FROM GLOBAL SPECIFICATIONS TO
DISTRIBUTED IMPLEMENTATIONS

Madhavan Mukund
Chennai Mathematical Institute
92 G N Chetty Road, Chennai 600 017, India

madhavan@cmi.ac.in

Abstract We study the problem of synthesizing distributed implementations from
global specifications. We work in the framework of transition systems.
The main question we address is the following.

Given a global transition system 7'S over a set of actions ¥ together
with a distribution of ¥ into local components (Xi,...,%;), does
there exist a distributed transition system over (¥1,...,X;) that is
“equivalent” to T'S?

We focus on two different types of distributed transition systems—
loosely cooperating systems and synchronously communicating systems.
For “equivalence” we consider three possibilities—state-space isomor-
phism, language equivalence and bisimulation.

We survey the current state of knowledge about the different versions
of the problem that arise from choosing a concrete notion of equivalence
and a specific model of distributed transition systems.

1. Introduction

Designing distributed systems has always been a challenging task. Inter-
actions between individual processes can introduce subtle errors in the
system’s overall behaviour that may pass undetected even after rigorous
testing. A fruitful approach in recent years has been to specify the be-
haviour of the overall system in a global manner and then automatically
synthesize a distributed implementation from the specification.

The question of identifying when a sequential specification has an
implementation in terms of a desired distributed architecture was first
raised in the context of Petri nets. Ehrenfeucht and Rozenberg [5] in-
troduced the concept of regions to describe how to associate places of
nets with states of a transition system. In [15], Nielsen, Rozenberg and
Thiagarajan use regions to characterize the class of transition systems

2

that arise from elementary net systems. Subsequently, several authors
have extended this characterization to larger classes of nets (for a sample
of the literature, see [2, 12, 17]).

Here, we consider distributed transition systems—networks of transi-
tion systems that coordinate their activity by synchronizing on common
actions. We focus on two models of distributed transition systems, which
we refer to as loosely cooperating systems and synchronously communi-
cating systems. The first class has also been called synchronized product
systems and has been widely studied [1]. The second class corresponds
to Zielonka’s asynchronous automata [18]. The names we have chosen for
these two classes are intended to reflect more accurately the underlying
structure of the two system models.

Both these models come with a natural notion of component and
induced notions of concurrency and causality. These models have a
well-understood theory, at least in the linear-time setting [4, 16, 18].
Variants of these models are also the basis for system descriptions in a
number of model-checking tools [8, 7].

The synthesis problem can broadly be stated as follows:

Given a global transition system TS over a set of actions
Y together with a distribution of ¥ into local components
(31,...,2), does there exist a distributed transition system
over (3q,..., %) that is “equivalent” to T'S?

We consider three possible interpretations of the term “equivalence”:
state-space isomorphism, language equivalence and bisimulation. For
the first two interpretations, we provide complete characterizations. The
synthesis problem with respect to bisimulation is still open in general
and we provide some positive results in the restricted setting where we
are in search of deterministic implementations.

The paper is organized as follows. We begin by defining the two
classes of distributed transition systems we will be looking at. Next, in
Section 3, we define the three types of synthesis problems that we are
interested in. These problems are then addressed in turn in Sections 4—
6. In Section 7 we consider the synthesis problem in a more abstract
setting, where concurrency is presented implicitly using an independence
relation. We conclude with a short discussion of related work.

2. Distributed transition systems

We begin by defining labelled transition systems, a general framework
for modelling computing systems.

From global specifications todistributed implementations 3

Labelled transition system. Let X be a finite nonempty set of ac-
tions. A labelled transition system over 3 is a structure TS =
(Q,—, qin), where @Q is a set of states, ¢;, € @Q is the initial state and
— C Q x X x Q@ is the transition relation.

We abbreviate a transition sequence of the form ¢y —» --- —% ¢,
as qo “=3" ¢,. In every transition system T'S = (Q,—,¢p) that we
encounter, we assume that each state in () is reachable from the initial
state—that is, for each ¢ € () there exists a transition sequence ¢;, =
@0 3 g =q.

A large class of distributed systems can be fruitfully modelled as net-
works of local transition systems whose moves are coordinated through
common actions. To formalize this, we begin with the notion of a dis-
tributed alphabet.

