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Abstra
t We study the problem of synthesizing distributed implementations from

global spe
i�
ations. We work in the framework of transition systems.

The main question we address is the following.

Given a global transition system TS over a set of a
tions � together

with a distribution of � into lo
al 
omponents h�

1

; : : : ;�

k

i, does

there exist a distributed transition system over h�

1

; : : : ;�

k

i that is

\equivalent" to TS?

We fo
us on two di�erent types of distributed transition systems|

loosely 
ooperating systems and syn
hronously 
ommuni
ating systems.

For \equivalen
e" we 
onsider three possibilities|state-spa
e isomor-

phism, language equivalen
e and bisimulation.

We survey the 
urrent state of knowledge about the di�erent versions

of the problem that arise from 
hoosing a 
on
rete notion of equivalen
e

and a spe
i�
 model of distributed transition systems.

1. Introdu
tion

Designing distributed systems has always been a 
hallenging task. Inter-

a
tions between individual pro
esses 
an introdu
e subtle errors in the

system's overall behaviour that may pass undete
ted even after rigorous

testing. A fruitful approa
h in re
ent years has been to spe
ify the be-

haviour of the overall system in a global manner and then automati
ally

synthesize a distributed implementation from the spe
i�
ation.

The question of identifying when a sequential spe
i�
ation has an

implementation in terms of a desired distributed ar
hite
ture was �rst

raised in the 
ontext of Petri nets. Ehrenfeu
ht and Rozenberg [5℄ in-

trodu
ed the 
on
ept of regions to des
ribe how to asso
iate pla
es of

nets with states of a transition system. In [15℄, Nielsen, Rozenberg and

Thiagarajan use regions to 
hara
terize the 
lass of transition systems
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that arise from elementary net systems. Subsequently, several authors

have extended this 
hara
terization to larger 
lasses of nets (for a sample

of the literature, see [2, 12, 17℄).

Here, we 
onsider distributed transition systems|networks of transi-

tion systems that 
oordinate their a
tivity by syn
hronizing on 
ommon

a
tions. We fo
us on two models of distributed transition systems, whi
h

we refer to as loosely 
ooperating systems and syn
hronously 
ommuni-


ating systems. The �rst 
lass has also been 
alled syn
hronized produ
t

systems and has been widely studied [1℄. The se
ond 
lass 
orresponds

to Zielonka's asyn
hronous automata [18℄. The names we have 
hosen for

these two 
lasses are intended to re
e
t more a

urately the underlying

stru
ture of the two system models.

Both these models 
ome with a natural notion of 
omponent and

indu
ed notions of 
on
urren
y and 
ausality. These models have a

well-understood theory, at least in the linear-time setting [4, 16, 18℄.

Variants of these models are also the basis for system des
riptions in a

number of model-
he
king tools [8, 7℄.

The synthesis problem 
an broadly be stated as follows:

Given a global transition system TS over a set of a
tions

� together with a distribution of � into lo
al 
omponents

h�

1

; : : : ;�

k

i, does there exist a distributed transition system

over h�

1

; : : : ;�

k

i that is \equivalent" to TS?

We 
onsider three possible interpretations of the term \equivalen
e":

state-spa
e isomorphism, language equivalen
e and bisimulation. For

the �rst two interpretations, we provide 
omplete 
hara
terizations. The

synthesis problem with respe
t to bisimulation is still open in general

and we provide some positive results in the restri
ted setting where we

are in sear
h of deterministi
 implementations.

The paper is organized as follows. We begin by de�ning the two


lasses of distributed transition systems we will be looking at. Next, in

Se
tion 3, we de�ne the three types of synthesis problems that we are

interested in. These problems are then addressed in turn in Se
tions 4{

6. In Se
tion 7 we 
onsider the synthesis problem in a more abstra
t

setting, where 
on
urren
y is presented impli
itly using an independen
e

relation. We 
on
lude with a short dis
ussion of related work.

2. Distributed transition systems

We begin by de�ning labelled transition systems, a general framework

for modelling 
omputing systems.
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Labelled transition system. Let � be a �nite nonempty set of a
-

tions. A labelled transition system over � is a stru
ture TS =

(Q;!; q

in

), where Q is a set of states, q

in

2 Q is the initial state and

! � Q� ��Q is the transition relation.

We abbreviate a transition sequen
e of the form q

0

a

1

�! � � �

a

n

�! q

n

as q

0

a

1

���a

n

�! q

n

. In every transition system TS = (Q;!; q

in

) that we

en
ounter, we assume that ea
h state in Q is rea
hable from the initial

state|that is, for ea
h q 2 Q there exists a transition sequen
e q

in

=

q

0

a

1

���a

n

�! q

n

= q.

A large 
lass of distributed systems 
an be fruitfully modelled as net-

works of lo
al transition systems whose moves are 
oordinated through


ommon a
tions. To formalize this, we begin with the notion of a dis-

tributed alphabet.

Distributed alphabet. A distributed alphabet over �, or a distri-

bution of �, is a tuple of nonempty sets

e

� = h�

1

; : : : ;�

k

i su
h that

S

1�i�k

�

i

= �. For ea
h a
tion a 2 �, the lo
ations of a are given by

the set lo


e

�

(a) = fi j a 2 �

i

g. If

e

� is 
lear from the 
ontext, we write

just lo
(a) to denote lo


e

�

(a).

Without loss of generality, we may assume that �

i

6= �

j

for any

pair of distin
t 
omponents of a distributed alphabet. We 
onsider two

distributions to be the same if they di�er only in the order of their


omponents. Hen
eforth, for any natural number k, [1::k℄ denotes the

set f1; 2; : : : ; kg.

