology, Bombay 400 076, India. E-mail:
sohoni@cse.iitb.ernet.in

1 Introduction

Today, distributed systems which use asynchronous communication are ubiquitous—the
Internet is a prime example. However, there has been very little work on studying
the finite-state behaviour of such systems. In particular, this area lacks a satisfac-
tory automata-theoretic framework. In contrast, automata theory for systems with syn-
chronous communication is well developed via Zielonka’s asynchronous automata [Z87]
and the connections to Mazurkiewicz trace theory [M78§].

This paper is a step towards developing an automata-theoretic framework for de-
scribing distributed finite-state systems with asynchronous communication. Earlier at-
tempts at defining such models of asynchronous systems deal primarily with infinite-state
systems—for instance, the port automaton model of Panangaden and Stark [PS88] and
the I/O automaton model of Lynch and Tuttle [LT87]. Also, earlier work has focussed on
issues far removed from those which are traditionally considered in the study of finite-state
systems.

The setting for our work is as follows. Consider a system in which a collection of
finite-state machines communicate by sending messages via buffered channels. Suppose
that there are only finitely many different kinds of messages. Messages may experience
arbitrary delays in transit, though they always eventually reach their recipient. At an
abstract level, Internet protocols such as the SMTP mail protocol fit into this paradigm.
Another example is the protocol used in a banking network to exchange information
between ATMs and the bank’s distributed databases.

Since messages may get reordered in transit, the state of such a system is completely
described by the state of the components and the number of messages of each kind which
have been sent but are as yet undelivered. Thus, at a global level, such systems can
be treated as finite-state automata equipped with a finite number of counters, one for
each type of message. The only operations permitted on the counters are increment
and decrement (corresponding to sending and receiving the appropriate type of message
respectively). The automaton cannot test if a counter’s value is zero—this restriction
captures the intuition that it is not practical for a component to make a decision based
on the assumption that another process has not sent a message, since messages may be
delayed arbitrarily.

With this motivation, we define counter automata and study the languages they ac-
cept. Each move of a counter automaton consists of either reading a letter from the
input or manipulating a counter. Reading from the input represents the interaction of
the underlying distributed system with its environment. We study the languages (over
the input alphabet) accepted by these automata.

Our main concern is when such a language is regular. An automaton which accepts
a regular language represents a communication protocol whose interaction with the en-
vironment is regular. Such a protocol essentially uses only bounded buffers. Our main
result is that a language L accepted by a counter automaton is regular if and only if the
complement of L is also accepted by a counter automaton. In the context of asynchronous
protocols, our result implies that robust finite-state protocols use only bounded buffers.
In other words, messages are used only for hand-shaking, to coordinate the interaction
between different processes and the environment. Along the way, we develop a variety of
tools and techniques for reasoning about counter automata, including a number of pump-
ing lemmas which are useful for showing when languages are not recognisable by counter

automata.

The automata we consider are closely related to automata with blind counters, studied
by Greibach [G78]. In turn, these automata are closely related to Petri nets [J86a, J86b].
Some of the techniques we develop are analogous to well-known results in Petri net theory,
such as the covering tree construction of Karp and Miller [KM69]. However, our definition
of languages is more appropriate for reasoning about asynchronous communication and
is different from the definition used in Petri net theory. Towards the end of the paper,
we discuss the connection between our framework and Petri net languages.

Recently, Abdulla and Jonsson have also studied decision problems for distributed
systems with asynchronous communication [AJ93, AJ94]. However, they work in a setting
where messages are delivered in the order in which they are sent. This means that the
channels are unbounded, fifo buffers. With such a strong model, most interesting questions
become undecidable. The results of [AJ93] show that the fifo model can be made tractable
by assuming that messages may be lost in transit. With lossy channels, questions such as
reachability of configurations and equivalence with respect to finite-state automata can be
decided, though certain other questions remain undecidable [AJ94]. While their results
are incomparable with ours, since the two models are orthogonal, we remark that all their
positive results hold for our model as well.

The paper is organised as follows. In the next section we define counter automata and
prove some basic results about them. In Section 3 we prove a Contraction Lemma which
leads to decidability of the emptiness problem and the fact that the languages accepted
by counter automata are not closed under complementation. Section 4 develops a family
of pumping lemmas which are exploited in Section 5 to prove our main result concerning
the regularity of languages accepted by counter automata. In the final section, we discuss
in detail the connection between our results and those in Petri net theory and point out
directions for future work.

2 Counter Automata

Natural numbers and tuples As usual, N denotes the set {0,1,2,...} of natural
numbers. If 4,5 € N, [i..j] denotes the set {i,i+1,...,j} with the convention that
[i..j] = 0 if i > j. We compare k-tuples of natural numbers component-wise: let

m = (my,mag,...,mg) and @ = (ny,ng,...,ng) be k-tuples of natural numbers. Then
m < n iff m; < n; for each i € [1..k].

Counter automata A counter automaton A is a tuple (Q, X, ', T, ¢in, F'), where:

e () is a finite set of states, with initial state ¢, and accepting states F' C Q.
e Y is a finite input alphabet.

e I'is a finite set of counters. We use C,C’, ... to denote counters. With each counter
C, we associate two symbols, C™ and C~. We write I'" for the set {C*|C € T'}, '~
for {C~|C €T} and I'* for TT UT .

e TCQx(ZUTlF) x Q is the transition relation.

Configurations A configuration of A is a pair (¢, f) where ¢ € Q and f: ' — Nis a
function which records the values stored in the counters. If the counters are C, Cs, ..., Cy
then we represent f by an element (f(C)), f(Ca),..., f(Ck)) of N*. By abuse of nota-
tion, the k-tuple (0,0, ...,0), representing the function which assigns 0 to all counters, is
uniformly denoted 0, for all values of k.

The function f dominates the function f’, written f > f' if f(C) > f'(C) for every
counter C'. The function f strictly dominates the function f', written f > f', if f > f'
and there is a counter C' such that f(C) > f'(C).

We use y to denote configurations. If x = (¢, f), Q(x) denotes ¢ and F(x) denotes f.
Further, for each counter C', C(x) denotes the value f(C).

Moves The automaton moves from configuration x to configuration x' on d € ¥ UT*
if (Q(x),d,Q(x')) € T and one of the following holds:

e de X and F(x) = F(x').

e d=CT,C(x')=C(x)+1and C'(x) = C'(x) for every C" # C.

e d=C",C(xX)=C(x)—1>0and C'(x) = C'(Y) for every C" £ C.
Such a move is denoted x (@dg) x'—in other words, transitions are labelled by ele-
ments of T rather than elements of ¥ U T'*. Given a sequence of transitions tit,...t, =

(q1,d1,92)(q2,d2,G3) - - - (Gn, dn, ¢uy1), the corresponding sequence of letters dids . . . d,, from
Y UT* is denoted a(tity ... t,).

Computations, runs and languages A computation of A is a sequence g b, X1 N
N Xn- We also write xg filzedn Xn» to indicate that there is a computation labelled
tity ... t, from xo to x,. Notice that xo and tit5...%, uniquely determine all the inter-
mediate configurations xi, x2, ..., Xs. If the transition sequence is not relevant, we just
write xo = Xn. As usual, y nl2=dn Jenotes that there exists X' such that x flaedn x' and
X = denotes that there exists x' such that y = x’.

For K € N, a K-run of A is a computation xo = x, where C(xy) < K for each
Cel.

If § is a string over ¥ U I'¥, §]y; denotes the subsequence of letters from ¥ in §. Let
W = aiasy...a; be a string over ¥. A run of A over w is a 0-run Yy flzedn Xn Where
Q(x0) = ¢in and a(tits...t,) v = w. The run is said to be accepting if Q(x,) € F. The
string w is accepted by A if A has an accepting run over w. The language accepted by A,
denoted L(.A), is the set of all strings over ¥ accepted by A.

A language over ¥ is said to be counter recognisable if there is a counter automaton
with input alphabet ¥ that accepts this language.

Example 2.1 Let Ly, C {a,b}* be given by {a™b" | m > n}. This language is counter
recognisable. Here is an automaton for Le.. The initial state is indicated by | and the
final states have an extra circle around them.

OO —-O=20)

2.1 Non-determinism versus determinism

Deterministic Counter Automata A counter automaton A = (Q, %X, I, T, ¢y, F) is
said to be deterministic if the following two conditions hold:

o If (Q7d17QI)7 (qa d2;‘]2) € T', with dy, dy € X, then dy = dy implies ¢ = ¢».

o If (¢,d1,q1),(q,d2,q2) € T, with d; € Fi, then d; = dy and ¢; = ¢o.

Though this notion of determinism seems rather strong, it is easy to see that any
relaxation of the definition will allow deterministic automata to simulate non-deterministic
automata in a trivial manner.

For instance, suppose we naively define a deterministic automaton to be one in which
no state has two outgoing transitions with the same label. This definition would permit
a deterministic automaton to choose between a counter move and another transition
(which may or may not be a counter move). We can then simulate a choice between
two transitions t; = (¢, d, q) and ty = (¢, d, go) with the same label by adding a dummy
counter C'. Instead of choosing directly between ¢; and 9, the new automaton will first
choose between ¢; and a move (¢, C", ¢') leading to a new state ¢'. We can then simulate
to by adding a transition (¢', d, g»). Thus, the original choice between t; and ¢, is replaced
by a cascaded choice involving the dummy counter C'.

It is interesting to observe that a similar strong definition of determinism is used in
the study of Petri net languages [J86a].

We have the following characterisation of languages accepted by deterministic counter
automata.

Proposition 2.2 Let A be a deterministic counter automaton. Then, either L(A) is
regular or there exists a word w ¢ L(A) such that every extension of w also does not

belong to L(A).

Proof: Let A be a deterministic counter automaton. For each input word w, either A
admits no run over w or it admits a unique sequence of runs py, ps,..., (which may be
infinite) over w such that for each i > 1, p;41 extends p; by one transition involving a
counter operation.

A word w is said to be blocked in the automaton A if A does not permit an infinite
sequence of runs pq, po, ..., over w. If w is blocked, there exists a unique state where A
“gets stuck” when processing w. We denote this state gq,,.

