
Internal Report TCS-90-3

September, 1990

Models and Logi
s for True Con
urren
y

Kamal Lodaya

1

, Madhavan Mukund

2

,

R. Ramanujam

1

, P.S. Thiagarajan

2

Abstra
t

A distributed 
omputer system 
onsists of di�erent pro
esses or agents that fun
tion largely

autonomously and 
o�ordinate their a
tions by 
ommuni
ating with ea
h other. In su
h a situation,

a
tions may be performed by di�erent agents of the system lo
ally, in a 
on
urrent manner.

In this paper, we �rst dis
uss formal models of distributed systems in whi
h 
on
urren
y is spe
i-

�ed expli
itly, in 
ontrast to more traditional approa
hes where 
on
urren
y is represented impli
itly

as a non-deterministi
 
hoi
e between all possible sequentializations of 
on
urrent a
tions. This nat-

urally leads to models based on partially-ordered sets of a
tions rather than sequen
es of a
tions and

is often 
alled the true 
on
urren
y approa
h. The models we fo
us on are distributed transition

systems, elementary net systems and event stru
tures.

In the se
ond half of the paper, we develop a family of logi
s to spe
ify and reason about the

behavioural properties of the models we have des
ribed. The logi
s we de�ne are extensions of

temporal logi
 with new modalities to dire
tly des
ribe 
on
urren
y.

This paper is essentially a survey of work done by the authors during the last few years on

modelling distributed systems with true 
on
urren
y and using logi
 to reason about these models.

The emphasis is on motivating de�nitions through examples and on presenting major results, without

going into too many formal details. We provide pointers to the literature where these details 
an be

found.
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Introdu
tion

The study of distributed systems and 
omputations is an important topi
 of resear
h in 
omputer s
ien
e.

A distributed system 
onsists of a number of essentially autonomous 
omponents that work together to

perform a 
omplex task.

A 
omputer network whi
h brings together a heterogeneous 
olle
tion of 
omputing resour
es and

users dispersed over a wide geographi
 area is a 
lassi
 example of a distributed system. Distributed

databases 
onstitute yet another 
lass of examples. At a lower level, 
omputer proto
ols whi
h fa
ilitate

eÆ
ient and reliable transmission of ele
troni
 data and operating systems whi
h 
o�ordinate the a
tivities

of multiple pro
esses (programs) in the presen
e of multiple pro
essors 
an also be viewed as distributed

systems. With the advent of VLSI systems, the notion of a distributed system is also be
oming relevant

at the 
ir
uit level.

The theory of distributed systems 
onsists of formulating abstra
t mathemati
al models of distributed

systems and studying the properties of these models. A basi
 motivation in the study of formal models is

to develop tools and te
hniques using whi
h one 
an spe
ify, analyze and implement distributed systems.

Another goal is to develop formal means for reasoning about the behaviour of distributed systems. This

is important be
ause one would like to ensure that a spe
i�
ation is in some sense 
onsistent before one

attempts an analysis or an implementation. Even more importantly, one would like to guarantee that a

proposed implementation indeed meets the requirements of a spe
i�
ation.

In this paper, we present some of our work in the last few years on modelling distributed systems with

true 
on
urren
y and using logi
 to reason about these models. The emphasis is on motivating de�nitions

through examples and on presenting major results. No attempt will be made to go into formal details;

we shall provide pointers to the literature where these details 
an be found.

In the �rst part of the paper, we introdu
e three models 
alled distributed transition systems, ele-

mentary net systems and event stru
tures. Using these models, we illustrate some of the fundamental

features of distributed systems, su
h as 
ausality, 
hoi
e and 
on
urren
y.

In the se
ond half of the paper, we develop a family of logi
s to spe
ify and reason about the be-

havioural properties of the models 
onsidered in the �rst half of the paper.

A Models for True Con
urren
y

Typi
ally, a distributed system 
onsists of spatially separated pro
esses or agents performing a joint

task. The agents fun
tion largely autonomously and 
o�ordinate their a
tions by 
ommuni
ating with

ea
h other. In su
h a situation, a
tions may be performed by di�erent agents of the system lo
ally, in a


on
urrent manner.

Informally, we say that two events are 
on
urrent if they o

ur with no a priori ordering over their

o

urren
es. This is in 
ontrast to a sequential system in whi
h any two events that o

ur in a 
omputation

must be ordered.

In addition to 
on
urren
y, two other aspe
ts are of interest in the theory of distributed systems {


ausality and 
hoi
e. Causality refers to the fa
t that 
ertain events in a distributed system 
an only

o

ur in a �xed order; for example, a message 
an be re
eived only after it has been sent. The re
eipt of

a message is said to be 
ausally dependent on the sending of the message.

Choi
e 
aptures the fa
t that systems 
an behave in an indeterminate fashion. In other words, at


ertain points of the 
omputation, the system may 
hoose between alternative events, leading to di�erent

behaviours.

As we shall see, labelled transition systems are simple and 
onvenient models of sequential systems

whi
h 
an expli
itly des
ribe 
ausality and 
hoi
e, but whi
h do not have a natural way of representing


on
urren
y. One way of des
ribing 
on
urren
y in the framework of transition systems is in terms

of indetermina
y. In this approa
h, the fa
t that a set of a
tions may be performed 
on
urrently is

represented by permitting the system to 
hoose between all possible sequentializations of the a
tions.

This approximation of 
on
urren
y by interleaving is used in various algebrai
 approa
hes to the theory

of distributed systems su
h as CCS [Milner 1989℄, CSP [Hoare 1984℄ and ACP [Bergstra et al 1984℄.

Su
h an impli
it representation of 
on
urren
y leads to problems in analyzing system behaviour, due

to the 
ombinatorial explosion in the number of possible interleavings. We follow an alternative approa
h,


alled \true 
on
urren
y", where 
on
urren
y is represented expli
itly in the models.
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Figure 1: A transition system

Many abstra
t models of distributed systems have been suggested whi
h expli
itly deal with the phe-

nomena of 
ausality, 
hoi
e and 
on
urren
y. Here, we shall 
onsider three of these models | distributed

transition systems, elementary net systems and event stru
tures. We shall also dis
uss a model 
alled


ommuni
ating sequential agents. This model, based on a restri
ted 
lass of event stru
tures, 
aptures in

a natural way the intuitive pi
ture of a distributed system as a 
olle
tion of sequential agents 
o�ordinating

their a
tions through 
ommuni
ation.

1 Distributed Transition Systems

Before dis
ussing models of 
on
urrent systems, let us brie
y look at sequential systems. Transition

systems are a basi
 model of sequential systems.

De�nition 1.1 A (�-labelled) transition system is a triple TS = (S;�;!) where

(i). S is a set of states.

(ii). � is a set of a
tions.

(iii). ! � S � �� S is the transition relation.

If (s; a; s

0

) 2 !, then the idea is that the a
tion a 
an o

ur at state s and after the exe
ution of a the

system assumes the state s

0

. We shall often write s

a

!s

0

instead of (s; a; s

0

) 2 !.

Figure 1 is a graphi
al representation of a transition system. The nodes of the graph represent the

states of the system. The edges, labelled by a
tions from �, re
e
t the transition relation !.

Clearly the stru
ture of a transition system 
aptures both the basi
 phenomena present in sequential

systems | 
ausality and 
hoi
e. The transition relation 
an be used to determine the 
ausal dependan
ies

between system states. Choi
e is spe
i�ed by bran
hing in the transition system. In other words, if s

a

!s

0

and s

b

!s

00

both belong to the transition relation, then the system at state s 
an 
hoose between the

a
tions a and b. For example, at s

1

the system shown in Figure 1 
an either move by an a to s

2

or move

by a b to s

3

. In general, di�erent 
hoi
es available to the system at a state may be labelled by the same

a
tion. In other words, the behaviour 
ould be nondeterministi
. For instan
e, at s

0

this system 
an

move on b either to s

5

or to s

1

.

In this example, starting at s

1

, either the a
tion a 
an o

ur followed by the a
tion b or the a
tion

b 
an o

ur followed by the a
tion a. In the interleaving approa
h to 
on
urren
y, this situation often

amounts to saying that a and b 
an o

ur 
on
urrently at s

1

.

However, we would like to maintain a 
lear distin
tion between nondeterminism and 
on
urren
y.

Hen
e, to des
ribe 
on
urren
y in a transition system, we enri
h the relation! by permitting a transition

to be labelled by a �nite set of a
tions from �, rather than just by a single a
tion. Thus, we will now

have elements in ! of the form s

u

!s

0

, where u is a �nite subset of �. The idea is that the a
tions in u


an o

ur at s with no order over their o

urren
es. When they have all o

urred, the resulting state is

s

0

. The set of a
tions u is termed a 
on
urrent step.
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Figure 2: A \
ube" generated by a 
on
urrent step

Hen
eforth, given a set X , }(X) denotes the set of subsets of X and }

fin

(X) denotes the set of �nite

subsets of X . We 
an now formally de�ne distributed transition systems as follows.

De�nition 1.2 A distributed transition system (dts) is a triple DTS = (S;�;!) where

(i). S is a set of states.

(ii). � is a set of a
tions.

(iii). ! � S � }

fin

(�)� S is the step transition relation satisfying for all s; s

0

in S:

(a) s

;

!s

0

i� s = s

0

.

(b) for all u 2 }

fin

(�), if s

u

!s

0

then there exists a fun
tion f :}(u)! S su
h that f(;) = s; f(u) =

s

0

and for every v

1

; v

2

2 }(u) with v

1

� v

2

, it is the 
ase that f(v

1

)

v

2

�v

1

�! f(v

2

).

We often say that DTS = (S;�;!) is a dts over �. For 
onvenien
e, we write s

a

!s

0

instead of s

fag

�!s

0

.

The new de�nition of ! is a bit involved be
ause we have to ensure that any non-trivial \substep"

of a 
on
urrent step is also performed as a 
on
urrent step. The fun
tion f in 
lause (3.b) is said to

de�ne a u-
ube (from s to s

0

). The existen
e of the u-
ube guarantees that the mutual independen
e of

the a
tions in u holds for all the substeps as well. For example, Figure 2 shows the 
ube generated by

a 
on
urrent step 
onsisting of three events. To avoid 
luttering up the �gure, \interior" arrows su
h as

f

;

fa;bg

�!f

ab

and f

b

fa;
g

�!f

ab


have not been drawn.

Figure 3 is an example of a distributed transition system modelling the allo
ation of a shared resour
e

to di�erent pro
esses within a system. In the example, we have 3 pro
esses P

1

; P

2

and P

3

fun
tioning

in an operating environment that supports multipro
essing. The resour
e | say, for example, blo
ks of

memory | is available in \units". There are totally 5 units available. The 3 pro
esses require 2, 3 and

5 units of the resour
e at a time respe
tively. In this dts, � = fa

1

; a

2

; a

3

; r

1

; r

2

; r

3

g, where a

i

denotes

that pro
ess P

i

has been allo
ated the entire amount of the resour
e that it needs and r

i

denotes that

P

i

has released the resour
e it has been allo
ated. The states of the dts are ordered pairs 
onsisting of

the number of unallo
ated units of the resour
e available in the system along with the set of pro
esses


urrently in possession of their required quota of the shared resour
e.

Thus, at the state (5; ;), no pro
esses are a
tive and all 5 units of the resour
e are available. At

this state, the system 
an either allo
ate units of the resour
e to one of the three pro
esses, or perform

a 
on
urrent step allo
ating resour
es to both P

1

and P

2

. Noti
e that the transition from (3; fP

1

g) to

(2; fP

2

g) 
an either be performed as a 
on
urrent step fa

2

; r

1

g or by interleaving the two a
tions. In

3
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Figure 3: A distributed transition system

one interleaving, however, (5; ;) is rea
hed as an intermediate state, at whi
h point the resour
e 
an be

allo
ated to P

3

instead of P

2

. Thus, in this 
ase, the e�e
t of the interleavings is not quite the same as

that of the 
on
urrent step.