The �rst model of distributed transition systems that we 
onsider is

loosely 
ooperating systems. Ea
h pro
ess of a loosely 
ooperating sys-

tem is a lo
al transition system over one 
omponent of a distributed

alphabet. The global transition relation for
es all pro
esses that share

an a
tion a to move jointly when a o

urs. This syn
hronization, how-

ever, does not involve any 
ommuni
ation of \lo
al" information between

pro
esses. Ea
h pro
ess parti
ipating in a loosely 
ooperating transition

is free to 
hoose for itself any move that is available in its lo
al transition

relation, independent of how the other pro
esses 
hoose to move.

Loosely 
ooperating systems. Let h�

1

; : : : ;�

k

i be a distribution

of �. For ea
h i 2 [1::k℄, let TS

i

= (Q

i

;!

i

; q

i

in

) be a transition system

over �

i

. The loosely 
ooperating system TS

1

k � � � k TS

k

is the transition

system TS = (Q;!; q

in

) over � =

S

1�i�k

�

i

, where:

q

in

= (q

1

in

; : : : ; q

k

in

).
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Q � (Q

1

� � � � �Q

k

) and ! � Q� ��Q are de�ned indu
tively

by:

{ q

in

2 Q.

{ Let q 2 Q and a 2 �. For i 2 [1::k℄, let q[i℄ denote the i

th


omponent of q. If for ea
h i 2 lo
(a), TS

i

has a transition

q[i℄

a

�!

i

q

0

i

, then q

a

�! q

0

and q

0

2 Q where q

0

[i℄ = q

0

i

for

i 2 lo
(a) and q

0

[j℄ = q[j℄ for j =2 lo
(a).

A ri
her model is that of a syn
hronously 
ommuni
ating system. Here,

as before, we have one pro
ess for ea
h 
omponent of the distributed

alphabet. However, the moves for ea
h a
tion are spe
i�ed jointly for

all pro
esses that syn
hronize on that a
tion. Thus, the lo
al behaviour

of ea
h pro
ess is 
onditional on the behaviour of the other pro
esses

that it syn
hronizes with. Abstra
tly, this 
orresponds to the pro
esses

pooling together the information available to them lo
ally and de
iding

on a 
ombined move based on this shared information.

Syn
hronously 
ommuni
ating systems. Let h�

1

; : : : ;�

k

i be

a distribution of �. For ea
h i 2 [1::k℄, let P

i

be a pro
ess with a

�nite set of lo
al states Q

i

that in
ludes a distinguished initial state

q

i

in

. We asso
iate with ea
h a
tion a 2 � a transition relation !

a

�

Q

i2lo
(a)

Q

i

�

Q

i2lo
(a)

Q

i

.

The syn
hronously 
ommuni
ating system TS

1

kk � � � kk TS

k

is the

transition system TS = (Q;!; q

in

) over � =

S

i2[1::k℄

�

i

where:

q

in

= (q

1

in

; : : : ; q

k

in

).

Q � Q

1

� � � � �Q

k

and ! � Q���Q are de�ned indu
tively as

follows:

{ q

in

2 Q.

{ Let q 2 Q and a 2 � su
h that lo
(a) = fi

1

; : : : ; i

m

g. For

i 2 [1::k℄, let q[i℄ denote the i

th


omponent of q. Then q

a

�! q

0

provided hq[i

1

℄; : : : ; q[i

m

℄i !

a

hq

0

[i

1

℄; : : : ; q

0

[i

m

℄i and for j =2

lo
(a), q[j℄ = q

0

[j℄.

Expressiveness of the two models

It is not diÆ
ult to see that every loosely 
ooperating system admits a

des
ription as a syn
hronously 
ommuni
ating system by setting ea
h

transition relation!

a

to be the dire
t produ
t of the lo
al a-transitions

!

i

\ (Q

i

� fag �Q

i

) over all i 2 lo
(a).
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On the other hand, the following example (from [18℄) shows that

syn
hronously 
ommuni
ating systems are stri
tly more expressive than

loosely 
ooperating systems.

Example 1 Let � = fa

1

; b

1

; a

2

; b

2

; 
g be distributed as hfa

1

; b

1

; 
g;

fa

2

; b

2

; 
gi. We 
an 
onstru
t a syn
hronously 
ommuni
ating system

that exhibits the following behaviour: Pro
ess P

i

alternately performs

a
tion 
 followed by either a

i

or b

i

su
h that between any two 
's (whi
h

are jointly performed by both pro
esses) P

1

performs a

1

if and only if

P

2

performs a

2

. We 
an represent this behaviour as (the pre�x 
losure

of) an extended regular expression [
 � (a

1

k a

2

+ b

1

k b

2

)℄

�

, where k

represents the shu�e operation.

To implement this behaviour as a syn
hronously 
ommuni
ating sys-

tem, for i 2 f1; 2g we set Q

i

= fq

i




; q

i

a

; q

i

b

g and q

i

in

= q

i




. The transition

relations are then de�ned as follows:

hq

1




; q

2




i !




hq

1

a

; q

2

a

i, hq

1




; q

2




i !




hq

1

b

; q

2

b

i

q

1

a

!

a

1

q

1




, q

1

b

!

b

1

q

1




q

2

a

!

a

2

q

2




, q

2

b

!

b

2

q

2




In other words, when P

1

and P

2

perform 
, the joint move 
oordinates

their behaviour so that either they are 
onstrained to next perform either

a

1

and a

2

or b

1

and b

2

, respe
tively.

