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Abstract

This paper investigates a solution to the problem of causal ordering in message-

passing distributed systems. Causal ordering is the restriction that messages are

delivered in a �fo fashion with respect to the global causal order between events in

the system. This is stronger than the condition that each local channel is �fo.

In our algorithm, causal ordering is implemented by having each process main-

tain, as the computation proceeds, its latest information about every other process

in the system. To achieve this, messages are tagged with time-stamps. The novel

feature of the protocol described here is that it allows for the reuse of time-stamps.

Under certain conditions, this permits an implementation of causal ordering using

time-stamps that are uniformly bounded.
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Introduction

With the advent of fast, personal workstations, the shape of computing is changing.

Instead of clustering computer systems around powerful central mainframes, connect-

ing individual computers in a distributed network provides a more exible and e�ective

method of utilising the resources at hand.

Programming distributed systems to achieve a joint goal requires a mechanism for co-

ordinating the activities of the individual components. This coordination can be achieved

in many ways: for instance, individual processes could write information of global in-

terest into a shared memory. Alternatively, processes could synchronise periodically and

exchange information about each other.

However, when the individual components in the network are spatially separated, the

only practical method for exchanging information is by sending and receiving messages

over channels which connect pairs of processes. Such message-passing communication is

usually described as being asynchronous since, in principle, there may be an arbitrary

delay between the sending of a message and its receipt at the other end.

Communication using message-passing introduces a high degree of non-determinism in

the behaviour of the overall system. If the communication channel is unreliable, messages

may be lost in transit. Even if all messages sent do reach their recipients, they may arrive

in an order which is di�erent from the one in which they were sent.

Normally, two assumptions are made about the underlying system to eliminate some

of this non-determinism and help make programming these systems more tractable. The

�rst assumption is that the channels are reliable|that is, every message sent is eventually

delivered and no spurious messages are generated by the channels. The second assumption

is that individual channels function in a �rst-in �rst-out (�fo) fashion. In other words,

between each pair of processes, messages are received in the same order in which they

were sent.

These assumptions do not rule out a global disruption in the order of delivery of

messages. This could prove problematic in some settings. Consider a distributed database

with replicated copies of data. Updates to a data item will have to be propagated to each

process holding a copy of the data. All these processes should receive the updates in the

same order to ensure global consistency. For instance, suppose we have a system with

three processes, p, q, r where q and r both hold copies of a data item x which p wants

to update. The update is passed on by p to r via a message M

1

. Then, p informs q of

the change via a message M

2

. Based on the update contained in M

2

, q makes a further

change to x and passes this information on to r in a message M

3

. Since M

1

and M

3

reach

r on di�erent channels, it could happen that M

3

is delivered to r before M

1

, even though

each individual channel functions in a �fo manner. So, r will update x in the wrong order.

This kind of global non-determinism can be eliminated using an abstraction known as

causal ordering, �rst proposed in the Isis system [1]. Causal ordering is the property that

the delivery of messages across the system respects the global partial order between events

in the system|we shall make this de�nition more precise in the next section. In the Isis

system, causal ordering is implemented by passing along the entire message history with

each transmission. This is clearly impractical in the long run.

A much simpler protocol was proposed in [6]. The idea is to distinguish between the

receipt of a message at a process and its delivery. Each message is tagged with a set of

vector time-stamps [3]. When a message is received, the recipient �rst examines these
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time-stamps and determines whether delivering the message immediately would violate

causal ordering. If there is no problem with causal ordering, the message is delivered.

Otherwise, delivery is postponed and the message is kept aside to be considered again for

delivery when the next message is received at that process.

This algorithm was further simpli�ed in [5]. The protocol in [5] involves passing an

N �N matrix of time-stamps with each message, where N is the number of processes in

the system. The time-stamp at position hi; ji in the matrix corresponds to the number

of messages which have been sent so far from process i to process j. Though this scheme

is straightforward and e�ective, it has a major drawback|the entries in the matrix grow

without bound as the computation progresses.

In this paper, we describe a modi�cation of the protocol of [5] in which time-stamps

can be reused. Our scheme relies on keeping track of the latest information passed between

processes, using a simpli�ed version of the algorithm proposed in [4]. This information

is used to collect acknowledgements by determining which messages have reached their

recipients. Using these acknowledgements, a process can decide when it is safe to reuse a

time-stamp.

Though the scheme we propose is slightly more complicated than that of [5], the over-

head associated with passing on time-stamp information with each message is essentially

the same. Our protocol also requires only O(N

2

) extra values to be transmitted with each

message. Further, in certain cases we can ensure that only a bounded set of time-stamps

are used at any given time. This permits us to implement causal ordering with a uniform

upper bound on the size of the time-stamping information associated with each message.

As mentioned earlier, causal ordering is a strengthening of the assumption that in-

dividual channels behave in a �fo manner. However, our algorithm, like those of [5, 6],

actually implements causal ordering in any message-passing system with reliable channels.

In other words, we do not need to assume that channels are �fo.

The paper is organised as follows. In the next section, we introduce our model of

computation and formally de�ne the problem. In Section 2, we describe a simple protocol

by which processes can maintain up-to-date information about each other. The next

section describes an implementation of causal ordering based on the protocol of Section 2.

In Section 4, we re�ne our protocol for causal ordering by adding structure to the time-

stamps. This structure is exploited in the next section to reuse time-stamps and obtain, in

certain cases, a protocol for causal ordering which uses only a bounded set of time-stamps.

We conclude with a discussion on directions for future work.

1 Preliminaries

The Model

We consider a message-passing model of distributed systems for our algorithms. A

message-passing system consists of a �nite set of processes and a �nite set of channels.