In general, it is important to note that 
lause (3.b) in De�nition 1.2 is merely an impli
ation. The

existen
e of a fun
tion from }(u) into S whi
h ful�lls the stated requirements does not guarantee the

existen
e of a 
on
urrent step. This is line with our philosophy that 
on
urren
y should be 
learly

di�erentiated from interleaving. As we have seen above, interleavings may permit unintended deviations

from the behaviour expe
ted of a 
on
urrent step. In fa
t, it is possible to have a 
on
urrent step as well

as an interleaving of the step performed at a state but leading to two di�erent states.

Finally, we introdu
e the important notion of rea
hability in a transition system. Given TS = (S;�;!)

we de�ne R(s

0

), the rea
hability set of s

0

2 S, as the least subset of S 
ontaining s

0

satisfying:

If s 2 R(s

0

); a 2 � and s

a

!s

0

; then s

0

2 R(s

0

):

Thus, R(s

0

) is the set of states rea
hable from s

0

in a �nite number of steps using !.

2 Elementary Net Systems

In a distributed transition system, 
on
urren
y is expli
itly introdu
ed into a transition system by per-

mitting transitions between states via �nite sets of a
tions 
alled 
on
urrent steps. In e�e
t, the notion

of a state is left un
hanged and the transition relation is enri
hed to model 
on
urren
y.

An alternative way of introdu
ing 
on
urren
y into a transition system is to \distribute" the states of

the system. The states of a dts 
orrespond to the global states of the 
on
urrent system being modelled

by the dts. Rather than regard these global states as indivisible entities, we 
an break them up into

atomi
 
omponents whi
h 
an be regarded as the lo
al states of the di�erent pro
esses within the system.

The global states of the system 
an then be 
hara
terized in terms of the lo
al states.

By distributing the states of the model in this manner, we 
an 
learly distinguish 
on
urren
y from


hoi
e without having to de�ne a transition relation involving sets of a
tions as in a dts. Instead, the

transition relation is designed to 
apture the fa
t that the 
hange of state a

ompanying ea
h event

o

urren
e in the system is \lo
alized" to those pro
esses that a
tually parti
ipate in the event. As a

result, when an event o

urs, only spe
i�
 lo
al 
omponents of the global state are a�e
ted, leaving the

rest of the 
omponents untou
hed. Thus, two events that are enabled at a global state of the system 
an

o

ur 
on
urrently if the lo
al states that they a�e
t are disjoint. On the other hand, if the lo
al states

4
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Figure 4: An elementary net system

a�e
ted by the two events overlap, they 
annot both o

ur in the same 
omputation at that state and so

a 
hoi
e must be made between them.

Net theory deals with models of 
on
urrent systems based on this approa
h. Here we des
ribe ele-

mentary net systems, whi
h are a basi
 model in this theory. We begin with the de�nition of a net.

De�nition 2.1 A net is a triple N = (B;E; F ) where B and E are disjoint sets and F � (B�E)[(E�B)

satis�es:

8x 2 B [ E : 9y 2 B [ E : (x; y) 2 F or (y; x) 2 F:

The elements of B are 
alled 
onditions and are used to denote atomi
 lo
al states. The elements of E are


alled events and are used to represent atomi
 a
tions. The 
ow relation F models a �xed neighbourhood

relation between the 
onditions and events of a system. This 
ow relation determines the way in whi
h

the atomi
 a
tions a�e
t the atomi
 lo
al states. The restri
tion on F in the de�nition of a net ensures

that there are no isolated 
onditions or events.

We 
an now de�ne an elementary net system as follows.

De�nition 2.2 An elementary net system is a quadruple N = (B;E; F; 


in

) where

(i). N

N

= (B;E; F ) is a net 
alled the underlying net of N .

(ii). 


in

� B is the initial 
ase.

Figure 4 is an example of an elementary net system. We have used the 
onventional graphi
al notation

for nets | 
onditions are represented by 
ir
les, events by boxes and the 
ow relation by dire
ted ar
s.

The \marked" 
onditions denote the initial 
ase 


in

.

For e in E the 
onditions \pointing into" e via F are 
alled the pre-
onditions of e and are denoted

by

�

e. Similarly, the 
onditions \pointing away" from e via F are 
alled the post-
onditions of e and are

denoted by e

�

. More formally we have

�

e

def

= fb j (b; e) 2 Fg

e

�

def

= fb j (e; b) 2 Fg

A state of a net system, 
alled a 
ase, 
onsists of a set of 
onditions 
 � B. The 
onditions in 
 are said

to hold when the system is at the 
ase 
. Thus, 


in

is the set of 
onditions that hold when the system

starts up.

The system moves from one 
ase to another through the o

urren
e of events from E. An event 
an

o

ur at a 
ase i� all its pre-
onditions hold and none of its post-
onditions do at the 
ase. When an

event o

urs all its pre-
onditions 
ease to hold and all its post-
onditions begin to hold.

5



In graphi
al terms, an event e 
an o

ur at a 
ase 
 i� all the 
onditions pointing into e are \marked"

at 
 and none of the 
onditions pointing away from e are. For example, in Figure 4, the event e

1


an

o

ur at the initial 
ase 


in

= fb

1

; b

2

g. When e

1

o

urs, we \unmark" all the pre-
onditions of e

1

and

\mark" all its post-
onditions, leaving the other 
onditions in 


in

untou
hed. Thus, after the o

urren
e

of e

1

, the system is at the 
ase fb

2

; b

3

g.

We 
an formalise this by de�ning !

N

� }(B) � E � }(B), the (elementary) transition relation

generated by the net N = (B;E; F ) as follows.

!

N

= f(x; e; x

0

) j x� x

0

=

�

e; x

0

� x = e

�

g

Using this transition relation, we 
an asso
iate a transition system with an elementary net system as

follows

De�nition 2.3 Let N = (B;E; F; 


in

) be a net system.

(i). C

N

, the state spa
e of N , is the least subset of }(B) 
ontaining 


in

su
h that if 
 2 C

N

and

(
; e; 


0

) 2 !

N

N

then 


0

2 C

N

.

(ii). TS

N

= (C

N

; E;!

N

) is the transition system asso
iated with N , where !

N

is !

N

N

restri
ted to

C

N

�E � C

N

.

For the net system shown in Figure 4, ffb

1

; b

2

g; fb

1

; b

4

g; fb

2

; b

3

g; fb

3

; b

4

gg is its state spa
e.

Let N = (B;E; F; 


in

) be a net system with 
 2 C

N

and e 2 E. Then e is said to be enabled at 
 |

denoted 
[ei| i� there exists 


0

2 C

N

su
h that 


e

!


0

, where as usual 


e

!


0

abbreviates (
; e; 


0

) 2 !

N

.

As we had mentioned at the beginning of this se
tion, we 
an 
learly separate 
on
urren
y from 
hoi
e

on
e we have distributed the global states of a transition system into lo
al 
omponents.

Let N = (B;E; F; 


in

) be a net system and e; e

0

2 E. We say that e and e

0


an o

ur 
on
urrently at

a 
ase 
 | denoted 
[fe; e

0

gi | i� 
[ei and 
[e

0

i and (

�

e[ e

�

)\ (

�

e

0

[ e

0

�

) = ;. Thus, e and e

0


an o

ur


on
urrently at a 
ase if they 
an o

ur individually and their \neighbourhoods" are disjoint.

Similarly we 
an de�ne the notion of 
on
i
t. Let N be a net system as above with e; e

0

2 E. e and

e

0

are said to be in 
on
i
t at a 
ase 
 i� 
[ei and 
[e

0

i but not 
[fe; e

0

gi. Thus, if e and e

0

are in 
on
i
t

at 
, it means that they are both individually enabled at 
, but they 
annot o

ur together at 
. For the


omputation to pro
eed, the 
on
i
t must be resolved by making a (nondeterministi
) 
hoi
e between

the two events.

The de�nition of !

N

is designed to ensure that the notion of 
hange of state in an elementary net

system is fairly restri
ted.

First, noti
e that an event must 
ause the same 
hange in the system state whenever it o

urs; its

pre-
onditions 
ease to hold and its post-
onditions begin to hold. Thus, if 


1

e

!


2

and 


3

e

!


4

are both

possible in a net system, then it must be the 
ase that 


1

� 


2

= 


3

� 


4

=

�

e and 


2

� 


1

= 


4

� 


3

= e

�

.

Further, to determine whether an event e is enabled at a 
ase 
, it is suÆ
ient to look at the 
onditions


ontained in

�

e and e

�

. e is enabled at 
 i�

�

e � 
 and e

�

\ 
 = ; | no \side-
onditions" are involved in

the enabling of an event.

Finally, it turns out that the transition system TS

N

asso
iated with a net system N is deterministi
;

that is, 


e

!


0

and 


e

!


00

implies that 


0

= 


00

. To 
onne
t up with other approa
hes to the theory of

distributed systems, nondeterminism 
an be introdu
ed into TS

N

by labelling the events in E. We shall


ome ba
k to this point later in this se
tion.

Let us 
onsider an example of modelling a distributed system using an unlabelled elementary net

system. Consider the problem of sharing resour
es in a distributed system. Suppose that there are two

pro
esses P

1

and P

2

in the system whi
h require a

ess to a 
ommon resour
e r. Suppose that r 
an be

used by only one pro
ess at a time { r 
ould, for instan
e, be a printer. Then, when one of the pro
esses is

granted a

ess to r, the other pro
ess should be prevented from a

essing r till the �rst pro
ess releases it.

This will ensure that at any state during a 
omputation of the system, at most one pro
ess 
an a
tually

be using that resour
e.

Figure 5 models a solution to this problem of mutual ex
lusion. In this net system the pro
ess P

i

,

i = 1; 2, is represented by the 
onditions fb

i

0

; b

i

1

; b

i

2

; b

i

3

g and the events fe

i

0

; e

i

1

; e

i

2

; e

i

3

g. Ea
h pro
ess is

modelled as a simple loop 
onsisting of four events | getting a

ess to r (e

i

0

), utilizing r (e

i

1

), releasing r

(e

i

2

) and performing some internal 
omputations not involving r (e

i

3

). At the initial 
ase, both pro
esses

are waiting for a

ess to r. The additional 
ondition a fun
tions as an arbitrator whi
h enfor
es mutual
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Figure 5: Mutual ex
lusion

ex
lusion of a

ess to r. For example, suppose that e

2

0

o

urs initially, giving P

2

a

ess to r. Sin
e a


eases to hold e

1

0

is no longer enabled. Thus, P

1


an gain a

ess to r only after P

2

releases r by the

o

urren
e of e

2

2

. It is easy to 
he
k that b

1

1

and b

2

1


an never hold together in this net system. On the

other hand, the 
onditions b

1

3

and b

2

3


an hold at the same 
ase | that is, the events e

1

3

and e

2

3

whi
h do

not involve the use of r 
an o

ur 
on
urrently in this system.

Finally, we show that we 
an des
ribe the behaviour of elementary net systems in terms of distributed

transition systems. Consider an elementary net system

N = (B;E; F; 


in

). The transition system TS

N


ontains information about the 
ausality and 
on
i
t

present in N . To des
ribe the 
on
urren
y present in N , it is suÆ
ient to augment TS

N

with additional

transitions labelled by 
on
urrent steps, as follows.

We �rst extend the notion of a pair of events being 
on
urrently enabled at a 
ase to a set of events.

Let u = fe

1

; e

2

; : : : ; e

n

g be a �nite subset of E. We say that u is 
on
urrently enabled at a 
ase 
 2 C

N

|

denoted 
[ui| i� 
[e

i

i for ea
h e

i

2 u and, further, 
[fe

1

; e

2

gi for every pair of distin
t events e

1

; e

2

2 u.

We 
an then de�ne the step transition relation )

N

as follows.

)

N

= f(
; u; 


0

) j 
; 


0

2 C

N

; 
[ui and 
� 


0

=

�

u; 


0

� 
 = u

�

g

Here

�

u and u

�

denote the unions of the pre-
onditions and post-
onditions of the events 
ontained in u.

Note that !

N

is \in
luded" in )

N

in the sense that if (
; e; 


0

) 2 !