Informally, the reason that this behaviour 
annot be 
aptured by a

loosely 
ooperating system is that we would have to split up the!




move

into lo
al 
omponents and then take the dire
t produ
t of these lo
al


-moves. This would introdu
e undesirable global moves on 
 a
tions,

su
h as a move in whi
h P

1

moves to q

1

a

where a

1

is enabled while P

2

simultaneously moves to q

2

b

where b

2

is enabled. A more formal argument

will be presented later. 2

3. The synthesis problem

Broadly speaking, the synthesis problem for distributed transition sys-

tems is the following. Let TS = (Q;!; q

in

) be a transition system over

� and

e

� = h�

1

; : : : ;�

k

i be a distribution of �. Does there exist a

distributed transition system over

e

� that is \equivalent" to TS?

To make the problem pre
ise, we have to spe
ify what we mean by

\equivalent". In this paper, we will look at three versions of \equiva-

len
e".
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State spa
e equivalen
e: The state spa
e of the distributed transi-

tion system should be isomorphi
 to the global transition system

TS.

Language equivalen
e: The distributed transition system should

admit the same sequen
es of a
tions as the global transition system

TS.

Bisimulation equivalen
e: The state spa
e of the distributed tran-

sition system should be bisimilar to the global transition system

TS.

These three interpretations of the word \equivalen
e" yield six syn-

thesis problems in all, sin
e we are 
onsidering two di�erent types of

distributed transition systems.

Broadly speaking, the results known for these problems 
an be 
las-

si�ed as follows:

Synthesis modulo isomorphism 
an be solved pre
isely for both


lasses of distributed transition systems using the theory of regions

[2, 3, 5℄.

Synthesis modulo language equivalen
e 
an be solved for loosely


ooperating systems in terms of a pre
ise 
hara
terization of the

languages generated by su
h systems, based on the proje
tions

onto the 
omponents of the distributed alphabet.

For syn
hronously 
ommuni
ating systems, however, the synthe-

sis problem modulo language equivalen
e is mu
h harder and is a


elebrated result in the theory of 
on
urrent systems [18℄.

Synthesis modulo bisimulation is still unsolved in the general 
ase.

A 
hara
terization is known for the relatively simple 
ase where

the synthesized distributed transition system is required to be de-

terministi
 [3℄.

4. Synthesis modulo isomorphism

Regions were introdu
ed in [5℄ to 
hara
terize global state spa
es that

arise from lo
al presentations su
h as Petri nets. Broadly speaking, a

region of an edge-labelled graph is a subset of verti
es that satis�es a

suitable 
onsisten
y 
riterion on the labels of edges that enter and leave

the subset.

In our setting, the basi
 idea is to label in a 
onsistent manner ea
h

state of the input transition system by a k-tuple of lo
al states (
or-

responding to a global state of a distributed transition system). We
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formulate this labelling in terms of lo
al equivalen
e relations on the

states of the original system|for ea
h i 2 [1::k℄, if two states q

1

and

q

2

of the original system are i-equivalent, the interpretation is that the

global states assigned to q

1

and q

2

by the labelling agree on the i

th


om-

ponent. Our presentation is taken from [3℄. A restri
ted form of this


hara
terization was obtained in [11℄, for deterministi
 transition system

spe
i�
ations.

4.1 Loosely Cooperating systems

Theorem 2 Let TS = (Q;!; q

in

) be a transition system over � and

let

e

� = h�

1

; : : : ;�

k

i be a distribution of �. Then, there exists a loosely


ooperating system TS

1

k � � � k TS

k

over

e

� whose state spa
e is isomor-

phi
 to TS if and only if for ea
h i 2 [1::k℄ there exists an equivalen
e

relation �

i

� (Q�Q) su
h that the following 
onditions are satis�ed:

(i) If q

a

�! q

0

and a =2 �

i

, then q �

i

q

0

.

(ii) If q �

i

q

0

for every i, then q = q

0

.

(iii) Let q 2 Q and a 2 �. If for ea
h i 2 lo
(a), there exist s

i

; s

0

i

2 Q

su
h that s

i

�

i

q, and s

i

a

�! s

0

i

, then for ea
h 
hoi
e of su
h

s

i

's and s

0

i

's there exists q

0

2 Q su
h that q

a

�! q

0

and for ea
h

i 2 lo
(a), q

0

�

i

s

0

i

.

Proof Sket
h: ()) : Suppose TS

1

k � � � k TS

k

is isomorphi
 to TS.

We must exhibit k equivalen
e relations f�

i

g

i2[1::k℄

, su
h that 
onditions

(i)|(iii) are satis�ed. Assume, without loss of generality, that TS is in

fa
t equal to TS

1

k � � � k TS

k

.

For i 2 [1::k℄, let TS

i

= (Q

i

;!

i

; q

i

in

). We then have Q �

(Q

1

� � � � � Q

k

) and q

in

= (q

1

in

; : : : ; q

k

in

). De�ne �

i

� (Q � Q) as fol-

lows: q �

i

q

0

i� q[i℄ = q

0

[i℄.

Sin
e TS is a loosely 
ooperating system, it is 
lear that 
onditions (i)

and (ii) are satis�ed. To establish 
ondition (iii), �x q 2 Q and a 2 �.

Suppose that for ea
h i 2 lo
(a) there is a transition s

i

a

�! s

0

i

su
h that

s

i

�

i

q. Clearly, for ea
h i 2 lo
(a), s

i

a

�! s

0

i

implies s

i

[i℄

a

�!

i

s

0

i

[i℄.