Channels are assumed to have in�nite bu�ers and to be error-free. However no restriction

is made on the order in which messages are delivered. The delay experienced by a message

in a channel is arbitrary but �nite.

Events on each process can be classi�ed as send , deliver and internal . A send event

corresponds to the insertion of a message into a channel, and a deliver event to the removal
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of a message from a channel. An internal event refers to events that occur entirely within

a process and a�ect no other process in the system. In this paper however, we do not

consider internal events. In fact all the protocols that we propose are to be superposed

on an underlying computation and internal events are considered part of the underlying

computation.

Some of the protocols in this paper make a distinction between the receipt of a message

and its delivery. In case a message cannot be delivered according to the protocol, we

assume that the message is preserved by the receiving process. In these protocols, every

time a new message is received and delivered, an attempt is made to deliver any old

messages that have been received and are as yet undelivered.

Events and ordering

We consider a system with a set of processes P. Let N denote the number of processes

in P. We use the symbols p, q, r, s and t to denote speci�c processes in the system. We

denote a message M sent from a process p to a process q by M : p ) q. With each such

message, we associate two distinct events, send (M) and deliver (M). If M : p ) q, we

call the event send (M) a p-event and the event deliver (M) a q-event.

De�nition 1.1 We de�ne the relation \predecessor of", denoted <, between events in

our system as follows: Let e

1

and e

2

be two events. Then e

1

< e

2

if and only if one of the

following two conditions is true:

1. There is a process p such that e

1

and e

2

are both p-events and e

1

immediately precedes

e

2

in p. In other words, there is no other p-event e

3

which occurs after e

1

and before

e

2

.

2. Corresponding to some message M : p ) q, e

1

is the p-event send (M) and e

2

the

q-event deliver (M).

Notice that v

�

, the reexive and transitive closure of <, de�nes a total order on all

the events that occur on a particular process.

We also de�ne Lamport's \happened before" relation [2] as the transitive closure <

+

of the relation <. Since we shall use this relation often, we use a separate symbol for it:

we denote the \happened before" relation by !. A situation in which e

1

! e

2

does not

hold is denoted by e

1

6! e

2

. Notice that e

1

6! e

2

does not imply that e

2

! e

1

. In fact,

it is easy to see that ! de�nes a strict partial order on the events of the system. For

convenience, we abbreviate send (M)! send(M

0

) by M !M

0

.

Let E be a �nite set of events which contains at least one p-event. Since all p-events are

totally ordered by v

�

, the maximum p-event in E, denoted by max

p

(E), is well de�ned.

If there is no p-event in E then, by convention, max

p

(E) is de�ned to be the special event

null . So for any event e in the system, we assume that null v

�

e.

In a message-passing system, causal ordering is the property that the order of delivery

of messages in the system respects the order of despatch of messages. This corresponds to

a global �fo requirement on message delivery with respect to the partial order !. More

precisely, we have the following de�nition.
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Figure 1: Causal ordering is respected if M is delivered before M

00

De�nition 1.2 A computation of a message-passing system is causally ordered if for any

two messages M

1

and M

2

where M

1

! M

2

|that is, send (M

1

) ! send (M

2

)|it is the

case that deliver (M

2

) 6! deliver (M

1

).

The example in Figure 1 demonstrates the causal ordering property. Causal ordering

is violated if M

00

is delivered before M .

One of our goals is to design a protocol that can be superposed on an underlying

computation to ensure that it is causally ordered. Our protocols involve adding extra

control information to every message that is sent in the system. This is used to record

information about the messages sent by other processes. Thus, every time a message is

delivered, the process which receives the message gets fresh information about the rest of

the system.

Gossip

In a message-passing system, the only way a process can obtain information about other

processes is through the messages it receives. In other words, at any point in the compu-

tation, the only events in the system \known" to a process are those that have happened

earlier than the current event, according to the partial order v

�

. This is formalised in the

following de�nition.

De�nition 1.3 Let p be a process and e

p

be a p-event. The information that p has about

the rest of the system after the occurrence of e

p

is the set e

p

# = fe

0

j e

0

v

�

e

p

g.

In particular, we are interested in the latest information that p has about the rest

of the system after e

p

. This corresponds to recording, for every other process q, the

maximum q-event that p can \see" in e

p

#. In certain cases, we will also be interested in

keeping track of other processes' latest information|for instance, we want to record the

most recent information p has regarding q's latest information about r. These notions are

formally captured by primary and secondary information.

De�nition 1.4 The primary information a process p has about a process q after a p-event

e

p

|denoted latest

p q

(e

p

)|is de�ned to be max

q

(e

p

#). If there are no q-events in e

p

#,

then latest

p q

(e

p

) is set to null .
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The secondary information a process p has about a process r through a process q

after the occurrence of a p-event e

p

|denoted latest

p q r

(e

p

)|is de�ned to be the event

latest

q r

(latest

p q

(e

p

)).

The primary and secondary information of p after e

p

is collectively called its gossip.

Let p, q and r be processes, e

p

a p-event and e

q

a q-event. Since the latest infor-

mation p has about r at e

p

, latest

p r

(e

p

) and the latest information q has about r at

e

q

, latest

q r

(e

q

), both refer to r-events, this information can always be compared|recall

that all r-events are totally ordered by v

�

. We say that p at e

p

has later information

about r than q at e

q

if latest

q r

(e

q

) v

�

latest

p r

(e

p

).

Notice that latest

p p q

(e

p

) = latest

p q

(e

p

), for every p; q 2 P in the system. That

is, the primary information is implicitly available in the secondary information.

The �rst step in describing our protocol for enforcing causal ordering is to design a

scheme whereby processes update their gossip in a consistent manner.

