
Internal Report TCS-94-2

February, 1994

Gossiping, Asynchronous Automata

and Zielonka's Theorem

Madhavan Mukund and Milind Sohoni

School of Mathematics

SPIC Science Foundation

92 G.N. Chetty Road, T. Nagar

Madras 600 017, INDIA

E-mail: fmadhavan,sohonig@ssf.ernet.in

Abstract

In this paper, we �rst tackle a natural problem from distributed computing,

involving time-stamps. We then show that our solution to this problem can be

applied to provide a simpli�ed proof of Zielonka's theorem|a fundamental result

in the theory of concurrent systems.

Let P = fp

1

; p

2

; : : : ; p

N

g be a set of computing agents or processes which syn-

chronize with each other from time to time and exchange information about them-

selves and others. The gossip problem is the following: Whenever a set P � P

meets, the processes in P must decide amongst themselves which of them has the

latest information, direct or indirect, about each agent p in the system.

We propose an algorithm to solve this problem which is �nite-state and local.

Formally, this means that our algorithm can be implemented as an asynchronous

automaton.

Solving the gossip problem appears to be a basic step in tackling other prob-

lems involving asynchronous automata. Here, we apply our solution to derive an

alternative proof of Zielonka's fundamental result that deterministic asynchronous

automata accept precisely the class of recognizable trace languages. For a given

recognizable trace language L over a concurrent alphabet (�; I), we show how to

construct a deterministic asynchronous automaton with the same underlying inde-

pendence structure which accepts L.

Zielonka's original proof of this theorem is quite intricate and hard to grasp.

To the best of our knowledge, ours is the �rst simpli�ed proof of this result which

works directly with asynchronous automata.

Introduction

This paper has two main aims. We �rst tackle a natural problem from distributed com-

puting, involving time-stamps. We then show that our solution to this problem can be

applied to provide a simpli�ed proof of a fundamental result in the theory of concurrent

systems|Zielonka's theorem that asynchronous automata accept precisely the class of

recognizable trace languages [Zie1].

Let P = fp

1

; p

2

; : : : ; p

N

g be a set of computing agents or processes which synchronize

with each other from time to time and exchange information about themselves and others.

The gossip problem is the following: Whenever a set P � Pmeets, the processes in P must

decide amongst themselves which of them has the latest information, direct or indirect,

about each agent p in the system.

This is easily accomplished if the agents decide to \time-stamp" every synchronization

and pass these time-stamps along with each exchange of information. This does not

require that all their clocks be synchronized. For example, each process can use an

independent counter. When a set P � P meets, the processes in P jointly agree on a new

value for their counters which exceeds the maximum of the counter values currently held

by them. Thus, for any process p, the time-stamps assigned to synchronization events

involving p form a strictly increasing sequence (albeit with gaps between successive time-

stamps). So, the problem of deciding who has the latest information about p reduces to

that of checking for the largest time-stamp.

This scheme has the following drawback: As the computation progresses these counter

values increase without bound and most of the agents' time would be taken up in passing

on large numbers, as opposed to actual gossip.

We propose an algorithm using counters which take on values from a bounded, �nite

set. We assign an independent counter to each subset of processes which can potentially

synchronize. These counters are updated when the corresponding sets of processes meet.

The update is performed jointly by the processes which meet.

Since our set of counter values is bounded, time-stamps have to be reused and, in

general, di�erent synchronizations involving a particular set of processes will acquire the

same time-stamp during a computation. Despite this, our algorithm guarantees that

whenever a set P � P meets, the processes in P can decide correctly which of them

has the best information about any other agent p in the system. Thus, in essence, the

processes in P may be �nite state machines and yet manage to keep track of the lat-

est information about other agents. Further, the algorithm itself does not induce any

additional communications.

1

We formalize the gossip problem and our solution to it in terms of asynchronous au-

tomata. These machines were �rst introduced by Zielonka and are a natural generalization

of �nite-state automata for modelling concurrent systems [Zie1]. An asynchronous au-

tomaton consists of a set of �nite-state agents which synchronize to process their input.

Each letter a in the input alphabet � is assigned a subset �(a) of processes which jointly

update their state when reading a. The processes outside �(a) remain unchanged during

this move|in fact, they are oblivious to the occurrence of a.

A distributed alphabet (�; �) of this type gives rise to an independence relation I

1

An earlier proof of this result appeared in [MS]. However, the proof we provide here is new, more

concise and more uniform with respect to di�erent underlying patterns of synchronization.

1

between letters: (a; b) 2 I i� a and b are processed by disjoint sets of components|i.e.,

�(a) \ �(b) = ;.

An alphabet with an independence relation is also called a concurrent alphabet. These

were introduced in the theory of concurrent systems by Mazurkiewicz as a technique for

studying such systems from the viewpoint of formal language theory [Maz]. Given a

concurrent alphabet (�;I), I induces a natural equivalence relation � on �

�

: two words

u and u

0

are related by � i� u

0

can be obtained from u by a sequence of permutations

of adjacent independent letters. The equivalence class [w] containing w is called a trace.

Thus, the trace [w] describes all possible ways of interleaving independent actions in w

without a�ecting the overall computation.

A language L � �

�

is said to be a trace language over (�;I) if L is closed under �.

In other words, for each w 2 �

�

, if w 2 L then [w] � L. A trace language is recognizable

if it is accepted by a conventional �nite-state automaton over �.

However, since conventional automata are sequential, it is quite awkward to precisely

characterize the class of automata which recognize trace languages. Asynchronous au-

tomata, on the other hand, are natural acceptors for these languages. If we distribute �

in such a way that the induced independence relation is I, we are guaranteed that the

set of strings accepted by the automaton is recognizable and closed under �.

Despite this obvious connection, it is not easy to prove that the class of languages

accepted by asynchronous automata coincides with the class of recognizable trace lan-

guages. This fundamental result was �rst established by Zielonka [Zie1]. Given a conven-

tional �nite automaton recognizing a trace language over (�;I), he demonstrated how to

construct directly a deterministic asynchronous automaton over a distributed alphabet

(�; �) which accepts the same language, such that the independence relation induced by

� is precisely I.

Zielonka's original proof of this theorem is quite intricate and di�cult to grasp. It

turns out that our algorithm for keeping track of the latest information can be exploited

to provide a simple, \operational" proof of this theorem. The states of the automaton we

construct are highly structured. As a result, the transition function which updates the

information in the states can be described in an \algorithmic" manner. This is in contrast

to the automaton yielded by Zielonka's construction, where the set of states is just an

enormous collection of names and the transition relations are speci�ed by exhaustively

listing out all the entries in the transition table. So, though both constructions yield state

spaces of the same order of magnitude, the automaton we construct can be e�ectively

presented much more concisely than the one Zielonka constructs.

Our proof is not the �rst attempt to simplify Zielonka's argument. Given that the

statement of his theorem is at once both fundamental and elegant, both he and others

have worked on alternative, more accessible proofs [CMZ, Die]. However, all of these

new proofs have been based on a di�erent machine model called asynchronous cellular

automata. The drawback is that, unlike asynchronous automata, these new machines

are not easy to visualize and do not correspond to any natural framework of distributed

computation. We shall discuss the connections between our construction and these proofs

based on asynchronous cellular automata in greater detail in the concluding section of

the paper, where it will be easier to point out the similarities and di�erences between the

two approaches. For the moment, we just note that the construction we give here is, to

the best of our knowledge, the �rst simpli�ed proof of Zielonka's theorem based directly

on asynchronous automata.

2

The paper is organized as follows. In the next section, we introduce asynchronous

automata and formalize the gossip problem in terms of these automata. To do this, we

de�ne a natural partial order on events in the system. In Section 2 we introduce ideals

and frontiers, both of which play a crucial role in the rest of the paper. Sections 3 and

4 describe how to maintain, compare and update in a local manner the latest informa-

tion about other processes. The next section puts all these ideas together and formally

describes the \gossip automaton" which solves the �rst problem we set out to tackle.

We then move to recognizable trace languages and Zielonka's theorem. Section 6

provides the necessary background on traces. (We restrict ourselves to the notions we

need. We ensure, however, that the presentation is self-contained.) In Section 7 we then

introduce the notion of residues and use it to provide our proof of Zielonka's theorem.

We compare our construction with Zielonka's original construction in Section 8.

In the concluding Discussion, we place our results in perspective. We discuss similar-

ities and di�erences with other work on \gossiping" and bounded time-stamps [HHL, IL,

DS, CS]. We also compare our proof with those based on asynchronous cellular automata

[CMZ, Die]. Finally, we discuss other applications of the gossip automaton in logic and

the theory of asynchronous automata [KMS, Thi].

1 Preliminaries

Let P be a �nite set of processes which synchronize periodically and let the set of possible

synchronizations permitted in the system be denoted C, where C � (2

P

� f;g). So, each

element c 2 C is a non-empty subset of P. When c occurs, the processes in c share all

information about their local states and update their states accordingly.

We model a computation of the system as a sequence of communications|that is,

a word u 2 C

�

. Let u be of length m. It is convenient to think of u as a function

u : [1::m]! C, where for natural numbers i and j, [i::j] abbreviates the set fi; i+1; : : : ; jg

if i � j and [i::j] = ; otherwise. By this convention, the empty word " is denoted by the

unique function ; ! C.

Events With u : [1::m] ! C, we associate a set of events E

u

. Each event e is of the

form (i; u(i)), where i 2 [1::m]. In addition, it is convenient to include an initial event

denoted 0. Thus, E

u

= f0g [f(i; u(i)) j i 2 [1::m]g.

The initial event marks an implicit synchronization of all the processes before the start

of the actual computation. So, if u is the empty word ", E

u

= f0g.

Usually, we will write E for E

u

. For p 2 P and e 2 E, we write p 2 e to denote that

p 2 u(i) when e = (i; u(i)); for the initial event 0, we de�ne p 2 0 to hold for all p 2 P.

If p 2 e, then we say that e is a p-event .

Ordering relations on E The word u imposes a total order on events in E: de�ne

e < f if e 6= f and either e = 0 or e = (i; u(i)), f = (j; u(j)), and i < j. We write e � f

if e = f or e < f . Moreover, each process p orders the events in which it participates:

de�ne /

p

to be the strict ordering

e /

p

f

4

= e < f; p 2 e \ f and for all e < g < f; p =2 g:

3

�

�

�

�

�

�

b

�

�

a

�

�

�

c

�

�

a

�

�

b

�

�

b

�

�

a

- - -

- - - -

- - - -

- - - -

p

q

r

s

0

e

1

e

2

e

3

e

4

e

5

e

6

e

7

Figure 1: An example

The set of all p-events in E is totally ordered by /

�

p

, the reexive, transitive closure of /

p

.

De�ne e < f if for some p, e /

p

f and e v f if e = f or e < f . Let v

�

denote the

transitive closure of v. If e v

�

f then we say that e is below f . The causality relation

v

�

is a partial order which models the cause and e�ect relationship between events in

E more accurately than the temporal order <. Synchronizations between disjoint sets

of processes can be performed independently|in particular, if two such synchronizations

occur consecutively in u, they could also be transposed without a�ecting the outcome of

the computation. Thus, many di�erent rearrangements of the letters is u will, in general,

give rise to isomorphic structures (E;v

�

).

Example: Let P = fp; q; r; sg and C = fa; b; cg where a = fp; qg, b = fr; sg and c =

fq; r; sg. Figure 1 shows the events E corresponding to the word bacabba. The dashed box

corresponds to the \mythical" event 0, which we insert at the beginning for convenience.

In the �gure, the arrows between the events denote the relations /

p

, /

q

, /

r

and /

s

. From

these, we can compute < and v

�

. Thus, for example, we have e

1

v

�

e

4

since e

1

/

r

e

3

/

q

e

4

.

Note that 0 is below every event. Also, for each p 2 P, the set of all p-events in E is

totally ordered by v

�

since /

�

p

is contained in v

�

.

The set of events below e is denoted e#. These represent the only synchronizations in

E which are \known" to the processes in e when e occurs.

Latest information Let E be the set of events of the communication sequence u :

[1::m] ! C. The v

�

-maximum p-event in E is denoted max

p

(E). max

p

(E) is the last

event in E in which p has taken part. Since p 2 0 2 E and all p-events are totally ordered

by v

�

, max

p

(E) is well-de�ned.

Let p; q 2 P. The latest information p has about q in E corresponds to the v

�

-

maximum q-event in the subset of eventsmax

p

(E)#. We denote this event by latest

p!q

(E).