Since A is deterministic, we know that if ¢, has any outgoing transitions, either the
set, of outgoing transitions at ¢, is labelled by distinct letters from Y or there is only a
single outgoing transition labelled by an element of ['*. In the latter case, it must be
that the transition is labelled C'~, for some C' € I', because a move labelled C* is always
enabled. We say that w is ['-blocked in A if w is blocked in A and ¢, has an outgoing
transition labelled C'~, for some C' € I'.

Returning to the statement to be proved, if L(A) = ¥*, then L(A) is regular. Thus,
the interesting case is when L(A) = ¥* \ L(.A) is non-empty.

Case 1: If there exists w in X* \ L(A) which is I-blocked, then any extension of w must
also be I'-blocked. Thus all extensions of w also lie outside L(.A).

Case 2: Suppose that no word w in L(.A) is ['-blocked. Then, from A we can construct
a finite-state automaton A’ over the alphabet ¥ which has e-transitions. The automaton
A’ has the same set of states, initial state and final states as .A. For each transition ¢
of the form (¢, d,q') in A, we have a corresponding transition t' = (¢, d’,¢’) in A’, where
d=difdeY and d =cifdec'*.

Since A is deterministic, at each state of A" which has outgoing transitions, either
the set of outgoing transitions is labelled by distinct letters from ¥ or there is a single
outgoing transition labelled . In other words, for every word w, either A" does not admit
a run over w or A’ admits a unique sequence of runs py, po, ..., over w such that for each
© > 1, piy1 extends p; by a transition labelled ¢.

We claim that L(A') = L(A) and hence L(A) is regular. It is easy to see that
each computation x SN X1 Ly ey Xn of A can be simulated by a run Q(xo) t—ll>
Q(x1) NN Q(xn) of A’, where for each 7 € [1..n], ¢} is the transition corresponding
to t; as described above. Since the initial and final states of A’ are the same as those of
A, it follows that L(A) C L(A").

To see that L(A") C L(A), assume that there is a word w € L(A’) \ L(A). Then, A’
admits an accepting run o' : ¢, t—,1> q1 t—,2> - t—’"> ¢n over w, with ¢, a final state. From
our construction of A’', it follows that there is a maximal prefix o' : ¢, t—/1> q t—lz> P N

ge of o, with k < n, such that A admits a 0-tun o : xo —= x1 —2> -+ —%> Y}, over w
with the following properties:

d Q(Xo) = (in-

e Foreach i € [1..k], Q(x;) = ¢; and t} is the transition corresponding to ¢; as specified
in the construction of A'.

e w is blocked in A and ¢, = ¢x.

Since o cannot be extended in A while ¢’ can be extended in A’, it must be the case that
tr+1 corresponds to a move of the form C'~ for a counter C' whose value at xj is 0. This
implies that w is I'-blocked in A, which is a contradiction.

Hence, L(A') = L(A) and L(A) is regular.

Corollary 2.3 Non-deterministic counter automata are strictly more powerful than de-
terministic counter automata.

Proof: Consider the language L C {a,b}* given by
L =A{w|w=wa"b"aw,s, where wy,wy € {a,b}* and m >n > 1}.

It is not difficult to transform the automaton which accepts Ly = {a™b™ | m > n} into
a non-deterministic counter automaton which accepts L. We argue that L cannot be
accepted by any deterministic counter automaton. L is clearly not regular. Thus, by the
previous proposition, for L to be accepted by a deterministic automaton, it must be the

case that there is a word w ¢ L such that every suffix of w is also not in L. However, for
any word w ¢ L, we can always find an extension of w in L—for instance, waba € L for
all w € {a,b}". O

Observe, however, that even deterministic counter automata are strictly more powerful
than normal finite-state automata. For instance, the language Ly, of Example 2.1 is not
regular but the automaton accepting the language is deterministic.

2.2 Some useful results

The following observations are basic to analysing the behaviour of counter automata. We
first need the following terminology: a sequence 7y, My, ... of k-tuples of natural numbers
is said to be non-decreasing if my <7y < ---.

Proposition 2.4 FEvery infinite sequence of k-tuples of natural numbers has an infinite
non-decreasing subsequence.

Proof: The proof is by induction on k.

Basis: When k = 1, we have a sequence of natural numbers. If the sequence is bounded
then some value appears infinitely often (by the pigeon-hole principle). On the other
hand, if the sequence is unbounded, it is obvious that it contains a strictly increasing
infinite subsequence.

Induction step: If we project the sequence of k-tuples onto its first k—1 components, we
can apply the induction hypothesis to extract an infinite subsequence which is nondecreas-
ing in these k—1 coordinates. We look at the corresponding subsequence in our original
sequence of k-tuples and examine the kth coordinate of each element in the sequence.
By an argument similar to the basis case, there must be an infinite subsequence which is
non-decreasing on the kth coordinate as well.

d

Corollary 2.5 There is no infinite set of k-tuples of natural numbers that is pairwise
incomparable.

Lemma 2.6 LetT be a finitely branching infinite tree whose nodes are labelled by k-tuples
from N. For each © € N there is a number u; such that along any path of length p; starting
at the root of T', the corresponding sequence of labels ni,ny, ..., n, has a nondecreasing
subsequence of length i.

Proof: Suppose there exists ¢ € N for which there is no such p;. In other words, for
each j € N there is a path of length j starting at the root whose labels n,ns,...,n; do
not contain a non-decreasing subsequence of length .

Call a node t in T bad if the labels along the unique path from the root to ¢ do not
have a non-decreasing subsequence of length i. Clearly the parent of a bad node is also
bad. Thus the set of bad nodes forms a subtree of 7'. By our assumption that there is no

i corresponding to ¢, there must be bad nodes at each level in the tree. Hence the set of
bad nodes forms an infinite subtree of T'.

By Konig’s Lemma there is an infinite path in 7" all of whose nodes are bad. The
labels along this path do not have any non-decreasing subsequence of length greater than
or equal to 7. This contradicts Proposition 2.4. O

Lemma 2.7 Let A be a counter automaton with M states and N cotunters and let K € N.
Then, there exists £ € N, such that for any K-run x b, Xi-.. — xe of A, there are
two configurations x; and x;, 0 < i < j < ¢, such that Q(x;) = Q(x;) and F(x;) < F(x;)-

Proof: Construct a tree T' whose nodes are labelled by NV as follows.

e The root xy is labelled (0).

e For each vector 7 = (m,n) where m € [1..M] and 7n(i) < K for all i € [1..N],
construct a child z§ of the root labelled by 7.

e Let z be a node labelled (m, 7). For each vector v = (m/, ') where m' € [1..M] and

7’ differs from 7 in at most one coordinate by at most 1, construct a child zv of x
labelled v.

Clearly, T is a finitely branching tree. Hence, by Lemma 2.6, for each natural number p

there is a number p, such that, if zgz; ... 2, SN X1 Ly t“—p> Xu, 18 @ K-run of A then
the sequence F'(xo), F(X1),-- -, F(xu,) has a non-decreasing subsequence of length p.
Thus, if xXo = Xy, i any run of A, then there are positions 0 < ky < ky < ... <
Enrs1 < piargr such that F'(xk,) < F(Xky) - < F(Xky,)- By the pigeon-hole principle,
there are positions k, and ks, 1 < r < s < M+1, such that Q(xx,) = Q(xx,). To prove
the lemma, set ¢ = pari1, Xi = Xk, and x; = Xu,-
d

Weak pumping constant Notice that the bound ¢ established in the preceding lemma
depends only on the values M, N and K and is independent of the actual structure
of the automaton. Let mj n x denote the bound ¢. We refer to myn x as the weak
pumping constant for (M, N, K). It is easy to see that if (M', N', K) < (M, N, K), then
Ty N K < TM,N,K-

3 A Contraction Lemma

Lemma 3.1 (Contraction) For every counter automaton A, there is a constant k such

that if xo hlzedm Xm 8 a computation of A, with m > k, then there exist i and 7,

toditis1otm .))
m—k < i < j < m, such that xj T ;ﬂf(jﬂ.) is also a computation of A, with

with Xy = x¢ for € € [0..1] and Q(xe) = Q(X;_(; ;) for all L € [j..m].

Proof: Let A have M states and N counters. We show that £ can be chosen to be
TTM,N,0-

Let xo flzedm Xm be a computation of A, with m > 7wy no. We define a sequence
fns frn-1, .- -, fo of N-tuples of natural numbers as follows:

fm(n) = 0,foralln e [1..N]

fix1(n) if a(ti) € {C), 0L}
Fori€ [0.m—1], fi(n) = & foi(n)+1 if atiy) = O
max (0, fiz1(n)—1) if a(ti) = C

We next show that the function f; represents the minimum counter values required to
execute the transition sequence t;1t;1o...%,.

Claim: Vi € [1.m], (Q(x:), f) "2 iff f > f..
Proof of Claim: By induction on m—i.
Basis: If « = m there is nothing to prove.

Induction step:
By the induction hypothesis, (Q(xis1), f/) 2 F1 > fipy

Suppose that f > f;. We have to show that (Q(x;), f) Rt W fipst

argue that there is a move (Q(x;), f) Gaal (Q(Xit1), f'). Since we know that
(Q(x:),ti+1, Q(Xi+1)) is a transition of A, the only reason for forbidding such
a move is that a(t;4,) = C,, for some counter C,, and f(n) = 0. However, if
a(tiv) = C;, we know that f;(n) = fiz1(n) +1 > 1. Since f > f;, f(n) > 1
as well.

Consider the function f’. We shall show that f’ > f;1;. From the induc-

tion hypothesis, it then follows that (Q(x:), f) =5 (Q(xi), f/) g™,

whereby (Q(x:), f) ti+1g..tm.
To check that f' > f;11, we consider all possible values for a(t;;1).

(i) a(tit1) € E: Then f'=f > fi= fin.
(ii) alti1) € {C,,CF}: Then
o For L # n, f'(C) = f(£) > fi(€) = fir1(0).
o If ativ1) = Cy, then f'(n) = f(n) =1 2 fi(n) = 1= fiza(n).
o Ifa(tiyr) = Cf, then f'(n) = f(n)+1 > fi(n)+1 = max(1, fiy1(n)) >
fiy1(n).
Thus, for each ¢ € [1..n], f'(£) > fis1(£).

tiv1tiya...tm
— .