2 Updating gossip: A naive solution

We associate with each process p 2 P a local clock T

p

which is incremented with the

occurrence of every event in p. For any event e occurring in the process p, T

p

(e) denotes

the value assigned to T

p

when e occurs. We associate the clock value 0 with the special

event null . So, T

p

(null ) = 0 for every process p 2 P. Notice that if e

1

and e

2

are two

p-events such that e

1

! e

2

, T

p

(e

1

) < T

p

(e

2

). Our protocol will ensure that every message

M sent by a process p is tagged (i.e., time-stamped) with the value that is assigned to T

p

when send (M) occurs. We use T

p

(M) to abbreviate T

p

(send(M)) for a message M .

To keep track of the gossip in the system, each process p maintains GOSSIP

p

, an

associative N � N array of non-negative integers indexed by P � P. Each entry in

GOSSIP

p

represents the time-stamp of an event. GOSSIP

p

[q; r] is interpreted as the latest

information that q knows about r about which p is aware. In other words, after a p-event

e

p

, the entry GOSSIP

p

[q; r] should correspond to the time-stamp assigned by T

r

to the

event latest

p q r

(e

p

). Initially, GOSSIP

p

[q; r] = 0 for every q; r 2 P.

To maintain up-to-date gossip information in GOSSIP

p

, each process p obeys a simple

protocol. With each message it sends, it encloses the time-stamps corresponding to its

current gossip. When a process receives a message, it examines the gossip time-stamps

attached to the message and updates its local time-stamps whenever the sending process

has more recent information.

Protocol 1 A naive implementation of Gossip

1. Sending a message M : p ) q

� Set GOSSIP

p

[p; p] := T

p

(M).

� Let GP

M

be an associative N � N array of non-negative integers indexed by

P � P. Copy GOSSIP

p

into GP

M

.

� The actual message sent by p consists of the triple hM;T

p

(M);GP

M

i.

2. Receiving a message M : p) q
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� Compute the function best : P ! fp; qg as follows:

8r 2 P; best (r) =

(

p if GP

M

[p; r] > GOSSIP

q

[q; r]

q otherwise

� Update GOSSIP

q

as follows:

For each r 2 P such that best(r) = p:

GOSSIP

q

[q; r] := GP

M

[p; r]:

8t 2 P; GOSSIP

q

[r; t] := GP

M

[r; t]:

The goal of Protocol 1 is to ensure that GOSSIP

p

represents the secondary information

of p, for every process p 2 P.

Theorem 2.1 Let e

p

be a p-event for p 2 P. Then for every q, r 2 P the following holds

immediately after e

p

occurs: GOSSIP

p

[q; r] = T

r

(latest

p q r

(e

p

)).

Proof The proof is by induction on k, the size of e

p

#.

1. Base case (k = 1)

Clearly e

p

is the only event in e

p

#, and so e

p

cannot be a deliver event|otherwise, the

corresponding send event would also be in e

p

#. Since e

p

is a send event, Protocol 1

ensures that GOSSIP

p

[p; p] = T

p

(M) and GOSSIP

p

[q; r] = 0, for all pairs (q; r) 6=

(p; p). The theorem is trivially true in this case.

2. Induction step (k > 1)

By the induction hypothesis, immediately after any r-event e

r

such that e

r

6= e

p

and e

r

2 e

p

#, we have GOSSIP

r

[s; t] = T

t

(latest

r s t

(e

r

)).

If e

p

is a send event, there must exist a p-event e

0

p

(where e

0

p

6� null ) such that e

0

p

<

e

p

|that is, e

0

p

immediately precedes e

p

. (If not, there exists an event e

0

< e

p

because

je

p

#j > 1, and fromDe�nition 1.1, since e

0

is not a p-event, e

p

is a deliver event, which

is false). The theorem is true for e

0

p

by the induction hypothesis, and Protocol 1

ensures that GOSSIP

p

remains unchanged for all entries except GOSSIP

p

[p; p] after

the occurrence of e

p

. So the theorem is true for e

p

as well, since latest

p q r

(e

0

p

) =

latest

p q r

(e

p

), for every pair of processes (q; r) 6= (p; p).

On the other hand, let e

p

be the event deliver (M) corresponding to a message

M : s ) p and let e

s

be the corresponding event send(M). Clearly, there ex-

ists a p-event e

0

p

(where e

0

p

could be null) such that e

0

p

< e

p

. So e

s

< e

p

and

e

0

p

< e

p

. Also, the theorem is true for e

0

p

, e

s

2 e

p

# by the induction hypothesis.

That is, GP

M

[q; r] = GOSSIP

s

[q; r] = T

r

(latest

s q r

(e

s

)), for every q, r 2 P and

GOSSIP

p

[q; r] = T

r

(latest

p q r

(e

0

p

)), for every q, r 2 P.

When M is received, Protocol 1 computes best(r) = s, for every r 2 P such that

GP

M

[s; r] > GOSSIP

p

[p; r]. By the induction hypothesis this is equivalent to com-

puting best(r) = s, for every r 2 P such that latest

p r

(e

0

p

) v

�

latest

s r

(e

s

).

If there exists r 2 P such that best(r) = s, it is easy to see that after e

p

oc-

curs, the following hold: latest

p p r

(e

p

) = latest

s s r

(e

s

) and, for every t 2

P, latest

p r t

(e

p

) = latest

s r t

(e

s

). Since e

s

satis�es the induction hypothesis,
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latest

s r t

(e

s

) = GP

M

[r; t] and latest

s s r

(e

s

) = GP

M

[s; r]. However, Protocol 1

performs exactly these assignments while updating GOSSIP

p

.