Since all q-events are totally ordered by v

�

and q 2 0 v

�

max

p

(E), latest

p!q

(E) is well-

de�ned.

4

Example: Continuing with our example, in Figure 1, max

p

(E) = e

7

whereas max

s

(E) =

e

6

. latest

p!q

(E) = e

7

, but latest

p!s

(E) = e

3

. On the other hand, latest

s!p

(E) = e

2

.

For any processes p; p

0

; q 2 P, the events latest

p!q

(E) and latest

p

0

!q

(E) are both q-events

and are thus always comparable with respect to v

�

. Our �rst goal is to design a scheme

whereby each process p maintains a bounded amount of information locally, so that when-

ever a set of processes c � P synchronizes they can decide amongst themselves which of

them has heard most recently from every process in the system. More formally, for ev-

ery q 2 P, all the processes in c should be able to jointly compute which of the events

flatest

p!q

(E)g

p2c

is maximum with respect to v

�

.

We make precise the notions of bounded and local information using asynchronous

automata.

Asynchronous automata

Distributed alphabet Let P be a �nite set of processes as before. A distributed al-

phabet is a pair (�; �) where � is a �nite set of actions and � : �! (2

P

� f;g) assigns a

non-empty set of processes to each a 2 �.

State spaces With each process p, we associate a �nite set of states denoted V

p

. Each

state in V

p

is called a local state. For P � P, we use V

P

to denote the product

Q

p2P

V

p

.

An element ~v of V

P

is called a P -state. A P-state is also called a global state. Given

~v 2 V

P

, and P

0

� P , we use ~v

P

0

to denote the projection of ~v onto V

P

0

.

Asynchronous automaton An asynchronous automaton A over (�; �) is of the form

(fV

p

g

p2P

; f!

a

g

a2�

;V

0

;V

F

), where!

a

� V

�(a)

�V

�(a)

is the local transition relation for a,

and V

0

;V

F

� V

P

are sets of initial and �nal global states. Intuitively, each local transition

relation !

a

speci�es how the processes �(a) that meet on a may decide on a joint move.

Other processes do not change their state. Thus we de�ne the global transition relation

) � V

P

�� � V

P

by ~v

a

=) ~v

0

if ~v

�(a)

!

a

~v

0

�(a)

and ~v

P��(a)

= ~v

0

P��(a)

.

A is called deterministic if the global transition relation =) of A is a function from

V

P

�� to V

P

and the set of initial states V

0

is a singleton. Notice that =) is a function

i� each local transition relation !

a

, a 2 �, is a function from V

�(a)

to V

�(a)

. All the

asynchronous automata we deal with in this paper will be deterministic.

Runs Given a word u : [1::m]! �, a run of A on u is a function � : [0::m]! V

P

such

that �(0) 2 V

0

and for i 2 [1::m], �(i�1)

u(i)

=) �(i). If A is deterministic, each word u

gives rise to a unique run which we denote �

u

.

The word u is accepted by A if there is a run � of A on u such that �(m) 2 V

F

. L(A),

the language recognized by A, is the set of words accepted by A.

For the moment, we will not look at asynchronous automata as language recognizers.

Instead, we want to treat them as devices for locally computing families of functions.

Locally computable functions Let Val be a set (of values). A �-indexed family of

functions is a set F

�

= ff

a

: �

�

! Valg

a2�

. So, F

�

contains a function f

a

for each letter

a 2 �.

5

F

�

is locally computable if we can �nd a deterministic asynchronous automaton A =

(fV

p

g

p2P

; f!

a

g

a2�

;V

0

;V

F

) and a family of local functions G

�

= fg

a

: V

�(a)

! Valg

a2�

,

such that for each word u : [1::m]! �, f

a

(u) = g

a

(~v

�(a)

), where ~v = �

u

(m) and �

u

is the

unique run of A over u.

In other words, the processes in �(a) can locally compute the value f

a

(u) for any

u 2 �

�

by applying the function g

a

to the (unique) �(a)-state reached by the automaton

after reading u.

Our problem involving the latest information of processes in P can now be formalized

in terms of asynchronous automata.

Given C � (2

P

� f;g), let � = fĉg

c2C

. The distribution function � is de�ned in the

obvious way|for each ĉ 2 �, �(ĉ) = c. For convenience, henceforth we shall drop the

distinction between a subset c 2 C and the corresponding letter ĉ 2 � and refer to both

as just c. Thus, we will use V

c

to denote the set of �(ĉ)-states and !

c

to denote the local

transition function for ĉ.

Let u : [1::m] ! � be a communication sequence and c � P. For each q 2 P, we

denote by best

c

(u; q) the set of processes in c which have the most recent information

about q at the end of u|i.e.,

best

c

(u; q) = fp 2 c j 8p

0

2 c: latest

p

0

!q

(E

u

) v

�

latest

p!q

(E

u

)g:

Let Val = (2

P

� f;g)

P

. So, each member of Val is a function from P to non-empty

subsets of P. Our �rst goal is to show that the family of functions flatest-gossip

c

: �

�

!

Valg

c2�

is locally computable, where:

8u 2 �

�

: 8c 2 �: latest-gossip

c

(u) is the function fp 7! best

c

(u; p)g

p2P

:

2 Ideals and Frontiers

For the moment, let us �x a communication sequence u : [1::m]! � and the correspond-

ing set of events E.

The main source of di�culty in solving the gossip problem is the fact that the processes

in P need to compute global information about the communication sequence u while each

process only has access to a local, \partial" view of u. Although partial views of u

correspond to subsets of E, not every subset of E arises from such a partial view. Those

subsets of E which do correspond to partial views of u are called ideals.

Ideals A set of events I � E is called an order ideal if I is closed with respect to v

�

|

i.e., e 2 I and f v

�

e implies f 2 I as well [Sta]. We shall always refer to order ideals as

just ideals.

2

The requirement that an ideal be closed with respect to v

�

guarantees that the ob-

servation it represents is \consistent"|whenever an event e has been observed, so have

all the events in the computation which necessarily precede e.

2

In the theory of partial orders, order ideals and ideals are distinct concepts. Ideals are normally

assumed to be subsets which are v

�

-closed and directed. We shall, however, deal only with order ideals

in this paper and so our terminology should cause no confusion.

6

Intuitively, the minimum possible partial view of a word u is the ideal f0g. This

is because of our interpretation of 0 as an event which takes place before the actual

computation begins. Hence, we shall assume that every ideal we consider is non-empty.

Since 0 lies below every event in E, 0 2 I for every non-empty ideal I.

Clearly the entire set E is an ideal, as is e# for any e 2 E. Ideals of the form e# are

special ideals, called principal ideals|e# is the principal ideal generated by e. It is not

di�cult to show that any ideal I is the union of the principal ideals generated by the set

of events E = fe j e is v

�

-maximal in Ig. In general, if E is a set of events such that

I =

S

e2E

e#, we say that I is generated by E. It is easy to see that if I and J are ideals,

so are I [J and I \ J .

Example: Let us look once again at Figure 1. f0; e

2

g is an ideal, but f0; e

2

; e

3

g is not,

since e

1

v

�

e

3

but e

1

=2 f0; e

2

; e

3

g. f0; e

1

; e

2

; e

3

; e

5

g is the principal ideal e

5

#, whereas

f0; e

1

; e

2

; e

3

; e

4

; e

5

g is a non-principal ideal generated by fe

4

; e

5

g.

We need to generalize the notion of max

p

(E), the maximum p-event in E, to all ideals

I � E.

P -views For an ideal I, the v

�

-maximum p-event in I is denoted max

p

(I). The p-view

of I is the set Ij

p

= max

p

(I)#. So, Ij

p

is the set of all events in I which p can \see". For

P � P, the P -view of I, denoted Ij

P

, is

S

p2P

Ij

p

, which is also an ideal. In particular, we

have Ij

P

= I.

Example: In Figure 1, let I denote the ideal f0; e

1

; e

2

; e

3

; e

4

; e

5

; e

6

g. max

q

(I) = e

4

and hence Ij

q

= f0; e

1

; e

2

; e

3

; e

4

g. On the other hand, though max

r

(I) = e

6

, Ij

r

6= I;

Ij

r

= I � fe

4

g. The joint view Ij

fq;rg

= I = Ij

P

.

For an ideal I, the views Ij

p

and Ij

q

seen by two processes p; q 2 P are, in general,

incomparable. The events in I where these two views begin to diverge|the frontier of

Ij

p

\ Ij

q

|play a crucial role in our analysis.

Frontiers Let I be an ideal and p; q; r 2 P. We say that an event e is an r-sentry for

p with respect to q if e 2 Ij

p

\ Ij

q

and e /

r

f for some f 2 Ij

q

� Ij

p

. Thus e is an event

known to both p and q whose r-successor is known only to q. Notice that there need not

always be an r-sentry for p with respect to q.

The pq-frontier at I, frontier

pq

(I) is de�ned as follows:

frontier

pq

(I) = fe 2 I j 9r 2 P: e is an r-sentry for p with respect to qg

Observe that this de�nition is asymmetric|in general, frontier

pq

(I) 6= frontier

qp

(I).

Example: As before, in Figure 1, let I denote the ideal f0; e

1

; e

2

; e

3

; e

4

; e

5

; e

6

g. Ij

q

\Ij

r

=

f0; e

1

; e

2

; e

3

g. frontier

rq

(I) = fe

2

; e

3

g|e

2

is a p-sentry for r with respect to q whereas e

3

is a q-sentry. On the other hand, frontier

qr

(I) = fe

3

g. e

3

is both an r-sentry as well as

an s-sentry for q with respect to r.

As the example demonstrates, an event e 2 frontier

pq

(I) could simultaneously be an r-

sentry for p for several di�erent processes r. However, it is not di�cult to show that for

any process r, there is at most one r-sentry for p with respect to q.

7

3 Primary and secondary information

For a word u and processes p; q 2 P, we have already de�ned latest

p!q

(E), the latest

information that p has about q after u. We now extend this de�nition to arbitrary ideals.

Primary information Let I be an ideal and p; q 2 P. Then latest

p!q

(I) denotes the

v

�

-maximum q-event in Ij

p

. So, latest

p!q

(I) is the latest q-event in I that p knows about.

The primary information of p after I, primary

p

(I), is the set flatest

p!q

(I)g

q2P

.

More precisely, primary

p

(I) is an indexed set of events|each event e = latest

p!q

(I)

in primary

p

(I) is represented as a triple (p; q; e). As usual, for P � P, primary

P

(I) =

S

p2P

primary

p

(I).

As we have already remarked, for all q 2 P, the set of q-events in Ij

p

is always

nonempty, since q 2 0 2 Ij

p

. Further, since all q-events are totally ordered by /

�

q

and hence

by v

�

, the maximum q-event in Ij

p

is well-de�ned. Notice that latest

p!p

(I) = max

p

(I).

To compare primary events, processes need to maintain additional information. It

turns out that it is su�cient for each process to keep track of all the other processes'

primary information.

Secondary information The secondary information of p after I, secondary

p

(I), is the

(indexed) set

S

q2P

primary

q

(latest

p!q

(I)#). In other words, this is the latest information

that p has in I about the primary information of q, for each q 2 P. Once again, for

P � P, secondary

P

(I) =

S

p2P

secondary

p

(I).

Each event in secondary

p

(I) is of the form latest

q!r

(latest

p!q

(I)#) for some q; r 2 P.

This is the latest r-event which q knows about upto the event latest

p!q

(I). We abbreviate

latest

q!r

(latest

p!q

(I)#) by latest

p!q!r

(I).

Just as we represented events in primary

p

(I) as triples of the form (p; q; e), where

p; q 2 P and e 2 I, we represent each secondary event e = latest

p!q!r

(I) in secondary

p

(I)

as a quadruple (p; q; r; e).

However, we will often ignore the fact that primary

p

(I) and secondary

p

(I) are indexed

sets of events and treat them, for convenience, as just sets of events. Thus, for an event

e 2 I, we shall write e 2 primary

p

(I) to mean that there exists a process q 2 P such

that (p; q; e) 2 primary

p

(I)|i.e., e = latest

p!q

(I). Similarly, e 2 secondary

p

(I) will

indicate that for some q; r 2 P, (p; q; r; e) 2 secondary

p

(I). We extend this to other set-

theoretic operations as well. So, for instance, if we say e 2 primary

p

(I) \ secondary

q

(I),

we mean that we can �nd p

0

; q

0

; q

00

2 P such that (p; p

0

; e) 2 primary

p

(I) and (q; q

0

; q

00

; e) 2

secondary

q

(I).