Conversely, suppose that (Q(x:), f) We have to establish that
f > fi. We know that (Q(xa), f) =5 (Q(xesr), f) "PEE and, by the
induction hypothesis, f' > f;11. As before, we examine all possible values of

Oé(tz'+1).

(i) a(ti1) € X: Then f=f"> fi = fi.
(ii) a(tiy1) € {C,,CF}: Then

o For (£ n, f(£) = f'(0) = fir(£) = fil0).
o If a(tiy1) =C, , then f(n) = f'(n)+1> fir1(n)+ 1= fi(n).
o If a(t;r1) =C,, then f(n) = f'(n)—1>
and fi(n) = max(0, fis1(n) — 1), f(n) = fi(n).
Thus, for each ¢ € [1..n], f(£) > fi(¢).

Corollary to Claim: For each counter C,, and for each position i € [1..m],

Cn(xi) > fi(n).

Consider the sequence fy,, fi—1,... fo. Since its length exceeds mas n,0, by Lemma 2.7
there exist positions ¢ and j, m > j > @ > m—myn such that f; < f; and Q(x;) =
Q(xi). By the Corollary to Claim, for each counter C,, C,(x;) > fi(n) > f;j(n). Thus,

tivitivo...tom tito.. t; tivitivo...tm . . .
Yi TEETT whereby yo =Sy, TES Xom—(j—q is a valid computation of A for some

tivitj42...tm
f—

configuration x;, ; ;. Since Q(x;) = Q(x;) and the computations x;

tivitiyo...tm o, .
;TR ’m_(j_i) are labelled by the same sequence of transitions, it follows that

Q(xe) = Q(X}_(;) for each £ € [j..m], as required.

Xm and

O

Corollary 3.2 A counter automaton A with M states and N counters has an accepting
computation iff it has an accepting computation whose length is bounded by mar -

In the Appendix, we give a constructive proof of Lemma 2.7 which provides an explicit
upper bound for my nx for all values of M, N, and K. This fact, coupled with the
preceding observation, yields the following result.

Corollary 3.3 The emptiness problem for counter automata is decidable.

We remark, however, that a result of Lipton [L76] from the theory of Petri net lan-
guages implies that the emptiness problem for counter recognisable languages is EXPSPACE-
hard.

Corollary 3.4 Counter recognisable languages are not closed under complementation.

Proof: We saw earlier that L, = {a™b" | m > n} is counter recognisable. Let A
be an automaton which accepts Ly. We can easily extend A to accept L(o,e = Ly U
{w | w is not of the form a™b"}. The complement of the language Ly, is the language
Ly = {a™b" | m < n}.

Suppose that Ly, were counter recognisable. Let A;; be an automaton which accepts
Ly;. Let M be the number of states in Ay and N the number of counters used by Aj.
Consider the string w = a”b’*! where J = my; n and let p : xo nldn oy be an accepting
run of Ay on w. By applying the Contraction Lemma (repeatedly, if necessary) to p, we
can obtain an accepting run p’ of Ay over a word of the form a’b®, where K < J, thus

9

contradicting the assumption that L(Aj) = L. (The reason we may need to use the
Contraction Lemma more than once to obtain a suitable p' is that when we apply the
Lemma once, the sequence of moves deleted may fail to contain any transition labelled
b. However, if this happens, the resulting run will continue to have a suffix containing
Tum,n,0 + 1 moves labelled b, so we can apply the Contraction Lemma repeatedly until at
least one transition labelled b is deleted.) O

4 A Collection of Pumping Lemmas

Change vectors For a string w over a set X and a symbol x € X, #,(w) denotes
the number of times x occurs in w. Let v be a sequence of transitions. Recall that «(v)
denotes the corresponding sequence of letters. For each counter C, define Ax(v) to be
#co+(a(v)) — #o-(a(v)). The change vector associated with v, denoted Aw, is given by

(Ac(v)ger-

Proposition 4.1 Let A= (Q,X, 1, T, ¢in, F') be a counter automaton.

(i) For any computation x == x' of A and any counter C € T, |Ac(v)| < |v|.

(ii) For any configuration x and sequence of transitions v, x == iff for each prefiv u of
v and each counter C € I', C(x) + Ac(u) > 0.

(iii) Let x == X' == with Q(x) = Q(X') and n € N such that, for every counter C € T,
either Ac(u) >0 or C(x) > n|u| + |v|. Then, x 2

Proof:
(i) This follows from the fact that each move can change a counter value by at most 1.
(ii) This follows immediately from the definition of a computation.

(iii) The proof is by induction on n.
Basis: For n = 0, there is nothing to prove.
Induction step: Let n > 0 and assume the result holds for n—1. We will show that
X=X A
From the assumption, we know that y = x’. To show that \’ u”:_;u, we examine

the value of each counter C' at x'. If Ag(u) < 0, then C(x) > nlu| + v. Since
C(x') = C(xX") + Ac(u) and |Ac(u)] < Jul, it follows that C(x') > (n—1)|u| + v.

n—1
From the induction hypothesis, we can then conclude that ' ‘=

10

Pumpable decomposition Let A be a counter automaton with N counters and let
tita...tm . o . U1 V1 us V2

pP:Xo = Xm beacomputation of A. A decomposition xo = Xi, = Xji = Xi» =

Xjp =2+ =2 Xy =2 X 25 m of p is said to be pumpable if it satisfies the following

conditions:
(i) n < N.

)

(ii) For each k € [1..n], Q(xi,) = Q(X;,)-

(iii) For each vy, k € [1..n], Avg is non-zero and has at least one positive entry.

(iv) Let C be a counter and k € [1..n] such that Aq(vg) is negative. Then, there exists
¢ < k such that Ac(vy) is positive.

We refer to vy, vs,...,v, as the pumpable blocks of the decomposition. If C'is a counter
such that Ac(v;) > 0 for some pumpable block v;, we say that C' is a pumpable counter.

Proposition 4.2 Let A be a counter automaton and p : Xo hl2edm Xm be a computation

of A. Consider a pumpable decomposition xo = Xi, = X =y = X =
U1 V1 U Up Up Ur41 .
Xm of p. Then, forr € [1.n], xo = Xi, = Xji = " = Xi» = Xj» = Xiry1 05 0

ULV ... Up Up Up 41

pumpable decomposition of p, : Xo b1 -

Proof: Immediate, from the definition of pumpable decompositions. a

Lemma 4.3 (Counter Pumping) Let A be an automaton and p a K-run of A, K € N,
with a pumpable decomposition of the form

Un+1

w1 U1 u V2 Un, Un
X0:>Xi1 :>le :>Xi2 :>X]2:>Xln :>Xjn :>Xm'

Then, for any I,J € N, with I > 1, there exist {1,0s,..., ¢, € N and a K-run p' of A
of the form

Un+1

12
Un ! !
> X, > Xp

/
!
tn

Xo = X, U:fl>x}; = X, ix};---éx
such that p' satisfies the following properties:
(i) X0 = Xo-
(ii) Q(x,) = Q(Xm)-
(11i) Fori € [l.n], t; > 1.
(i) For every counter C, C(x;) > C(Xm)-

(v) Let L5 be the set of pumpable counters in the pumpable decomposition of p. For
each counter C' € Tyos, C(x;,) > J.

11

Proof: The proof is by induction on n, the number of pumpable blocks in the decom-
position.

Basis: If n =0, there is nothing to prove.

Induction step: Let n > 0 and assume the lemma holds for all decompositions with n—1
pumpable blocks. For each counter C, let Jo = max(J,C(xm))-

By the induction hypothesis, for all I',.J" € N, I' > 1, we can transform the preﬁx

Un — Un, . f

O X0 = Xip = Xji = == Xj._, == Xi, of pinto a K-run o’ : x) == x/, —L

31

lnl

/

Xj1 SN Y X]ni = Xz’ satisfying the conditions of the lemma. We shall choose

I and J' so that the transition sequence v’ u,,; can be appended to ¢’ to yield the run
claimed by the lemma.

To fix values for I' and J’, we first estimate the value of /,,, the number of times we
need to pump v, to satisfy all the conditions of the lemma. Let [T = {C’ | Ac(v,) > 0}.
It is sufficient if the number /,, is large enough for each counter C' € I7; to exceed Jo
at the end of the new computation. For a counter C' € I}, to be above J¢ at the end
of the computation, it is sufficient for C' to have the value JC + |tp 1| after vie. By the
induction hypothesis, the value of C' before v’ is at least C(y;,). Hence, it Would take

(‘]CHUK?(L;C(M")} iterations of v, for C' to reach the required value after v%. On the other
hand, we should also ensure that ¢, > I. Thus, it is safe to set £,, to be the maximum of

Jo+Hunt1|—C(Xin)
I and maxcery [Aot 1.

tn

We set I' = I and estimate a value for J' such that X;% U Xp With each counter
C € (I'\T},,) achieving a value of at least C'(x,,) at x,, and each counter C' € (Tos \ [[5)
achieving a value of at least Jo at xj,.

UnUn+41

By the induction hypothesis, Q(x;,) = Q(xi,) and F(x}) > F(x;,). Since x;, =,

UnUn41

it follows that x;, == . By Proposition 4.1 (iii), to ensure that x;, ”z"?rl Xp» it 18
sufficient to raise each counter C' with Ac(v,) < 0 to a value of at least £,|v, | + |un+1| at
X - If Ac(v,) < 0 then, by the definition of pumpable decompositions, A¢(v;) > 0 for
some i € [1..n—1], so C' gets pumped above J' in o’.
Any counter C' such that Ag(v,) > 0 will surely exceed C(xm) at x;. On the other
hand, a counter C' such that Ax(v,) < 0 can decrease by at most €, |v, |+ |uy41| after xk .
Putting these two facts together, it suffices to set J' to €n|vn|—|—|un+1|+max{cmc(vn)<o}?fc.