2

Proposition 2.2 Let p, q, r 2 P and let GOSSIP

p

and GOSSIP

q

represent the ar-

rays maintained by p and q after the events e

p

(a p-event) and e

q

(a q-event) respec-

tively. Protocol 1 ensures that if p after e

p

has later gossip about r than q after e

q

then

GOSSIP

p

[p; r] � GOSSIP

q

[q; r].

Proof If latest

q r

(e

q

) v

�

latest

p r

(e

p

) then T

r

(latest

p p r

(e

p

)) � T

r

(latest

q q r

(e

q

)).

From the previous theorem, it then follows that GOSSIP

p

[p; r] � GOSSIP

q

[q; r]. 2

3 Gossip and Causal Ordering

We now enhance our protocol so that it implements causal ordering. In addition to

maintaining GOSSIP

p

and T

p

, the enhanced protocol requires every process p to maintain

SENT

p

, an N�N associative array of non-negative integers indexed by P�P, and DELIV

p

,

an associative array of N non-negative integers indexed by P. SENT

p

[q; r] is interpreted

as the time-stamp of the latest message from q to r that p is aware of. Notice that this

is not necessarily the time-stamp of the latest information r has about q that p is aware

of. DELIV

p

[q] is the time-stamp of the latest message from q that has been delivered at

p. Initially, GOSSIP

p

[q; r] = SENT

p

[q; r] = DELIV

p

[q] = 0 for every p; q; r 2 P.

The idea behind the enhanced protocol is to eliminate violations of causal ordering

at each individual process. Suppose we include the array SENT

p

along with the informa-

tion GOSSIP

p

and the time-stamp T

p

(M) in the control information accompanying each

message M sent by process p. Let M

1

: p ) r and M

2

: q ) r be messages such that

M

1

! M

2

. When q sends M

2

, the value SENT

q

[p; r], denoting the time-stamp of the

latest message sent from p to r that q is aware of, is greater than or equal to T

p

(M

1

). If

M

2

is received before M

1

, r can detect that the delivery of M

2

violates causal ordering by

noting that the time-stamp recorded in SENT

q

[p; r] in the message is more recent than

the time-stamp of the latest message from p to r which has actually been delivered at r.

It turns out that this localised checking of causal ordering violations at each process is

su�cient to ensure that causal ordering is preserved across the entire system. Formally,

the enhanced protocol is as follows.

Protocol 2 Implementing Gossip and Causal Ordering

1. Sending a message M : p ) q

� GOSSIP

p

[p; p] := T

p

(M).

� As in Protocol 1, let GP

M

be an N � N associative array of non-negative

integers indexed by P � P and set GP

M

:= GOSSIP

p

.

� Let ST

M

be an N � N associative array of non-negative integers indexed by

P � P and set ST

M

:= SENT

p

.
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� The actual message sent is the quadruple hM;T

p

(M);GP

M

;ST

M

i.

� After sending the message, update SENT

p

[p; q] := T

p

(M).

2. Receiving a message M : p) q

� Compute the function best : P ! fp; qg as follows:

8r 2 P; best (r) =

(

p if GP

M

[p; r] > GOSSIP

q

[q; r]

q otherwise

� Deliver the message only if:

For each r 2 P such that best(r) = p, ST

M

[r; q]� DELIV

q

[r]

� If the message is delivered, update process q's data structures as follows:

{ For each r 2 P such that best(r) = p:

GOSSIP

q

[q; r] := GP

M

[p; r]:

8s 2 P;GOSSIP

q

[r; s] := GP

M

[r; s]:

8s 2 P;SENT

q

[r; s] := ST

M

[r; s]:

{ DELIV

q

[p] := GP

M

[p; p].

{ SENT

q

[p; q] := GP

M

[p; p].

� Apply the delivery condition to all undelivered messages in the bu�er.

Notice that the previous protocol, Protocol 1, updates gossip information correctly

across the system regardless of the order of delivery of messages. Since Protocol 2 retains

the same protocol for maintaining gossip information and only modi�es the order in which

messages are delivered, it is clear that the new protocol also ensures that every process

in the system updates latest gossip information consistently. We formalise this in the

following theorem, without proof.

Theorem 3.1 Protocol 2 ensures that immediately after the p-event e

p

, GOSSIP

p

[q; r] =

T

r

(latest

p q r

(e

p

)), for every p; q; r 2 P.

It is also easy to see that Protocol 2 ensures consistency of the SENT data structure.

This is formalised in the following theorem. The proof is along the same lines as the

gossip consistency proof of Theorem 2.1 and is omitted.

Theorem 3.2 Protocol 2 ensures that immediately after the p-event e

p

, SENT

p

[q; r] =

T

q

(e

q

), where e

q

is the maximum event in the set fsend(M) 2 e

p

# jM : q ) rg.

We want to establish the correctness of Protocol 2|that is, we want to show that it

implements causal ordering. We break up the correctness argument into two steps. We

�rst prove that the protocol is safe| in other words, we show that causal ordering is

never violated. We then show that it is live|that is, every message is delivered within a

�nite amount of time. We need a few preliminary results to prove the safety and liveness

of Protocol 2.
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3.1 Preliminary results

Lemma 3.3 Let M

1

and M

2

be messages such that M

1

: p ) q and M

2

: r ) s. If

M

1

!M

2

, the following hold:

1. ST

M

2

[p; q] � T

p

(M

1

).

2. GP

M

2

[r; p] � T

p

(M

1

).

Proof Let e

1

� send (M

1

) and e

2

� send (M

2

). Let f = latest

r p

(e

2

) = max

p

(e

2

#).