Moreover s

i

[i℄ = q[i℄ by the de�nition of �

i

. Sin
e TS is a loosely


ooperating system, this implies q

a

�! q

0

, where q

0

[i℄ = s

0

i

[i℄ for i 2 lo
(a)

and q

0

[i℄ = q[i℄ otherwise.

(() : Suppose we are given equivalen
e relations f�

i

� (Q�Q)g

i2[1::k℄

whi
h satisfy 
onditions (i)|(iii). For ea
h q 2 Q and i 2 [1::k℄, let

[q℄

i

def

= fs j s �

i

qg. For i 2 [1::k℄, de�ne the transition system TS

i

=

(Q

i

;!

i

; q

i

in

) over �

i

as follows:
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Q

i

= f[q℄

i

j q 2 Qg, with q

i

in

= [q

in

℄

i

.

[q℄

i

a

�!

i

[q

0

℄

i

i� a 2 �

i

and there exists s

a

�! s

0

with s �

i

q and

s

0

�

i

q

0

.

We wish to show that TS is isomorphi
 to TS

1

k � � � k TS

k

. Let

TS

1

k � � � k TS

k

= (

b

Q; ; q̂

in

). We 
laim that the required isomorphism

is given by the fun
tion f : Q !

b

Q, where f(q) = ([q℄

1

; : : : ; [q℄

k

). To


omplete the proof, we have to argue that f is well-de�ned and that it


onstitutes a bije
tion. This 
an be done by indu
tion on the length of

the shortest path from q

in

to q for ea
h state q in TS. The details 
an

be found in [3℄.

2

Intuitively, 
ondition (i) in the pre
eding 
hara
terization guarantees

that the a
tions are distributed 
orre
tly among the pro
esses. Condi-

tion (ii) is an extensionality 
ondition|the global state of the system is

no more than the produ
t of the lo
al states of the individual pro
esses.

Finally, 
ondition (iii) 
aptures the essen
e of loose 
ooperation|any


ombination of lo
al 
hoi
es for an a-move 
an be 
ombined into a global

a-move.

4.2 Syn
hronously 
ommuni
ating systems

For syn
hronously 
ommuni
ating systems, the 
hara
terization is sim-

ilar. The only di�eren
e is in 
ondition (iii), whi
h has to be appropri-

ately modi�ed to take into a

ount that joint moves in su
h systems 
an

depend on 
ontextual information about other pro
esses involved in the

move. However, this 
ontextual information is independent of the states

of pro
esses not involved in the move. In other words, for any a
tion a,

the a-moves enabled at a global state depend only on the lo
al states of

the pro
esses in lo
(a). Two global states that agree on their proje
tions

onto the pro
esses in lo
(a) must have the same a-transitions enabled.

Theorem 3 Let TS = (Q;!; q

in

) be a transition system over � and

let

e

� = h�

1

; : : : ;�

k

i be a distribution of �. Then, there exists a syn-


hronously 
ommuni
ating system TS

1

kk � � � kk TS

k

over

e

� whose state

spa
e is isomorphi
 to TS if and only if for ea
h i 2 [1::k℄ there exists

an equivalen
e relation �

i

� (Q�Q) su
h that the following 
onditions

are satis�ed:

(i) If q

a

�! q

0

and a =2 �

i

, then q �

i

q

0

.

(ii) If q �

i

q

0

for every i, then q = q

0

.
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(iii) For q; q

0

2 Q and a 2 �, let q �

a

q

0

denote that for ea
h i 2 lo
(a),

q �

i

q

0

. Then, whenever q �

a

q

0

, if there is a move q

a

�! q

1

then

there is also a move q

0

a

�! q

0

1

su
h that q

1

�

a

q

0

1

.

An e�e
tive synthesis pro
edure. Observe that Theorems 2 and

3 yield e�e
tive synthesis pro
edures for �nite-state spe
i�
ations. The

number of ways of partitioning a �nite-state spa
e using equivalen
e

relations is bounded and we 
an exhaustively 
he
k ea
h 
hoi
e to see if

it meets 
riteria (i){(iii) in the statements of the two theorems. In both


ases, the number of states of ea
h pro
ess in the resulting distributed

transition system is exponential in the size of the original transition

system and the number of 
omponents in the distributed alphabet.

5. Synthesis modulo language equivalen
e

Languages. Let TS = (Q;!; q

in

) be a transition system over �.

The language of TS is the set L(TS) � �

�


onsisting of the labels along

all runs of TS. In other words, L(TS) = fw j q

in

w

�! q; q 2 Qg.

Noti
e that L(TS) is always pre�x-
losed and always 
ontains the

empty word. Moreover, L(TS) is regular whenever TS is �nite. For the

rest of this se
tion, we assume all transition systems that we en
ounter

are �nite.

5.1 Loosely Cooperating systems

Produ
t languages. Let L � �

�

and let

e

� = h�

1

; : : : ;�

k

i be a

distribution of �. For w 2 �

�

, let w�

�

i

denote the proje
tion of w onto

�

i

, obtained by erasing all letters in w whi
h do not belong to �

i

. The

language L is a produ
t language over

e

� if for ea
h i 2 [1::k℄ there is a

language L

i

� �

�

i

su
h that L = fw j w�

�

i

2 L

i

; i 2 [1::k℄g.

We begin with the following basi
 
onne
tion between produ
t lan-

guages and loosely 
ooperating systems [16℄.

Lemma 4 L(TS

1

k � � � k TS

i

) = fw j w�

�

i

2 L(TS

i

); i 2 [1::k℄g.