N

then (
; feg; 


0

) 2 )

N

. We 
an

then immediately establish the following.

Proposition 2.4 DTS

N

= (C

N

; E;)

N

) is a distributed transition system over E.

It is easy to verify that the 
on
urren
y and 
hoi
e present in N is pre
isely 
aptured by the dts DTS

N

.

However, noti
e that this dts is deterministi
, for the same reason that the transition system TS

N

is.

As we had mentioned earlier, we 
an introdu
e nondeterminism by labelling the events.

De�nition 2.5 A �-labelled elementary net system is a pair N

�

= (N ; �), where N = (B;E; F; 


in

) is

an elementary net system, 
alled the underlying net system of N

�

, � is a set of labels and �:E ! � is

the labelling fun
tion.

The notions we have developed for net systems 
an be transported to labelled net systems in the

obvious way. To represent the behaviour of a labelled net system N

�

as a dts, we 
an de�ne DTS

N

�

to

7



be the dts over � obtained by using the labelling fun
tion � to rename the a
tions in DTS

N

, the dts

over E generated by the underlying net system N .

However, in general we need to pla
e a restri
tion on the labelling fun
tion in order to get a neat

translation from labelled net systems to dts's. In a dts, we have restri
ted 
on
urrent steps to be sets

of a
tions. On the other hand, a labelled net system N

�

may generate a 
on
urrent step in DTS

N

�

where two distin
t events in the step have the same label. To avoid dealing with multisets in 
on
urrent

steps that arise in this fashion, we require that events whi
h 
an o

ur 
on
urrently in the underlying

net system N have distin
t labels.

LetN

�

= (B;E; F; 


in

; �) be a �-labelled net system. The labelling fun
tion � is said to be 
o-inje
tive

if it satis�es the following 
ondition.

8e

1

; e

2

2 E : (9
 2 C

N

: 
[fe

1

; e

2

gi) implies �(e

1

) 6= �(e

2

):

Proposition 2.6 Let N

�

= (N ; �) be a �-labelled elementary net system, where

N = (B;E; F; 


in

), su
h that � is 
o-inje
tive. Then DTS

N

�

= (C

N

;�;)

N

�

) is a dts over �, where

)

N

�

= f(
; �(u); 


0

) j (
; u; 


0

) 2 )

N

g:

3 Event Stru
tures

To reason about the behaviour of a distributed transition system or an elementary net system, we

have to examine all the 
omputations of the underlying \ma
hines" de�ned by the model. For this,

it is 
onvenient to work with an abstra
t representation of the entire behaviour of the system. This

behavioural des
ription should in
lude information about all the 
omputations of the system, expli
itly

identifying the 
ausal dependan
ies and 
on
urren
y present within ea
h 
omputation. In addition, it

should also have a way of des
ribing the bran
hing points in the system behaviour.

Before dis
ussing behavioural representations of 
on
urrent systems, let us �rst go ba
k to sequential

transition systems. A 
omputation of a sequential transition system TS = (S;�;!) starting at some

state s

0

2 S is an alternating sequen
e of a
tions and states whi
h obeys the transition relation !. We

shall restri
t our attention to the maximal 
omputations of the system | those that 
annot be extended

by performing any more a
tions. Thus, a maximal 
omputation is a �nite sequen
e just in 
ase a state

is rea
hed at the end of the sequen
e from whi
h no transition is possible; otherwise, it is an in�nite

sequen
e.

A natural way to group together the sequen
es whi
h 
orrespond to 
omputations of TS = (S;�;!)

starting from s

0

is in the form of a tree. The nodes of the tree are labelled by states from S and the

edges are labelled by a
tions from �. The root node is labelled by the initial state s

0

. Ea
h maximal

path in the tree now 
orresponds to a 
omputation of the system. The bran
hing points in the tree are

the states where the system makes 
hoi
es between di�erent possible a
tions.

In the 
ase of models exhibiting 
on
urren
y, the situation is more 
ompli
ated. A 
omputation of

su
h a system is a partially ordered set of a
tions, not a simple sequen
e, so we need a more sophisti
ated

method of 
olle
ting all the 
omputations together in a single stru
ture. An elegant way of a
hieving

this is to use event stru
tures. Event stru
tures are behavioural models of distributed systems in whi
h


ausality, 
on
urren
y and 
hoi
e (
on
i
t) are represented expli
itly.

Prime event stru
tures, introdu
ed in [Nielsen et al 1980℄, are the simplest type of event stru
tures.

They have a ri
h theory and are 
losely related to both net systems and domains. Sin
e we deal only

with prime event stru
tures in this paper, hen
eforth we shall simply 
all them event stru
tures.

De�nition 3.1 An event stru
ture is a triple ES = (E;�;#) where

(i). E is a set of event o

urren
es.

(ii). � � E �E is a partial order 
alled the 
ausality relation.

(iii). # � E �E is an irre
exive and symmetri
 
on
i
t relation.

(iv). # is inherited via � in the sense that e

1

# e

2

� e

3

implies that e

1

# e

3

for every e

1

; e

2

; e

3

in E.

An element of E represents the o

urren
e of an event within a spe
i�
 
ontext. Thus, if the same event


an o

ur in di�erent 
ontexts, \
opies" of it will be present in the event stru
ture. This is why we have


alled the elements of E event o

urren
es rather than events.
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Figure 6: An event stru
ture

If e

1

� e

2

, then e

2

is 
ausally dependent on e

1

. Thus, in any 
omputation of the system, e

2


an o

ur

only if e

1

has already o

urred. As usual we let � stand for �

�1

.

The # relation identi�es pairs of events whi
h are in
onsistent with ea
h other and hen
e 
annot both

o

ur during the same 
omputation. The last 
lause of the De�nition 3.1 ensures that if e

1

# e

2

then

events that are 
ausally dependent on e

1

are in 
on
i
t with events that are 
ausally dependent on e

2

|

in other words, the in
onsisten
y of e

1

and e

2

is inherited by events that follow these two events.

Two events that are neither 
ausally related nor in 
on
i
t with ea
h other 
an both o

ur within a


omputation with no order over their o

urren
e. We 
an thus de�ne the 
on
urren
y relation 
o in an

event stru
ture ES = (E;�;#) in terms of � and # as follows.


o

def

= E �E � ( � [ � [ # ):

Noti
e that 
o, like #, is irre
exive and symmetri
. Clearly, every pair of distin
t events in an event

stru
ture belongs to exa
tly one of the four relations f�;�;#; 
og.

It is useful to de�ne one more auxiliary relation. Let ES = (E;�;#) be an event stru
ture and

e; e

0

2 E. Then

e #

�

e

0

def

= e # e

0

and 8e

1

; e

0

1

2 E : [ e

1

� e and e

0

1

� e

0

and e

1

# e

0

1

implies e

1

= e and e

0

1

= e

0

℄.

#

�

identi�es the minimal elements (under �) of the # relation and is hen
e 
alled the minimal 
on
i
t

relation. #

�

identi�es the a
tual bran
hing points in the behaviour where 
hoi
es are made between


on
i
ting events. This \basi
" 
on
i
t then propagates to 
ausally related events and \generates" other


on
i
ts.

Figure 6 is an example of an event stru
ture. The squiggly lines represent the #

�

relation. The


ausality relation is shown in the form of the asso
iated Hasse diagram. The # relation is then uniquely

determined by the last part of De�nition 3.1. In this event stru
ture, e

1

# e

6

be
ause e

1

#

�

e

2

� e

6

. It

is also easy to see that e

6


o e

7

.

The states of an event stru
ture are 
alled 
on�gurations. A 
on�guration identi�es a set of events

that have o

urred \so far". An event 
an o

ur only if all the events in its past have o

urred. Two

events that are in 
on
i
t 
an never both o

ur in the same stret
h of behaviour. Before formalizing

these notions it will be 
onvenient to adopt the following notation.

Let ES = (E;�;#) be an event stru
ture and X � E. Then #X = fe

0

j 9e 2 X : e

0

� eg. For the

singleton feg, we shall write #e instead of #feg.

De�nition 3.2 Let ES = (E;�;#) be an event stru
ture and 
 � E. Then 
 is a 
on�guration i�

(i). 
 = #
 (left-
losed)

9



(ii). (
� 
) \ # = ; (
on
i
t-free)

For the event stru
ture shown in Figure 6, fe

2

; e

5

; e

6

g is a 
on�guration. fe

2

; e

5

; e

10

g is not a 
on�guration

be
ause it is not left-
losed and fe

3

; e

7

; e

8

g is not a 
on�guration be
ause it is not 
on
i
t-free.

We are parti
ularly interested in a restri
ted subset of 
on�gurations 
alled lo
al 
on�gurations. The

notion of a lo
al 
on�guration is based on a simple but 
ru
ial observation whi
h lies at the heart of the

theory of event stru
tures [Nielsen et al 1980℄.

Proposition 3.3 Let ES = (E;�;#) be an event stru
ture and e 2 E. Then #e is a 
on�guration.

We now de�ne LC

ES

= f#e j e 2 Eg to be the set of lo
al 
on�gurations of the event stru
ture

ES = (E;�;#).

We do so be
ause a (general) 
on�guration 
 � E 
an be viewed as a global state of the system. Parts

of a global 
on�guration may 
hange independent of ea
h other, due to the spatial separation and the

partial autonomy of the individual agents in the system being modelled by the event stru
ture. A �nite

global 
on�guration 
 is 
ompletely 
hara
terized by spe
ifying the maximal events (with respe
t to �)

whi
h belong to 
. Ea
h lo
al 
on�guration #e 
orresponding to a maximal event e 2 
 
an be regarded

as a lo
al state whi
h 
ontributes to the global state at 
.

When we reason about the behaviour of an event stru
ture, we would like to make assertions about

properties that are satis�ed by the global 
on�gurations | that is, properties that hold at the global

states of the system. However, a global state 
an be 
ompletely des
ribed in terms of all the lo
al states

that are part of that global state. Thus, we shall restri
t ourselves to spe
ifying properties at the lo
al


on�gurations. Using 
ombinations of these assertions, we 
an des
ribe global 
on�gurations of the

event stru
ture. Further, the assertions that we 
an make about a global 
on�guration are tied down to

the assertions that we 
an make about the lo
al 
on�gurations that 
onstitute the global 
on�guration.

This will be
ome 
learer in the se
ond part of the paper where we dis
uss how to spe
ify properties of

distributed systems.

As we had mentioned at the beginning of this se
tion, an event stru
ture is a single entity whi
h

des
ribes all the 
omputations of a distributed system. Thus, we need a means of \extra
ting" individual


omputations from an event stru
ture. Sin
e a 
on�guration represents a set of events that have happened

so far, in general an arbitrary 
on�guration represents a partial 
omputation of the system. If we 
onsider


on�gurations whi
h are maximal (with respe
t to in
lusion) we obtain the maximal 
omputations of

the event stru
ture. We 
all these the runs of the event stru
ture. It is easy to verify the following


hara
terization of runs. Let r � E. Then r is a run i�

8e 2 E : e 2 r i� 8e

0

2 E : e # e

0

implies e

0

=2 r

Next, let us look at some useful restri
tions on event stru
tures. We begin with the auxiliary relation

#

�

. In general, there may be events in # whose in
onsisten
y 
annot be tra
ed ba
k to a pair of events

in #

�

| a typi
al example 
onsists of two in�nite des
ending 
hains of events in # with ea
h other. We

would like to rule out su
h stru
tures, sin
e they model behaviours whi
h are intuitively infeasible. We


an therefore restri
t our attention to well bran
hing event stru
tures.

De�nition 3.4 Let ES = (E;�;#) be an event stru
ture. ES is well bran
hing i�

8e; e

0

2 E : e # e

0

implies 9e

1

; e

0

1

2 E : e

1

� e and e

0

1

� e

0

and e

1

#

�

e

0

1

:

Well bran
hing is a fairly weak restri
tion. A stronger and more useful restri
tion is that of �nitariness.

An event stru
ture ES = (E;�;#) is said to be �nitary in 
ase #e is a �nite set for every e 2 E.