Since e

1

2 e

2

#, e

1

v

�

f . Both e

1

and f are p-events, so T

p

(e

1

) � T

p

(f). From Theorem 3.1,

we have the following: GP

M

2

[r; p] = T

p

(latest

r r p

(e

2

)) = T

p

(latest

r p

(e

2

)) = T

p

(f).

So, GP

M

2

[r; p] = T

p

(f) � T

p

(e

1

). Similarly, it is easy to see from Theorem 3.2 that

ST

M

2

[p; q] � T

p

(e

1

). 2

Lemma 3.4 Let p be a process. Then, at any stage of the computation, for every other

process q, DELIV

p

[q] � GOSSIP

p

[p; q].

Proof It is clear from Protocol 2 that after a p-event e

p

, DELIV

p

[q] is the time-stamp

T

q

(M) of the most recently delivered message M : q ) p. So, send (M) 2 e

p

#. By

Theorem 3.1, after e

p

, GOSSIP

p

[p; q] = T

q

(latest

p p q

(e

p

)) = T

q

(latest

p q

(e

p

)). Clearly,

send (M) v

�

latest

p q

(e

p

), so T

q

(M) � T

q

(latest

p q

(e

p

)) which means that DELIV

p

[q] �

GOSSIP

p

[p; q]. 2

Lemma 3.5 Let e

p

be a p-event for p 2 P and let E

d

= fM jdeliver (M) v

�

e

p

g be the

set of messages whose delivery is known to p at e

p

. Then, for every message M : q ) r

in E

d

, where r 6= p, there is a message M

0

: s) p in E

d

such that M !M

0

.

Proof Let M : q ) r be a message in E

d

such that r 6= p. Since deliver (M) v

�

e

p

,

there must be a sequence of events deliver (M) � e

1

< e

2

< � � � < e

n

� e

p

in e

p

#.

Since e

p

is a p-event and deliver (M) is not, if we move back along this sequence and

examine e

n�1

, e

n�2

: : : , we must eventually �nd an event e

k

such that e

k

is an s-event

for some s 6= p while e

k+1

is a p-event. By the de�nition of the relation <, it must be

the case that e

k

� send (M

0

) and e

k+1

� deliver (M

0

) for some message M

0

: s) p. Since

e

1

� deliver (M) and e

k

� send(M

0

), e

1

6= e

k

. As a result, deliver (M) ! send(M

0

), and

M !M

0

. 2

3.2 Safety

We now show that Protocol 2 is safe|that is, we show that the protocol ensures that

causal ordering is never violated. This will follow from the following theorem.

Theorem 3.6 Let M : p) q be a message and let e

q

be a q-event. If deliver (M) =2 e

q

#,

then M 6!M

q

for every message M

q

such that deliver (M

q

) 2 e

q

#.

Proof Let E

q

be the set of all messages delivered at q in e

q

#. That is, E

q

= fM

0

j

deliver (M

0

) v

�

e

q

and M

0

: r ) q for some r 2 Pg.

The proof is by induction on the size of E

q

.
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1. Base case (jE

q

j = 1).

Let E

q

= fM

1

g, whereM

1

is of the formM

1

: r ) q for some process r 2 P. Suppose

that M ! M

0

for some M

0

2 e

q

#. By Lemma 3.5, if M

0

6= M

1

then M

0

! M

1

.

From this, it follows that M ! M

1

. By Lemma 3.3, ST

M

1

[p; q] � T

p

(M) and

GP

M

1

[r; p] � T

p

(M). Clearly, T

p

(M) > 0. Since M

1

is the �rst message delivered

at q, it is easy to see that when M

1

is received at q, DELIV

q

[s] = 0, for every

s 2 P, and GOSSIP

q

[s; t] = 0 for all pairs (s; t) 6= (q; q). So, GOSSIP

q

[q; p] =

0 < T

p

(M) � GP

M

1

[r; p] and Protocol 2 computes best(p) to be r. However, since

ST

M

1

[p; q] � T

p

(M) > 0 = DELIV

q

[p], the delivery condition in Protocol 2 is not

satis�ed and M

1

cannot be delivered. That is, M

1

=2 E

q

, which is a contradiction.

2. Induction step (jE

q

j = n > 1).

Let E

q

= fM

1

;M

2

; : : : ;M

n

g and deliver (M

1

)! deliver (M

2

)! � � � ! deliver (M

n

).

Let e

0

q

be the q-event immediately preceding deliver (M

n

)|i.e., e

0

q

< deliver (M

n

).

Since there are only n�1 messages delivered at q in e

0

q

#, by the induction hypothesis,

for each message M

0

such that deliver (M

0

) v

�

e

0

q

, we have M 6!M

0

.

Suppose that M ! M

0

for some message M

0

such that deliver (M

0

) 2 e

q

# n e

0

q

#. If

M

0

2 E

q

, it must be the case that M

0

= M

n

, since deliver (M

0

) =2 e

0

q

#. Otherwise, if

M

0

=2 E

q

, by Lemma 3.5, there is a message M

00

: s) q in E

q

such that M

0

!M

00

.

Since deliver (M

0

) =2 e

0

q

#, it must be the case that M

00

= M

n

. So, in either case,

M !M

n

.

Let M

n

: r ) q. We shall show that M !M

n

implies that M

n

cannot be delivered,

which is a contradiction. If M ! M

n

, by Lemma 3.3, GP

M

n

[r; p] � T

p

(M) and

ST

M

n

[p; q] � T

p

(M).

Claim: At e

0

q

, before deliver (M

n

), GOSSIP

q

[q; p] < T

p

(M).