Distributed alphabet. A distributed alphabet over ¥, or a distri-
bution of X, is a tuple of nonempty sets ¥ = (X4,...,%) such that
Ui<i<i i = 2. For each action a € 3, the locations of a are given by

the set locg(a) = {i | a € X;}. If 3 is clear from the context, we write
just loc(a) to denote locs(a).

Without loss of generality, we may assume that X; # X; for any
pair of distinct components of a distributed alphabet. We consider two
distributions to be the same if they differ only in the order of their
components. Henceforth, for any natural number k, [1..k] denotes the
set {1,2,...,k}.

The first model of distributed transition systems that we consider is
loosely cooperating systems. Each process of a loosely cooperating sys-
tem is a local transition system over one component of a distributed
alphabet. The global transition relation forces all processes that share
an action a to move jointly when a occurs. This synchronization, how-
ever, does not involve any communication of “local” information between
processes. Each process participating in a loosely cooperating transition
is free to choose for itself any move that is available in its local transition
relation, independent of how the other processes choose to move.

Loosely cooperating systems. Let (Xi,...,%) be a distribution
of ¥. For each i € [1..k], let T'S; = (Qi, —,¢},) be a transition system
over ;. The loosely cooperating system T'Sq || - -+ || T'Sk is the transition

system T'S = (Q, —, gin) over ¥ = |J, ;< Xi, where:

® gin = (qilna---aqikn)-

B QC(Q %X - xQk)and - C Q x X x Q are defined inductively
by:

— Gin € Q

— Let ¢ € Q and @ € 3. For i € [1..k], let ¢[i] denote the i'?
component of ¢. If for each i € loc(a), T'S; has a transition
q[i] =i ¢}, then ¢ = ¢’ and ¢’ € Q where ¢'[i] = ¢ for
i € loc(a) and ¢'[j] = q[j] for j ¢ loc(a).

A richer model is that of a synchronously communicating system. Here,
as before, we have one process for each component of the distributed
alphabet. However, the moves for each action are specified jointly for
all processes that synchronize on that action. Thus, the local behaviour
of each process is conditional on the behaviour of the other processes
that it synchronizes with. Abstractly, this corresponds to the processes
pooling together the information available to them locally and deciding
on a combined move based on this shared information.

Synchronously communicating systems. Let (Xq,...,Xk) be
a distribution of ¥. For each i € [1..k], let P; be a process with a
finite set of local states @); that includes a distinguished initial state
qiin. We associate with each action a € X a transition relation —,C
Hieloc(a) Qi X Hieloc(a) Qi-

The synchronously communicating system TSy ||| --- || TSk is the
transition system 7'S = (Q, —, qin) over X = Uie[l__k] Y; where:

® gin = (qilna---aqikn)-

B QC Q1 X XQrand —» C Q x X x @ are defined inductively as
follows:

— Gin € Q

— Let ¢ € Q and a € ¥ such that loc(a) = {i1,...,in}. For
i € [1..k], let g[i] denote the i"* component of ¢. Then ¢ - ¢'
provided (g[i1], ..., q[im]) =4 (¢'[i1],--.,¢[im]) and for j ¢
loc(a), qlj] = ¢'j]-

Expressiveness of the two models

It is not difficult to see that every loosely cooperating system admits a
description as a synchronously communicating system by setting each
transition relation —, to be the direct product of the local a-transitions
—i N (Q; x {a} x Q;) over all i € loc(a).

From global specifications todistributed implementations 5

On the other hand, the following example (from [18]) shows that
synchronously communicating systems are strictly more expressive than
loosely cooperating systems.

Example 1 Let ¥ = {ay,b1,a9,b2,c} be distributed as ({ai,b1,c},
{ag,ba,c}). We can construct a synchronously communicating system
that exhibits the following behaviour: Process P; alternately performs
action ¢ followed by either a; or b; such that between any two ¢’s (which
are jointly performed by both processes) P; performs a; if and only if
P, performs ay. We can represent this behaviour as (the prefix closure
of) an extended regular expression [c - (a1 || az + by || b2)]*, where ||
represents the shuffle operation.