Finitariness 
aptures the important fa
t that in any realizable system, an event 
an be 
ausally dependent

on only a �nite set of events. An event with an in�nite past 
an never a
tually o

ur.

There is a systemati
 way of des
ribing the behaviour of elementary net systems using �nitary event

stru
tures. To do this, we require labelled event stru
tures. A labelled event stru
ture is a pair ES

�

=

(ES; �) where ES = (E;�;#) is an event stru
ture and �:E ! � is a labelling fun
tion.

Constru
ting a labelled �nitary event stru
ture des
ribing the behaviour of a net system involves an

intermediate stage where the net system is \unfolded" to generate an a
y
li
 stru
ture. The details are

a bit involved and 
an be found in [Nielsen et al 1980℄, [Thiagarajan 1990℄. We shall merely present an

example.
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Figure 7: A labelled event stru
ture

Consider the elementary net system in Figure 5 modelling mutual ex
lusion. The labelled event

stru
ture in Figure 7 des
ribes the behaviour of this system. In this 
ase, the event o

urren
es in the

event stru
ture are labelled by the events of the net system.

Given a �nitary event stru
ture ES, we 
an 
onstru
t a dtsDTS

ES

whi
h exhibits the same behaviour

as ES. Let C

fin

ES

denote the set of �nite 
on�gurations of the �nitary event stru
ture ES = (E;�;#).

We 
an de�ne the step transition relation !

ES

� C

fin

ES

� }

fin

(E)� C

fin

ES

as follows:

!

ES

= f(
; u; 


0

) j 
 \ u = ; and 
 [ u = 


0

and

8e

1

; e

2

2 u : e

1

6= e

2

implies e

1


o e

2

g

Proposition 3.5 DTS

ES

= (C

fin

ES

; E;!

ES

) is a dts over E.

As in the 
ase of elementary net systems, it turns out that DTS

ES

is always deterministi
. On
e

again, we 
an use labelled event stru
tures to permit nondeterminism in this dts. As before, we have to

restri
t the labelling to be 
o-inje
tive to rule out multisets in 
on
urrent steps. In other words, given

ES

�

= (E;�;#; �), we require that for every e

1

; e

2

2 E : e

1


o e

2

implies �(e

1

) 6= �(e

2

). We then have

the following result.

Proposition 3.6 Let ES

�

= (ES; �) be a �-labelled event stru
ture where � is a 
o-inje
tive labelling

fun
tion. Then DTS

ES

�

= (C

fin

ES

;�;)

ES

�

) is a dts over � where

)

ES

�

= f(
; �(u); 


0

) j (
; u; 


0

) 2 !

ES

g:

4 Communi
ating Sequential Agents

In an event stru
ture, the entire behaviour of a distributed system is spe
i�ed as a single entity. Individual


omputations of the system 
an be identi�ed using the notion of a run. However, no further information

is provided about the stru
ture of the system.

Consider a distributed system 
onsisting of a �nite set of sequential agents performing a joint task,

using 
ommuni
ation to 
o�ordinate their a
tivities. When reasoning about the behaviour of su
h a system,

it is 
onvenient to asso
iate the events o

urring in the system with the agents involved in the events.

This 
an be 
aptured by restri
ting event stru
tures to a model 
alled 
ommuni
ating sequential agents

(
sa's).

11



Let N denote the set of natural numbers f1,2,3 . . . g. We shall use elements of N as names for the

agents in our system.

De�nition 4.1 A system of 
ommuni
ating sequential agents (
sa) is a triple

CSA = (E;�; �), where

(i). E is a non-empty set of event o

urren
es.

(ii). � is a partial order on E 
alled the 
ausality relation.

(iii). �:E ! }

fin

(N) is a naming fun
tion assigning to ea
h e in E a non-empty �nite subset of N.

(iv). Let E

j

= fe j e 2 E and j 2 �(e)g: Then, for every e in E:

8j 2 N : #e \ E

j

is totally ordered by � :

We interpret j 2 �(e) as the agent j parti
ipating in the event e. Thus �(e) = f1; 2g 
an stand for a

syn
hronization \handshake" between agents 1 and 2.

The poset (E

j

;�

j

), where �

j

is � restri
ted to E

j

�E

j

, represents the lo
al behaviour of agent j in

CSA. Usually, we say \agent j" to denote this poset.

As in an event stru
ture, if e

1

� e

2

then e

2


ausally depends on e

1

; in no run of CSA 
an e

2

o

ur

without e

1

having o

urred earlier.

To separate 
on
urren
y from 
on
i
t, both the 
ausality relation � and the naming fun
tion � are

used. In a 
sa, ea
h agent is de�ned to be sequential. Thus, given any two events e and e

0

whi
h both

involve the same agent { that is �(e) and �(e

0

) are not disjoint | e and e

0

must either be 
ausally related

or in 
on
i
t. So if e and e

0

are in
omparable with respe
t to � and �(e) \ �(e

0

) 6= ;, then e and e

0

are

in 
on
i
t.

The motivation for the last 
ondition in De�nition 4.1 should now be 
lear: we do not wish an event

o

urren
e to 
ausally depend upon 
on
i
ting event o

urren
es. This 
ondition also impli
itly ensures

that the basi
 
on
i
t in the system is generated within agents | in e�e
t, 
hoi
es are made lo
ally by

individual agents and then propogated a
ross agents via �.

On the other hand, if two events e and e

0

are unordered and their 
ombined past does not 
ontain

any 
on
i
ting events then they must be 
on
urrent. Sin
e 
hoi
es are assumed to be made lo
ally, it is

suÆ
ient to 
he
k that for ea
h agent j, the 
ombined past of e and e

0

does not have in
omparable events

involving j. In other words, if (#e [ #e

0

) \ E

j

is totally ordered by � for every j, then the two events e

and e

0

are 
on
urrent.

If e 2 E

j

, the lo
al state #e in
ludes the lo
al history of agent j as well as the \latest" lo
al histories

of all other agents with whi
h j has 
ommuni
ated upto this state. Let LC

CSA

= f#e j e 2 Eg be the set

of lo
al states of CSA.

By suitably restri
ting the naming fun
tion �, we 
an 
apture interesting sub
lasses of 
sa's.

The �rst restri
tion is on the number of agents. In a general 
sa, we may have an unbounded number

of agents in the system. By restri
ting the range of � to a �nite subset f1; 2; : : : ; ng of N, we obtain 
sa's

whi
h may have upto n agents, whi
h we 
all n-
sa's.

As we had mentioned earlier, if �(e) is not a singleton, the interpretation is that the event e is

performed jointly by the agents mentioned by �(e). This intuitively 
orresponds to \handshaking" or

syn
hronous 
ommuni
ation between agents. By restri
ting � so that j �(e) j = 1 for every event e in E,

we e�e
tively rule out this type of syn
hronous 
ommuni
ation. Instead, in su
h an asyn
hronous 
sa,

the agents 
ommuni
ate by sending messages to ea
h other. The sending and re
eiving of a message are

regarded as two distin
t a
tions, ea
h involving only one agent at a time.

Finally, we say that a 
sa is �nitary in 
ase #e is a �nite set for every e in E. The motivation for de�ning

�nitary 
sa's is the same as the motivation for de�ning �nitary event stru
tures | any 
omputation of

a real system 
an be tra
ed ba
k to some starting point, so the past of any event o

urring during the


omputation must be �nite.

Figure 8 is an example of an asyn
hronous 
sa 
onsisting of two agents, a produ
er and a 
onsumer,


ommuni
ating via an unbounded bu�er. The produ
er 
an produ
e zero or more items and then quit.

The 
onsumer 
an 
onsume items produ
ed by the produ
er as long as the items are available in the

bu�er. The events in the 
sa are labelled p; q and 
 to denote these three types of a
tions.
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Figure 8: An asyn
hronous 
sa

B Logi
s for Con
urren
y

We now turn our attention to the problem of reasoning about the behaviour of distributed systems.

A spe
i�
ation language is simply a formalism in whi
h one spe
i�es behaviours of systems under

study. Thus, a spe
i�
ation language for distributed systems is one in whi
h we 
an des
ribe behavioural

properties of distributed systems.

The spe
i�
ation language should permit us to 
ombine simple spe
i�
ations together to 
onstru
t

more 
omplex spe
i�
ations, re
e
ting the intuition that large systems 
an be broken down into more

manageable subsystems. This 
alls for disjun
tive and 
onjun
tive abilities in the language.

In addition, sin
e we are dealing with distributed systems we expe
t to des
ribe properties like 
ausal-

ity, 
hoi
e and 
on
urren
y. For this, we will need to be able to spe
ify the relationships that hold between

system states as the 
omputation pro
eeds.

Our requirements suggest the use of a formal logi
 with boolean 
onne
tives and temporal modalities

as our spe
i�
ation language. Temporal logi
 is a bran
h of modal logi
 whi
h is used to study stru
tures

of states varying with time. We will design a variety of modal logi
s whi
h are extensions of temporal

logi
 to deal with the models of distributed systems developed in Part A.

We begin with a qui
k sket
h of 
lassi
al propositional modal logi
. We assume the existen
e of P , a


ountable set of atomi
 propositions fp

0

; p

1

; : : :g. The well-formed formulas of our logi
 L

0

are de�ned

indu
tively:

� Every p 2 P is a formula of L

0

.

� If � and � are formulas of L

0

, then so are :�; � _ � and 3�.

:� is to be read as \not �", �_ � is to be read as \� or �", and 3� is to be read as \Diamond �". The

intended meaning of 3� is \� be
omes true eventually".

Formulas are to be interpreted over frames. In our set-up, a frame is a transition system TS = (S;�;!).

A model M is a frame with a valuation fun
tion; i.e M = (TS; V ), where TS = (S;�;!) is a transition

system and V :S ! }(P). For example, if V (s) = fp

1

; p

3

g, we interpret this to mean that propositions

p

1

and p

3

are true at state s and, further, that no other proposition is true at s.

The notion of a formula � being true at a state s in a model M = (TS; V ) where TS = (S;�;!),

denoted as M; s j= �, is de�ned indu
tively as follows:

(i) M; s j= p i� p 2 V (s), for p 2 P .

(ii) M; s j= :� i� M; s 6j= �.

(The notation M; s 6j= � stands for \It is not the 
ase that M; s j= �")

(iii) M; s j= � _ � i� M; s j= � or M; s j= �.

(iv) M; s j= 3� i� 9s

0

2 R(s) : M; s

0

j= �.

(Re
all that R(s) is the set of states rea
hable from s via !)
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M; s j= � 
an be interpreted as the assertion that the model M at state s is an implementation of the

spe
i�
ation �. We say � is satis�able if there exists a model M = (TS; V ), where TS = (S;�;!), and

there exists a state s 2 S su
h that M; s j= �. We say that � is M-valid if M; s j= � for every s 2 S. We

say that � is valid | and denote this by j= � | if � is M -valid for every model M . It is easy to see that

� is valid i� :� is not satis�able.

The following derived formulas are useful.

� ^ �

def

= :(:� _ :�) the 
onjun
tion of � and �.

�

�

�

def

= :� _ � � implies �

� � �

def

= (�

�

�) ^ (�

�

�) logi
al equivalen
e of � and �

2�

def

= :(3:�) \Hen
eforth" �

True

def

= p

0

_ :p

0

False

def

= :True

It 
an easily be veri�ed that for any model M = ((S;!); V ) and s 2 S,

M; s j= 2� i� 8s

0

2 R(s) :M; s

0

j= �:

A number of interesting properties of transition systems 
an be expressed using this logi
. Suppose that

we are using transition systems to model a distributed system 
onsisting of n pro
esses whi
h 
an 
ompete

for a shared resour
e r. Let the atomi
 proposition 


i

stand for \Pro
ess i has a

ess to the resour
e r".

Then

2

^

i2f1;2;:::;ng

(


i

�

^

i 6=j

:


j

)

expresses a so-
alled safety property. It says that at any system state, at most one pro
ess has 
ontrol

of the shared resour
e r. This will ensure, for instan
e, that in 
ase r is a shared pie
e of data then the

sequen
e of values assumed by r during the history of the system will be well-de�ned. Broadly speaking,

safety properties assert that \bad" situations never arise in the system.