Proof of Claim:

At e

0

q

, GOSSIP

q

[q; p] = T

p

(latest

q q p

(e

0

q

)). Let latest

q p

(e

0

q

) = send(M

0

)

where M

0

is a message M

0

: p) r. Clearly, deliver (M

0

) 2 e

0

q

#, so, by the

induction hypothesis, M 6! M

0

. Since M and M

0

are both p-events, it

follows that M

0

!M . So, T

p

(M

0

) < T

p

(M) and GOSSIP

q

[q; p] < T

p

(M).

From the claim, it follows that whenM

n

is received, Protocol 2 computes best(p) = r

since GP

M

n

[r; p] � T

p

(M) > GOSSIP

q

[q; p].

By Lemma 3.4, DELIV

q

[p] � GOSSIP

q

[q; p], so DELIV

q

[p] < T

p

(M). Since we have

ST

M

n

[p; q] � T

p

(M) > DELIV

q

[p], the delivery condition in Protocol 2 is not satis�ed

and M

n

cannot be delivered. That is, M

n

=2 E

q

which is a contradiction.

2

We can now argue that Protocol 2 guarantees that causal ordering is never violated.

Suppose M

1

: p ) q and M

2

: r ) s such that M

1

! M

2

. Then, we must have

deliver (M

2

) 6! deliver (M

1

). If not, we have a situation which contradicts the previous

theorem: set M = M

1

, M

q

= M

2

and e

q

= deliver (M

2

). Then, deliver (M) =2 e

q

# but

M !M

q

, where deliver (M

q

) 2 e

q

#.
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3.3 Liveness

Having proved that Protocol 2 is safe|that is, message deliveries obey casual ordering|

we still have to show that it is live. Liveness corresponds to proving that all messages are

eventually delivered.

However, we �rst need to prove the following lemma which depends on the safety of

Protocol 2.

Lemma 3.7 Let e

q

be a q-event and M : p ) q be a message such that DELIV

q

[p] <

T

p

(M) holds immediately after e

q

occurs. Then deliver(M) =2 e

q

#.

Proof From Protocol 2, it is clear that DELIV

q

[p] corresponds to the time-stamp of

the message from p to q most recently delivered at q. Let DELIV

q

[p] = T

p

(M

0

). Since

T

p

(M

0

) < T

p

(M), we know that M

0

! M . Suppose that deliver (M) 2 e

q

#. Since M

0

is

the most recent message from p to q delivered at q, it must be the case that deliver (M)!

deliver (M

0

). But this contradicts the fact that Protocol 2 is safe (Theorem 3.6). 2

Theorem 3.8 Every message in the system is delivered within a �nite amount of time.

Proof Let M : p ) q be a message which is never delivered. Let U denote the set of

all messages sent to process q which are never delivered. Let M

s

: s) q be a message in

U such that send (M

s

) is minimal with respect to the strict partial order ! on the set of

events fsend (M) jM 2 Ug.

Since M

s

is never delivered, there must be some r 2 P such that whenever any

message is delivered at q, the comparison of GP

M

s

and GOSSIP

q

yields best(r) = s and

ST

M

s

[r; q] > DELIV

q

[r].

Let ST

M

s

[r; q] = T

r

(M

r

). By Theorem 3.2 we know that send (M

r

) is the maximum

event in the set fsend(M

0

) jM

0

: r ) q and M

0

!M

s

g.

Since DELIV

q

[r] < T

r

(M

r

) = ST

M

s

[r; q] throughout the computation, we have from

Lemma 3.7 that deliver (M

r

) =2 e

q

#, for any q-event e

q

. In other words, M

r

is also a

message sent to q which is never delivered. So M

r

2 U . But M

r

!M

s

, contradicting the

assumption that M

s

was a minimal element of U . 2

3.4 Complexity

Each message M carries the following control information: T

p

(M), GP

M

and ST

M

. Since

GP

M

and ST

M

are both of size N � N , the control information consists of O(N

2

) time-

stamps.

4 Lexicographic time-stamps

In this section we describe a further modi�cation of Protocol 2. The new protocol is

almost identical to Protocol 2, except for the values that are used for the time-stamps.

The new time-stamps are pairs he; ti, where e and t are both non-negative integers. The

two components of e and t are called the epoch and time components respectively.
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We call these pairs lexicographic time-stamps. If T

p

= he; ti is a time-stamp in our

new notation, we use T

p

:e and T

p

:t to denote its two components. The relation � over

lexicographic time-stamps is de�ned as follows. Let T

1

and T

2

be lexicographic time-

stamps. T

1

� T

2

if either T

1

:e < T

2

:e or T

1

:e = T

2

:e and T

1

:t � T

2

:t. Observe that this is

a total order, so all events occurring on a particular process are totally ordered by their

lexicographic time-stamps. We set T

p

(null ) = h0; 0i.

We can modify Protocol 2 to work with lexicographic time-stamps instead of the

linear time-stamps used earlier. The only new feature is deciding when to increment the

epoch component of the time-stamp.

The n

th

epoch of a process p 2 P is de�ned as the set of all p-events e

p

such that

T

p

(e

p

):e = n. Every other process q in the system has some knowledge of the epoch p is

in through the epoch components of time-stamps recorded in the array GOSSIP

q

. In our

new protocol, a process p increments its epoch from n to n+1 when p becomes aware that

every other process in the system \knows" that p's current epoch is n.

A precise description of how processes generate lexicographic time-stamps is de�ned

in Protocol 3.

Protocol 3 Lexicographic time-stamps to implement causal ordering

1. Sending a message M : p ) q

� Increment T

p

:t.

� GOSSIP

p

[p; p] := T

p

(M).

� As in Protocol 1, let GP

M

be an N � N associative array of non-negative

integers indexed by P � P and set GP

p

:= GOSSIP

p

.

� As in Protocol 2, let ST

M

be an N � N associative array of non-negative

integers indexed by P � P and set ST

M

:= SENT

p

.