It turns out that a produ
t language is always the produ
t of its

proje
tions [16℄.

Lemma 5 Let L � �

�

and let

e

� = h�

1

; : : : ;�

k

i be a distribution of �.

For i 2 [1::k℄, let L

i

= fw�

�

i

j w 2 Lg. Then, L is a produ
t language if

and only if L = fw j w�

�

i

2 L

i

; i 2 [1::k℄g.
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The pre
eding result allows us to 
omplete Example 1 showing that

syn
hronously 
ommuni
ating systems are a ri
her 
lass than loosely


ooperating systems.

Example 1 (
ontinued). Let � = fa

1

; b

1

; a

2

; b

2

; 
g be distributed

as (fa

1

; b

1

; 
g; fa

2

; b

2

; 
g). Our goal was to establish that the behaviour

des
ribed by the extended regular expression [
 � (a

1

k a

2

+ b

1

k b

2

)℄

�

,

where k represents the shu�e operation, 
annot be implemented as a

loosely 
ooperating system.

To verify this, we argue that this is not a produ
t language. It is easy

to see that the proje
tions of the desired behaviour onto �

1

and �

2

yield

the languages L

1

= [
 � (a

1

+ b

1

)℄

�

and L

2

= [
 � (a

2

+ b

2

)℄

�

. However, the

proje
tions of 
a

1

b

2

also lie in L

1

and L

2

, although 
a

1

b

2

is not a string

in the language de�ned by the expression [
 � (a

1

k a

2

+ b

1

k b

2

)℄

�

. 2

We 
an now state the synthesis result for loosely 
ooperating systems

modulo language equivalen
e.

Theorem 6 Let TS = (Q;!; q

in

) be a �nite-state transition system

over � and let

e

� = h�

1

; : : : ;�

k

i be a distribution of �. Then, we


an e�e
tively de
ide whether there exists a loosely 
ooperating system

TS

1

k � � � k TS

k

over

e

� su
h that L(TS

1

k � � � k TS

k

) = L(TS).

Proof: Lemma 5 yields following de
ision pro
edure. For i 2 [1::k℄,


onstru
t the �nite-state system TS

i

su
h that L(TS

i

) = L�

�

i

. This


an be done by relabelling all moves not in �

i

by " and then perform-

ing an "-
losure on the resulting system. Che
king whether L(TS) =

L(TS

1

k � � � k TS

k

) is then just an instan
e of the language equivalen
e

problem for �nite-state automata. 2

5.2 Syn
hronously 
ommuni
ating systems

Con
urrent alphabet. A distributed alphabet h�

1

; : : : ;�

n

i gives

rise to a natural independen
e relation I

lo


between letters: (a; b) 2 I

lo


if and only if lo
(a) \ lo
(b) = ;. Thus, a and b are independent when

they are performed by disjoint sets of pro
esses in the system. Clearly,

the relation I

lo


is irre
exive and symmetri
. Su
h a relation is 
alled

an independen
e relation.

An alphabet equipped with an independen
e relation is also 
alled a


on
urrent alphabet. This notion was introdu
ed by Mazurkiewi
z as a

te
hnique for studying 
on
urrent systems from the viewpoint of formal

language theory [9℄.
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Tra
es and tra
e languages. Given a 
on
urrent alphabet (�; I),

I indu
es a natural equivalen
e relation � on �

�

: two words w and w

0

are related by � if and only if w

0


an be obtained from w by a sequen
e

of permutations of adja
ent independent letters. More formally, w � w

0

if there is a sequen
e of words v

1

; : : : ; v

k

su
h that w = v

1

, w

0

= v

k

and

for ea
h i 2 [1::k�1℄, there exist words u

i

; u

0

i

and letters a

i

; b

i

satisfying

v

i

= u

i

a

i

b

i

u

0

i

; v

i+1

= u

i

b

i

a

i

u

0

i

and (a

i

; b

i

) 2 I:

A
tually, � de�nes a 
ongruen
e on �

�

with respe
t to 
on
atenation:

If u � u

0

then for any words w

1

and w

2

, w

1

uw

2

� w

1

u

0

w

2

. Also, both

right and left 
an
ellation preserve �-equivalen
e: wu � wu

0

implies

u � u

0

and uw � u

0

w implies u � u

0

.

Equivalen
e 
lasses of words of �

�

under � and are 
alled tra
es. Let

[w℄ denote the �-equivalen
e 
lass 
orresponding to the word w. Sin
e

the relation � is a 
ongruen
e, the 
omposition operation on tra
es is

given by

8u; v 2 �

�

: [u℄[v℄ = [uv℄:

Re
ognizable tra
e languages. Sets of tra
es are 
alled tra
e lan-

guages|in other words, a tra
e language over (�; I) is a language of

words over � that is 
losed with respe
t to the equivalen
e �. A re
-

ognizable tra
e language is a re
ognizable (or regular) language over �

that is 
losed with respe
t to �.