Similarly, if we let the proposition rq

i

stand for \Pro
ess i requires a

ess to resour
e r", the formula

2

^

i2f1;2;:::;ng

(rq

i

�

3


i

)

expresses a liveness property. It says that any request made by a pro
ess for the shared resour
e is

eventually granted by the system. In general, liveness properties spe
ify that something \good" o

urs

eventually.

This logi
al framework is very simple, but for that reason is also not as expressive as we would wish.

In parti
ular, we would like to devise logi
s to reason about models with true 
on
urren
y. In the rest of

this se
tion, we shall show how su
h logi
s 
an be de�ned for the formal models presented in Part A.

1 Logi
 for Distributed Transition Systems

Re
all that in a dts, a 
on
urrent step 
onsists of a transition labelled by a �nite set of a
tions. This

leads us to augment the simple modal logi
 
onsidered earlier with one additional modality, hui, where u

is a �nite subset of �, the set of a
tions.

Let L

DTS

be the language whose well formed formulas are given by:

� Every p 2 P is a formula of L

DTS

.

� If � and � are formulas of L

DTS

then so are :�, � _ �, 3� and hui�, where u is a �nite subset of

�.

Thus, the logi
 L

DTS

is parametrized by �. To emphasize this, we will write L

�

DTS

instead of L

DTS

.

As one may expe
t, the frames for our logi
 are dts's over �. A model is a pair M = (DTS; V ),

where DTS = (S;�;!) is a dts over � and V :S ! }(P) is the valuation fun
tion. Given s 2 S, the

notion M; s j= � is de�ned as before for the atomi
 propositions and for the 
onne
tives : and _ and the

modality 3. For the new modality we de�ne:

M; s j= hui� i� 9s

0

2 S : s

u

!s

0

and M; s

0

j= �:
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Figure 9: Varieties of bran
hing in transition systems

Relative to the new notion of models, satis�ability and validity are de�ned as before. We will write

j=

�

DTS

� to denote that � is a valid formula in this logi
. Let SAT

�

DTS

denote the set of all satis�able

formulas from L

�

DTS

.

Before 
onsidering an example, we introdu
e some notational 
onventions. The derived modality [u℄

is de�ned as:

[u℄�

def

= :hui:�

Where u is a singleton fag, we will write hai� instead of hfagi�. For the empty step, we write h;i�.

Now that the modalities are indexed by steps, we 
an 
learly identify the bran
hing points in a

transition system. For example, 
onsider the transition systems shown in Figure 9. In the �rst system,

starting at s

0

we 
an perform a and then 
hoose between b and 
 whereas in the se
ond system, at s

0

0

we have to de
ide right away whether we are going to exe
ute a followed by b or a followed by 
. The

�rst situation is 
aptured by the formula hai(hbiTrue ^ h
iTrue) while the se
ond 
an be expressed as

hai(hbiTrue ^ [
℄False) ^ hai(h
iTrue ^ [b℄False).

In this logi
, we 
an distinguish between interleavings and true 
on
urren
y. For instan
e, the formula

haihbiTrue ^ hbihaiTrue ^ [fa; bg℄False is satis�able. At the state where this formula is true, both the

interleavings ab and ba 
an o

ur, but the 
orresponding 
on
urrent step fa; bg is not enabled. On the

other hand, it is easy to see that the formula hfa; bgi�

�

haihbi� is a valid formula, be
ause the de�nition

of a dts guarantees the existen
e of a fun
tion f asso
iated with ea
h step, breaking it up into substeps.

Returning brie
y to the system of n pro
esses 
onsidered earlier, assume that the shared resour
e r

represents a data item in a shared blo
k of memory. Let ud

i

denote the a
t of pro
ess i updating the

value of r. Then, the spe
i�
ation

2

^

i 6=j

[fud

i

; ud

j

g℄False

requires that the memory manager never permit two distin
t pro
esses to 
on
urrently update r.

Let us 
onsider another example. The writing of a paper 
an be seen as a sequential a
tivity: work

out what you want to say, write it out, get it typed. In the 
ase of a joint paper, the work may be divided

up in terms of se
tions. One poli
y the authors may follow is to work out all the se
tions before preparing

a types
ript, with meetings for dis
ussion and 
orre
tion in between. That is, the authors satisfy

hWKi(worked ^ hWRi(written ^ hTY ityped))

where WK = fwork out x1, work out x2, work out x3 g

WR = fwrite x1, write x2, write x3 g

TY = ftype x1, type x2, type x3 g

and worked; written and typed are atomi
 propositions indi
ating the end of the working out, writing and

typing steps respe
tively. Here we have assumed that there are three authors ea
h of whom is responsible

for one se
tion.

The 
on
urrent steps are ne
essary, sin
e they express the fa
t that this is a joint paper; if the

interleaving of the a
tions required for the three se
tions were present, we 
ould not rule out the possibility

that the three authors were separately writing three (single-se
tion) papers.

The states we are using are global states. The person working out x2 may refer to a lemma in x1; the

person doing the word pro
essing for x1 may use the ma
ros de�ned in x3.
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It be
omes ne
essary to use sequentializations when a 
omplete re
ord of the writing of the paper is

required. For example, a mistake pointed out by the referee in x2 may be tra
ed to the lemma in x1,

whi
h may be just a 
ase of wrong typing thanks to a misappli
ation of the ma
ro from x3.

This sort of mixture of independent a
tions and syn
hronization is well des
ribed in a dts framework.

We now turn to the formal theory of the language L

�

DTS

. Typi
al questions one asks of su
h a logi


in
lude:

� Is the set of valid formulas axiomatizable?

� Is the satis�ability problem de
idable?

The answers to these questions provide a good deal of insight into the strengths and weaknesses of the

logi
 and, most importantly, into the expressive power of the logi
.

It turns out that both these questions have positive answers for L

�

DTS

. Consider the following logi
al

system ND.

The System ND

AXIOM SCHEMES

(A0) All the substitutional instan
es of the tautologies of Propositional Cal
ulus.

(A1) (a) 2(�

�

�)

�

(2�

�

2�) (Dedu
tive Closure)

(b) [u℄(�

�

�)

�

([u℄�

�

[u℄�)

(A2) 2�

�

[u℄� ^22� (Rea
hability)

(A3) � � h;i� (Empty Step)

(A4,k) (for k � 1) (Step Axiom)

hui� ^

^

v�u

[v℄

k

_

i=1

�

i

v

�

_

f2F (u;k)

^

v

1

�u

hv

1

i(


v

1

^

^

v

1

�v

2

�u

hv

2

� v

1

i


v

2

)

where F (u; k) is the set of all fun
tions ff j f :}(u)! f1; 2; : : : ; kgg and




v

=

(

�

f(v)

v

^ � if v = u

�

f(v)

v

if v � u

INFERENCE RULES

(MP)

�; �

�

�

�

(TG)

�

2�

Axioms A0 to A2 and the rules MP and TG are standard. The 
hara
teristi
 axioms of dts's are

A3 and A4,k. A3 
aptures the fa
t that the empty step 
annot 
hange the state of the system. A4,k is

a
tually an in�nite set of axioms, �nitely presented. The 
ompli
ated formulation of A4,k is ne
essary to

des
ribe the fa
t that ea
h 
on
urrent step u in a dts 
an be broken up into 
on
urrent substeps whi
h

are spe
i�ed by the asso
iated fun
tion f :}(u)! S.

A formula � is 
alled a thesis of the system ND | denoted `

ND

� | i� � 
an be derived in a �nite

number of steps using the axioms and inferen
e rules of ND.

Theorem 1.1

(i). ND is a sound and 
omplete axiomatization of the valid formulas in L

�

DTS

. In other words, `

ND

�

i� j=

�

DTS

� for every � 2 L

�

DTS

.

(ii). The satis�ability problem for this logi
 (i.e. the membership problem for SAT

�

DTS

) is de
idable in

nondeterministi
 exponential time.

It turns out that 
ombining 
on
urren
y, 
aptured by the step notion, with determina
y leads to a very

expressive 
lass of models. The frame TS = (S;�;!) is said to be deterministi
 if for every s 2 S

and every u 2 }

fin

(�) there exists at most one s

0

2 S su
h that s

u

!s

0

. A model is deterministi
 if its

underlying frame is.
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The formula � is said to be deterministi
ally satis�able if there exists a deterministi
 model for �.

Similarly, � is said to be deterministi
ally valid if � is valid over the 
lass of deterministi
 models. Let

j=

�

Det

� denote that � is deterministi
ally valid and let DSAT

�

DTS

denote the set of deterministi
ally

satis�able formulas in L

�

DTS

.

It turns out that the deterministi
ally valid formulas in L

�

DTS

are axiomatizable. Thanks to deter-

mina
y, one obtains a mu
h simpler axiomatization than for the general 
ase. Let D denote the logi
al

system obtained from ND by dropping the in�nitary set of axioms A4,k (k � 1) and adding two new

axioms:

(A5) hui�

�

hvihu� vi� (v � u) (Weak Step Axiom)

(A6) hui�

�

[u℄� (Determina
y)

Let `

D

� denote that � is derivable in D.

Theorem 1.2

(i). D is a sound and 
omplete axiomatization of the deterministi
ally valid formulas in L

�

DTS

. In other

words, `

D

� i� j=

�

Det

� for every � 2 L

�

DTS

.

(ii). The membership problem for DSAT

�

DTS

is unde
idable.

The surprise here is that determina
y adds a suÆ
ient amount of expressive power to make the satis�abil-

ity problem unde
idable. By 
ombining 
on
urrent steps in a deterministi
 fashion, it turns out that we


an en
ode the two-dimensional grid of natural numbersN�N. We 
an then use this en
oding to redu
e

some unde
idable tiling problems des
ribed by Wang [Wang 1961℄ and Harel [Harel 1985℄ to the problem

of deterministi
 satis�ability in our logi
. This negative result was shown by Parikh [Parikh 1989℄.

A variety of positive and negative results 
an be obtained in this logi
al framework by studying the

e�e
t of pla
ing suitable restri
tions on dts's. For instan
e, we 
an restri
t the set of a
tions � to be

�nite. Alternatively, we 
an demand the dts as a whole be �nite | that is, the set of states and the set

of transitions are both �nite. We 
an also in
orporate ideas from tra
e theory, arising out of the work

of Mazurkiewi
z [Mazurkiewi
z 1989℄, and de�ne tra
e transition systems, whi
h permit both lo
al and

global spe
i�
ations of 
on
urren
y. Finally, we 
an also study a smooth generalization of Propositional

Dynami
 Logi
 [Harel 1984℄ obtained by extending the notion of a regular program to permit 
on
urrent

steps as atomi
 a
tions. The details 
an be found in a forth
oming paper [Lodaya et al 1991℄.

The logi
al language L

�

DTS


an also be interpreted over �-labelled elementary net systems and �-

labelled event stru
tures, where the labelling fun
tion is 
o-inje
tive. The frames that we use are the


orresponding dts's, as de�ned in Part A. Thus, a �-labelled elementary net system N

�

= (N ; �), where

N = (B;E; F; 


in

), gives rise to a model (DTS

N

�

; V ), where V :C

N

! }(P). Similarly, a �-labelled event

stru
ture ES

�

= (ES; �), where ES = (E;�;#), de�nes a model (DTS

ES

�

; V ), where V : C

fin

ES

! }(P).

Let SAT

�

N

and SAT

�

ES

denote the set of formulas from L

�

DTS

satis�able in models generated by

�-labelled elementary net systems and �-labelled event stru
tures respe
tively.

Theorem 1.3 SAT

�

DTS

= SAT

�

N

= SAT

�

ES

.

In other words, this logi
 
annot dis
riminate between these 
lasses of models.

2 Logi
 for Event Stru
tures

We now turn from dts's to event stru
tures as frames for our logi
. In the logi
 for dts's, we used the

global state approa
h to reasoning about the behaviour of the system. In this approa
h, assertions are

made by a \global" observer of the system who 
an \see" the distributed system in its entirety in any

given state. This is appropriate for dts's, sin
e the states of a dts do in fa
t 
orrespond to the global

states of the system being modelled.