Notice that each primary event latest

p!q

(I) is also a secondary event latest

p!p!q

(I)

(or, equivalently, latest

p!q!q

(I)). So, following our convention that primary

p

(I) and

secondary

p

(I) be treated as sets of events, we write primary

p

(I) � secondary

p

(I).

Comparing primary information

Our goal is to compare and update the primary information of processes whenever they

meet. For this, we need the following observation regarding the signi�cance of events

lying on frontiers.

8

Lemma 1 Let I be an ideal, p; q 2 P and e 2 frontier

pq

(I) an r-sentry for p with

respect to q. Then e = latest

p!r

(I). Also, for some r

0

2 P, e = latest

q!r

0

!r

(I). So,

e 2 primary

p

(I) \ secondary

q

(I).

Proof Since e is an r-sentry, for some f 2 Ij

q

� Ij

p

, e /

r

f . Suppose that latest

p!r

(I) =

e

0

6= e. Since all r-events are totally ordered by /

�

r

, we must have e /

+

r

e

0

(where /

+

r

is

the transitive closure of the irreexive relation /

r

). However, e /

r

f as well, so we have

e /

r

f /

�

r

e

0

. This means that f 2 Ij

p

, which is a contradiction.

Next, we must show that e = latest

q!r

0

!r

(I) for some r

0

2 P. We know that there is

a path e < f

1

< � � � < max

p

(I), since e 2 Ij

p

. This path starts inside Ij

p

\ Ij

q

.

If this path never leaves Ij

p

\ Ij

q

then max

p

(I) 2 Ij

q

. Since max

p

(I) is the maximum

p-event in I, it must be the maximum p-event in Ij

q

. So, e = latest

q!p!r

(I) and we are

done.

If this path does leave Ij

p

\ Ij

q

, we can �nd an event e

0

along the path such that

e v

�

e

0

/

r

0

f

0

v

�

max

p

(I), where e

0

2 Ij

p

\ Ij

q

, f

0

2 Ij

p

� Ij

q

and r

0

2 e

0

\ f

0

. In

other words, e

0

is an r

0

-sentry for q with respect to p. We know by our earlier argu-

ment that e

0

= latest

q!r

0

(I). It must be the case that e = latest

r

0

!r

(e

0

#). For, if

latest

r

0

!r

(e

0

#) = e

00

6= e, then e /

+

r

e

00

v

�

e

0

v

�

max

p

(I). Since e

00

2 Ij

p

and e /

+

r

e

00

,

e 6= latest

p!r

(I), which is a contradiction. So, e = latest

r

0

!r

(e

0

#) = latest

q!r

0

!r

(I) and

we are done. 2

Our observation about frontier events immediately gives us a way to compare primary

information using both primary and secondary information.

Lemma 2 Let I be an ideal and p; q; r 2 P. Let e = latest

p!r

(I) and f = latest

q!r

(I).

Then e v

�

f i� e 2 secondary

q

(I).

Proof

(() Suppose e 2 secondary

q

(I). Then r 2 e 2 Ij

q

and so e v

�

f 2 Ij

q

by the de�nition

of latest

q!r

(I).

()) If e = f , e 2 primary

q

(I) � secondary

q

(I), and there is nothing to prove. If e 6= f ,

then there exists an event e

0

such that e /

r

e

0

/

�

r

f and so e 2 Ij

p

\ Ij

q

. We know that

e

0

2 Ij

q

� Ij

p

, so e is an r-sentry in frontier

pq

(I). But then, by our previous lemma,

e 2 primary

p

(I) \ secondary

q

(I) and we are done. 2

Suppose p and q synchronize at an action a after u. At this point they \share"

their primary and secondary information. If q can �nd the event latest

p!r

(E

u

) in its

set of secondary events secondary

q

(E

u

), q knows that its latest r-event latest

q!r

(E

u

) is

at least as recent as latest

p!r

(E

u

). So, after the synchronization, latest

q!r

(E

ua

) is the

same as latest

q!r

(E

u

), whereas p inherits this information from q|i.e., latest

p!r

(E

ua

) =

latest

q!r

(E

u

). In this way, for each r 2 P, p and q locally update their primary information

about r in E

ua

. Clearly latest

p!q

(E

ua

) = latest

q!p

(E

ua

) = e

a

, where e

a

is the new event|

i.e., E

ua

� E

u

= fe

a

g.

This procedure generalizes to any arbitrary set P � P which synchronizes after u.

The processes in P share their primary and secondary information and compare this

9

information pairwise. Using Lemma 2, for each q 2 P�P they decide who has the \latest

information" about q. Each process then comes away with the best primary information

from P .

Once we have compared primary information, updating secondary information is

straightforward. Clearly, if latest

q!r

(I) is better than latest

p!r

(I), then every secondary

event latest

q!r!r

0

(I) must also be better than the corresponding event latest

p!r!r

0

(I).

So, secondary information can be locally updated too. In other words, to consistently

update primary and secondary information, it su�ces to correctly compare primary in-

formation, which is achieved by Lemma 2.

After a synchronization involving P � P, notice that all processes in P will come away

with the same set of primary and secondary events.

From the preceding argument, it is clear that the new event belongs to the primary

(and hence secondary) information of the processes which synchronize at that event.

Further, the update procedure reveals that if an event disappears from the secondary

information of all the processes, it will never reappear as secondary information at some

later stage. This is captured formally in the following proposition.

Proposition 3 Let u;w 2 �

�

such that w = ua for some a 2 �. Let e

a

denote the new

event in w|i.e., E

w

� E

u

= fe

a

g. Then:

� e

a

2 primary

P

(E

w

).

� primary

P

(E

w

) � fe

a

g [primary

P

(E

u

).

� secondary

P

(E

w

) � fe

a

g [secondary

P

(E

u

).

4 Locally updating primary/secondary information

To make Lemma 2 e�ective, we must make the assertions \locally checkable"|e.g., if

e = latest

p!r

(I), processes p and q must be able to decide if e 2 secondary

q

(I).

Recall that e is represented in primary

p

(I) as a triple of the form (p; r; e). So, to

check if e 2 secondary

q

(I), q has to look for a quadruple of the form (q; r

0

; r

00

; e) 2

secondary

q

(I), where r

0

; r

00

2 P. This can be checked locally provided events in E

u

are

labelled unambiguously while u is being read.

Clearly, labelling each event e as a pair (i; u(i)) is impossible since, in general, there is

no agent which can consistently supply all processes with the \correct" value of i. Instead,

we may na��vely assume that events in E

u

are locally assigned distinct labels|in e�ect,

at each action a, the processes in a together assign a (sequential) time-stamp to the new

occurrence of a. In this manner, the processes in P can easily assign consistent local

time-stamps for each action which will let them compute the relations /

�

p

between events.

The problem with this approach is that we will need an unbounded set of time-stamps,

since u could get arbitrarily large. Instead we would like a scheme which uses only a �nite

set of labels to distinguish events. This means that several di�erent occurrences of the

same action will eventually get the same label. Since the update of primary and secondary

information relies on comparing labels, we must ensure that this reuse of labels does not

lead to any confusion.

However, from Lemma 2, we know that to compare primary information, we only

need to look at the events which are currently in the primary and secondary sets of each

10

�

�

�

�

�

�

c

�

�

b

�

�

a

�

�

d

�

�

e

�

�

c

�

�

c

- -

- - -

- - - -

- - - - -

p

q

r

s

0

e

1

e

2

e

3

e

4

e

5

e

6

e

7

Figure 2: Another example

process. So, it is su�cient if the labels assigned to these sets are consistent across the

system|i.e., if the same label appears in the current primary or secondary information

of di�erent processes, the corresponding event is actually the same.

Notice that we do not need to maintain a global temporal order on labels across the

system. Lemma 2 assures us that to compare events of interest to us, it su�ces to check

for equality of labels assigned to the events.

Suppose we have such a labelling on u and we want to extend this to a consistent

labelling on w = ua|i.e., we need to assign a label to the new a-event. By Proposition 3,

it su�ces to use a label which is distinct from the labels of all the a-events currently in the

secondary information of E

u

. Since the cardinality of secondary

P

(E

u

) is bounded, such a

new label must exist. The catch is to detect which labels are currently in use and which

are not.

Unfortunately, the processes in a cannot directly see all the a-events which belong to

the secondary information of the entire system. An a-event emay be part of the secondary

information of processes outside a|i.e., e 2 secondary

P�a

(E

u

)� secondary

a

(E

u

).

Example: Let P = fp; q; r; sg and � = fa; b; c; d; eg where a = fp; qg, b = fq; rg,

c = fr; sg, d = fp; sg and e = fq; sg. Figure 2 shows the events E corresponding to the

word cbadecc.

At the end of this word, e

1

= latest

p!q!s

(E). However, e

1

=2 secondary

s

(E);

secondary

s

(E) = f (s; p; p; e

4

); (s; p; q; e

3

); (s; p; r; e

2

); (s; p; s; e

4

);

(s; q; p; e

4

); (s; q; q; e

5

); (s; q; r; e

2

); (s; q; s; e

5

);

(s; r; p; e

4

); (s; r; q; e

5

); (s; r; r; e

7

); (s; r; s; e

7

);

(s; s; p; e

4

); (s; s; q; e

5

); (s; s; r; e

7

); (s; s; s; e

7

) g:

Since max

r

(E) = max

s

(E), secondary

r

(E) = secondary

s

(E) when viewed as sets of

events. So, e

1

=2 secondary

r

(E) either. Thus, e

1

is a c-event which belongs to

secondary

P

(E)� secondary

c

(E).

11

To enable the processes in a to know about all a-events in secondary

P

(E

u

), we need to

maintain tertiary information.

Tertiary information The tertiary information of p after I, tertiary

p

(I), is the (in-

dexed) set

S

q2P

secondary

q

(latest

p!q

(I)#). In other words, this is the latest information

that p has in I about the secondary information of q, for all q 2 P. As before, for P � P,

tertiary

P

(I) =

S

p2P

tertiary

p

(I).

Each event in tertiary

p

(I) is of the form latest

q!r!s

(latest

p!q

(I)#) for some q; r; s 2 P.

We abbreviate latest

q!r!s

(latest

p!q

(I)#) by latest

p!q!r!s

(I). We represent each event

e = latest

p!q!r!s

(I) as a quintuple (p; q; r; s; e) in tertiary

p

(I). However, for convenience

we will work with tertiary

p

(I) as though it were simply a set of events, rather than an

indexed set, just as we have been doing with primary and secondary information.

Just as primary

p

(I) � secondary

p

(I), clearly secondary

p

(I) � tertiary

p

(I) since each

secondary event latest

p!q!r

(I) is also a tertiary event latest

p!p!q!r

(I) (or, equivalently,

latest

p!q!q!r

(I) and so on).

Lemma 4 Let I be an ideal and p 2 P. If e 2 secondary

p

(I) then for every q 2 e,

e 2 tertiary

q

(I).

Proof Let e 2 secondary

p

(I) and q 2 e. Concretely, let e = latest

p!p

0

!p

00

(I) for some

p

0

; p

00

2 P. We know that e 2 Ij

p

\ Ij

q

and there is a path e < f

1

< � � � < max

p

(I) leading

from e to max

p

(I) which passes through e

0

= latest

p!p

0

(I).

Suppose this path never leaves Ij

p

\ Ij

q

. Then max

p

(I) 2 Ij

q

and so max

p

(I) =

latest

q!p

(I). This means that e 2 secondary

p

(latest

q!p

(I)#) � tertiary

q

(I) and we are

done.

Otherwise, the path from e to max

p

(I) does leave Ij

p

\ Ij

q

at some stage.

If e

0

=2 Ij

p

\ Ij

q

then for some f; f

0

2 E and some r 2 P we have f 2 Ij

p

\ Ij

q

,

f

0

2 Ij

p

� Ij

q

and e v

�

f /

r

f

0

v

�

e

0

. This means that f 2 frontier

qp

(I) is an r-sentry

and by our earlier argument we know that f = latest

q!r

(I). So e = latest

q!r!p

00

(I) =

latest

q!q!r!p

00

(I) 2 tertiary

q

(I).

On the other hand, if e

0

2 Ij

p

\ Ij

q

we can �nd an r-sentry f 2 frontier

qp

(I) on the

path from e

0

to max

p

(I), for some r 2 P. We once again get f = latest

q!r

(I) and so

e = latest

q!r!p

0

!p

00

(I) 2 tertiary

q

(I).

2

We shall use this lemma in the following form.

Corollary 5 Let I be an ideal, p 2 P and e a p-event in I. If e =2 tertiary

p

(I) then

e =2 primary

P

(I) [secondary

P

(I).