3 ¢
v n n . .
Let o/ : x) == Xir = X == .. = Xir = Xjr =t X,- By the induction

hypothesis, we know that x; = xo and for i € [1..n—1], {; > I. By construction, ¢, > I
as well. We have also ensured that for every counter C', C(x;) > C(xm) and for every
counter C' € L5, C(x;) > J. The fact that Q(x;) = Q(xm) follows from the fact that
each v, loop brings the automaton back to Q(x%) = Q(xi,), and the fact that both p
and p' go through the same sequence of transitions un+1 at the end of the computation.

|

The preceding lemma shows that all the pumpable counters in a pumpable decompo-
sition are simultaneously unbounded. This is analogous to a well-known result of Karp
and Miller in the theory of vector addition systems [KM69]. They show how to associate
a finite object called a covering tree with each vector addition system. The covering tree

12

can be used to decide whether a set of coordinates of the vector addition system is simul-
taneously unbounded. See Section 6 for a more detailed discussion of the connection of
our work to vector addition systems.

Corollary 4.4 Let A be an automaton and p a K-run of A, K € N, with a pumpable
decomposition of the form

XO%X“ %Xﬂ'l %Xiz %Xjé"'%xm £>Xjnul_+>1Xm.
(i) For any I € N, with I > 1, there exist {y,0s,...,0, 1 € N and a K-run p' of A of
the form

Un+l

0 o tn—1 I
T N A R N A ! Un—1 Un— ! Un 1 Yn 1

such that Xo = X0, Q(x;) = Q(Xm) and F(x;) = F(Xm)-

(i) For any I € N, with I > 1 and any k € [1..n], there exist {1, 0y, ..., 0, 1 € N and a
K-run p' of A of the form

I
Uy _ v u v e UnUn U
k—1 ! Ug ! k ! k+1Vk+1 nUnlntl
f—

;o_u1L Ufl N N =\

(31

such that Xo = X0, Q(x;) = Q(Xm) and F(x;) = F(Xm)-

Proof: The first statement follows by setting J = 0 when defining ¢,, in the proof of the
Counter Pumping Lemma. The second result is then immediate. We omit the details. O

We have shown that all counters which increase within the pumpable blocks of a
pumpable decomposition can be simultaneously raised to arbitrarily high values. We next
describe a sufficient condition for a K-run to admit a non-trivial pumpable decomposition.

Strong pumping constant For each M, N,K € N, we define the strong pumping
constant 11y nx by induction on N as follows (recall that 7y n x denotes the weak
pumping constant for (M, N, K)):

VM,KEN. HM,O,K =1
VMa NaK €N HM,N+1,K - HM,N,?TM,N+1,K+K +7TM,N+1,K +K

Lemma 4.5 (Decomposition) Let A be an automaton with M states and N counters
and let K € N. Let p: xo hlzedm Xm be any K-run of A. Then, there is a pumpable
decomposition

Un+1

ul V1 U v2 Un, Un,
Xo == Xip == Xj1 = Xio = Xjo """ =7 Xin = Xjn —7 Xm

of p such that for every counter C, if C(x;) > Hm N for some j € [0..m], then there
exists k € [1..n], such that Ac(vg) is positive.

To prove this lemma, we need the following result.

13

Proposition 4.6 Let A be a counter automaton with M states and N counters and let
P Xo = Xn be a K-run of A in which some counter value exceeds my nx + K. Then,
there is a prefix o : xo = Xs of p such that:

e For each m € [0..s] and every counter C, C(xm) < "mn,x + K.

e There ezists r € [0..s—1], such that o : xo = x» = Xs, Qxr) = Q(xs) and
F(xr) < F(Xs)-

Proof: Suppose that the lemma does not hold. Let p : xo filaagdn Xn» be a computation

of minimum length which fails to satisfy the lemma. Since the initial counter values in p
are bounded by K and some counter value exceeds 7y, n x + K in p, it must be the case
that the length of p is at least 7y n k-

By the definition of 7y y i, there exist i and j, i < j < mpy g such that Q(x;) =
Q(x;) and F(x;) < F(x;). Since p is a K-run and j < my n k, all counter values at the
configurations xo, x1, - - -, x; must be bounded by 7y v x + K. If F(x;) < F(x;), p would
satisfy the lemma with r =7 and s = j, so it must be the case F(x;) = F(x;).

. . tita...t; tit+1 tj42
Since x; = x;, we can construct a shorter computation p' = xo =" X; —> Xj+1 —

LN Xn- It is easy to see that the same counter whose value exceeded 7y n x + K in
p must also exceed 7y n g + K in p'—the only configurations visited by p which are not
visited by p' are those in the interval X;i1, Xiy2,...X;. However, we have already seen
that all counter values in xo, X1, ..., x; are bounded by 7y x + K.

It is clear that if p' satisfies the lemma, then so does p. On the other hand, if p’ does
not satisfy the lemma, then p is not a minimum length counterexample to the lemma. In
either case we obtain a contradiction. O

We now return to the proof of the Decomposition Lemma.

Proof: (of Lemma 4.5) The proof is by induction on N, the number of counters.
Basis: If N =0, set n =0 and u; = p.

Induction step: Let Iy denote the set of counters whose values exceed Il n x in the
K-run p.

If [y, = 0, we set n =0 and u; = p.

Otherwise, by Proposition 4.6, we can find positions r and s in p such that yq N

Xr = Xs = Xm, With Q(x,) = Q(xs), F(x,) < F(xs) and all counter values at
X0s X1, - - -, Xs bounded by myr nx + K.

Let ¥ be the input alphabet of A and I its set of counters. Fix a counter C’ in
which increases strictly between y, and ys—that is, C'(xs) > C’(x,). By our choice of
X and s, such a counter must exist. Construct an automaton A’ with input alphabet
Y U{C"",C""} and counters I' \ {C'}. The states and transitions of A’ are the same as
those of A. In other words, A" behaves like A except that it treats moves involving the
counter C' as input letters.

14

tst1ts+2...tm

Consider the computation g Xm of A. It is easy to see that there is a

corresponding computation p’ : X’ fotilaggetm X., of A’ such that for each £ € [s..m],

Q(xx) = Q(x}) and for each counter C' # C', C(xx) = C(x})-

From Proposition 4.6, we know that p' is in fact a (7 n x+K)-run of A'. Further,
for every counter C' in Iy \ {C"}, there exists a j € [s..m], such that C'(x}) = C(x;) >
Uarn e > U N 1my g +K- (In the K-run p, no counter could have exceeded Il n x
before xs; because Proposition 4.6 guarantees that all counter values at xo, x1,---, Xs
are bounded by my vk + K.) By the induction hypothesis, we can find a pumpable
decompostion

! ! { { ! ! ! ul
Xo =5 X gxgi%X%%X;gg...gxgggxﬁgm
of p’ such that if C' is a counter with C'(x}) > Har,n—1,ry y 5+ for some j € [s..m], then
there exists k € [1..p] such that Ac(vy,) is positive.
Consider the corresponding computation
ul v ub v Up Vp Up41
Xs = Xi, = Xj, == Xi{, = Xj, "= Xi, = Xj, = Xm
. . _ ! _ !/ i
of A. In this computation, for each k € [1..p], Q(xi) = Q(Xi?c) = Q(XJL) = Q(xy,)-
! / /
Further, for each C' € Ty \ {C"}, C(xi) = C(Xi;c) and C(xy;) = C(XJL)'

!
Uy

We prefix the computation x; L Xm With the K-run xg N Xr N Xs Which
we used to identify y, and x,. We then assert that the composite K-run

o’ v ul ! uly vh Up Yp Up41
Xo = Xr = Xs = Xif = Xjy = Xaf = Xj *** == Xiy = Xjy = Xm-
provides the decomposition

U1 V1 U2 V2 U, Un, Un+1
Xo == Xi, = Xj1 = Xio = Xjo """ = Xin = Xjn =7 Xm
of p claimed in the statement of the lemma. In other words, u; = ', v; = V', x;;, = x»
and xj, = Xs, while for k € [2..n], up = uj_y, v = v_y, Xi, = Xi,_, and x5, = Xj_,-
Let us verify that this decomposition satisfies all the conditions required by the lemma.
First we verify that this decomposition is pumpable.

e Since p < N—1, it is clear than n = p+1 < N.

e By construction Q(x;,) = Q(x») = Q(xs) = Q(x;,). For k € [2.n], Q(xi,) =
Qxi,_,) = Qxy;_,) = @xg)-

e We know that Av; = Av' is non-zero and strictly positive by the choice of v'. For
k € [2..n], we know that Ac(vg) = Ac(v,_,) for C # C’. Since we have already
established that Av)_, is non-zero and has at least one positive entry for k € [2..n],
it follows that the corresponding change vectors Awvy are also non-zero and have at
least one positive entry.

e Let C be a counter and & € [1..n] such that Ax(vg) is negative. Since Av; = Av' is
positive by the choice of v, it must be that k € [2..n]. If C # C’, then A¢(v,) =

15

Ac(vg) is negative. In this case, we already know that there exists ¢ € [2..k—1],
such that Ac(vj_;) = Ac(ve) is positive.

On the other hand, if C'= ", it could be that Aq(v!) is negative for all z € [1..p],
since C' is treated as an input letter rather than as a counter in the automaton A’.
However, we know that Acr(v1) = Aer(v') is positive by the choice of v" and C’; so

C" also satisfies the condition of the lemma.

Finally, let C' be a counter such that C(x;) > Iy~ i for some j € [1.m]. If C' # C",
then C(x;) > s, N 170w x+K fOr some j € [s..m], so we already know that Ac(v;_,) =
Ac(vg) is positive for some k € [2..n]. On the other hand, if C' = C’, we know that
Ac(v1) = Ac(v') is positive by the choice of v" and C".

O

The Counter Pumping Lemma we stated earlier allows us to pump blocks of transitions
in a computation. However, it is possible for a pumpable block to consist solely of invisible
transitions which increment and decrement counters. Using the Decomposition Lemma,
we can prove a more traditional kind of pumping lemma, stated in terms of input strings.

Lemma 4.7 (Visible Pumping) Let L be a counter recognisable language. There exists
n € N such that for all input strings w, if w € L and |w| > n then w can be written as
wywaws such that Jwiwy| < n, |wy| > 1 and wywiws € L for all i > 1.

Proof: Let A= (Q,%,I',T, ¢y, F) be a counter automaton which accepts L. From A,
we construct a new automaton A’ by adding a new counter Ci which is incremented
each time an input letter is read.