� The actual message sent is the quadruple (M;T

p

(M);GP

M

;ST

M

).

� After sending the message, update SENT

p

[p; q] := T

p

(M).

2. Receiving a message M : p) q

� Compute the function best : P ! fp; qg as follows:

8r 2 P; best (r) =

(

p if GP

M

[p; r] > GOSSIP

q

[q; r]

q otherwise

� Deliver the message only if:

For each r 2 P such that best(r) = p, ST

M

[r; q]� DELIV

q

[r]

� If the message is delivered, update process q's data structures as follows:

{ For each r 2 P such that best(r) = p:

GOSSIP

q

[q; r] := GP

M

[p; r]:

8s 2 P;GOSSIP

q

[r; s] := GP

M

[r; s]:

8s 2 P;SENT

q

[r; s] := ST

M

[r; s]:

12
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Figure 2: Messages are bounded within two epochs

{ DELIV

q

[p] = SENT

q

[p; q] = GP

M

[p; p].

� Apply the delivery condition to all undelivered messages in the bu�er.

� If GOSSIP

q

[r; q]:e= T

q

:e for all r 2 P, update T

q

as follows:

T

q

:e := T

q

:e+ 1

T

q

:t := 0

Notice that all the results proved for Protocol 2 in Section 4 hold for Protocol 3 as

well. In other words, this protocol is also safe and live and adds O(N

2

) time-stamps of

control information to each message.

Partially bounded time-stamps

We now establish a lemma that will help in bounding these lexicographic time-stamps.

The bound that we describe is partial, in the sense that only the epoch component of

the time-stamps is bounded. This lemma depends on the safety of Protocol 3 which is

inferred from Theorem 3.6.

Lemma 4.1 Let M : p) q be a message such that T

p

(M):e = n. Then, for every p-event

e

p

where T

p

(e

p

):e � n+ 2, e

p

6! deliver (M).

Proof Let e

p

be a p-event such that T

p

(e

p

):e � n+2 and e

p

! deliver (M). Let E

n+1

be

the set of p-events fe j T

p

(e):e = n+1g. The events in E

n+1

are totally ordered by v

�

|let

min(E

n+1

) and max (E

n+1

) denote the minimum and maximum elements of this set (see
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Figure 2). From Protocol 3 we know that for every process s 2 P n fpg, there is a deliver

event e

s

on s such that min(E

n+1

)! e

s

! max (E

n+1

). This is because p increments its

epoch from n+1 to n+2 only if it sees GOSSIP

p

[s; p] = n+1 for every other process s,

which means that all other processes should have received messages that were sent and

delivered between the occurrences of min(E

n+1

) and max (E

n+1

). Speci�cally, for q, there

must be a message M

0

: r ) q from some process r such that min(E

n+1

)! send (M

0

)!

deliver (M

0

) ! max (E

n+1

) Since T

p

(M):e = n, we also have send(M) ! min(E

n+1

).

In other words, send (M) ! min(E

n+1

) ! send (M

0

) and deliver (M

0

) ! max (E

n+1

) !

e

p

! deliver (M). So send (M) ! send (M

0

) and deliver (M

0

) ! deliver (M), which

contradicts the fact that Protocol 3 is safe. 2

What Lemma 4.1 e�ectively states is that any message sent by a process in its n

th

epoch is delivered before the process enters its (n + 2)

nd

epoch. In other words, we will

never have to compare messages whose time-stamps di�er by more than one epoch.

This means that we need only three distinct values|say 0, 1 and 2|to record the

epoch component of the time-stamp. We can then rede�ne the � relation over lexico-

graphic time-stamps as follows. Let T

1

and T

2

be lexicographic time-stamps. T

1

� T

2

if either T

2

:e = (T

1

:e+1 mod 3) or T

1

:e = T

2

:e and T

1

:t � T

2

:t. Using this de�nition

of �, we can cycle through the three values for the epoch by modifying the last line in

Protocol 3 to read:

If GOSSIP

q

[r; q]:e= T

q

:e for all r 2 P, update T

q

as follows:

T

q

:e := (T

q

:e+1 mod 3)

T

q

:t := 0

5 Bounded time-stamps

In the previous section we demonstrated the use of lexicographic time-stamps and showed

how they could be, in a sense, partially bounded. Unfortunately it is not so easy to ensure

that lexicographic time-stamps, or any other kind of time-stamps for that matter, can be

completely bounded for arbitrary computations.

It is easy to construct pathological cases that will lead to the breakdown of most

bounded time-stamping protocols. For instance, suppose we have a computation where

one process keeps sending messages to another process which, in turn, never sends any

messages at all. Then there is no way for the �rst process to know which (if any) of its

messages have been received, so that it can reuse the corresponding time-stamps.

However such computations represent extreme cases and it is possible to impose rea-

sonable restrictions on the system so that we can bound time-stamps systematically. We

place the following restrictions on the distributed system and the underlying computation

to ensure that time-stamps can be completely bounded:

1. The labelled directed graph that describes the topology of the distributed system is

strongly connected.

2. No process sends more than B messages in an epoch, where B is a non-negative

integer.

The �rst condition restricts the physical structure of the system, independent of the

actual computation. However this is essential to prevent the isolation of a process which

would lead to the kind of pathological case described earlier.
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The second condition speci�es the actual limit on the storage for time-stamps. This

bound can be easily incorporated into Protocol 3 to implement a protocol with uniformly

bounded lexicographic time-stamps, as described in Protocol 4. The value B is a param-

eter that denotes the number of messages that a process can send in an epoch. The only

di�erence in the new protocol is that a process is not allowed to send more messages in an

epoch if B messages have already been sent. Any such additional messages are preserved

in a separate bu�er and are sent when the next epoch starts.