So, a process p can keep track of which of its labels are \in use" in the system by

maintaining tertiary information. Each p-event e initially belongs to primary

e

(I), and

hence to secondary

e

(I) and tertiary

e

(I) as well. (Recall that for an event e, we also use e

to denote the subset of P which meets at e). As the computation progresses, e gradually

\recedes" into the background and disappears from the primary and secondary sets of the

system. Eventually, when e disappears from tertiary

p

(I), p can be sure that e no longer

belongs to primary

P

(I) [secondary

P

(I).

12

Since tertiary

p

(I) is a bounded set, p knows that only �nitely many of its labels are

in use at any given time. So, by using a su�ciently large �nite set of labels, each new

event can always be assigned an unambiguous label by the processes which take part in

the event.

5 The \gossip" automaton

Using our analysis of primary, secondary and tertiary information of processes, we can now

design a deterministic asynchronous automaton to keep track of the \latest gossip"|i.e.,

to consistently update primary information whenever a set of processes synchronizes.

For p 2 P, each local state of p will consist of its primary, secondary and tertiary

information, stored as indexed collections or arrays. Each event in these arrays is repre-

sented as a pair hP; `i, where P is the subset of processes that synchronized at the event

and ` 2 L, a �nite set of labels. We shall establish a bound on jLj shortly.

The initial state is the global state where for all processes p, all entries in these arrays

correspond to the initial event 0. The event 0 is denoted by hP; `

0

i for an arbitrary but

�xed label `

0

2 L.

The local transition functions !

a

modify the local states for processes in a as follows.

(i) When a new a-labelled event e occurs after u, the processes in a assign a label ha; `i

to e which does not appear in tertiary

a

(E

u

). Corollary 5 guarantees that this new

label does not appear in primary

P

(E

u

) or secondary

P

(E

u

).

Proposition 3 guarantees that all new primary and secondary events|i.e., events in

primary

P

(E

ua

) and secondary

P

(E

ua

)|are assigned distinct labels.

Let N = jPj. Since each process keeps track of N

3

tertiary events and at most N

processes can synchronize at an event, there need be only N

4

labels in L. (In fact,

in Lemma 7 below, we show that it su�ces to have N

3

labels in L.)

(ii) The processes participating in e now compare their primary information about each

process q =2 e by checking labels of events across their primary and secondary sets

as described in Lemma 2.

(iii) Each process then updates its primary, secondary and tertiary information according

to the new information it receives. Tertiary information, like secondary information,

can be locally updated once the processes have decided who has the best primary

information|if p; q 2 a and latest

p!r

(E

u

) is better than latest

q!r

(E

u

) for r 2 P,

then any tertiary information of the form latest

p!r!r

0

!r

00

(E

u

) must necessarily be

better than the corresponding information latest

q!r!r

0

!r

00

(E

u

), for r

0

; r

00

2 P.

This automaton does not have any �nal states, since we do not need to accept any

language. Instead, we de�ne for each a 2 � a function g

a

: V

a

! (2

P

� f;g)

P

which

checks the primary and secondary information of processes in a and computes for each

q 2 P, the set of processes in a which have the most recent information about q.

(A small technical point: g

a

must be de�ned for all states in V

a

. However, not all

combinations of local states may be \meaningful". We can easily assemble local states to

form an a-state for which the inductive assertions do not hold, as a result of which our

procedure for comparing primary information breaks down. However, since such a-states

13

are unreachable, we can ignore this problem and simply assign a default value to g

a

in

these cases|for instance, the default value could be the function fp 7! ag

p2P

.)

This immediately yields the �rst result we set out to establish.

Theorem 6 Let (�; �) be the distributed alphabet corresponding to C � (2

P

� f;g). The

family of functions flatest-gossip

c

: �

�

! (2

P

� f;g)

P

g

c2�

is locally computable.

So far, we have been working with a special distributed alphabet (�; �), where � is

an injective function from � to 2

P

� f;g. In general, we could have a; b 2 � such that

�(a) = �(b). However, in the construction of the gossip automaton, the \name" of the

action attached to each event is irrelevant. For any word u, the structure of (E

u

;v

�

)

depends only on the sets of processes which synchronize at each event. So, if �(a) = �(b),

we have latest-gossip

a

(u) = latest-gossip

b

(u) for all words u and, correspondingly, the

local functions g

a

and g

b

are the same.

So, to construct the gossip automaton for a distributed alphabet (�; �) where � is not

injective, we can ignore the distinction between letters which have the same distribution.

In other words, we set the communication alphabet C � (2

P

�f;g) to the range of � and

proceed as we have done here.

The size of the gossip automaton

Lemma 7 In the gossip automaton, the number of local states of each process p 2 P is

at most 2

O(N

3

logN)

, where N = jPj.

Proof A local state for p consists of its primary, secondary and tertiary information. We

estimate how many bits are required to store this.

Recall that for any ideal I, each event in primary

p

(I) is also present in secondary

p

(I).

Similarly, each event in secondary

p

(I) is also present in tertiary

p

(I). So it su�ces to store

just the labels of tertiary events. These events are stored in an array with N

3

entries,

where each entry is implicitly indexed by a triple from P� P� P.

Each new event e was assigned a label of the form hP; `i, where P was the set of

processes that participated in e and ` 2 L.

We argued earlier that it su�ces to haveN

4

labels in L. Actually, we can make do with

N

3

labels by modifying our transition function slightly. When a letter a is read, instead

of immediately labelling the new event, the processes in a �rst compare and update their

primary, secondary and tertiary information about processes from P� a. These updates

concern events which have already been labelled, so the fact that the new event has not

yet been labelled is not a problem. Once this is done, all the processes in a will have the

same primary, secondary and tertiary information. At this stage, there are (less than)

N

3

distinct labels present in tertiary

a

(I). So, if jLj = N

3

the processes are guaranteed

to �nd a label they can use for the new event. Regardless of which update strategy we

choose, ` 2 L can be written down using O(logN) bits.

To write down P � P, we need, in general, N bits. This component of the label is

required to guarantee that all secondary events in the system have distinct labels, since

the set L is common across all processes. However, we do not really need to use all of P

in the label for e to ensure this property. If we order P as fp

1

; p

2

; : : : ; p

N

g, it su�ces to

label e by hp

i

; `i where, among the processes in P , p

i

has the least index with respect to

our ordering of P.

14

Thus, we can modify our automaton so that the processes label each event by a pair

hp; `i, where p 2 P and ` 2 L. This pair can be written down using O(logN) bits. Overall

there are N

3

such pairs in the array of tertiary events, so the whole state can be described

using O(N

3

logN) bits. Therefore, the number of distinct local states of p is bounded by

2

O(N

3

logN)

. 2

6 Recognizable trace languages

We now apply the gossip automaton to establish the second major result of this paper|an

\algorithmic" proof of Zielonka's theorem that asynchronous automata accept precisely

the class of recognizable trace languages. We begin by providing a brief introduction to

recognizable trace languages.

Concurrent alphabet A distributed alphabet (�; �) gives rise to a natural indepen-

dence relation I

�

between letters: (a; b) 2 I

�

i� �(a) \ �(b) = ;. Thus, a and b are

independent when processed by disjoint sets of agents in the system. Clearly, the relation

I

�

is irreexive and symmetric. Such a relation is called an independence relation.

An alphabet equipped with an independence relation is also called a concurrent alpha-

bet. This notion was introduced by Mazurkiewicz as a technique for studying concurrent

systems from the viewpoint of formal language theory [Maz].

Traces and trace languages Given a concurrent alphabet (�;I), I induces a natural

equivalence relation � on �

�

: two words w and w

0

are related by � i� w

0

can be obtained

from w by a sequence of permutations of adjacent independent letters. More formally,

w � w

0

if there is a sequence of words v

1

; v

2

; : : : ; v

k

such that w = v

1

, w

0

= v

k

and for

each i 2 [1::k�1], there exist words u

i

; u

0

i

and letters a

i

; b

i

satisfying

v

i

= u

i

a

i

b

i

u

0

i

; v

i+1

= u

i

b

i

a

i

u

0

i

and (a

i

; b

i

) 2 I:

Actually, � de�nes a congruence on �

�

with respect to concatenation: If u � u

0

then

for any words w

1

and w

2

, w

1

uw

2

� w

1

u

0

w

2

. Also, both right and left cancellation preserve

�-equivalence: wu � wu

0

implies u � u

0

and uw � u

0

w implies u � u

0

.

The quotient of �

�

by the congruence � is the free partially commutative monoid

induced by I. We denote this quotient monoid M(�;I). The elements of M(�;I) cor-

respond to equivalence classes of words of �

�

under � and are called traces. Let [w]

denote the �-equivalence class corresponding to the word w. Since the relation � is a

congruence, the composition operation in M(�;I) is given by

8u; v 2 �

�

: [u][v] = [uv]:

Subsets of the trace monoidM(�;I) are called trace languages. To de�ne recognizable

trace languages we need to de�ne monoid automata.

Monoid automaton Let (M; �; ") be a monoid, where " is the unit. A monoid automa-

ton over M is a structure M = (S;M; �; s

0

; S

F

) where S is a �nite set of states, s

0

2 S

is the initial state, S

F

� S is the set of �nal states and � : S �M ! S is the transition

function such that:

15

� 8s 2 S: �(s; ") = s.

� 8s 2 S: 8m

1

;m

2

2 M: �(s;m

1

�m

2

) = �(�(s;m

1

);m

2

).

M is said to recognize the subset T = fm 2M j �(s

0

;m) 2 S

F

g.

Recognizable trace languages So, a trace language T is recognizable i� we can �nd

a monoid automaton over the trace monoidM(�;I) which recognizes T . (More formally,

recognizability is de�ned in terms of homomorphisms into a �nite monoid, but for our

purposes, this de�nition su�ces.)

We prefer to treat trace languages as string languages which satisfy a closure condition

rather than as subsets of the trace monoid M(�;I). We say that L � �

�

is a trace

language if L is �-consistent|i.e., for each w 2 �

�

, w is in L i� every word in [w] is in

L. Since traces correspond to equivalence classes of strings, there is a 1-1 correspondence

between subsets of M(�;I) and �-consistent languages over �

�

.

In the string framework, we say a trace language L is recognizable if it is accepted

by a conventional �nite state automaton. Once again, it is not di�cult to show that

there is a 1-1 correspondence between recognizable subsets of M(�;I) and recognizable

�-consistent languages over �

�

(see, for instance, [CMZ]).

Henceforth, whenever we use the terms trace language and recognizable trace language,

we shall be referring to the de�nitions in terms of �-consistent subsets of �

�

rather than

in terms of subsets of M(�;I).

Given a concurrent alphabet (�;I), there are several ways to construct a distributed

alphabet (�; �) so that the independence relation I

�

induced by � coincides with I.

We begin by building the dependence graph for (�;I). Let D = (� � �) � I. D is

called the dependence relation. Construct a graph G

D

whose vertices are labelled by �.

Draw an edge between vertices labelled a and b provided (a; b) 2 D.

One way to distribute � is to create a process p

e

for every edge e in G

D

. For each

letter a, we then set �(a) to be the set of processes corresponding to edges incident on

the vertex labelled a.

Alternately, we can create a process p

C

for each maximal clique C in G

D

. Then, for

each letter a and each clique C, p

C

2 �(a) i� the vertex labelled a belongs to C.

In both cases, it is easy to see that I

�

= I. So, we can go back and forth between a

concurrent alphabet (�;I) and a distributed alphabet (�; �) whose induced independence

relation I

�

is I.

It is not di�cult to see that any language accepted by an asynchronous automaton

over (�; �) is a recognizable trace language over the corresponding concurrent alphabet

(�;I

�

). The distributed nature of the automaton guarantees that it is a trace language.

To see that the language is recognizable, we note that for a given asynchronous automaton

A = (fV

p

g

p2P

; f!

a

g

a2�

;V

0

;V

F

), we can construct a conventional �nite state automaton

B accepting the same language as A. The states of B are the global states of A and

the transition relation of B is given by the global transition relation =) of A. Since the

initial and accepting states of A are speci�ed as global states, they can directly serve as

the initial and �nal states of B. It is straightforward to verify that B accepts the same

language as A.

16

On the other hand, the converse is di�cult to show. For a given recognizable trace

language L over a concurrent alphabet (�;I), does there exist an asynchronous automaton

A over a distributed alphabet (�; �) such that A accepts L and the independence relation

I

�

induced by � is exactly I?