Alternatively, we 
an reason about the system from the point of view of the lo
al states of the system.

Here, assertions are made by individual agents in the system and hen
e the nature of the assertion is

determined by the \visibility" of the system state from that agent's point of view. This approa
h is more

suitable for reasoning based on event stru
tures, where we 
an use a lo
al 
on�guration #e to represent

the lo
al state of the system at the point where the event e has just o

urred.
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Another feature of the dts logi
 is that 
on
urren
y is des
ribed by expli
itly spe
ifying the a
tions

whi
h are to be performed 
on
urrently and des
ribing the e�e
t of su
h a
tions. This approa
h is natural

for dts's be
ause the models themselves are a
tion-based. On the other hand, in an event stru
ture it is

more 
onvenient to spe
ify 
on
urren
y in an abstra
t manner by simply asserting fa
ts about 
on
urrent

events without spe
ifying whi
h a
tions are to be performed 
on
urrently.

The key notions in the theory of event stru
tures are those of 
ausality, 
on
i
t and 
on
urren
y. This

leads us to extend the language L

0

by adding modalities to 
apture these notions. It turns out to be

fruitful to split up 
ausality into two parts, allowing us to spe
ify both \past" and \future" behaviour.

The logi
 L

ES

is built up as follows: again �x P = fp

0

; p

1

; : : :g, a 
ountable set of atomi
 propositions.

Then the well-formed formulas of L

ES

are given by:

� Every p 2 P is a formula of L

ES

.

� If � and � are formulas of L

ES

, then so are :�, � _ �, 3�, 3

-

�, 4� and 5�.

Here, the modalities 3 and 3

-

denote the future and past respe
tively. 4 will be used to des
ribe


on
urren
y and 5 will be used to 
apture 
on
i
t.

Frames for this logi
 are event stru
tures, or rather the lo
al 
on�gurations of event stru
tures. More

pre
isely, a frame is a pair (ES;LC

ES

), where ES = (E;�;#) is an event stru
ture and LC

ES

is the set

of lo
al 
on�gurations of ES.

A model is a pair M = ((ES;LC

ES

); V ) where ES is frame and V : LC

ES

! }(P) is a valuation

fun
tion. If p 2 V (#e) then this is taken to mean that p is true at the lo
al state #e in the model M .

The notion of a formula � being true at a lo
al state #e in the model

M = ((ES;LC

ES

); V ) is denoted as M; #e j= � and is de�ned indu
tively as follows:

(i) M; #e j= p i� p 2 V (#e), for p 2 P .

(ii) M; #e j= :� i� M; #e 6j= �.

(iii) M; #e j= � _ � i� M; #e j= � or M; #e j= �.

(iv) M; #e j= 3� i� 9e

0

: e < e

0

and M; #e

0

j= �.

(v) M; #e j= 3

-

� i� 9e

0

: e

0

< e and M; #e

0

j= �.

(vi) M; #e j= 5� i� 9e

0

: e # e

0

and M; #e

0

j= �.

(vii) M; #e j= 4� i� 9e

0

: e 
o e

0

and M; #e

0

j= �.

Noti
e that we have de�ned the modalities 3 and 3

-

in an irre
exive manner. This is ne
essary for the

axiomatization whi
h follows.

The notions of satis�ability and validity are de�ned as usual. j=

ES

� will denote that � is a valid

formula in L

ES

.

The derived 
onne
tives ^;

�

;�;2 are de�ned as before. In addition, we set

2

-

�

def

= :3

-

:�; 5� �

def

= :5:�; 4� �

def

= :4:�

We 
an also de�ne a useful derived modality as follows:

S�

def

= � _3� _3

-

� _5� _4�

S� is to be read as \Somewhere �". Its dual E�

def

= :S:�, read as \Everywhere �" expands as follows:

E�

def

= � ^ 2� ^ 2

-

� ^5� � ^4� �

Thus E� des
ribes a property invariant over the entire model.

Many interesting features of event stru
tures 
an be expressed in this logi
. Re
all that the maximal


omputations of event stru
tures are termed runs. We 
an use an atomi
 proposition � to mark out a run

with the formula � � 5� :�. For any model M = ((ES;LC

ES

); V ), if the formula � � 5� :� is M -valid,

then fe j M; #e j= �g 
onstitutes a run of ES. Using this method of marking out runs, we 
an express

liveness and safety properties in event stru
tures. Let � represent a liveness property. Then S(� ^ �) is

M -valid for a model M just in 
ase every 
omputation of the underlying event stru
ture 
ontains a lo
al

state where � is true. Similarly, if � represents an undesirable situation, the formula E(�

�

:�) expresses

the safety property that � does o

ur at any state of the run marked by �.
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In a similar spirit the formula � � 2:�^2

-

:� 
an be used to 
apture the notion of a 
ut| a maximal

set of pair-wise in
omparable events. Within a 
omputation, a 
ut 
orresponds to a global state. Thus

we 
an use the notion of a 
ut in 
onjun
tion with that of a run to look \sideways" from a lo
al state

and make assertions about the 
urrent global state.

The formula 5�

�

25� des
ribes the fa
t that 
on
i
t is inherited in a prime event stru
ture. The

formula4�

�

2

-

(4�_3�) expresses the fa
t that the 
on�gurations of an event stru
ture are \
onsistent"

by asserting that the uni�ed past of any pair of events in 
o is 
on
i
t-free.

Due to la
k of spa
e, we will not provide a separate detailed example for this logi
. The logi
 presented

in the next se
tion, 
alled L

CSA

, is also based on event stru
tures. We shall provide a detailed example for

that logi
. It will not be diÆ
ult to see how that example 
an be translated into the present framework.

Consider the logi
al system E.

The System E

AXIOM SCHEMES

(A0) All the substitutional instan
es of the tautologies of Propositional Cal
ulus.

(A1) (i) 2(�

�

�)

�

(2�

�

2�) (Dedu
tive Closure)

(ii) 2

-

(�

�

�)

�

(2

-

�

�

2

-

�)

(iii) 5� (�

�

�)

�

(5� �

�

5� �)

(iv) 4� (�

�

�)

�

(4� �

�

4� �)

(A2) (i) 2�

�

22� (Transitivity of <)

(ii) 2

-

�

�

2

-

2

-

�

(A3) (i) �

�

5� 5� (Symmetry of # and 
o)

(ii) �

�

4� 4�

(A4) (i) �

�

23

-

� (Relating past and future)

(ii) �

�

2

-

3�

(A5) 5�

�

25� (Con
i
t inheritan
e)

(A6) 4�

�

2

-

(3� _4�) (Con
i
t-free past)

(A7) (i) 3�

�

2(� _3� _3

-

� _5� _4�) (Relating <,# and 
o)

(ii) 5�

�

5� (� _3� _3

-

� _5� _4�)

(iii) 4�

�

4� (� _3� _3

-

� _5� _4�)

(iv) 3

-

�

�

2

-

(� _3� _3

-

� _4�)

(v) 5�

�

4� (3� _5� _4�)

(vi) 4�

�

2(3

-

� _5� _4�)

INFERENCE RULES

(MP)

�

�

�

�

(TG) (i)

�

2�

(ii)

�

2

-

�

(iii)

�

4� �

(iv)

�

5� �

(UNIQ)

p̂

�

�

�

where p is an atomi
 proposition not appearing in �

and p̂

def

= p ^ 2�p ^2

-

�p ^4� �p ^5� �p

Axioms A0 to A4 and inferen
e rules MP and TG are standard. A5 expresses the fa
t that 
on
i
t is

inherited via �. A6 ensures that any two events related by 
o have 
onsistent (i.e. 
on
i
t-free) pasts.

The remaining axioms are ne
essary to 
apture the fa
t that the relations �;�;# and 
o \
over" the

event stru
ture { i.e., any two distin
t events are related by one of these relations.

The rule UNIQ is adapted from [Burgess 1980℄. Given a proposition p, the de�nition of p̂ ensures that

it 
an be true in at most one lo
al 
on�guration. Hen
e, we 
an label ea
h lo
al 
on�guration #e by a

distin
t formula p̂

e

. The rule UNIQ allows us to 
onstru
t this labelling, whi
h is 
ru
ial in demonstrating

the 
ompleteness of the axiomatization.

Let `

E

� denote that � is a thesis of the system E.
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Theorem 2.1 E is a sound and 
omplete axiomatization of the valid formulas in L

ES

. In other words,

`

E

� i� j=

ES

�.

Re
all that we had de�ned an auxiliary relation #

�

in an event stru
ture, 
alled the minimal 
on
i
t

relation. We 
an de�ne a modality 5

�

to 
apture the relation #

�

.

It is possible to strengthen L

ES

by repla
ing the modality 5 by the modality 5

�

. Let us 
all this new

language L

�

ES

. To obtain a useful 
omparison with L

ES

, and also to obtain an axiomatization, we must


hange the notion of a frame. For this language, we de�ne a frame to be a pair (ES;LC

ES

) where ES

is a well bran
hing event stru
ture. Re
all that a well bran
hing event stru
ture is one in whi
h the #

relation 
an be 
ompletely spe
i�ed using the relations #

�

and �. As usual, a model is a frame together

with a valuation fun
tion. Models based on well bran
hing frames are 
alled well bran
hing models.

The semanti
s of L

�

ES

is the same as that of L

ES

ex
ept that the 
lause for 5 is repla
ed by:

M; #e j=5

�

� i� 9e

0

: e #

�

e

0

and M; #e

0

j= �:

In L

�

ES

, we 
an obtain 5 as a derived modality:

5�

def

= 5

�

� _5

�

3� _3

-

5

�

� _3

-

5

�

3�

As before, 5� � denotes the formula :5:�. It is easy to verify that 5� � 
an be expressed as follows:

5� �

def

= 5�

�

� ^5�

�

2� ^ 2

-

5�

�

� ^ 2

-

5�

�

2�

In a well bran
hing model, the derived modalities 5 and 5� have pre
isely the same interpretation as the


orresponding modalities of L

ES

. On the other hand, there is no obvious way to 
hara
terize the minimal


on
i
t relation #

�

using the modality 5. In this 
onne
tion, we 
an establish the following result.

Theorem 2.2 For well bran
hing models, the language L

�

ES

is stri
tly more expressive than L

ES

.

Informally, this result says that we 
an use formulas from L

�

ES

to di�erentiate models whi
h are indis-

tinguishable using the language L

ES

.

An example of the use of 5

�

is in systems where agents have names, like 
sa's. For ea
h event e that

pro
ess i parti
ipates in, we 
an assign an atomi
 proposition �

i

to the lo
al 
on�guration #e. Suppose

that there are n agents in the system, with \names" �

1

; �

2

; : : : ; �

n

. Then the formula

^

1�i�n

(�

i

�

5�

�

�

i

)

expresses the fa
t that all 
hoi
es in behaviour are made lo
ally by individual agents.

The axiom system E

�

is obtained by adding the following axiom s
hemes to the system E.

(A1) (v) 5�

�

(�

�

�)

�

(5�

�

�

�

5�

�

�) (Dedu
tive Closure)

(A3) (iii)�

�

5�

�

5

�

� (Symmetry of #

�

)

(A6) (ii) 5

�

�

�

2

-

(3� _4�) (Minimal Con
i
t)

A1(v) and A3(iii) are standard. A6(ii) is the 
hara
teristi
 axiom des
ribing the #

�

relation as the minimal 
on
i
t relation.

Let `

�

E

� denote that � is a thesis of the system E

�

and let j=

�

ES

� denote that � is valid over the


lass of well bran
hing models. Then we get:

Theorem 2.3 E

�

is a sound and 
omplete axiomatization of the valid formulas in L

�

ES

. In other words,

`

�

E

� i� j=

�

ES

�.

3 Logi
 for Communi
ating Sequential Agents

We now wish to study a means of talking about a 
entral feature of many distributed systems | the


ommuni
ation pattern between the 
omponents of the system that ensure 
o�ordination. For this, we

shall de�ne a logi
 that is to be interpreted over 
sa's.