Re
ognizable tra
e languages 
an be 
hara
terized in terms of the

stru
ture of the minimumDFAs that a

ept these languages. Let L � �

�

be a re
ognizable string language and let A

L

= (S;�; Æ; s

0

; S

F

) be the

minimum DFA for L. As usual, for w = a

1

: : : a

m

, we let Æ(q; w) denote

the unique state rea
hed by A

L

on reading w at state q. Then, it is a

well-known fa
t that for ea
h pair of words w

1

; w

2

over �, Æ(s

in

; w

1

) =

Æ(s

in

; w

2

) if and only if w

1

�

R

L

w

2

, where �

R

L

is the right-equivalen
e

relation de�ned by L, given by

8u; u

0

2 �

�

: u �

R

L

u

0

def

= 8v 2 �

�

: uv 2 L i� u

0

v 2 L

If L is a re
ognizable tra
e language and w � w

0

, then it is easy to see

that w �

R

L

w

0

as well. From this it follows that if L is a re
ognizable

tra
e language and A

L

= (S;�; Æ; s

0

; S

F

) is the minimum DFA for L,

then for ea
h w 2 �

�

, for ea
h w

0

2 [w℄, Æ(s

in

; w) = Æ(s

in

; w

0

). In parti
-

ular, this means that for ea
h state s 2 S and ea
h pair of independent

letters (a; b) 2 I, it must be the 
ase that Æ(s; ab) = Æ(s; ba). In fa
t,

this turns out to be a 
hara
terization of re
ognizable tra
e languages.
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Lemma 7 Let L be re
ognizable subset of �

�

. Let A

L

= (S;�; Æ; s

0

; S

F

)

be the minimum DFA for L. Then, L is a re
ognizable tra
e language

over (�; I) if and only if for ea
h s 2 S and ea
h pair of letters (a; b) 2 I,

Æ(s; ab) = Æ(s; ba).

A 
elebrated theorem of Zielonka [18℄ states that if we are given a dis-

tribution

e

� = h�

1

; : : : ;�

k

i of � and a re
ognizable tra
e language L over

the 
ommuni
ation alphabet (�; I

lo


) indu
ed by

e

�, we 
an always 
on-

stru
t from A

L

, the minimum DFA for L, a deterministi
 syn
hronously


ommuni
ating system TS

1

kk � � � kk TS

k

over

e

� (that is, the global

transition relation of the system is deterministi
) su
h that language of

TS

1

kk � � � kk TS

k

is L. The 
onstru
tion is too intri
ate to present here,

but we need to slightly qualify Zielonka's theorem to a
hieve the main

result that we are after.

The 
ompli
ation is that Zielonka's theorem holds for syn
hronously


ommuni
ating systems with (global) a

epting states, whereas we are

looking at pre�x-
losed behaviours of distributed transition systems with-

out any a

epting states.

Consider, for instan
e, the language fa; bg over the distributed alpha-

bet hfag; fbgi. This language is a re
ognizable tra
e language in the

framework of Zielonka's theorem. The language is re
ognized by a tran-

sition system with two pro
esses P

a

and P

b

where the states of P

a

are

fq

0

; q

0

0

g, the states of P

b

are fq

1

; q

0

1

g, the initial state is hq

0

; q

1

i, the tran-

sition relations are given by q

0

!

a

q

0

0

and q

1

!

b

q

0

1

and the �nal states

are fhq

0

0

; q

1

i; hq

0

1

; q

0

ig. By examining the global states of the system at

the end of the words a and b, we 
an e�e
tively make a global 
hoi
e

between two independent a
tions a
ross the system. This is not possible

in our model|if P

a

and P

b


an lo
ally perform a and b, respe
tively, we


annot rule out the global behaviours ab and ba.

fI-
losed languages. Let L be a tra
e language over (�; I). We

say that L is forward-independen
e 
losed (fI-
losed) provided wa 2 L,

wb 2 L and (a; b) 2 I always implies wab 2 L.

It is not diÆ
ult to see that the pre�x-
losed languages asso
iated with

syn
hronously 
ommuni
ating systems are ne
essarily fI-
losed. We then

have the following version of Zielonka's theorem

Theorem 8 Let TS = (Q;!; q

in

) be a �nite-state transition system

over � and let

e

� = h�

1

; : : : ;�

k

i be a distribution of �. Then, there

exists a syn
hronously 
ommuni
ating system TS

1

kk � � � kk TS

k

over

e

� su
h that L(TS

1

kk � � � kk TS

k

) = L(TS) if and only if L(TS) is
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an fI-
losed re
ognizable tra
e language over the independen
e alphabet

(�; I

lo


) indu
ed by

e

�.

The 
omplexity of Zielonka's 
onstru
tion is analyzed in [14℄, whi
h

has an alternative presentation of the proof of Zielonka's main result.

Let k be the width of the distributed alphabet and let n be the number

of states in the minimum DFA for L(TS). Then, the number of states

of ea
h pro
ess in the resulting syn
hronously 
ommuni
ating system

TS

1

kk � � � kk TS

k

is 2

O(2

k

n log n)

.

6. Synthesis modulo bisimulation

In the 
ourse of spe
ifying a system, we may a

identally destroy its

inherent distributed stru
ture. This may happen, for example, if we

optimize the design and eliminate redundant states. In su
h situations,

we would like to be able to re
onstru
t a distributed transition system

from the redu
ed spe
i�
ation. Sin
e the synthesized system will not,

in general, be isomorphi
 to the spe
i�
ation, we need a 
riterion for

ensuring that the two systems are behaviourally equivalent. We use

strong bisimulation [10℄ for this purpose.

In general, synthesizing a behaviourally equivalent distributed imple-

mentation from a redu
ed spe
i�
ation appears to be a hard problem.

In this se
tion, we show how to solve the problem for redu
ed spe
i�
a-

tions whi
h 
an be implemented as deterministi
 distributed transition

systems|that is, the global transition system generated by the imple-

mentation is deterministi
. Noti
e that the spe
i�
ation itself may be

nondeterministi
. Sin
e many distributed systems implemented in hard-

ware, su
h as digital 
ontrollers, are a
tually deterministi
, our 
hara
-

terization yields a synthesis result for a large 
lass of useful systems.