Zielonka's fundamental result is that this is indeed the case [Zie1]. In other words,

asynchronous automata accept precisely the set of recognizable trace languages and thus

constitute a natural distributed machine model for this class of languages.

However, Zielonka's original proof of this theorem is extremely intricate and di�cult

to follow. Here we provide a \algorithmic" proof of the theorem which crucially uses the

local computability of the latest gossip function. We �rst present our proof in detail and

then discuss the connections with Zielonka's original proof.

7 Residues and Zielonka's theorem

Fix a recognizable trace language L over a concurrent alphabet (�;I), as well as a distri-

bution � : �! (2

P

�f;g) such that the induced independence relation I

�

is the same as I.

We shall construct a deterministic asynchronous automaton A =

(fV

p

g

p2P

; f!

a

g

a2�

;V

0

;V

F

) over (�; �) recognizing L.

Let B be the �nite state automaton accepting L. Without loss of generality, we can

assume that B is the minimal deterministic �nite automaton (DFA) for L, as given by

the Myhill-Nerode theorem [HU]. Let B be of the form (S;�; �; s

0

; S

F

) where S denotes

the set of states of B, � : S � �! S the transition function, s

0

2 S the initial state and

S

F

� S the set of accepting states. As usual, we shall extend � to a transition function

S � �

�

! S describing state transitions for input words rather than just single letters.

For convenience, we denote this extended transition function also by �.

The main hurdle in constructing our asynchronous automaton A from the original

DFA B is the following: On reading an input word u, we must be able to compute

whether �(s

0

; u) 2 S

F

. Unfortunately, after reading u each process in A only has partial

information about �(s

0

; u)|a process p only \knows about" those events from E

u

which

lie in the p-view max

p

(E

u

)#. So, we have to devise a scheme to recover the state �(s

0

; u)

from the partial information available with each process after reading u.

Another complication is that processes can only maintain a �nite amount of informa-

tion. So, we need a way of representing arbitrary words in a bounded, �nite way. This

can be done quite easily|the idea is to record for each word w, its \e�ect" as dictated

by our minimal automaton B.

We �rst recall a basic fact about recognizable languages. Any language

^

L de�nes a

syntactic congruence �

^

L

on �

�

as follows:

For u; u

0

2 �

�

; u �

^

L

u

0

provided for all w

1

; w

2

2 �

�

; w

1

uw

2

2

^

L i� w

1

u

0

w

2

2

^

L:

By the Myhill-Nerode theorem, if

^

L is recognizable, �

^

L

is of �nite index [HU].

Now, consider the relation �

L

de�ned by the language L we are looking at. We can

associate with each word u a function f

u

: S ! S, where S is the set of states of B,

such that f

u

(s) = s

0

i� �(s; u) = s

0

. So, f

u

is a representation of the word u as a \state

transformer". The following observations follow from the fact that B is the minimal DFA

recognizing L.

17

Proposition 8 Let u;w 2 �

�

. Then:

(i) f

u

= f

w

i� u �

L

w.

(ii) �(s

0

; u) = f

u

(s

0

).

(iii) f

uw

= f

w

� f

u

, where � denotes function composition.

Clearly the function f

w

: S ! S corresponding to a word w has a bounded represen-

tation. So, if we could compute the function f

u

corresponding to the input u, we would

be able to determine whether �(s

0

; u) 2 S

F

|by part (ii) of the preceding proposition,

�(s

0

; u) = f

u

(s

0

).

However, we still have the original problem arising from the distributed nature of A|

each process p 2 P will only see a part of u. Even if p were to maintain the entire p-view

of E

u

, the only information that we could reasonably hope to extract from the combined

view of all the processes is the structure (E

u

;v

�

). From this labelled partial order, we

cannot always recover u uniquely|in general, we can only reconstruct a word u

0

which is

�-equivalent to u.

For the same reason, if we attempt to piece together f

u

from the information available

with each process about u, we can at best hope to recover f

u

0

for some u

0

� u.

Fortunately, this is not a bottleneck. From the de�nition of a trace language, it follows

that all words that are �-equivalent are also �

L

-equivalent.

Proposition 9 Let

^

L be a trace language over a concurrent alphabet (�;I). For any

u; u

0

2 �

�

, if u � u

0

then u �

^

L

u

0

.

Proof Suppose u � u

0

but u 6�

^

L

u

0

. Then, without loss of generality, we can �nd words

w

1

and w

2

such that w

1

uw

2

2

^

L but w

1

u

0

w

2

=2

^

L. Since w

1

uw

2

� w

1

u

0

w

2

, this contradicts

the assumption that

^

L is �-consistent. 2

So, to determine whether �(s

0

; u) 2 S

F

, it is su�cient to compute the function f

u

0

corresponding to some word u

0

� u. By Propositions 8 and 9, �(s

0

; u) = f

u

0

(s

0

).

This, then, is our new goal: for any input word u, we want to compute in A the

function f

u

0

: S ! S for some representative u

0

of the trace [u]. This still involves �nding

a scheme to combine the partial views of processes in a sensible way.

We begin by formally de�ning a partial view of a word. Let u : [1::n]! � and X � E

u

where X � f0g = f(i

1

; u(i

1

)); (i

2

; u(i

2

)); : : : ; (i

k

; u(i

k

))g and i

1

< i

2

< � � � < i

k

. Let u[X]

denote the word u(i

1

)u(i

2

) � � �u(i

k

). If X � f0g = ; then u[X] = ", the empty string.

Ideals revisited So far, we have implicitly assumed that all ideals are non-empty.

However, to construct the asynchronous automaton A it will be convenient to work with

the empty ideal as well. So, henceforth, whenever we encounter an ideal I, unless we

explicitly say that I is non-empty we do not rule out the possibility that I = ;.

Clearly, if I = ;, the notions max

p

(I), primary

p

(I), secondary

p

(I) and tertiary

p

(I)

are not de�ned and we shall apply these operators only to non-empty ideals.

18

We also adopt a convention regarding P -views of an ideal. Recall that for P � P, the

P -view Ij

P

of a non-empty ideal I is the set of events

S

p2P

max

p

(I)#. If P = ;, we shall

de�ne Ij

P

= ;.

We begin with a basic result about the equivalence relation �, which we state without

proof (see, for instance, [AR]). We need some notation: For w 2 �

�

and A � �, let w#

A

denote the word formed by deleting all letters from w except those in A.

Proposition 10 Let w;w

0

2 �

�

. Then w � w

0

i� for each pair of dependent letters

(a; b) 2 D, w#

fa;bg

= w

0

#

fa;bg

.

We apply this result to derive the following fact, which is crucial in our construction of

A.

Lemma 11 Let u be a word and I; J � E

u

be ideals such that I � J . Then u[J] �

u[I]u[J � I].

Proof We shall show that u[J]#

fa;bg

= (u[I]u[J � I])#

fa;bg

for each pair of dependent

letters (a; b) 2 D. The result then follows from Proposition 10.

Suppose (a; b) 2 D and u[J] #

fa;bg

6= (u[I]u[J � I]) #

fa;bg

. Then there must be an

occurrence of a and an occurrence of b in u[J] #

fa;bg

which have been transposed in

(u[I]u[J � I])#

fa;bg

. Let e

a

= (i; a) and e

b

= (j; b) be the events from J correspond-

ing to these occurrences of a and b in u. Without loss of generality, we assume that

i < j.

It must be the case that e

a

=2 I and e

b

2 I, since the only rearrangement we have

performed is to send letters not in u[I] to the right. Since (a; b) =2 I, we can �nd a process

p 2 �(a)\ �(b). But then e

a

/

�

p

e

b

and so e

a

v

�

e

b

. Since I is an ideal, e

b

2 I and e

a

2 e

b

#,

we must have e

a

2 I as well, which is a contradiction. 2

Corollary 12 Let u be a word and I

1

� I

2

� � � � � I

k

� E

u

a sequence of nested ideals.

Then u[I

k

] � u[I

1

]u[I

2

� I

1

] � � �u[I

k

� I

k�1

].

Proof Applying Lemma 11 once, we get u[I

k

] � u[I

k�1

]u[I

k

� I

k�1

]. We then apply the

lemma to each of u[I

k�1

], u[I

k�2

], : : : , u[I

2

] in turn to obtain the required expression. 2

Let us return to our problem: We want to compute in A, on any input u, the function f

u

0

corresponding to some u

0

� u. We order the processes in P so that P = fp

1

; p

2

; : : : ; p

N

g

and construct subsets fQ

j

g

j2[1::N]

, where Q

1

= fp

1

g and for j 2 [2::N], Q

j

= Q

j�1

[fp

j

g.

Let E be the set of events corresponding to u. Construct ideals I

0

; I

1

; : : : ; I

N

� E

where I

0

= ; and for j 2 [1::N], I

j

= I

j�1

[Ej

p

j

. Clearly I

j

= Ej

Q

j

for j 2 [1::N].

Since E = Ej

P

= Ej

Q

N

= I

N

and I

0

� I

1

� � � � � I

N

, we can write down the following

expression based on Corollary 12.

u = u[I

N

] � u[I

0

]u[I

1

� I

0

] � � �u[I

N

� I

N�1

]

For j 2 [2::N], I

j

� I

j�1

= Ej

Q

j

� Ej

Q

j�1

is the same as Ej

p

j

� Ej

Q

j�1

. So, we can

rewrite our earlier expression in a more useful form as:

u = u[Ej

Q

N

] � u[;]u[Ej

p

1

� ;]u[Ej

p

2

� Ej

Q

1

] � � �u[Ej

p

N

� Ej

Q

N�1

] (})

The word u[Ej

p

j

� Ej

Q

j�1

] is the portion of u that p

j

has seen but which the processes in

Q

j�1

have not seen. This is a special case of what we call a residue.

19

Residues Let u 2 �

�

be a word, I � E

u

an ideal and p 2 P a process. R(u; p; I) denotes

the word u[E

u

j

p

� I] and is called the residue of u at p with respect to I.

For ideals X and Y , recall that X � Y = X � (X \ Y), where X \ Y is also an ideal.

So any residue R(u; p; I) can equivalently be written as R(u; p;E

u

j

p

\ I). We will often

make use of this fact.

Using our new notation, we can write u[Ej

p

j

� Ej

Q

j�1

] as R(u; p

j

;Ej

Q

j�1

). Let us give

a special name to residues of this form: R(u; p; I) is a process residue if R(u; p; I) =

R(u; p;Ej

P

) for some P � P. We say that R(u; p;Ej

P

) is the P -residue of u at p.

Notice that R(u; p; ;) is also a process residue, corresponding to the empty set of

processes (by our convention that Ej

;

= ;.) Further, R(u; p; ;) = u[Ej

p

], the partial word

corresponding to the p-view of E.

Example: Consider our old example|the word bacabba depicted in Figure 1. Let I =

f0; e

1

; e

2

; e

3

g. Ej

s

� I = fe

5

; e

6

g, so R(u; s; I) = bb. Moreover, R(u; s; I) = R(u; s;Ej

p

),

so it is the p-residue of u at s.

Suppose that along every input word u, each process p maintains all its P -residues

R(u; p;Ej

P

), P � P, as functions from S to S. As we remarked earlier, each of these

functions can be represented in a �nite, bounded manner. Since each process needs to

keep track of only 2

N

P -residues, where N = jPj, all these functions can be incorporated

into the local state of the process.

Going back to the expression (}), we can compute the function f

u[Ej

p

N

�;]

correspond-

ing to u[Ej

p

N

� ;] by composing the functions corresponding to the residues R(u; p

1

; ;),

R(u; p

2

;Ej

Q

1

), : : : , R(u; p

N

;Ej

Q

N�1

) (Proposition 8 (iii)). Notice that u[Ej

p

N

�;] = u. So,

by Proposition 8 (ii), we can then compute the state �(s

0

; u) by applying the function

f

u[Ej

p

N

�Ej

p

1

]

to s

0

.

Thus, our automaton A will accept u if �(s

0

; u) as computed using the process residues

corresponding to the expression (}) lies in S

F

.

(Recall that the accepting states of A are speci�ed as global states. So, at the end

of the word u, we are permitted to observe \externally", as it were, the states of all the

processes in A before deciding whether to accept u.)

The only hitch now is with computing process residues \on line", as A reads u. The

problem is the following: Let p 2 P and P � P. If we extend u to ua where p =2 �(a), it

could well happen that E

ua

j

p

� E

ua

j

P

6= Ej

p

� Ej

P

, even though Ej

p

= E

ua

j

p

.