Formally, A’ = (Q', X, ", T", ¢, F') where:

e Q=QU{¢|t=1(q,d,¢") €T and d € X}.

o I"=TU{Cys}-

o I"={(¢,d,¢) €T | d ¢ S} U{(q, Clis) (@, d, ') | = (g, ¢) € T, d € I}

It is clear that L(A") = L(A) = L. Let M = |Q’'| and N = |I'|. Set n = Iy -

Let xo == X; == X, be an accepting run of A’ on w, where |w| > Tly o and

ULV ... UnUn U 41

|Oé(ZL‘) rg | = HM,N,O- Let X0 —
given by the Decomposition Lemma.

Since Cli attains the value Iy v along xo == X¢, there is a pumpable block v;,
i € [1..m], such that A¢,, (v;) > 0. Choose the first such block. Then Aq, (v;) = 0 for
all 7 <.

Each pumpable block defines a cycle in A’. However, the structure of A’ ensures that
a cycle has a move labelled C%; iff it also has a move labelled by an input letter. Thus,
v; contains at least one move with a label from ¥, while a(v;)[x, is empty for each j < i.

Let w; = a(ujvius ... u;), we = a(v;) and wz = @ (Ui 1041 - - Vplpi1y)-

Xt be the pumpable decomposition of = Xf

A
ulvll...uiuilui+1vi+1...umumum+1 ,

By Corollary 4.4 (ii), for each I € N, there is a run xp = X
with Q(X’f) = Q(xy) and F(X’f) > F(xy)-

16

4
ul'l}ll...’LL;"UiIUi+1'Ui+1---umvmum+1 ' Yy ! - :
— Xf = Xg4 15 an accepting run on

This means that p : xo
a(ulvfl. UV U - U U U1 2) [w . Since a(v;) = e for all j < i, it follows that
a(ulvfl. Ui 1v£ fui) = a(uvy ... u; v, qu;) = wy. Thus, p is an accepting run over
wywiws, as claimed by the lemma.

O

Example 4.8 The language L = {a? | p is prime} is not counter recognisable.

Proof: Suppose L is counter recognisable. Let p be a prime larger that n, the pump-
ing constant for L specified by Lemma 4.7. Then, we can write p as x + y + z such
that a*t™+* ¢ L for all m > 1. Choose m = p + 1. Then a*t®+t)¥+2 ¢ [though
r+(p+1ly+z=x+y+z+py=(1+y)pisnot a prime! O

One difference between the preceding lemma and the traditional pumping lemma for
regular languages is that in the context of counter recognisable languages, for a pumpable
string uvw, we must have at least one iteration of the pumpable segment v to ensure that
the resulting string uv'w is in the language, whereas for regular languages, uv’w = uw is

also guaranteed to be in the language.

Lemma 4.9 (Counter Hierarchy) For k € N, let Ly be the set of languages recognis-
able by counter automata with k counters. Then, for all k, Ly C Lyi1.

Proof: Define Ly = {aial* - - a ak’““ | ng >mnq > -+ > ngyr}. It is not difficult to
construct a counter automaton W1th k+1 counters which accepts Ly,;. However, there is
no k-counter machine which accepts this language.

Suppose A is a k-counter machine which accepts L ;. As in the proof of Lemma 4.7,
we extend A with a new counter Ci,; which is incremented precisely when ay, is read
from the input. Let the new machine A’ have M states.

no N1 Nk41

Consider an accepting run p of A’ on a string w = ag’a)* ..., " with ngy >

IIpsk41,0- By Lemma 4.5, the run p has a pumpable decomposition xj Ao gt

such that m < k+1 and Ag,,, (v;) > 0 for some i € [1..m)].
By Lemma 4.3, for each I > 1, there exist ¢, /0s,...,¢, € N such that each ¢; > I

¢ ¢
ulvll UV U1 ,

and xo — X} is an accepting run. From the structure of words in Ly, it
follows that for each pumpable block v;, «(v;) contains at most one of the visible letters
{ag,a1,...,ar41}. Since m < k+1 at least one letter from {ag,a,...,ar+1} does not

appear in (¢, @(vi). Also, since Ag, ,, (v;) > 0 for some ¢ € [1..m], from the structure
of A" it follows that ayi1 does appear in [y, (v:).

Let a, be a letter which does not appear in (J;¢[; ,,, @(vi) and let v; be the block such
that a4, appears in a(v;). By Corollary 4.4 (ii), for all I > 1, there exist {1, 05,...,¢;_;

Zl l] 1 {m
. U110y - LU U4 1V L Um U U 41 . .
with each ¢; > I such that xq W X, is an accepting run of
A’. Choose I =n, + 1.
I 121 41 np+1 lon ! !
Thus w' = a(uvy' ... v/ w0l uj v . U U Umg)) [s € L(A'). But, w' has

only n, a,’s and at least n,+1 axy;’s, which violates the definition of L.

17

Thus, there is no k-counter machine which accepts L.
(|

The proof above requires alphabets of size k+2 to separate L from Ly,. However, it is
not difficult to tighten the proof to establish a strict hierarchy for alphabets of size 3.

5 Characterising Regularity of Counter Recognisable
Languages

Automata with bounded counters

Let A = (Q,%,1,7, ¢, F) be a counter automaton. For K € N, define AK] =
(QIK], T[K], Q[K]im, F[K]) to be the finite-state automaton over the alphabet ¥ U I'*
given by:

e« QIK1=Qx {f|f:T — [0.K}.

® QK = (¢, 0).
e FIKI=Q;x{f]|f:T —[0.K]}.
e If (¢,d,q') € T, then ((q, f),d, (¢, ")) € T[K] where:

_Itdey, f = f.

f(O)+1 if f(C) < K
K otherwise

— Ifd=C*, f/(C") = f(C") forall C" # C and f'(C) = {

—Ifd=C", f/(C") = f(C") for all C" # C, f(C)>1 and

,] f(O)-1 i f(C) < K
F'(€) = { K otherwise

Notice that each transition ¢t = ((¢, f),d, (¢, f')) € T[K] corresponds to a unique tran-
sition (q,d,q') € T, which we denote ¢t71. For a sequence of transitions ¢ty ...t,, we
write (t1ty...t,)"" for t7';' ... t;'. Note that for any sequence tt,...t, of transi-

tions in T[K], a(tits...tn) = a((tits. .. t,)""). Moreover, if (qo, f1) “25" (gu, f) and

n
-1
(g0, fo) "2 v, then Q(xn) = gn.

Thus, the finite-state automaton A[K | behaves like a counter automaton except that it
deems any counter whose value attains a value K to be “full” . Once a counter is declared
to be full, it can be decremented as many times as desired. The following observations
are immediate.

Proposition 5.1

(i) If (qo, f}) N (q1, f]) Ly Ty (qn, [) is a computation of A then, (qo, fo) SN
(g1, f1) 2 -+ 2 (qn, fo) is a computation of A[K] where

o tith.. .t = (tyty...t,) "

18

if f;(C) <K forallj<i
otherwise

e VO €T. Vi€ [L.n]. fi(C) = { £:(C)

(ii) Let (qo, fo) == (g1, /1) -2 -+ 5 (qu, fa) be a computation of A[K]. Then

there is a maximal prefix tity ...ty of tity...t, such that there is a computation

—1 -1
tl

—1
(QOJf(;) — (QIJf{) t2—> té—> (qlafé) OfA with fU - f(,) MOT@OUET, ng < n,
then for some counter C, a(ty,) = C~, fi(C) = 0 and there is a j < { such that
FUC) = K.

J

(iii) Let L(A[K]) be the language over ¥ UT* accepted by A[K]. Let Ly(A[K]) = {w|s
| we L(A[K])}. Then, L(A) C Ly(A[K]).

Synchronised products of counter automata

Product automaton Let ./41 = (Ql; 21, Fl; Tl; qilm Fl) and ./42 = (QQ, 22, 1—‘2, Tg, qi2n7 Fg)
be two counter automata. The product automaton A; X A, is the structure (Q1 X Qa, 31 U
22, Iyu FQ,Tl X TQ, (qiln, qi2n)7 Fi % FQ), where ((ql, QQ), d, (qi, qé)) € T, x T iff one of the
following holds:

e de (X, Ul')N(3X,Uly) and (¢, d, q}) € T; for i € {1,2}.
[] dE (EIUFI)\(EQUFQ), (ql,d,(ﬁ) ETI &Ild ()] :q;
® dE (ZQUFQ)\(Elurl), ((h,d,(]g) ETQ &Ild a1 :qi

Fort = ((q1,¢2),d, (¢},¢5)) € T and i € {1, 2}, let m;(t) denote (g;,d,q}) if d € (X;UL})
and the empty string ¢ otherwise. As usual, m;(t1t2...1,) is just m(t1)m(ta) ... m(t,).
Thus, for a sequence of transitions p = tity...t, over Ty x Ty, m1(p) and my(p) denote the
projections of p onto the transitions of A, and A; respectively. Clearly, a(tits ... t,) [0
= Oz(ﬂ'i(tltg .. tn)) for i € {]_, 2}

We shall often write a configuration ((¢i,¢2), f) of A; X As as a pair of configura-
tions ((q1, f1), (g2, f2)) of A; and As, where f; and f are restrictions of f to I'y and T'y
respectively.

The following observations are easy consequences of the definition of product au-
tomata.

Proposition 5.2

(i) ((¢4,0), (g2, 0)) "Z=" (¢, /1), (g2, f2)) is a computation of Ay x Ay if and only if

(qL,0) m(%'tn) (q1, f1) and (¢2,0) M(%'tn) (g2, f2) are computations of Ay and
Ay respectively.

(ZZ) If 21 = 22 and 1—‘1 N Fg = @, then L(Al X ./42) = L(Al) N L(Ag)

19

Regularity and closure under complementation

Let L C ¥* be a language such that both L and its complement L are accepted by counter
automata. Let L = L(A) and L = L(A), where we can assume that A and A use disjoint
sets of counters. Then the language accepted by A x A must be empty.

Let M be the number of states of A x A and N be the number of counters that it uses.
Let K be a number greater than ITy, v, the strong pumping constant for (M, N, 0). Recall
that A[K] = (Q[K], T[K], Q[K]wm, F|K]) is a finite-state automaton without counters
working on the input alphabet ¥ U T'*.

Lemma 5.3 L(A[K] x A) = 0.