Let P = fp

0

; p

1

; : : :g be a 
ountable set of atomi
 propositions, and T = f�

0

; �

1

; : : :g, a 
ountable set

of type propositions disjoint from P. The formulas of L

CSA

are built up as follows:

� Every member of P [ T is a formula of L

CSA

.
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� If � and � are formulas of L

CSA

, then so are :�; � _ �, 3

i

� and 3

-

i

�.

The formula �

i

asserts that the observer is lo
ated in agent i. 3

i

and 3

-

i


apture the \visible" future and

past of agent i. This will be
ome 
learer when we de�ne the formal semanti
s of these modalities.

A frame for L

CSA

is a pair (CSA;LC

CSA

), where CSA = (E;�; �) is a system of 
ommuni
ating

sequential agents and LC

CSA

is the set of lo
al states of CSA. A model is a pairM = ((CSA;LC

CSA

); V )

where (CSA;LC

CSA

) is a frame and V :LC

CSA

! }(P [ T ) is a valuation fun
tion su
h that

�

i

2 V (#e) i� i 2 �(e):

The notion M; #e j= � 
an be de�ned indu
tively as follows:

(i) M; #e j= � i� � 2 V (#e), for � 2 P [ T .

(ii) M; #e j= :� i� M; #e 6j= �.

(iii) M; #e j= � _ � i� M; #e j= � or M; #e j= �.

(iv) M; #e j= 3

-

i

� i� 9e

0

2 E

i

: e

0

� e and M; #e

0

j= �.

(v) M; #e j= 3

i

� i�

�

(e 2 E

i

) : 9e

0

2 E

i

: e � e

0

and M; #e

0

j= �:

(e 62 E

i

) : 8e

0

2 E

i

: if e

0

� e then M; #e

0

j= 3

i

�:

Note that 3

-

i

behaves like a normal past modality | it 
overs all events that lie in the i-past of e.

However 3

i

� is di�erent: in agent j, j 6= i, it asserts that upto the last 
ommuni
ation from i, there is a

future for agent i satisfying �. In 
ase there is no 
ommuni
ation from agent i at all, agent j 
an assert

3

i

� for any formula �.

De�ne 2

-

i

�

def

= :3

-

i

:� and 2

i

�

def

= :3

i

:�. It 
an be veri�ed that 2

i

�

�

3

-

i

2

i

� is a valid formula

over 
sa's. It asserts that an invariant formula about an agent must be supported by a 
ommuni
ation

from that agent. Thus 2

i

is a \strong" modality whereas 3

i

is \weak" unlike in standard modal logi
.

This asymmetry arises from the fa
t that in distributed systems, the past of other agents 
an be 
ompletely

obtained by messages, while the possibilities for the future are only lo
ally known.

Noti
e that the formula �

i

^ �

j

is satis�ed at a lo
al state #e only if fi; jg � �(e) and thus spe
i�es a

syn
hronization between agents i and j. The in�nite set of formulas f�

i

�

:�

j

j i 6= jg together spe
ify

that ea
h event is in at most one agent and hen
e 
an spe
ify asyn
hronous 
sa's.

Consider the formula 3

-

i

�^3

-

i

�

�

3

-

i

(�^3

-

i

�)_3

-

i

(� ^3

-

i

�): This spe
i�es that agent i is ba
kwards

linear { during a 
omputation if we look ba
k at any two events involving agent i, then they must be

ordered. This 
aptures the fa
t that agents in a 
sa are sequential.

Similarly, the formula 3

-

i

�

�

3

-

i

(� ^ 2

-

i

(:�

�

2

-

i

:�)) 
an be used to spe
ify �nitary 
sa's, i.e those

where ea
h event has a �nite past. This formula asserts that if � is true somewhere in the past, then we


an �nd an \earliest" point where � is true.

The prin
ipal advantage of this logi
 is that 
ommuni
ation between agents in a distributed system


an be easily expressed: :�

i

^3

-

i

�^ �

j


an be used to spe
ify that i has 
ommuni
ated the truth of � to

j sometime in the past.

We shall present a detailed example of reasoning with this logi
 at the end of this se
tion. First, we

present our main te
hni
al results for this logi
.

We begin with logi
al system C de�ned below.

The System C

AXIOM SCHEMES

(A0) All the substitutional instan
es of the tautologies of Propositional Cal
ulus.

(A1) (a) 2

-

i

(�

�

�)

�

(2

-

i

�

�

2

-

i

�) (Dedu
tive 
losure)

(b) 2

i

(�

�

�)

�

(2

i

�

�

2

i

�)

(A2) (a) �

i

�

(2

-

i

�

�

�) (Lo
al re
exivity)

(b) �

i

�

(2

i

�

�

�)

(A3) 3

-

i

3

-

j

�

�

3

-

j

� (Transitivity)

(A4) (a) 3

-

i

�

�

2

i

3

-

i

� (Relating past and future)

(b) 3

i

�

�

2

-

i

3

i

�

21



�nitary

n-
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n-a
sa's

n-
sa's

n-a
sa's

�nitary
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�nitary

a
sa's


sa's

a
sa's

-

-

-

-

6 6

6 6

Figure 10: Sub
lasses of 
sa's

(A5) 3

-

i

� ^3

-

i

�

�

3

-

i

(� ^3

-

i

�) _3

-

i

(� ^3

-

i

�): (Ba
kward linearity)

(A6) 2

i

�

�

3

-

i

2

i

� (Communi
ation)

(A7) (a) 2

-

i

�

i

(Type axioms)

(b) �

i

�

2

i

�

i

INFERENCE RULES

(MP)

�; �

�

�

�

(TG2

-

i

)

�

2

-

i

�

(TG2

i

)

�

�

i

�

2

i

�

Axioms A0 to A4 are standard axioms suitably modi�ed to re
e
t the spe
ial interpretation of 3

i

. A5

asserts that individual agents are sequential. A6 
aptures that fa
t that knowledge about another agent's

future 
an only be obtained via 
ommuni
ation. A7 ensures that the type propositions from T are

assigned 
onsistently. The rules MP and TG2

-

i

are standard. The standard form of the rule TG2

i

will

not preserve validity be
ause of the 
ommuni
ation requirement imposed by the semanti
s of 2

i

.

Let `

C

� denote that � is a thesis of the system C. Let j=

CSA

� denote that � is valid over the 
lass

of models based on 
sa's. We then have the following result.

Theorem 3.1 C is a sound and 
omplete axiomatization of the valid formulas of L

CSA

. In other words

`

C

� i� j=

CSA

� for every � 2 L

CSA

.

When we introdu
ed 
sa's in Part A, we had de�ned various sub
lasses of 
sa's. Let CSA = (E;�; �)

be a 
sa. Re
all that CSA is an n-
sa if �(E) � f1; 2; : : : ; ng | that is, there are at most n agents in

the system. CSA is an asyn
hronous-
sa (a
sa) if 8e 2 E : j �(e) j = 1. CSA is �nitary if 8e 2 E : #e

is a �nite set. We 
an 
ombine these notions; for example, an n-a
sa is an a
sa with a bounded number

of agents. Similarly, we 
an have �nitary n-
sa's, �nitary a
sa's and, �nally, �nitary n-a
sa's. Figure 10

pi
torially represents the relationships between these various 
lasses. The arrows in the �gure indi
ate

in
lusion.

Let C denote one of the sub
lasses of 
sa's mentioned above. Then we 
an de�ne the notions

of satis�ability and validity relative to C. Thus, a formula � is C-satis�able if we 
an �nd a model

M = ((CSA;LC

CSA

); V ) for � su
h that CSA 2 C. We let SAT

C

denote the set of C-satis�able formulas

in L

CSA

. � is C-valid if it is valid over the 
lass of models based on frames in C.

We 
an axiomatize the C-valid formulas for all these sub
lasses. The required axiomatizations are

obtained by suitably 
ombining the system C with the following axiom s
hemes.

AUXILIARY AXIOM SCHEMES AND INFERENCE RULES

(A8) �

1

_ �

2

_ : : : _ �

n

(n agents)

(A9) �

i

�

:�

j

, for i 6= j (disjoint agents)

(A10)(a) 3

-

i

�

�

3

-

i

(� ^2

-

i

(:�

�

2

-

i

:�)) (well-founded agents and 
ommuni
ations)

(b) 3

-

i

�

�

3

-

i

(� ^2

-

j

2

-

i

:�), for i 6= j

Theorem 3.2

22



(i). The logi
al system C

A

def

= C +(A9) is sound and 
omplete for the 
lass of models based on a
sa's.

(ii). The logi
al system C

F

def

= C+(A10) is sound and 
omplete for the 
lass of models based on �nitary


sa's.

(iii). The logi
al system C

FA

def

= C

A

+ (A10) is sound and 
omplete for the 
lass of models based on

�nitary a
sa's.

(iv). The logi
al system C

n

def

= C + (A8), n 2 N; is sound and 
omplete for the 
lass of models based

on n-
sa's.

(v). The logi
al system C

nA

def

= C

A

+(A8), n 2 N; is sound and 
omplete for the 
lass of models based

on n-a
sa's.

(vi). The logi
al system C

nF

def

= C

F

+(A8), n 2 N; is sound and 
omplete for the 
lass of models based

on �nitary n-
sa's.

(vii). The logi
al system C

nFA

def

= C

FA

+ (A8), n 2 N; is sound and 
omplete for the 
lass of models

based on �nitary n-a
sa's.

We also have the following relationship between satis�ability in sub
lasses with an unbounded number

of agents and the 
orresponding sub
lasses with only a bounded number of agents.

Theorem 3.3 Let C range over 
sa's, a
sa's, �nitary 
sa's and �nitary a
sa's. Let nC; n 2 N, denote

the 
orresponding 
lass with a bounded number of agents n. Then SAT

C

=

[

n

SAT

nC

.

We now give a detailed example of how 
ommuni
ation between agents 
an be spe
i�ed in L

CSA

.

Consider a distributed database a

essed by n pro
esses whi
h 
ommuni
ate with ea
h other by ex
hang-

ing messages. A proto
ol is needed whereby the pro
esses 
an 
ommit to a distributed transa
tion. When

ea
h 
ommitted pro
ess knows that all the others have also 
ommitted it 
an go ahead and perform its

lo
al share of the distributed transa
tion. For this, the following requirement must be met.

If any pro
ess 
ommits to the transa
tion then it eventually knows that all pro
esses in the

system have also 
ommitted.

Su
h distributed transa
tion 
ommit proto
ols 
ommonly arise in the design of distributed systems

[Pinter et al 1984℄.

We now spe
ify the proto
ol requirement in our logi
al language. Let f


1

; : : : ; 


n

g be a set of atomi


propositions, where 


j

is read to mean \pro
ess j has 
ommitted to the transa
tion". The formula

^

i

(�

i

^ 


i

�

3

i

(

^

j

3

-

i




j

)) (1)

expresses the requirement above.

A two-stage implementation of this proto
ol may use two lo
al boolean variables in ea
h pro
ess P

i

:

� a variable l

i

in whi
h pro
ess P

i

re
ords whether it 
an parti
ipate in the transa
tion or not, and

� a variable, whi
h we also 
all 


i

, to re
ord the 
ommitment of the pro
ess to the transa
tion.

The implementation 
an perhaps run as follows:

Pro
ess P

i

:

(i). As soon as a lo
al de
ision l

i

is made, broad
ast l

i

to all other pro
esses;

(ii). When l

j

is heard from all j, set 


i

to True;

(iii). As soon as 


i

is set, broad
ast it to all other pro
esses;

(iv). When 


j

is heard from all j, perform transa
tion;
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(v). A
knowledge all in
oming messages.

All pro
esses follow the same proto
ol in a symmetri
 manner. This is, of 
ourse, a na��ve proto
ol.