We begin by re
alling the de�nition of bisimulation.

De�nition 9 A bisimulation between a pair of transition systems TS

1

=

(Q

1

;!

1

; q

1

in

) and TS

2

= (Q

2

;!

2

; q

2

in

) is a relation R � (Q

1

�Q

2

) su
h

that:

(q

1

in

; q

2

in

) 2 R.

If (q

1

; q

2

) 2 R and q

1

a

�!

1

q

0

1

, there exists q

0

2

, q

2

a

�!

2

q

0

2

and

(q

0

1

; q

0

2

) 2 R.

If (q

1

; q

2

) 2 R and q

2

a

�!

2

q

0

2

, there exists q

0

1

, q

1

a

�!

1

q

0

1

and

(q

0

1

; q

0

2

) 2 R.

The synthesis problem modulo bisimilarity 
an now be formulated

as follows. If TS = (Q;!; q

in

) is a transition system over � and

e

� =
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h�

1

; : : : ;�

k

i is a distribution of �, does there exist a loosely 
ooperating

system TS

1

k � � � k TS

k

(respe
tively, a syn
hronously 
ommuni
ating

system TS

1

kk � � � kk TS

k

) over

e

� su
h that TS

1

k � � � k TS

k

(respe
tively,

TS

1

kk � � � kk TS

k

) is bisimilar to TS?

For deterministi
 transition systems, bisimilarity 
oin
ides with lan-

guage equivalen
e. We 
an use this fa
t to get a simple 
hara
terization

of transition systems whi
h are bisimilar to deterministi
 distributed

transition systems. We �rst re
all a basi
 de�nition.

Bisimulation quotient. Let TS = (Q;!; q

in

) be a transition sys-

tem and let �

TS

be the largest bisimulation relation between TS and

itself. The relation �

TS

de�nes an equivalen
e relation over Q. For

q 2 Q, let [q℄ denote the �

TS

-equivalen
e 
lass 
ontaining q. The bisim-

ulation quotient of TS is the transition system TS=

�

TS

= (

b

Q; ; [q

in

℄)

where

b

Q = f[q℄ j q 2 Qg.

[q℄

a

 [q

0

℄ if there exist q

1

2 [q℄ and q

0

1

2 [q

0

℄ su
h that q

1

a

�! q

0

1

.

The following results then follow easily.

Theorem 10 Let TS be a transition system over � and let

e

� be a

distribution of �.

(i) The system TS is bisimilar to a deterministi
 loosely 
ooperating

system over

e

� if and only if the bisimulation quotient TS=

�

TS

is

deterministi
 and the language L(TS) is a produ
t language over

e

�.

(ii) The system TS is bisimilar to a deterministi
 syn
hronously 
om-

muni
ating system over

e

� if and only if the bisimulation quotient

TS=

�

TS

is deterministi
 and the language L(TS) is a re
ognizable

tra
e language over (�; I

lo


).

Proof Sket
h: Part (i) follows from Lemma 5, sin
e we 
an 
onstru
t

a �nite-state automaton for ea
h proje
tion L

i

of L onto �

i

and then

determinize these automata individually to obtain a deterministi
 loosely


ooperating system.

Part (ii) is a dire
t 
onsequen
e of our adaptation of Zielonka's the-

orem, whi
h guarantees that if L(TS) is an fI-
losed re
ognizable tra
e

language then we 
an always synthesize a deterministi
 syn
hronously


ommuni
ating system with the same language. 2
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7. The synthesis problem for 
on
urrent

alphabets

We now examine the situation where the distributed nature of the system

in spe
i�ed abstra
tly in terms of a 
on
urrent alphabet rather than

expli
itly in terms of a distributed alphabet. The synthesis problem for


on
urrent alphabets 
an be phrased as follows:

Let (�; I) be a 
ommuni
ation alphabet and let TS = (Q;!

; q

in

) be a transition system over �. Does there exist a distri-

bution

e

� = h�

1

; : : : ;�

k

i of � with I

lo


= I and a distributed

transition system over

e

� that is \equivalent" to TS? (As

before, the term equivalen
e 
an mean state-spa
e isomor-

phism, language equivalen
e or bisimilarity.)

Implementing a 
on
urrent alphabet

Given a 
on
urrent alphabet (�; I), there are several ways to 
onstru
t

a distribution

e

� = h�

1

; : : : ;�

k

i of � so that the independen
e relation

I

lo


indu
ed by lo
 
oin
ides with I.

We begin by building the dependen
e graph for (�; I). Let D =

(���) n I be the dependen
e relation generated by (�; I). Constru
t a

undire
ted graph G

D

= (�; E) su
h that E = f(a; b) j (a; b) 2 Dg.

One way to distribute � is to 
reate a pro
ess p

e

for every edge e in

G

D

. For ea
h letter a, we then set lo
(a) to be the set of pro
esses 
orre-

sponding to edges in
ident on the vertex labelled a. In this distribution,

ea
h 
omponent of

e

� 
onsists of pre
isely two letters. We 
all this the

�nest distribution 
orresponding to (�; I).

Alternatively, we 
an 
reate a pro
ess p

C

for ea
h maximal 
lique C in

G

D

. Then, for ea
h letter a and ea
h 
lique C, p

C

2 lo
(a) if and only if

the vertex labelled a belongs to C. We 
all this the 
oarsest distribution

for (�; I).

In both 
ases, it is easy to see that I

lo


= I. There may also be other

distributions between the 
oarsest and �nest distributions that indu
e

I. In general, we just have to ensure that there for every pair (a; b) 2 D,

there is a pro
ess P

i

with fa; bg � P

i

|the pro
ess P

i

\witnesses" the

dependen
y between a and b.