Example: Consider the word bacabba shown in Figure 1. After the subword bac, the

p-residue at s is bc, corresponding to fe

1

; e

3

g. However, when this word is extended to

baca, the p-residue at s becomes ", though s does not participate in the �nal a.

So, process residues at p could change without p being aware of it. This means that we

cannot hope to directly maintain and update process residues locally as A reads u. To

remedy this we need the following observation.

Lemma 13 For any non-empty ideal I, and p; q 2 P, Ij

p

\ Ij

q

is generated by the set

primary

p

(I) \ primary

q

(I).

Proof We only deal with the interesting case, where max

p

(I) and max

q

(I) are incom-

parable with respect to v

�

. Let e be a maximal event in the ideal Ij

p

\ Ij

q

. e has no

successors in Ij

p

\ Ij

q

but e v

�

max

p

(I) and e v

�

max

q

(I). So, for some r; s 2 P, e must

20

be an r-sentry for p with respect to q as well as an s-sentry for q with respect to p. By

Lemma 1, e = latest

p!r

(I) = latest

q!s

(I) and so e 2 primary

p

(I) \ primary

q

(I).

Therefore, the set of maximal events in Ij

p

\Ij

q

is contained in primary

p

(I)\primary

q

(I),

whence Ij

p

\ Ij

q

� (primary

p

(I) \ primary

q

(I))#.

On the other hand, let e 2 primary

p

(I) \ primary

q

(I). Then e 2 Ij

p

\ Ij

q

and so

e#� Ij

p

\ Ij

q

, since Ij

p

\ Ij

q

is an ideal. So (primary

p

(I) \ primary

q

(I))#� Ij

p

\ Ij

q

.

The degenerate case where max

p

(I) and max

q

(I) are ordered with respect to v

�

is

straightforward and we omit the argument. 2

Let us call R(u; p; I) a primary residue if I is generated by a subset E of primary

p

(E).

Clearly, for p; q 2 P, R(u; p;Ej

q

), can be rewritten as R(u; p;Ej

p

\Ej

q

). So, by the previous

result the q-residue R(u; p;Ej

q

) is a primary residue R(u; p;E#) for some E � primary

p

(E).

Further, p can e�ectively determine the set E given the primary information of both p

and q. In fact, it will turn out that all process residues can be e�ectively described in

terms of primary residues.

Example: In the word u = bacabba shown in Figure 1, R(u; s;Ej

p

) corresponds to the

primary residue R(u; s; flatest

s!q

(E)g#).

So, our strategy will be to maintain primary residues rather than process residues for each

process p. The useful property we exploit is that the primary residues at p change only

when p participates in an event.

(Notice that this does not contradict our earlier observation that process residues at

p can change independent of p. Even if a synchronization not involving p happens to

modify the P -residue at p, the new P -residue remains a primary residue of p, albeit for a

di�erent subset of p's primary events.)

Further, we show that when p participates in an event, it can recompute its primary

residues using just the information it receives during the synchronization. At the end

of the word u, the expression (}) written in terms of process residues, which is used to

compute �(s

0

; u), can be e�ectively rewritten in terms of primary residues. These residues

will be available with each process in P, thereby enabling us to calculate �(s

0

; u).

We �rst spell out some consequences of Lemma 13.

Corollary 14 Let u 2 �

�

and p 2 P.

(i) For ideals I; J � E, let R(u; p; I) and R(u; p; J) be primary residues such that

R(u; p; I) = R(u; p;E

I

#) and R(u; p; J) = R(u; p;E

J

#) for E

I

; E

J

� primary

p

(E).

Then R(u; p; I[J) is also a primary residue and R(u; p; I[J) = R(u; p; (E

I

[E

J

)#).

(ii) Let Q � P. Then R(u; p;Ej

Q

) is a primary residue R(u; p;E #) for p. Fur-

ther, p can e�ectively compute the set E � primary

p

(E) from the information in

primary

fpg[Q

(E).

(iii) Let q; r 2 P such that latest

p!r

(E) v

�

latest

q!r

(E). Then R(u; p; (Ej

q

)j

r

) is a

primary residue R(u; p;E#) for p. Further, p can e�ectively compute the set E �

primary

p

(E) from the information in primary

p

(E) and secondary

q

(E).

21

Proof

(i) We can rewrite R(u; p; I [J) as R(u; p;Ej

p

\ (I [J)). But Ej

p

\ (I [J) = (Ej

p

\ I)[

(Ej

p

\J). Since R(u; p; I) = R(u; p;Ej

p

\I), we know that Ej

p

\I is generated by E

I

.

Similarly, Ej

p

\J is generated by E

J

. So (E

I

[E

j

)#= (Ej

p

\I)[(Ej

p

\J). Therefore

E

I

[E

J

generates Ej

p

\(I[J) and so the residue R(u; p; I[J) = R(u; p; (E

I

[E

J

)#).

(ii) Let Q = fq

1

; q

2

; : : : ; q

k

g. We can rewrite R(u; p;Ej

Q

) as R(u; p;

S

i2[1::k]

Ej

q

i

). From

Lemma 13 it follows that for each i 2 [1::k], p can compute a set E

i

� primary

p

(E)

from the information in primary

fp;q

i

g

(E) such that R(u; p;Ej

q

i

) = R(u; p;E

i

#). From

part (i) of this Corollary, it then follows that R(u; p;Ej

Q

) = R(u; p;

S

i2[1::k]

Ej

q

i

) =

R(u; p;E#) where E =

S

i2[1::k]

E

i

.

(iii) Let J = Ej

p

[(Ej

q

)j

r

. J is an ideal. By the construction of J , max

p

(J) = max

p

(E).

From the assumption that latest

p!r

(E) v

�

latest

q!r

(E), we have max

r

(J) =

latest

q!r

(E). So, J j

p

= Ej

p

and J j

r

= (Ej

q

)j

r

. Since R(u; p; (Ej

q

)j

r

) = R(u; p;Ej

p

\

(Ej

q

)j

r

) = R(u; p; J j

p

\ J j

r

), it su�ces to �nd a subset E � primary

p

(E) which

generates J j

p

\ J j

r

.

By Lemma 13, J j

p

\J j

r

is generated by primary

p

(J)\primary

r

(J). Sincemax

p

(J) =

max

p

(E), primary

p

(J) = primary

p

(E).

On the other hand, primary

r

(J) = primary

r

(latest

q!r

(E)#). By de�nition, this is

the set flatest

q!r!s

(E)g

s2P

.

So the set E � primary

p

(E) generating J j

p

\ J j

r

is given by E = primary

p

(J) \

primary

r

(J) = primary

p

(E) \ flatest

q!r!s

(E)g

s2P

and can be computed from

primary

p

(E) and secondary

q

(E).

2

Part (ii) of the preceding Corollary makes explicit our claim that every process residue

R(u; p;Ej

Q

), Q � P, can be e�ectively rewritten as a primary residue R(u; p;E#), E �

primary

p

(E), based on the information available in primary

p[fQg

(E). In case Q = ;,

R(u; p;Ej

Q

) is given by the primary residue corresponding to ; � primary

p

(E).

Computing primary residues locally

We now describe how, while reading a word u, each process p maintains the functions f

w

for each primary residue w of u at p.

Initially, at the emptyword u = ", every primary residue from fR(u; p;E#)g

p2P;E�primary

p

(E

u

)

is just the empty word ". So, all primary residues are represented by the identity function

Id : S ! S.

Let u 2 �

�

and a 2 �. Assume inductively that every p 2 P has computed at the end

of u the function f

w

for each primary residue w 2 fR(u; p;E#)g

E�primary

p

(E

u

)

. We want

to compute for each p the corresponding functions after the word ua.

For processes not involved in a, these values do not change.

Proposition 15 If p =2 �(a) then every subset E � primary

p

(E

ua

) is also a subset of

primary

p

(E

u

) and the primary residue R(ua; p;E#) is the same as the primary residue

R(u; p;E#).

22

Proof This follows immediately from the fact that E

ua

j

p

= E

u

j

p

and primary

p

(E

ua

) =

primary

p

(E

u

). 2

So, the interesting case is when p participates in a. We show how to calculate all the new

primary residues for p using the information available with the processes in �(a) after u.

Lemma 16 Let p 2 �(a) and E � primary

p

(E

ua

). The function f

w

corresponding to the

primary residue w = R(ua; p;E#) can be computed from the primary residues at u of the

processes in �(a) using the information in primary

�(a)

(E

u

) and secondary

�(a)

(E

u

).

Proof Let e

a

be the event corresponding to the new letter a|i.e., E

ua

� E

u

= fe

a

g.

There are two cases to consider.

Case 1: (e

a

2 E)

Since E#= e

a

#= E

ua

j

p

, the residue R(ua; p;E#) = R(ua; p; e

a

#) is the empty word ". So

the corresponding function is just the identity function Id : S ! S.

Case 2: (e

a

=2 E)

We want to compute the function f

w

corresponding to the word w = ua[E

ua

j

p

� E#]. By

Lemma 11, we know that

ua[E

ua

j

p

] � ua[E#]ua[E

ua

j

p

� E#]: (1)

But ua[E

ua

j

p

] = u[E

u

j

�(a)

]a and so we have

ua[E

ua

j

p

] = u[E

u

j

�(a)

]a � u[E#]u[E

u

j

�(a)

� E#]a: (2)

Since e

a

=2 E #, ua[E #] = u[E #]. Thus, cancelling u[E #] from the right hand sides of

(1) and (2) above, we have u[E

u

j

�(a)

� E #]a � ua[E

ua

j

p

� E #]. So, by Propositions 8

and 9, to compute the function f

w

, it su�ces to compute the function corresponding to

u[E

u

j

�(a)

�E#]a.

Let �(a) = fp

1

; p

2

; : : : ; p

k

g, where p = p

1

. Construct sets of processes fQ

i

g

i2[1::k]

such

that Q

1

= fp

1

g and Q

i

= Q

i�1

[fq

i

g for i 2 [2::k].

Construct ideals fI

j

g

j2[0::k]

as follows: I

0

= E# and for j 2 [1::k], I

j

= I

j�1

[E

u

j

p

j

.

Clearly, I

0

� I

1

� � � � � I

k

� E

u

.

By Corollary 12, u[I

k

] � u[I

0

]u[I

1

� I

0

] � � � u[I

k

� I

k�1

]. Since u[I

k

] = u[E

u

j

�(a)

] and

u[I

0

] = u[E#], from (2) above it follows that the word u[E

u

j

�(a)

� E#]a which we seek is

�-equivalent to the word u[I

1

� I

0

] � � � u[I

k

� I

k�1

]a.

Claim: For each j 2 [1::k], u[I

j

� I

j�1

] is a primary residue R(u; p

j

; F

j

#), where F

j

�

primary

p

j

(E

u

). Further, p

j

can determine F

j

from the information in primary

p

j

(E

u

) and

secondary

�(a)

(E

u

).

Assuming the claim, for each word w

j

= u[I

j

� I

j�1

], we can �nd the corresponding

function f

w

j

: S ! S among the primary residues stored by p

j

after u. The composite

function f

a

� f

w

k

� f

w

k�1

� � � � � f

w

1

then gives us the function corresponding to the word

u[I

1

� I

0

] � � �u[I

k

� I

k�1

]a, which is what we need.

23

Proof of Claim: The way that primary events are updated guarantees that each event

e 2 E was a primary event in E

u

, before a occurred, for one of the processes in �(a); i.e.,

E � primary

�(a)

(E

u

). For i 2 [1::k], let E

i

= E \ primary

p

i

(E

u

).

First consider u[I

1

� I

0

].

Let E

0

= E � E

1

. I

1

� I

0

is the same as E

u

j

p

1

� (E

1

[E

0

)#, which is the same as

E

u

j

p

1

� (E

1

[E

0

#). We want to compute u[I

1

� I

0

] = R(u; p

1

; E

1

[E

0

#).

Each event e 2 E

0

is a primary event of the form latest

p

1

!q

e

(E

ua

) for some q

e

2

P. Further, for some i 2 [2::k], e was also the primary event latest

p

i

!q

e

(E

u

) before e

a

occurred. Since p

1

has inherited this information from p

i

, it must have been the case

that latest

p

1

!q

e

(E

u

) v

�

latest

p

i

!q

e

(E

u

). So, by part (iii) of Corollary 14, the residue

R(u; p

1

; e#) = R(u; p

1

; (E

u

j

p

i

)j

q

e

) corresponds to a primary residue R(u; p

1

; G

e

#), where p

1

can determine G

e

� primary

p

1

(E

u

) from primary

p

1

(E

u

) and secondary

p

i

(E

u

).