However, our aim here is to merely illustrate the use of our logi
al language. Let us again, by abuse

of notation, use fl

1

; : : : ; l

n

g to denote another set of atomi
 propositions. Consider now the following

formulas:

^

i

(�

i

�

(


i

�

^

j

3

-

j

l

j

)) (2)

\


i

is set True only when l

j

is heard from all other pro
esses P

j

"

^

i

(�

i

^ 


i

�

3

i

^

j

3

-

j

3

-

i




i

) (3)

\if 


i

is set, then it will be broad
ast and a
knowledged"

Note that here an agent has to assert something about the state of other agents and this 
an be done

only using messages from them. The formula 3

i

3

-

j

3

-

i




i

says that agent i has re
eived an a
knowledgment

from agent j of the message 


i

sent from i to j. This is ne
essary be
ause we assume that messages may

be lost in this network.

It is easy to verify that the formulas 2 and 3 together imply the requirement 1 above. In fa
t, we 
an

use the axiom system C and logi
ally dedu
e the requirement from 2 and 3. This veri�es that the simple

proto
ol above meets its spe
i�
ation.

Note that the proto
ol above works for only one transa
tion, in the sense that the 
ommitment is

stable; on
e a pro
ess 
ommits to the transa
tion, it stays 
ommitted. When a proto
ol is needed for

several transa
tions, we 
an index the transa
tions by sequen
e numbers and modify the spe
i�
ation

above appropriately.

While the pre
eding example illustrates the spe
i�
ation of a proto
ol whi
h assumes 
omplete 
on-

ne
tivity in the network of 
ommuni
ating agents, we 
an also spe
ify proto
ols whi
h demand spe
i�


patterns of 
onne
tivity. Sin
e agents are synta
ti
ally mentioned in formulas, this logi
 is parti
ularly

suited for des
ribing 
ommuni
ations whi
h name spe
i�
 agents. We illustrate this point with another

detailed example.

Assume that pro
esses P

0

; P

1

; : : : ; P

n�1

are 
onne
ted in a ring and 
ommuni
ate with ea
h other

only by ex
hanging messages. A pro
ess P

i


an 
ommuni
ate only with its neighbours P

i�1

and P

i+1

on

the ring. Here and in the sequel, addition and subtra
tion are assumed to be modulo n.

Assume that ea
h pro
ess P

i

maintains a variable x

i

taking values in N and whose value initially is

v

i

, for 0 � i � n� 1. It is desired to spe
ify a distributed proto
ol whi
h 
omputes the greatest 
ommon

divisor of the values v

0

; : : : ; v

n�1

. Let result denote the value of the 
onstant g
d(v

0

; v

1

; : : : ; v

n�1

). When

the 
omputation terminates, the variables x

i

; i 2 f0; : : : ; n� 1g should satisfy

x

0

= x

1

= : : : = x

n�1

= result

Sin
e our logi
al language is propositional in nature we 
annot express values of variables and hen
e

assume 
ountably many propositions X

k

i

; k 2 N, to denote \x

i

= k". With this understanding we write

su
h propositions as equalities. Similarly we assume propositions to denote \k < l", \k = i� j" et
. The

proto
ol requirement is then spe
i�ed by

^

i

(�

i

^ (x

i

= v

i

)

�

3

i

^

k

3

-

k

(x

k

= result))

An algorithm for 
omputing the g
d 
an be des
ibed as follows: pro
ess P

i

, at any state, 
ompares the


urrent value of x

i

, with the 
urrent values of its neighbours, x

i�1

and x

i+1

. In 
ase x

i

is smaller, nothing

needs to be done; if x

i�1

is smaller, x

i

is updated to be x

i

�x

i�1

; similarly, if x

i+1

is smaller, x

i

is updated

to be x

i

� x

i+1

. Whenever the value of x

i


hanges, this is 
ommuni
ated to the neighbouring pro
esses.

Eventually, all values stabilize at the greatest 
ommon divisor.

As before, we assume that messages may fail and hen
e re
eived messages are always a
knowledged.

Let 3

i!j

� abbreviate the formula �

i

^3

i

3

-

j

3

-

i

�. (In some sense, this stands for \i sends the message �

to j and re
eives an a
knowledgment")
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Our proto
ol 
an now be spe
i�ed as

^

i

(�

i

�

2

i

Æ ^ 2

-

i

Æ)

where Æ

def

= Æ

0

^ Æ

1

^ Æ

2

^ Æ

3

is given by:

Æ

0

: (x

i

= v

�

^

j 2 fi�1; i+1g

3

i!j

(x

i

= v))

\neighbours are always kept informed of 
urrent x

i

value"

Æ

1

: (x

i

= v

�

2

i

(x

i

= v

0

�

v

0

� v))

\values are never in
reased"

Æ

2

: (x

i

= v ^3

-

i�1

(x

i�1

= v

0

) ^ v

0

< v

�

3

i

(x

i

= v

00

^ v

00

= v � v

0

))

\if x

i�1

< x

i

then x

i

:= x

i

� x

i�1

"

Æ

3

: (x

i

= v ^3

-

i+1

(x

i+1

= v

0

) ^ v

0

< v

�

3

i

(x

i

= v

00

^ v

00

= v � v

0

))

\if x

i+1

< x

i

then x

i

:= x

i

� x

i+1

"

It is easy to see that this spe
i�es a distributed implementation of Eu
lid's algorithm for 
omputing

the g
d.

Dis
ussion

In this paper, we have looked at models for distributed systems whi
h emphasize their non-sequential

behaviour and 
onsidered their logi
al 
hara
terization using an assortment of modal logi
s.

A fair amount of theory has been developed for the models we have 
onsidered. Our notion of a

distributed transition system is only one of several that have been 
onsidered; alternative formulations in-


lude those of Degano and Montanari [Degano et al 1987℄ and Boudol and Castellani [Boudol et al 1988℄.

Stark has de�ned a related 
lass of model 
alled 
on
urrent transition systems [Stark 1989℄. In net theory,

more general net systems in
lude Petri nets, Predi
ate/transition nets and 
oloured nets [Brauer et al 1987℄.

As far as event stru
tures are 
on
erned, we have only 
onsidered prime event stru
tures in this paper;

other 
lasses of event stru
tures in
lude stable event stru
tures and general event stru
tures [Winskel 1987℄

as well as 
ow event stru
tures [Boudol 1990℄. Systems of 
ommuni
ating sequential agents were intro-

du
ed in [Lodaya et al 1989b℄, as a generalization of the n-agent event stru
tures des
ribed in [Lodaya et al 1987℄.

The models that we have dealt with in this paper are 
losely related to ea
h other. We have des
ribed

how labelled net systems and labelled event stru
tures give rise to dts's in a natural way. A strong

relationship also exists between elementary net systems and prime event stru
tures ([Nielsen et al 1980℄,

[Nielsen et al 1990℄). The 
onne
tion between 
sa's and event stru
tures is des
ribed in [Lodaya et al 1989b℄.

By establishing formal 
onne
tions between models in this manner, we 
an translate results obtained using

one 
lass of models to other 
lasses.

As for the logi
s that we have des
ribed here, the main results that we have are sound and 
omplete ax-

iomatizations for di�erent 
lasses of models (see [Lodaya et al 1991℄, [Lodaya et al 1989a℄, [Lodaya et al 1989b℄,

[Lodaya et al 1987℄, [Mukund 1990℄,

[Mukund et al 1989℄ and [Mukund et al 1991℄). For the logi
 for distributed transition systems, we also

have various de
idability and unde
idability results [Lodaya et al 1991℄. However, for the logi
s for event

stru
tures and 
sa's, the de
idability question remains open.

Several attempts have been made to use logi
s to 
hara
terize the behaviour of distributed pro-

grams. Temporal modalities have been traditionally interpreted over di�erent types of tense stru
tures

([Burgess 1984℄, [Burgess 1980℄). Using the interleaving approa
h to modelling 
on
urren
y, various

authors have used temporal logi
s de�ned on sequen
es and trees to des
ribe 
on
urrent 
omputa-

tions (see e.g. [Clarke et al 1986℄, [Gabbay et al 1980℄, [Pnueli 1977℄). Pinter and Wolper have extended
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this work to true 
on
urren
y by expli
itly using partial orders to represent 
on
urrent 
omputations

[Pinter et al 1984℄. Katz and Peled have de�ned a �rst-order temporal logi
 over sets of partial orders

[Katz et al 1989℄.

However, the use of 
lasses of behavioural stru
tures for distributed systems as frames for logi
s seems

to be relatively new. Pen
zek has used event stru
tures as frames [Pen
zek 1988℄. He was the �rst to

use an expli
it modality to represent 
on
i
t. Reisig [Reisig 1986℄ is working on logi
s whi
h dire
tly use

elementary net systems as frames. Christiansen [Christiansen 1989℄ has worked with 
sa-like frames; he

uses an indexed 4 modality in his logi
 to des
ribe 
on
urren
y a
ross agents.

Tra
e theory is a language theoreti
 approa
h to des
ribing 
on
urren
y whi
h we have not 
onsidered.

This formalism also gives rise to models of distributed systems with true 
on
urren
y. Here, along with

an alphabet of a
tions, one is given an independen
e relation de
laring whi
h a
tions in the system are


on
urrent. Instead of viewing a 
omputation as a string of symbols from the alphabet, one now 
onsiders

sequen
es made up of sets of 
on
urrent a
tions (sequen
es of 
on
urrent steps, in our framework), whi
h

are 
alled tra
es. Like strings, tra
es form a monoid, 
alled a partially 
ommutative monoid, and so one


an meaningfully talk about tra
e languages. A synta
ti
 Kleene-like 
hara
terization of regular tra
e

languages has been given by O
hmanski [O
hmanski 1985℄, while a 
hara
terization in terms of automata

has been obtained by Zielonka [Zielonka 1987℄. The pomsets of Gis
her and Pratt [Pratt 1986℄ are similar

to tra
es.

Logi
s for tra
e theory have not been 
onsidered in the literature. We believe that results like the

ones in Part B, Se
tion 1 
an be obtained [Lodaya et al 1991℄.

Another widely prevalent approa
h to modelling 
on
urren
y is algebrai
. One way of des
ribing se-

quential nondeterministi
 programs is through regular expressions, by interpreting the operators

�

, + and

* as sequential 
omposition, 
hoi
e and iteration. Similarly, in the algebrai
 approa
h to 
on
urren
y, one

introdu
es an operator to denote the parallel 
omposition of programs. Program behaviour is spe
i�ed by

modelling the language operators in an appropriate semanti
 domain. Popular languages for 
on
urren
y

in
lude CSP [Hoare 1984℄, CCS [Milner 1989℄ and ACP [Bergstra et al 1984℄, and the models most often

used are transition systems [Plotkin 1981℄ and equational algebras [Bergstra et al 1984℄. Most of this work

has been based on interleaving models and only re
ently have attempts been made to give a \truly 
on-


urrent" semanti
s to these languages ([Degano et al 1989℄, [van Glabbeek et al 1987℄, [Olderog 1987℄).

An earlier denotational semanti
s using event stru
tures as domains was given in [Winskel 1982℄.

In this framework, Hennessy and Milner [Hennessy et al 1985℄ have used a
tion-indexed logi
s to


hara
terize 
omputations of sequential nondeterministi
 systems. Assuming an interleaving model of


on
urren
y, this 
hara
terization extends to the 
omputations of distributed systems. This work has

been 
onsiderably extended by Stirling [Stirling 1987℄. However, the emphasis here is on axiomatizing

program equivalen
es using equational logi
. Our use of a
tion-indexed logi
s for models exhibiting true


on
urren
y is inspired by this work, but we have 
on
entrated on axiomatizing the valid formulas, as is

traditional in logi
.

Logi
s in whi
h the modalities are indexed by programs, rather than just a
tions, arose in the frame-

work of program veri�
ation [Hoare 1969℄. Programs with parallel 
omposition operators have been


onsidered by several authors (e.g [Apt et al 1980℄). Dynami
 logi
s, originally de�ned over sequential

programs [Harel 1984℄, have been extended with an operator for interse
tion to model syn
hronization

[Peleg 1987℄. However, a lot of work remains to be done on 
hara
terizing models for true 
on
urren
y

using program-indexed logi
s.
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