,T,G,,F). Each com-
putation p of A[K] x A is of the form ((g0,0), (7. 0) > (g1, f1). (@1, f)) 2> - -+ 2
((qn> fn), (@, f.)), where, for i € [0..n], u; € T[K] x T.
By Propositions 5.1 and 5.2, corresponding to the sequence ujus ... u, there exists a
maximal sequence of transitions vyvs ... v, of A x A where:

Proof: Let A[K] = (Q[K], T[K], Q[K}n, FIK]) and A = (G, =

Each v; belongs to 7' x T.

For each i € [1..m], ma(v;) = ma(u;).

For each i € [1..m], m(v;) = { (m (i)™ if 771(”1'.) 7 e

€ otherwise

P ((qﬁaﬁ)a (60762 — ((Qbf{)a (617?1)) e ((Qmafrln)v (Gmafm)) is a com-
putation of A x A.

If i < n, then for some C' € T, a(tys1) = C, f/.(C) = 0 and f;(é’) = K for some
j € [0..m].

Let us define the residue length of p to be n—m.

Suppose that L(A[K]x A) is non-empty. Since L(A x A) is empty, it is easy to see that
any accepting run of A[K] x A has a non-zero residue length. Without loss of generality,
assume that the run p considered earlier is an acceptlng run of A[K] x A whose residue
length is minimal. Then, in the corresponding run p’ of A x A, the counter C e T attains
the value K along p' and then goes to 0 at the end of the run so that the move labelled
C~ is not enabled at ((¢m, f1.), @ps fin))-

Since K exceeds the strong pumping constant for A x A, by Lemma 4.3 we can find

an alternative run 7' : ((90,0), @.0)) "= (g5, £, @, 1)) with (63.0) = (@ 7).
£5(C) > K, and all other counter values at (fé,ﬂ) at least as large as at (fyn, f.,). In
particular, every counter which exceeded the cutoff value K along p' is pumpable and
thus exceeds K along p' as well.
By Propositions 5.1 and 5.2, we can construct a corresponding sequence of transitions
ujul, . .. uy over T[K]xT such that 7 (vjvl .. vg) (my(ufuly. . u))) ™t and T (Vivh .. v)) =
N L]

maluyiy .. 1), where p : (a0, 0), (@,)) ((als £1), (@ F2)) is a run of A[K] x A
with (¢}, 7)) = (¢m,q,,) and f/(C) > fn(C) for each C € T.

20

We already know that 7@(0) > f,,(C) for each C' € T. Further, since every counter
which exceeded the cutoff value K along p' also exceeds K along p', we know that any
counter which has become full along p would also have become full along p. Thus, we can
extend p to an accepting run o by appending the sequence of transitions w,,11Up1o ... Uy
which occur at the end of the accepting run p.

Recall that a(um,1) = C~ and fi(C) > 1 by our choice of 5. From this, it follows
that the residue length of the newly constructed accepting run o is at least one less than
the residue length of p, which is a contradiction, since p was assumed to be an accepting
run of minimal residue length. O

Theorem 5.4 Let L be a language over X. L and L are counter recognisable iff L is
reqular.

Proof: Let L = L(A)and L = L(A). Define A[K] as above. We claim that Ly (A[K]) =
L(A).

By Proposition 5.1, we know that L(A) C Lg(A[K]).

On the other hand, from the previous lemma it follows that Ly (A[K]) N L(A) = 0.

This implies that Ly (A[K]) C L(.A), which means that Ly(A[K]) C L(A).

So L(A) = Ly(A[K]). Since A[K] is a finite- state automaton, it follows that L(.A)
is regular. Therefore, if a language and its complement are counter recognisable then the
language is regular.

The converse is obvious: if L is a regular language, we can find finite-state automata
recognising both L and L. Since finite-state automata are trivial examples of counter
automata, both L and L are counter recognisable. O

Observe that our construction is effective—given automata A and A for L and L respec-
tively, we can construct a finite-state automaton A[K] for L.

Regularity and closure under reversal

Suppose L is recognised by the deterministic counter automaton A and L-reverse is
accepted by the counter automaton B. We will show that there is a constant 7, depending
on the number of states M and the number of counters N of A, such that A[7] recognises
L.

Overview

The proof has two parts.

Part 1. We assume that L(A[7]) # L and conclude from this that there exist strings
B,v € ¥* such that

Vi>1.3ae X In. [af'ye L &Vj>n afiy¢ L]

21

Part 2. We consider the reverse of the language L. Part 1 shows that there exist strings
B, € ¥* such that

Vi > 1. do € ©*. In. [§f'G € Lreverse & Vj > n. 37 ¢ L-reverse]. (1)

On the other hand, we will show that for all counter automata B and all 3,y € ¥*,
there exists an n such that if y8'a € L(B) for some i > n, then v’ € L(B) for
infinitely many j. Thus, it follows from (1) that L-reverse is not counter recognisable.
This contradiction shows that our assumption L # L(A[7]) (of Part 1) is false. We thus
have L = L(A[7]), and in particular, that L is regular.

Notation.

e While analysing the computation of counter automata, we will permit counters
to assume negative values. We refer to such computations as free runs, and use

X0 AR Xm to denote the free run corresponding to the sequence of transitions ¢,
starting from configuration y, and ending at configuration y,,, passing through
configurations y;.

e Let A be a counter automaton with M states and N counters. We say that the
counter C' is saturated in the free run xo ~> Xy, if for some i € [0..m], C(x;) >
HM,N,O; and for all] < 1, C(X]) > 0.

Constants. In the rest of this section we write II for Il no. Let

Kk = M-IV +1;
= N k.

Part 1

Lemma 5.5 Suppose t is a sequence of transitions such that (¢, 0) =% s an accepting
run of A[T] but not of A. Then, we have t = uvw with the free run

X0~ Xi X~ Xy

where 0 < 1 < j < n, such that
(i) For some counter C', Ax(v) < 0.
(i1) Q(xi) = Q(x;)-

(11i) If for some counter C', Ac(v) # 0 or C' assumes a negative value on the free run of
A corresponding to t, then C is saturated in the free run A ~5,

22

Proof: Let ¢t =tt,...t,. Consider the free run corresponding to t,

= t te tn
P (G, 0) = X0~ X1~ -+~ X
Since this is not an accepting run of A, there is a j < n and a counter C such that
C(x;) < 0. Since (gin, 0) =L is an accepting run of A[7], there must be an i < j, where
C(x;) = 7. Choose ¢ to be the maximum ¢ such that there is a counter C' satisfying the
following two conditions.

e Clxi) =

e For some j > i, C(x;) < 0.
Let m be the minimum j > ¢ such that C'(x;) = 0. Note that m < n, because there is a
j > £ where C(x;) < 0.

CLetx =tty.. .ty y = tesatern. .ty and 2 = bty .. 1, Since C’(Xg) = 7 and
C(xm) = 0, in the computation

(7%} toto tm
Xe ™ Xe+1 ™7 ™ Xy

C' takes all values in the range [0..7]. For j € [0, N], let k; be the minimum k € [{..m)]
such that C(xx) = 7 — jk. The computation on zy can then be written as

/. Yo== o Y1 Y2 YN o
p'XOMXZ_XkOMXkl/\’)"' XkN_Xm'

Let IV be the set of counters that assume a value IT or bigger somewhere in p/. For C € ",
let jo be the minimum j such that C' assumes a value Il or bigger in the segment of the
above computation corresponding to y;. In particular, j» = 0 because O(Xg) =7 >11
and xo %> xs. There are only II'] < N counters, whereas there are N + 1 segments. Thus,
there is a j € [0..N] such that j # jc for all C € I'. Let j be the minimum such j; since
Je = 0, we have j # 0. Consider the computation corresponding to y;,

th t! t
w2 ko 1
P Xo™ X177 ™ X

where t; = tx,_, yi, Xi = Xk;_,+i and h = k;—k; ;. In this computation the value of C falls
from 7 — () — 1)k to 7 — jk, that is, by . For i € [0..x], let p; be the minimum p € [0..A]
such that C(x;) = C(xp) =7 =7 — () — 1)k — 4. Then, p" can be written as

" Ys Ys v
/! n n I " K n
p_XOMXIMX2M'”MX,m

where x; = x;, for i € [0..x]. Let I'" be the set of counters whose values in p" after xg
are less than II. Since k = MTIY + 1, there exist 7, s € [1..x], r < s, such that

(C1) C(x!) =C(xY), for all C e T".
(C2) Q(x) = QXY)-
The definition of x/ implies

(C3) C(xX)) =Clxr,,) — 1> Clxa,_,) — s = CXY).

23

Now let,

U= T Y2 Y1 YiYs - - - Y
U= YrpYrio- - Y

/ / /
and w = Ysi1Ysy2 - - Ys Ys+1Yj42 - - - YN 2.

We claim that this choice of u, v and w satisfies the requirements of the lemma. Clearly,
t = wow. Part (i) of the lemma follows immediately from condition (C3) above; part (ii)
follows from condition (C2). We now consider part (iii).

If C becomes negative in the free run p, then it must assume the value 7 somewhere
before that, because (g, 0) =L is an accepting run in A[7]. By the maximality of ¢, this
happens at or before y,. Thus, C is saturated in the free run y, ~». Next, we consider
counters C' such that Ac(v) # 0. We may assume that C' does not become negative in
p, for we have just taken care of all such counters. By condition (C1) above, C' ¢ I'".
That is, C' takes a value II or bigger after x{ in the computation p”. Thus, jo < j. Since
7 # jo for all C, we have jo < j. Hence, C is saturated in the free run yo ~>. O

We need the following pumping lemma for free runs.

Lemma 5.6 Suppose xo 2 Xm S a free run of A, where every counter that assumes a
negative value is saturated. Let I be the set of counters saturated in this run. Then, for
all K, A has a run X = X, such that xo = Xg, Q) = Q) F(Xw) > F(xXm)
and C(x!,) > K for all C €T".