It is easy to see that the value of B a�ects the performance of our protocol. If B is

too small, processes will have to wait too long to change epochs. If B is too large, then

messages will become too bulky and e�ciency is reduced.

In extreme cases, if some processes send messages very sporadically the bound B

could lead to a system deadlock. So, this protocol is usable only when the computation

progresses somewhat uniformly on all fronts, allowing all processes to change epochs

regularly.

Protocol 4 Bounded time-stamps to implement causal ordering

1. Sending a message M : p ) q

� Proceed with the protocol only if T

p

:t � B

� Increment T

p

:t.

� GOSSIP

p

[p; p] := T

p

(M).

� As in Protocol 1, let GP

M

be an N � N associative array of non-negative

integers indexed by P � P and set GP

p

:= GOSSIP

p

.

� As in Protocol 2, let ST

M

be an N � N associative array of non-negative

integers indexed by P � P and set ST

M

:= SENT

p

.

� The actual message sent is the quadruple (M;T

p

(M);GP

M

;ST

M

).

� After sending the message, update SENT

p

[p; q] := T

p

(M).

2. Receiving a message M : p) q

� Compute the function best : P ! fp; qg as follows:

8r 2 P; best (r) =

(

p if GP

M

[p; r] > GOSSIP

q

[q; r]

q otherwise

� Deliver the message only if:

For each r 2 P such that best(r) = p, ST

M

[r; q]� DELIV

q

[r]

� If the message is delivered, update process q's data structures as follows:

{ 8r 2 P such that best(r) = p:

GOSSIP

q

[q; r] := GP

M

[p; r]:

8s 2 P;GOSSIP

q

[r; s] := GP

M

[r; s]:

8s 2 P;SENT

q

[r; s] := ST

M

[r; s]:
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{ DELIV

q

[p] = SENT

q

[p; q] = GP

M

[p; p].

� Apply the delivery condition to all undelivered messages in the bu�er.

� If GOSSIP

q

[r; q]:e= T

q

:e for all r 2 P, update T

q

as follows:

T

q

:e := (T

q

:e+1 mod 3)

T

q

:t := 0

Also despatch all unsent messages in the bu�er.

Notice that all the results proved for Protocol 2 in Section 4 hold for Protocol 4 as

well. This protocol too is safe and live and incorporates O(N

2

) time-stamps of control

information with each message. However, we know that each time-stamp can be described

using O(logB) bits. So, overall Protocol 4 adds only O(N

2

logB) bits of control data to

each message, regardless of the length of the computation.

Discussion

As we mentioned earlier, Protocol 4 works for computations which proceed more or less

uniformly across the system. We feel that the restrictions we impose are not unreasonable

in any system where the processes are coordinating their e�orts to achieve a joint goal.

An alternative approach is to implement Protocol 4 without explicitly incorporating

the bound B in the algorithm. Then, the protocol correctly implements causal ordering for

all systems, with the additional feature that the time-stamps generated by the protocol are

uniformly bounded whenever the process graph is strongly connected and the underlying

computation is \well behaved".

It appears possible to slightly weaken the conditions under which the time-stamps used

by our protocol remain uniformly bounded. In [4], a bounded time-stamping protocol is

described for keeping track of gossip information in arbitrary message-passing systems

with reliable (but possibly non-�fo) channels which satisfy the following requirement: the

number of unacknowledged messages between any pair of processes p and q is bounded by

a constant B|a message M : p ) q is said to be acknowledged if the event deliver (M)

is visible to p; i.e., deliverM v

�

e

p

for some p-event e

p

.

This is a weaker requirement than the one we have imposed on our protocol here. For

instance, the requirement of [4] would permit one process to go to sleep and never transmit

any more messages, provided no other process ever sends it more than B messages during

the computation.

We could modify our protocol to work under this less restrictive assumption, as follows.

Instead of maintaining a single clock T

p

for each process p, we could maintain a clock T

pq

for each pair of processes p and q. The clock T

pq

is used to time-stamp messages sent

from p to q. So, each process actually maintains upto N independent clocks.

Each process now needs to remember the latest values of all N clocks of every other

process. So, each process maintains N

2

primary time-stamps and N

3

secondary time-

stamps. We can then easily modify Protocol 1 to correctly update these N

3

values.

Notice that the revised protocol would require an extra O(N

3

logN) bits to be added to

each message, which is more than the O(N

2

logN) bits added in the protocol presented

here.
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This revised protocol would use only a bounded set of time-stamps provided each

process p resets the epoch of each of its clocks T

pq

within a bounded number of messages

B. Since the length of an epoch in T

pq

is precisely equal to the number of unacknowledged

messages sent from p to q since the beginning of the epoch, this is equivalent to the

restriction that there are no more than B unacknowledged messages from p to q at any

time.

An additional bene�t of the revised protocol is that it would be more resilient to

stopping failures, where a process dies at some point and does not participate in the rest

of the computation. Since each channel uses a separate set of time-stamps, the reuse of

time-stamps between those processes which are still functioning is not a�ected by the fact

that acknowledgments are no longer received from the dead process.

It seems di�cult to design reasonable implementations of causal ordering which are

robust in the presence of arbitrary system failures. The Isis system of [1] implements

causal ordering even in the presence of channel errors, but at the cost of tagging each

message with the entire message history of the system. Our protocol, like the protocols

of [5] and [6], is very sensitive to channel errors, as discussed in [6]. It appears di�cult to

overcome this problem in general, but it would be interesting to see to what extent these

simpli�ed protocols can be enhanced to cope with speci�c kinds of process and channel

failures.
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