Example 11 If � = fa; b; 
; dg and I = f(a; b); (b; a)g, then all of the

following distributions indu
e I.

The �nest distribution, (fa; 
g; fa; dg; fb; 
g; fb; dg; f
; dg).

The 
oarsest distribution, (fa; 
; dg; fb; 
; dg).
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An intermediate distribution, (fa; 
; dg; fb; 
g; fb; dg).

2

A preorder on distributions. Let

e

� = h�

1

; : : : ;�

k

i and

e

� =

h�

1

; : : : ;�

`

i be distributions of �. Then

e

� .

e

� if for ea
h i 2 [1::k℄,

there exists j 2 [1::`℄ su
h that �

i

� �

j

. If

e

� .

e

� we say that

e

� is �ner

than

e

�, or

e

� is 
oarser than

e

�.

It is not diÆ
ult to establish the following result [3℄.

Lemma 12 Let

e

� = h�

1

; : : : ;�

k

i and

e

� = h�

1

; : : : ;�

`

i be distributions

of � su
h that

e

� .

e

�. Then, for ea
h distributed transition system

TS

1

k � � � k TS

k

over

e

�, there exists an isomorphi
 distributed transition

system




TS

1

k � � � k




TS

`

over

e

�.

It turns out that this result does not hold in the general 
ase, for

arbitrary pairs of distributions

e

� and

e

� that are not related by the

preorder. From Lemma 12 we derive the following 
orollary regarding

the problem of synthesis modulo isomorphism for 
on
urrent alphabets.

Corollary 13 Let (�; I) be a 
on
urrent alphabet and TS = (Q;!; q

in

)

be a transition system over �. Then, the synthesis problem modulo iso-

morphism for distributed transition systems has a solution for TS if and

only if it has a solution with respe
t to the 
oarsest distribution that

indu
es I.

For synthesis modulo language equivalen
e, a similar result holds for

loosely 
ooperating systems|the synthesis problem has a solution if and

only if it has a solution 
orresponding to the 
oarsest distribution.

However, for syn
hronously 
ommuni
ating systems, we 
an make a

mu
h stronger statement. Zielonka's theorem holds for any distribution

that indu
es the same independen
e relation as the original 
on
urrent

alphabet. In other words, for syn
hronously 
ommuni
ating systems we

have the following result.

Theorem 14 Let (�; I) be a 
on
urrent alphabet and TS = (Q;!; q

in

)

be a transition system over � su
h that L(TS) is an fI-
losed re
og-

nizable tra
e language over (�; I). Then, for any distribution

e

� =

h�

1

; : : : ;�

k

i su
h that I

lo


= I we 
an 
onstru
t a (deterministi
) syn-


hronously 
ommuni
ating system TS

1

kk � � � kk TS

k

over

e

� su
h that

L(TS

1

kk � � � kk TS

k

) = L(TS).
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8. Dis
ussion

The synthesis problem modulo isomorphism has been studied in a num-

ber of 
ontexts, notably in the area of Petri nets. As we remarked in

the Introdu
tion, the theory of regions [5℄ was �rst developed to solve

this problem in the 
ontext of nets. A synthesis result for elementary net

systems was �rst proposed in [15℄. This was extended to pla
e-transition

nets with a step-based semanti
s in [12℄. There have been a number of

related results in the area|see, for instan
e, the surveys [2, 17℄.

The problem modulo language equivalen
e has re
ently been lifted

from the setting of syn
hronous 
ommuni
ation to the setting of message-

passing. Over the past few years, the graphi
al spe
i�
ation formal-

ism known as Message Sequen
e Charts (MSCs) has be
ome popular

for spe
ifying systems with asyn
hronous 
ommuni
ation. In general,

an MSC-based spe
i�
ation may not admit a �nite-state implementa-

tion (where �nite-state means that the set of rea
hable 
on�gurations

is �nite|that is, not only is ea
h pro
ess lo
ally �nite-state, but there

is also a uniform bound on the sizes of all the message bu�ers in the

system). The 
lass of MSC spe
i�
ations that do admit �nite-state im-

plementations 
onstitute the so-
alled regular MSC languages, whi
h

have been 
hara
terized in [6℄. In [13℄, the synthesis problem modulo

language equivalen
e is solved for regular MSC languages, where the

distributed implementation is in terms of message-passing automata.

As we have seen here, very little is known about the synthesis problem

modulo bisimulation. In general, one needs to expand on the input

transition system to derive an implementation that is bisimilar to the

global spe
i�
ation and yet has the stru
ture of a distributed transition

system. The 
hief diÆ
ulty is that it is diÆ
ult to quantify the 
ollapse

in the state spa
e that o

urs when one takes the bisimulation quotient

of a distributed transition system. To put it another way, the diÆ
ulty

lies in bounding the size of the synthesized system in terms of the size of

the input system. In fa
t, the state of our knowledge is so poor in this

area that even the following seemingly trivial problem is still open.

Let TS = (Q;!; q

in

) be a transition system over � and let

e

� = h�

1

; : : : ;�

k

i be a distribution of �. Suppose that TS

is �nite-state and is bisimilar to a (possibly in�nite-state)

loosely 
ooperating system TS

1

k � � � k TS

k

over

e

�. Then,

is it ne
essarily the 
ase that TS is also bisimilar to a �nite-

state loosely 
ooperating system TS

0

1

k � � � k TS

0

k

over

e

�?
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