Proof: Similar to the proof of the Counter Pumping Lemma. Omitted. O

Proof of Part 1. If L # L(A[r]), then there exists a string a € L(A[7]) \ L. Let

(¢in, 0) = be the shortest accepting run of A[7] such that a(t)]y,= a. Clearly, xo ~> is
a free run of A, but since a ¢ L, this is not an accepting run of A. Using Lemma 5.5, we
obtain a decomposition ¢t = uvw such that the free run

X0~ Xe ™~ X~ Xny

(0 < £ < m < n) satisfies (i), (ii) and (iii). Let 8 = a(v)[s and v = a(w)[y. We first
show that for all 7 > 1 there is an « such that a3y € L.
Fix ¢ > 1. Part (ii) implies that there is a free run of the form
X0~ Xir ™ Xow ™ Xows
where xo = xy and Q(x),) = Q(x,). Part (iii) implies that all counters that assume

a negative value in this run are saturated in the initial segment y/ ~> Xy- We apply
Lemma 5.6 to this initial segment with

K = Ml
o max 1C(X;)]

24

We obtain u' such that in the run y N X", Q") = Q(xy), C(X") = C(x;) for all C
and C(x") > K for all counters saturated in yj ~» x,. Then, A Y s an accepting run
of A. In particular, a(u'v'w) = a3’y € L, where a = a(u')[x .

It remains to show that a3’y ¢ L, for all large enough j. We first observe that a/(v)|x
is not empty. For otherwise, since A is deterministic, the set of states of A that appear
in the run y,, ~> xn is a subset of the set of states that appear in the run x; ~> Xm.
This implies that Q(x,) = Q(x;), for some j € [(..m], and, furthermore, that a(w)[y is

empty. But then yo ~> is not the shortest accepting run of A[7] with a(t) [y = a. This
contradiction shows that a(v)[y is not empty.

Clearly, for all j > 1 we have the free run yq “C Since Ap(v) <0, for all large enough
j this is not an accepting run of A. Suppose a3’y € L for some such j. Then, since A is
deterministic, we have uv/w = tt5, where x, = is an accepting run of A and «(t3)[y is
empty, which implies that |ts] < [vw|. Let |ts] = k; we have 1 < k < |vw|. Now xo == is
an accepting run of A. By comparing this run with the run yq SN Xn, We observe that
Q(Xn—t) is a final state of A. But then a(tity...t,_k)[v=a and xo = tils...1,_k iS an

accepting run of A[7], contradicting the minimality of . Hence, a3’y ¢ L for all large
enough 7. O

Part 2.

Lemma 5.7 There exists a function A(M,N, K, L) such that if p : xo L is a K-run of
a counter automata A with M states and N counters such that

e |a(t)ly | < L and
o |t| > A(M,N,K, L),
then t = uvw such that
* xo = X = X' ==
e Q(X) = Q(X") and F(X') < F(X");

e «(v') is non-empty but has no symbols from X.

Proof: Let

| TNk it L =0
A(M,N,K, L) = { Tunig +AM N, K +7yyg, L—1) ifL>1"

We will prove by induction on L that A(M, N, K, L) defined above satisfies the require-
ments of the lemma.
Basis: If L = 0, the claim follows from the definition of the weak pumping constant.

Induction step: Let p : xo é X1 — X2 é, where ¢’ is the maximal prefix of ¢ with no
symbols from ¥, and a € . If |¢/| > 7y vk, then the claim follows from the definition
of the weak pumping constant.

Otherwise, X2 L isa (K + mpr v)-run. Also, |a(t")[s | = |a(t)s | — 1 and

|t”| Zt_'ﬂ—M,N,K > A(M,N,K—FWM’N,K,L— 1)

25

The claim then follows from the induction hypothesis. O

Note. In the above lemma, we can assume that |uv| < A(M, N, K, L), for we can always
restrict ourselves to the prefix of ¢ of length exactly A(M, N, K, L).

Lemma 5.8 Suppose A is a counter automaton with M states and N counters. Let (1;)$°

1=

0
be a sequence of non-negative integers. Then there exists a constant B = B(M, N, K, (1;))
such that if

. Vo U1 UB-1
PiXo=— X1 — ' — XB,

where |v;| < ;, then there exist i,j € [1, B], i < j, such that Q(x;) = Q(x;) and F(x;) <
F(x;)-

Proof: We will modify the proof of Lemma 2.7. Consider the following infinite tree
T whose nodes are labelled by elements of N¥. The root of T is labelled by F(xo). If
a node at level i (the root is at level 0) is labelled by f, then v has one child for each
N-tuple obtained by performing at most [; increment and decrement operations on the
components of f.

Clearly, T is finitely branching and infinite. By Lemma 2.6 there exists p such that
along any path in T of length p starting at the root, the corresponding sequence of labels
has a non-decreasing subsequence of length k. Now py depends only on the tree 7', which
is unique if the label of the root and the sequence (I;) are fixed. The label of the root has
at most (K + 1)V possibilities; hence there exists a function u(k, M, N, K, (I;)), such that
in every such tree in every path of length u(k, M, N, K, (l;)) starting from the root, the
corresponding labels have a non-decreasing sequence of length at least k.

Weset B(M, N, K, (l;)) = uw(M+2,M,N, K, (l;)) and complete the proof of the lemma
by arguing as in Lemma 2.7. (We have M + 2 and not M + 1 because in the lemma we
want ¢ # 0.) O

Lemma 5.9 (Part 2) Let A be a counter automaton with M states and N counters.

There exists a constant E = E(M, N, K, () such that if xo =% is an accepting K -run of
A, where a(t)[s = v6™a (16|, 7| < L), and m > E, then for infinitely many j there is an

accepting run Xo Y with a(tj) s =vFa.
Proof: Define the sequence (¢;(M, N, K)) by

ly = A(M,N,K);
li — A(M,N,K"—gl—'—gg‘i“i‘&_l)

Let D(M,N,K) = B(M,N, K, ((;(M,N, K))) and
D(M,N,K)—1

(M,N,K)= > L(MNK).

1=1

26

Then, E(M, N, K) is defined by

B(M, N, K, (£)) if N=0.

E(M,N,K;Z):{ D(M,N,K)-FE(M,N—1,K+Z(M7N7K)ag) iftN>1"

(Here (¢) denotes the infinite sequence all of whose terms are ¢.)

We will use induction on the number of counters to show that E as defined above
meets the requirements of the lemma.
Basis: If N = 0, there are no counter moves. The claim then follows from Lemma 5.8.

Induction step: Assume t is minimal such that yg =% is an accepting K-run of A with
a(t)lx ="« (m > E). We may write this computation as

XO%XI%)@%”'%XWH—IéXﬁ

where a(vy) [v= 7, a(v;) [v= 0 for i € [1l.m] and a(w) [s= a. If |v;] < ¢ for i €
[0..D(M, N, K) — 1], then the claim follows from Lemma 5.8.

Otherwise, there exists an ¢ € [0..D(M, N, K) — 1] such that |v;| > ¢;. Let i be the
smallest with this property. By Lemma 5.7, for this ¢, we may write the computation on
v; as

Xi == X' == X = i,
where Q(x') = Q(x"), F(x') < F(x"), where «(v') is nonempty but has no input symbols.
Since ¢ is minimal, we have F'(x') < F(x"). Fix a counter C such that A (v") > 0. Next,
consider the computation after v/, that is

Vit2

X" :> Xi+1 =t Xit2 = * ——— Xm+1 = Xf-

Here we treat C* and C'~ as elements of the input alphabet. As noted above, we may
assume |vv'| < £;. Thus, |vg...v;_1vv'| < UM, N, K). Also, a(v"viy ... vpw)ls =7 Fa,
where

We apply the 1nduct1on hypothesis to this computation. For infinitely many j we obtain

ti such that X" :]> is an accepting computation of A and «(t;)[x = Fa.
Since A¢(v') > 0, it is easily verified that for sufficiently large k and

t = vguy ... v;_qvFv "t

X0 =L is an accepting computation of A. Since a(v') has no input symbols, this implies

t.
that for infinitely many 7, there is a t; such that xo == is an accepting computation of
A and a(t;) s = 70 . O

6 Discussion

In this concluding discussion, we point out similarities and differences between our work
and earlier results from the theory of vector addition systems and Petri nets. We also
identify some directions for further work in developing our model of finite-state distributed
systems with asynchronous communication.

27

Vector addition systems

An n-coordinate vector addition system (VAS) consists of a finite set of initial vectors and
a finite set of transition vectors. Each initial vector is an n-tuple of natural numbers and
each transition vector is an n-tuple of integers. An n-tuple of natural numbers is reachable
if it can be generated from an initial vector by performing a sequence of additions with
vectors from the set of transitions while ensuring that each intermediate vector generated
is non-negative.

In [KM69], Karp and Miller study various decision problems for vector addition sys-
tems. They show how to associate with each VAS a finite object called its covering tree.
This can be used to solve a number of other questions, including whether the set of reach-
able vectors of the VAS is finite. These results have immediate applicability in the theory
of Petri nets because a Petri net can be represented as a VAS. Our Counter Pumping
Lemma (Lemma 4.3) is similar in spirit to Karp and Miller’s covering tree result.

Petri net languages

It is well known that there is a strong connection between automata with blind counters
and Petri nets [G78, J86a]. It is not difficult to show that we can go back and forth
between labelled Petri nets and counter automata in such a way that given a net N and
its corresponding counter automaton 4, there is bijection a between the firing sequences
of N and the computations of A. Thus, questions about Petri net languages can rephrased
as questions about languages accepted by counter automata.

There are several ways to associate a language with a Petri net [H75, J86a]. The first is
to just examine all firing sequences of the net. The second is to fix a set of final markings
and look at the labels along firing sequences leading to these designated markings. The
third possibility is to fix final markings but only require a firing sequence to lead to a
marking which dominates a final marking rather than be exactly equal to a final marking.
Following the terminology of [J86a], we designate the class of languages generated by these
three definitions £, £y and £, respectively. When transitions are allowed to have invisible
labels, the corresponding classes of languages are designated £*, £} and £} respectively.

In the setting of counter automata, the first definition corresponds to examining the set
of computations of the automaton. The second definition yields a definition of accepting
runs in terms of both final states and final counter values. The third definition corresponds
more directly to the one we use in this paper—the final states are fixed but the final
counter values are irrelevant.

In the theory of Petri net languages, a number of positive results have been established
for the class L—for instance, regularity is decidable [GY80, VV80]. On the other hand,
it is quite easy to exhibit languages from the class £, (and hence, counter recognisable
languages) where the language itself is regular but the underlying language of transitions
is not. Hence the results of [GY80, VV80] do not carry over to counter recognisable
languages—in fact, the problem of deciding whether a counter recognisable language is
regular is open.