So, by part (i) of Corollary 14, R(u; p

1

; E

0

#) = R(u; p

1

;

S

e2E

0
e#) is a primary residue

R(u; p

1

; G

1

#) where G

1

=

S

e2E

0
G

e

.

R(u; p

1

; E

1

#) is a primary residue since E

1

� primary

p

(E

u

). Applying part (i) of

Corollary 14 again, R(u; p

1

; (E

1

[E

0

#)) corresponds to the primary residue R(u; p

1

; F

1

#),

where F

1

= E

1

[G

1

.

Now consider u[I

j

� I

j�1

] for j 2 [2::k].

I

j

� I

j�1

is the same as E

u

j

p

j

� (E# [E

u

j

Q

j�1

) so we want to compute the residue

R(u; p

j

; E# [E

u

j

Q

j�1

).

By a similar argument to the one for u[I

1

�I

0

], p

j

can compute a setG

j

� primary

p

j

(E

u

)

such that R(u; p

j

; E#) corresponds to the primary residue R(u; p

j

; G

j

#).

By part (ii) of Corollary 14, p

j

can compute from primary

Q

j

(E

u

) a setH

j

� primary

p

j

(E

u

)

such that R(u; p

j

;E

u

j

Q

j�1

) corresponds to the primary residue R(u; q;H

j

#).

We now use part (i) of Corollary 14 to establish that R(u; p

j

; E# [E

u

j

Q

j�1

) corresponds

to the primary residue R(u; p

j

; F

j

#), where F

j

= G

j

[H

j

.

2

An asynchronous automaton for L

Our analysis of process residues and primary residues immediately yields a deterministic

asynchronous automaton A = (fV

p

g

p2P

; f!

a

g

a2�

;V

0

;V

F

) which accepts the language L.

Recall that B = (S;�; �; s

0

; S

F

) is the minimal DFA recognizing L.

For p 2 P, each local state of p will consist of the following:

� Primary, secondary and tertiary information for p, as stored by the gossip automa-

ton.

� For each subset E of the primary events of p, a function f

E

: S ! S recording the

(syntactic congruence class of the) primary residue R(u; p;E#) at the end of any

word u.

At the initial state, for each process p, all the primary, secondary and tertiary infor-

mation of p points to the initial event 0. For each subset E of primary events, the function

f

E

is the identity function Id : S ! S.

The transition functions !

a

modify the local states of �(a) as follows:

24

� Primary, secondary and tertiary information is updated as in the gossip automaton.

� The functions corresponding to primary residues are updated as described in the

proof of Lemma 16.

Other than comparing primary information, the only operation used in updating the

primary residues at p (Lemma 16) is function composition. This is easily achieved using

the data available in the states of the processes which synchronized.

The �nal states of A are those where the value jointly computed from the primary

residues in P yields a state in S

F

. More precisely, order the processes as P = fp

1

; p

2

; : : : ; p

N

g.

Construct subsets of processes fQ

i

g

i2[1::N]

such that Q

1

= fp

1

g and for i 2 [2::N],

Q

i

= Q

i�1

[fp

i

g.

Let ~v = fv

1

; v

2

; : : : ; v

N

g be a global state of A such that A is in ~v after reading an

input word u.

By Corollary 14 (ii), for each i 2 [2::N], we can compute from fv

1

; v

2

; : : : ; v

i

g a subset

E

i

of the primary information of p

i

such that the Q

i�1

-residue of p

i

is also the primary

residue of p

i

with respect to E

i

. Let f

i

denote this primary residue. In addition, from the

state v

1

, we can extract the function f

1

corresponding to the primary residue R(u; p; ;).

From the expression (}), we know that the composite function f

N

� f

N�1

� � � � � f

1

is

exactly the function f

u

associated with the input word u leading to the global state ~v.

So, we put ~v in the set of accepting states V

F

of A i� f

N

� f

N�1

� � � � � f

1

(s

0

) 2 S

F

.

Notice that it does not matter how we order the states in ~v when we try to decide

whether ~v 2 V

F

. We keep track of residues in all processes in a symmetric fashion, and

the expression (}) holds regardless of how we order P. So, if ~v is a valid (i.e., reachable)

global state, the composite function f

N

�f

N�1

�� � ��f

1

which we compute from ~v is always

the same, no matter how we order P.

Of course, we have the same minor complication here which we came across when

de�ning the local functions g

a

which computed the latest gossip function: We have not

bothered to verify whether ~v is a \meaningful" global state in A. However, as we argued

then, those states which are not \meaningful" are also unreachable, so it does not matter

if we accidentally add such states to V

F

.

From our analysis of residues in this section, we have the following result.

Theorem 17 The language accepted by A is exactly L.

The size of A

Proposition 18 Let M = jSj and N = jPj, where S is the set of states of B, the mini-

mal DFA recognizing L, and P is the set of processes in the corresponding asynchronous

automaton A which we construct to accept L. Then, the number of local states of each

process p 2 P is at most 2

O(2

N

M logM)

.

Proof We estimate the number of bits required to store a local state of a process p.

From Lemma 7, we know that the primary, secondary and tertiary information that

we require to keep track of the latest gossip can be stored in O(N

3

logN) bits.

The new information we store in each local state of p is the collection of primary

residues. Each residue, which is a function from S to S, can be written down as an

array with M entries, each of logM bits; i.e., M logM bits in all. Each primary residue

25

corresponds to a subset of primary events. There are N primary events and so, in general,

we need to store 2

N

residues. Thus, all the residues can be stored using 2

N

M logM bits.

So, the entire state can be written down using O(2

N

M logM) bits, whence the number

of distinct local states of p is bounded by 2

O(2

N

M logM)

. 2

8 Comparison with Zielonka's construction

Let us compare our construction of A with Zielonka's original proof [Zie1]. Zielonka starts

by de�ning an equivalence relation � on words (actually traces) which we can describe in

our terminology as follows.

For sets X and �, a �-labelled graph over X is a pair (G;�) where G(X;E) is a

directed graph whose vertex set is X and � : X ! � is a labelling function.

Let P be the set of processes in the asynchronous automaton we want to construct

and �

0

= � [fyg, for some y =2 �. With each word u 2 �

�

, associate a �

0

-labelled graph

Last(u) over P� P where Last(u) = (G(P� P; E

u

); �

u

) is given as follows:

� For (p

1

; q

1

); (p

2

; q

2

) 2 P�P, (p

1

; q

1

) E

u

(p

2

; q

2

) i� latest

p

1

!q

1

(E

u

) v

�

latest

p

2

!q

2

(E

u

).

� For (p; q) 2 P � P, let e 2 E

u

be the event corresponding to latest

p!q

(E

u

). If e is

the initial event 0, then �

u

((p; q)) = y. Otherwise e must be of the form (i; a), in

which case �

u

((p; q)) = a.

So, the graph Last(u) of [Zie1] records the structure of the primary information after

u. This is the �rst notion needed to specify the equivalence relation �.

The second ingredient present is a version of residues. For each word u and each subset

P of processes, the su�x of u with respect to P is the word S

P

(u) = u[E

u

� E

u

j

P

].

We can now de�ne �. For all u; u

0

2 �

�

, u � u

0

i� the following conditions hold:

� Last(u) = Last(u

0

).

� For all P � P, S

P

(u) �

L

S

P

(u

0

). (Recall that �

L

is the syntactic congruence de�ned

by the language L.)

It is easy to see that if u � u

0

then Last(u) = Last(u

0

). Similarly, if u � u

0

then for

every P � P, S

P

(u) � S

P

(u

0

) and so S

P

(u) �

L

S

P

(u

0

). Thus, if u � u

0

then u � u

0

and

so it does not matter that we have de�ned � in terms of words rather than in terms of

traces as Zielonka originally did. Clearly, � is of �nite index for any recognizable trace

language L.

Let hui denote the equivalence class of u with respect to �. In Zielonka's construction,

each process p keeps track of hu[E

u

j

p

]i, the equivalence class of the p-view of u. Thus,

after reading u, the automaton is in the global state (hu[E

u

j

p

1

]i; hu[E

u

j

p

2

]i; : : : ; hu[E

u

j

p

N

]i),

where P = fp

1

; p

2

; : : : ; p

N

g. A global state of this form is an accepting state i� u 2 L.

In general, the graph Last(u) as well as the set of su�xes fS

P

(u)g

P�P

describe global

properties of the word u. However, when we restrict our attention to the p-view u[E

u

j

p

]

of a process p 2 P, they correspond to local notions which we have already encountered.

The graph Last(u[E

u

j

p

]) describes the structure of the secondary information of p after

26

u. And each su�x S

P

(u[E

u

j

p

]), P � P, corresponds to the primary residue of u at p with

respect to E = flatest

p!q

(E

u

)g

q2P

.

From this, it is clear that our construction is essentially a \disguised" version of

Zielonka's original construction. What have we achieved by adopting this disguise?

The main bene�t is that our construction is signi�cantly more transparent than

Zielonka's (which is generally acknowledged to be di�cult to assimilate [CMZ, Pig].)

First of all, we clearly distinguish between process residues and primary residues.

Process residues are used to compute the function f

u

corresponding to the �

L

-congruence

class of a word u via the expression (}) (page 19). However, since these residues cannot be

maintained locally, each process keeps track of primary residues instead. Using primary

information, process residues can be e�ectively rewritten in terms of primary residues

and so it su�ces to keep track of primary information and primary residues locally. This,

essentially, is the intuition behind Zielonka's construction and the reason the original

construction is rather opaque is because these connections are not made explicit in [Zie1].

The second di�erence is that the local transition functions are de�ned much more

\naturally" in our setup. We explicitly maintain primary information and information

about residues in the local states of processes. Thus, we can de�ne the local transition

functions as \procedures" or \algorithms" which manipulate the information stored in

the local states in a concrete way. This makes it easier to understand, overall, what

the asynchronous automaton is computing. In addition, it also enables us to e�ectively

describe the automaton much more concisely than if the transition functions are de�ned

in terms of the equivalence classes of �, as in [Zie1]. In Zielonka's construction, there

is no structure to the names given to these equivalence classes. So, for specifying the

transition functions, there is no alternative but to exhaustively list out all the entries in

the form of an enormous table.

Let us now focus on the connection between the information maintained by the gossip

automaton and the information present in the graphs fLast(u[E

u

j

p

])g

p2P

. It is clear

that Zielonka's construction provides us with an e�ective procedure for locally updating

these graphs whenever a synchronization occurs. However, this update mechanism is

\uninformative" in the following sense: When a set of processes c � P synchronizes

after u, we cannot directly extract the values of the functions fbest

c

(u; q)g

q2P

(page 6)

which we are interested in computing via the gossip automaton. (This is not to say that

this information cannot be computed indirectly from the way these graphs are updated

in [Zie1]|all that we claim is that the procedure, as it stands, does not compute the

functions we seek.)

Even if Zielonka's update procedure were modi�ed to supply the values of fbest

c

(u; q)g

q2P

when c � P meets after u, the resulting automaton would be much larger, in real terms,

than the gossip automaton. The �rst point to note is that the number of states generated

by Zielonka's construction would be slightly larger than the number of states in the gossip

automaton. Let N = jPj and K = j�j. Then there are 2

O(N

4

+N

2

logK)

distinct �

0

-labelled

graphs over P� P and hence at least the same number of possible local states in the hy-

pothetical gossip automaton extracted from Zielonka's construction. Compare this with

the 2

O(N

3

logN)

states of our automaton.

More crucially, we again observe that the local transition functions of our automaton

are simple procedures manipulating concrete information stored in the local states of

processes. Thus our gossip automaton can be described in space polynomial in N . On

the other hand, since the transition functions in Zielonka's construction can only be

27

described using a table spanning all possible choices from an (exponential) number of

equivalence classes, we need space exponential in N to fully specify the corresponding

automaton arising from Zielonka's construction.

9 Discussion

We now discuss the connections between our results and other work in related areas.

First, we would like to point out that both \gossiping" and \bounded time-stamps" have

been studied in the literature, but in contexts very di�erent from ours.

Studies of \gossiping" in networks have traditionally focussed on e�ciently disseminat-

ing a �xed piece of information (or gossip) from one node to all other nodes in a network

[HHL]. The main aim is to �nd an optimal sequence of communications to distribute data

for a given network topology.

Israeli and Li [IL] introduced the notion of \bounded time-stamps" and argued that

these were fundamental in solving many problems in distributed systems|notably that

of creating what are called \atomic registers"[LV]. However, both their work and that of

others in the area [DS, CS] is based on a shared-memory model, which is quite di�erent

in spirit from the asynchronous automaton model. Thus, the intuition underlying their

notion of time-stamping is quite di�erent from ours.

Though our algorithm can be implemented as an asynchronous automaton, it correctly

computes the latest gossip function locally for any input word. In other words, the set

of communication sequences generated by the underlying system need not be regular.

Our algorithm will also work on sequences generated, for instance, by N communicating

Turing machines.

From this point of view, the construction of the gossip automaton establishes a non-

obvious property for all synchronous systems. Suppose an agent p

1

has a private variable

X which no other agent can modify, and agents fp

2

; p

3

; : : : ; p

N

g keep track of the latest

value of X that they have heard of from p

1

(either directly or indirectly). Then, along any

run of the system, bounded time-stamps su�ce for determining which of fp

2

; p

3

; : : : ; p

N

g

have the most recent value of X. This is important, for example, for crash recovery. If the

system crashes and p

1

fails to come alive after the crash, the other agents can get together

and synthesize an optimal \last-known" state of p

1

by comparing their information about

p

1

.

Turning now to Zielonka's theorem, as we mentioned in the Introduction, others have

also come up with alternative proofs of this basic result [CMZ, Die]. However, all these new

proofs are based on asynchronous cellular automata, introduced by Zielonka in [Zie2], and

rely on the fact that asynchronous cellular automata can be converted into asynchronous

automata in a relatively straightforward manner.

An asynchronous cellular automaton processes input strings over a concurrent alpha-

bet (�;I). Each letter a in � gives rise to a process p

a

. p

a

makes a move on input a

by examining its own state together with the states of the processes fp

b

j (a; b) =2 Ig.

However, when p

a

moves, it can only change its own state. Thus, p

a

looks at processes

in the \neighbourhood" of a in the dependence graph G

D

associated with (�;I). In this

sense, these automata generalize conventional cellular automata.

Asynchronous cellular automata, like asynchronous automata, have a built in no-

tion of independence|if two letters do not appear in each other's neighbourhoods, the

28

corresponding components can move without interfering with each other. So, they are

guaranteed to recognize �-consistent languages. From the point of view of trace theory

their structure seems more closely related to the algebraic structure of traces, thus making

them more \friendly" machines to work with in proving Zielonka's theorem [CMZ, Die].

Loosely speaking, this can be ascribed to the fact that trace theory \concentrates" more

on the alphabet � than on the processes P in an asynchronous automaton.

The main feature of the construction in [CMZ] is that it provides a general \recipe"

for constructing asynchronous cellular automata from special types of functions called

asynchronous mappings. These mappings correspond, in a sense, to our notion of lo-

cally computable functions. Asynchronous mappings provide more intuition about the

behaviour of these automata than transition functions based on equivalence relations do.

Thus, they help clarify the general mystery surrounding constructions like those used by

Zielonka in [Zie1]. However, the \mechanical" procedure for transforming asynchronous

mappings into asynchronous (cellular) automata does not provide a concise speci�cation

of the resulting automaton. The transition functions of the �nal automaton still have to

be de�ned in terms of an enormous table, and, in our view, the overall description of the

automaton remains unsatisfactorily large.

Like our construction, the proof given in [CMZ] factors through a bounded time-

stamping argument. They keep track of what they call the �rst and second approximations

of a trace. These are directed graphs which compare the partial views generated by

maximal letters in a trace.

The �rst approximation of a trace [u] records the causal order between the maximum

a-event and the maximum b-event in E

u

, for each pair of letters a; b 2 �. The second

approximation of [u] records the causal order between the maximum b-event in the a-view

of E

u

and the maximum c-event in the d-view of E

u

for all a; b; c; d 2 �, where for a 2 �,

the a-view of E

u

corresponds to the principal ideal generated by the maximum a-event in

E

u

.

Roughly speaking, the �rst approximation of a trace corresponds to keeping track of

the causal order between the maximum p-events of E

u

for all p 2 P. Similarly, the second

approximation of a trace is similar to the graph Last(u) (page 26) recording the global

structure of the primary information in E

u

. It is not di�cult to extract the causal order be-

tween primary events (i.e., the graph Last(u)) from the �rst and second approximations

of a trace. However, recall that Zielonka's procedure for updating fLast(u[E

u

j

p

)g

p2P

does not immediately yield a complete solution to the gossip problem. Similarly, locally

keeping track of the �rst and second approximations of the a-views of a trace falls short

of directly providing the values of the functions fbest

c

(u; q)g

q2P

when a subset c � P of

processes meets after u.

Notice that approximations of a trace deal with elements in �, whereas primary and

secondary \gossip" information is concerned only with processes and ignores the alphabet

� altogether. There is, in general, a mismatch between the size of � and the number of

processes in P. So, it is not surprising that the gossip automaton as de�ned here does

not keep track of the approximations of a trace. However, our automaton can easily

be modi�ed to keep track of primary, secondary and tertiary information with respect

to letters rather than processes. So, the �rst and second approximation of a trace can

be computed in our framework. (Observe that j�j could be exponential in jPj. As a

result, computing approximations of a trace, instead of just keeping track of primary and

secondary information with respect to processes, could blow up the size of the gossip

29

automaton tremendously.)

We can go back and forth between asynchronous cellular automata and asynchronous

automata through polynomial-size transformations, as shown by Pighizzini [Pig]. So, for

computing properties of traces, we can work with either model and then apply Pighizzini's

translation without incurring a signi�cant cost in the state space.

However, at an operational level, asynchronous cellular automata and asynchronous

automata are based on very di�erent kinds of intuition. Thus, if we want to understand

how to compute something using asynchronous automata, very little insight is gained by

solving the problem on hand using asynchronous cellular automata and then translating

that solution back to asynchronous automata. So, for instance, though bounded time-

stamping algorithms appear both in the construction of [CMZ] and in the construction

of the gossip automaton, it is di�cult to see how our algorithm can be derived from the

one described in [CMZ].

We feel that it is important to have a clear understanding of what can be computed

locally and directly in the framework of asynchronous automata since these automata

are natural models of distributed systems. They correspond to a very intuitive notion

of synchronizing �nite state machines which exchange information whenever they meet.

Asynchronous automata are closely connected to well-established formalisms for describ-

ing concurrent systems. For instance, an automaton of this type can easily be represented

as a labelled 1-safe Petri net [Zie1]. These automata also generalize synchronization mech-

anisms which have been studied in process calculi like TCSP [BHR].

On the other hand, at the operational level, asynchronous cellular automata do not

correspond to any standard model of distributed systems. We can view the distributed

state space of these automata as a concurrent-read exclusive-write shared memory. How-

ever, distributed algorithms based on the shared memorymodel normally assume that the

store is equally shared by all processes. Instead, in an asynchronous cellular automaton,

the memory is shared in a localized manner.

Building the gossip automaton appears to be a basic step in tackling many problems in

the theory of asynchronous automata. In addition to our new proof of Zielonka's theorem,

we have found other important applications of our solution to the gossip problem. In

[KMS], a determinization construction is presented for asynchronous automata using a

generalization of the classical subset construction for �nite automata. This construction

allows us to keep track of the global states which are currently valid at any stage of a

computation by a non-deterministic asynchronous automaton. The data maintained by

the gossip automaton plays a crucial role in determining how much information can be

safely \forgotten" by the subset automaton without sacri�cing global consistency.

We feel that this determinization construction will lead to a direct complementation

construction for B�uchi asynchronous automata [GP]. These automata recognize !-regular

trace languages, which are a natural trace-theoretic generalization of !-regular string

languages. B�uchi asynchronous automata are beginning to play an important role in

concurrency theory. They are known to be closed under complementation for algebraic

reasons, but the only e�ective complementation construction provided so far has been for

B�uchi asychronous cellular automata [Mus]. There appears to be no straightforward way

of applying this construction to B�uchi asynchronous automata.

Recently, Thiagarajan [Thi] has developed an extension of propositional linear-time

temporal logic which is interpreted over in�nite traces rather than in�nite linear sequences.

This logic appears to be quite expressive, while remaining decidable (unlike several other

30

partial-order logics studied in the literature [LPRT]). The decision procedure for this

logic is automata-theoretic, in the style of Vardi and Wolper [VW], except that it makes

use of B�uchi asychronous automata rather than conventional B�uchi automata. The gossip

automaton plays a crucial role in this construction as well. In fact, this was the original

motivation for constructing the gossip automaton.

Acknowledgments P.S. Thiagarajan suggested the gossip problem. We have bene-

�ted greatly from discussions with him. The reformulation of the gossip automaton in

terms of ideals and frontiers emerged during work with Nils Klarlund on determinizing

asynchronous automata. His suggestions have been a great help in cleaning up the pre-

sentation. We also thank Robert de Simone for pointing out some subtle technical errors.

The �rst author was partially supported by IFCPAR Project 502-1.

References

[AR] I.J. Aalbersberg, G. Rozenberg: Theory of traces, Theoret. Comput. Sci., 60

(1988) 1{82.

[BHR] S.D. Brookes, C.A.R. Hoare, A.W. Roscoe: A theory of communicating sequen-

tial processes, J. ACM, 31 (1984) 560{599.

[CMZ] R. Cori, Y. Metivier, W. Zielonka: Asynchronous mappings and asynchronous

cellular automata, Inform. and Comput., 106 (1993) 159{202.

[CS] R. Cori, E. Sopena: Some combinatorial aspects of time-stamp systems, Europ. J.

Combinatorics, 14 (1993) 95{102.

[Die] V. Diekert: Combinatorics on traces, LNCS 454 (1990).

[DS] D. Dolev, N. Shavit: Bounded concurrent time-stamps are constructible, Proc.

ACM STOC (1989) 454{466.

[GP] P. Gastin, A. Petit: Asynchronous cellular automata for in�nite traces, Proc.

ICALP '92, LNCS 623 (1992) 583{594.

[HHL] S.M. Hedetniemi, S.T. Hedetniemi, A.L. Liestman: A survey of gossiping and

broadcasting in communication networks, Networks, 18 (1988) 319{349.

[HU] J. Hopcroft, J.D. Ullman: Introduction to automata, languages and computation,

Addison-Wesley (1979).

[IL] A. Israeli, M. Li: Bounded time-stamps, Proc. 28th IEEE FOCS (1987) 371{382.

[KMS] N. Klarlund, M. Mukund, M. Sohoni: Determinizing asynchronous automata,

to appear in Proc. ICALP 1994. A preliminary version appears as Report TCS-93-5,

School of Mathematics, SPIC Science Foundation, Madras, India (1993).

[LV] M. Li, P. Vitanyi: How to share concurrent asynchronous wait free variables, Proc.

ICALP '89, LNCS 372 (1989) 488{507.

31

[LPRT] K. Lodaya, R. Parikh, R. Ramanujam, P.S. Thiagarajan: A logical study of

distributed transition systems, to appear in Inform. and Comput. Also available as

Report TCS-93-8, School of Mathematics, SPIC Science Foundation, Madras, India

(1993).

[Maz] A. Mazurkiewicz: Basic notions of trace theory, in: J.W. de Bakker, W.-

P. de Roever, G. Rozenberg (eds.), Linear time, branching time and partial order in

logics and models for concurrency, LNCS 354 (1989) 285{363.

[MS] M. Mukund, M. Sohoni: Keeping track of the latest gossip: Bounded time-stamps

su�ce, Proc. FST&TCS '93, LNCS 761 (1993) 388{399.

[Mus] A. Muscholl: On the complementation of B�uchi asynchronous cellular automata, to

appear in Proc. ICALP 1994.

[Pig] G. Pighizzini: Recognizable trace languages and asynchronous automata, Phd Thesis,

Dip. Scienze dell'Informazione, Univ. di Milano (1993).

[Sta] R.P. Stanley: Enumerative combinatorics: Volume I, Wadsworth & Brookes/Cole

(1986).

[Thi] P.S. Thiagarajan: TrPTL: A trace based extension of linear time temporal logic, to

appear in Proc. IEEE LICS 1994. A preliminary version appears as Report TCS-93-6,

School of Mathematics, SPIC Science Foundation, Madras (1993).

[VW] M. Vardi, P. Wolper: An automata theoretic approach to automatic program ver-

i�cation, Proc. 1st IEEE LICS (1986) 332{345.

[Zie1] W. Zielonka: Notes on �nite asynchronous automata, R.A.I.R.O.|Inform. Th�eor.

Appl., 21 (1987) 99{135.

[Zie2] W. Zielonka: Safe executions of recognizable trace languages, Proc. Logical Founda-

tions of Computer Science, LNCS 363 (1989) 278{289.

32