At the other end of the spectrum, a number of negative results have been established
for the class £y (and hence also £}). For instance, it is undecidable whether such a
language is universal—that is, whether it consists of all strings [VV80]. However, this
result crucially uses the fact that final markings must be reached exactly. The problem

28

of deciding whether a counter recognisable language is universal is open.

Few, if any, results have been proved for the classes £; and £}, which correspond
most closely to counter recognisable languages. Our characterisation of the subclass
closed under complementation is probably the only non-trivial result known for this class.
Notice that this characterisation fails for the class L£o—it is possible to construct nets for
both the language L, of Example 2.1 and its complement, though L, is not regular.

Counter recognisable languages and message-passing

How can we interpret our results on counter recognisable languages in terms of distributed
systems for asynchronous communication? We say that an asynchronous protocol is ro-
bust if it responds “sensibly” to any sequence of interactions with the environment—in
other words, for any such sequence, it either accepts the sequence as valid or terminates
with an error. When we model asynchronous protocols by counter automata, the strings
accepted by the automaton correspond to sequences of interactions with the environment.
For a robust protocol, both the set of interactions accepted by the protocol and the set
of interactions rejected by the protocol are counter recognisable. Our characterisation of
the complementation-closed subset of counter recognisable languages then tells us that all
robust protocols use only bounded buffers. Any messages exchanged by processes follow-
ing a robust protocol can be viewed as just hand-shakes which coordinate the interaction
between the different processes and the environment.

One shortcoming of our model is that we implicitly sequentialise all the interactions of
a distributed system into a sequence of global interactions. It would be more satisfying to
build a theory where we separate the interaction of each process and allow our automata
to read n-tuples of strings, where n is the number of processes. It is not obvious how to
extend the notion of a robust protocol to this setting. One possibility is to use the fact
we can keep track of the latest information each process has about every other process
in a message-passing system using the algorithm proposed in [MNS95]. In the theory of
synchronous communication, an analogous result is the key to generating a distributed
finite-state system recognising an n-tuple of strings from a global description of such a
system [MS94, Z87]. We have some preliminary results in this direction.

References

[AJ93] P.A. Abdulla and B. Jonsson: Verifying programs with unreliable channels, in
Proc. 8th IEEE Symp. Logic in Computer Science, Montreal, Canada (1993).

[AJ94] P.A. Abdulla and B. Jonsson: Undecidability of verifying programs with unre-
liable channels, in S. Abiteboul, E. Shamir (eds.), Proc. ICALP 9/, Springer
LNCS 820 (1994) 316-327.

[GY80] A. Ginzburg and M. Yoeli: Vector Addition Systems and Regular Languages,
J. Comput. System. Sci. 20 (1980) 277-284

[GT8] S.A. Greibach: Remarks on Blind and Partially Blind One-Way Multicounter
Machines, Theoret. Comput. Sci 7 (1978) 311-324.

[H75] M. Hack: Petri Net Languages, C.S.G. Memo 12/, Project MAC, MIT (1975).

29

[J86a]

[786b]

[KM69]

[LT87]

[L76]

[M78]

[MNS95]

[MS94]

[PS88]

[VV80]

[787]

M. Jantzen: Language Theory of Petri Nets, in W. Brauer, W. Reisig,
G. Rozenberg (eds.), Petri Nets: Central Models and Their Properties, Ad-
vances in Petri Nets, 1986, Vol 1, Springer LNCS 254 (1986) 397-412.

M. Jantzen: Complexity of Place/Transition Nets, in W. Brauer, W. Reisig,
G. Rozenberg (eds.), Petri Nets: Central Models and Their Properties, Ad-
vances in Petri Nets, 1986, Vol 1, Springer LNCS 254 (1986) 413-434.

R.M. Karp and R.E. Miller: Parallel Program Schemata, J. Comput. System
Sci., 3 (4) (1969) 167-195.

N.A. Lynch and M. Tuttle: Hierarchical Correctness Proofs for Distributed
Algorithms, Technical Report MIT/LCS/TR-387, Laboratory for Computer
Science, MIT (1987).

R.J. Lipton: The Reachability Problem Requires Exponential Space, Research
Report No 62, Dept of Computer Science, Yale University (1976).

A. Mazurkiewicz: Concurrent Program Schemes and their Interpretations, Re-
port DAIMI-PB-78, Computer Science Department, Aarhus University, Den-
mark (1978).

M. Mukund, K. Narayan Kumar and M. Sohoni: Keeping Track of the Latest
Gossip in Message-Passing Systems, Proc. Structures in Concurrency The-
ory (STRICT), Berlin 1995, Workshops in Computing Series, Springer-Verlag
(1995) 249-263.

M. Mukund and M. Sohoni: Gossiping, Asynchronous Automata and
Zielonka’s Theorem, Report T'CS-94-2, School of Mathematics, SPIC Science
Foundation, Madras, India (1994).

P. Panangaden and E.W. Stark: Computations, Residuals, and the Power
of Indeterminacy, in T. Lepisto and A. Salomaa (eds.), Proc. ICALP 88,
Springer LNCS 317 (1988) 439-454.

R. Valk and G. Vidal-Naquet: Petri Nets and Regular Languages, J. Comput.
System. Sci. 20 (1980) 299-325.

W. Zielonka: Notes on Finite Asynchronous Automata, R.A.IR.O.—Inf.
Théor. et Appl., 21 (1987) 99-135.

30

TCS-90-1

TCS-90-2

TCS-90-3

TCS-91-1

TCS-91-2
TCS-91-3

TCS-91-4

TCS-91-5

TCS-92-1

TCS-92-2

TCS-92-3
TCS-93-2
TCS-93-3

TCS-93-4
TCS-93-5

TCS-93-6

TCS-93-7

TCS-93-8

SPIC Mathematical Institute
Internal Reports (Theoretical Computer Science)

M. Mukund: Ezpressiveness and Completeness of a Logic for Well
Branching Prime Event Structures.

M. Mukund and P.S. Thiagarajan: An Aziomatization of Well Branching
Prime Event Structures.

K. Lodaya, M. Mukund, R. Ramanujam, P.S. Thiagarajan: Models and
Logics for True Concurrency.

P.S. Thiagarajan (ed.): Proceedings of National Seminar on Theoretical
Computer Science, Madras, India, July 4—6, 1991.

M. Mukund: A Transition System Characterization of Petri Nets.

P.W. Hoogers, H.C.M. Kleijn, P.S. Thiagarajan: A Trace Semantics for
Petri Nets.

M. Nielsen, G. Rozenberg, P.S. Thiagarajan: Elementary Transition Sys-
tems.

M. Nielsen, G. Rozenberg, P.S. Thiagarajan: Transition Systems, Event
Structures and Unfoldings.

M. Nielsen, G. Rozenberg, P.S. Thiagarajan: Elementary Transition Sys-
tems and Refinement.

M. Mukund and M. Nielsen: CCS, Locations and Asynchronous Transi-
tion Systems.

M. Mukund: Transition System Models for Concurrency.

M. Agrawal: On the Isomorphism Problem for Weak Reducibilities.

M. Mukund and M. Sohoni: Keeping Track of the Latest Gossip: Bounded
Time-Stamps Suffice.

P.S. Thiagarajan: A Trace Based Extension of PTL.

N. Klarlund, M. Mukund, M. Sohoni: Determinizing Asynchronous Au-
tomata.

P.S. Thiagarajan: TrPTL: A Trace Based Fxtension of Linear Time
Temporal Logic.

M. Agrawal and V. Arvind: On Quasi-Linear Truth-Table Reductions to
P-Selective Sets.

K. Lodaya, R. Parikh, R. Ramanujam, P.S. Thiagarajan: A Logical Study
of Distributed Transition Systems.

TCS-94-1

TCS-94-2

TCS-94-3
TCS-94-4

TCS-94-5
TCS-95-1
TCS-95-2

TCS-95-3

TCS-95-4
TCS-95-5

TCS-95-6

TCS-95-7

TCS-96-1

TCS-96-2
TCS-97-1

TCS-97-2

TCS-97-3

TCS-97-4

P.W. Hoogers, H.C.M. Kleijn, P.S. Thiagarajan: A Fvent Structure Se-
mantics for General Petri Nets.

M. Mukund and M. Sohoni: Gossiping, Asynchronous Automata and
Zielonka’s Theorem.
R. Krishnan and S. Venkatesh: Optimizing the Gossip Automaton.

M. Agrawal, R. Krishnan and S. Venkatesh: The Isomorphism Problem
for 2-DFA Reductions.

M. Agrawal and V. Arvind: Geometric Sets of Low Information Content.
M. Agrawal: Self-reducibility Versus Prunability.

M. Agrawal, P. Ramadevi and V Vinay: A New Link Invariant and its
Complezity.

M. Mukund, K. Narayan Kumar and M. Sohoni: Keeping Track of the
Latest Gossip in Message-Passing Systems.

P.S. Thiagarajan: PTL over Product State Spaces.

M. Agrawal: DSPACE(n) < NSPACE(n): A Degree Theoretic Charac-

terization.
N. Klarlund, M. Mukund, M. Sohoni: Determinizing Asynchronous Au-
tomata on Infinite Inputs.

S. Krishnamurthy, M. Mukund: Implementing Causal Ordering with
Bounded Time-stamps.

M. Mukund, P.S. Thiagarajan: Linear Time Temporal Logics over
Mazurkiewicz Traces.
M. Mukund: Finite-state Automata on Infinite Inputs.

Jesper G. Henriksen and P.S. Thiagarajan: Dynamic Linear Time Tem-
poral Logic.

P.S. Thiagarajan and I. Walukiewicz: An Ezpressively Complete Linear
Time Temporal Logic for Mazurkiewicz Traces.

Jesper G. Henriksen and P.S. Thiagarajan: A Product Version of Dy-
namic Linear Time Temporal Logic.

M. Mukund, K. Narayan Kumar, J. Radhakrishnan and M. Sohoni:
Message-Passing Automata and Asynchronous Communication.

Copies of reports can be ordered from the following address:

SPIC Mathematical Institute
92, G.N. Chetty Road

T. Nagar

Madras 600 017

Email: office@smi.ernet.in