To implement this behaviour as a synchronously communicating sys-
tem, for 7 € {1,2} we set Q; = {¢’,¢’,q.} and ¢!, = ¢’. The transition
relations are then defined as follows:

n (gl q?) = (ah,a2), (ab, %) —e (a4, @})
gl —a b, qf = dl
" g2 ey @2 G, @

In other words, when P; and P perform ¢, the joint move coordinates
their behaviour so that either they are constrained to next perform either
a1 and as or b; and bs, respectively.

Informally, the reason that this behaviour cannot be captured by a
loosely cooperating system is that we would have to split up the —. move
into local components and then take the direct product of these local
c-moves. This would introduce undesirable global moves on c¢ actions,
such as a move in which P; moves to qé where a; is enabled while P
simultaneously moves to qg where b9 is enabled. A more formal argument
will be presented later. a

3. The synthesis problem

Broadly speaking, the synthesis problem for distributed transition sys-
tems is the following. Let T'S = (Q, —, ¢in) be a transition system over
S and & = (24,...,5;) be a distribution of £. Does there exist a
distributed transition system over S that is “equivalent” to T'S?

To make the problem precise, we have to specify what we mean by
“equivalent”. In this paper, we will look at three versions of “equiva-
lence”.

State space equivalence: The state space of the distributed transi-
tion system should be isomorphic to the global transition system
TS.

Language equivalence: The distributed transition system should
admit the same sequences of actions as the global transition system
TS.

Bisimulation equivalence: The state space of the distributed tran-
sition system should be bisimilar to the global transition system
TS.

These three interpretations of the word “equivalence” yield six syn-

thesis problems in all, since we are considering two different types of
distributed transition systems.

Broadly speaking, the results known for these problems can be clas-

sified as follows:

4.

Synthesis modulo isomorphism can be solved precisely for both
classes of distributed transition systems using the theory of regions
2, 3, 5].

Synthesis modulo language equivalence can be solved for loosely
cooperating systems in terms of a precise characterization of the
languages generated by such systems, based on the projections
onto the components of the distributed alphabet.

For synchronously communicating systems, however, the synthe-
sis problem modulo language equivalence is much harder and is a
celebrated result in the theory of concurrent systems [18].

Synthesis modulo bisimulation is still unsolved in the general case.
A characterization is known for the relatively simple case where
the synthesized distributed transition system is required to be de-
terministic [3].

Synthesis modulo isomorphism

Regions were introduced in [5] to characterize global state spaces that
arise from local presentations such as Petri nets. Broadly speaking, a
region of an edge-labelled graph is a subset of vertices that satisfies a
suitable consistency criterion on the labels of edges that enter and leave
the subset.

In our setting, the basic idea is to label in a consistent manner each

state of the input transition system by a k-tuple of local states (cor-
responding to a global state of a distributed transition system). We

From global specifications todistributed implementations 7

formulate this labelling in terms of local equivalence relations on the
states of the original system—for each i € [1..k], if two states ¢; and
g2 of the original system are i-equivalent, the interpretation is that the
global states assigned to ¢; and ¢z by the labelling agree on the i*" com-
ponent. Our presentation is taken from [3]. A restricted form of this
characterization was obtained in [11], for deterministic transition system
specifications.

4.1 Loosely Cooperating systems

Theorem 2 Let T'S = (Q,—,qin) be a transition system over ¥ and
let ¥ = (X1,...,5k) be a distribution of . Then, there exists a loosely

cooperating system TSy || -+ | TSk over & whose state space is isomor-
phic to TS if and only if for each i € [1..k] there exists an equivalence
relation =; C (Q X Q) such that the following conditions are satisfied:

(i) If g = ¢ and a ¢ i, then q =; (.
(1) If ¢ =i q' for every i, then ¢ =¢'.

(iii) Let ¢ € Q and a € X. If for each i € loc(a), there exist s;, s, € Q
such that s; =; q, and s; —> si, then for each choice of such

si’s and s'’s there exists ¢ € Q such that ¢ = ¢' and for each
i €loc(a), ¢' =; 5.

Proof Sketch: (=) : Suppose T'Sy || - || 'Sk is isomorphic to T'S.
We must exhibit k£ equivalence relations {Ei}ie[lnk}, such that conditions
(1)—(7ii) are satisfied. Assume, without loss of generality, that 7'S is in
fact equal to 'Sy || --- || TS

For i € [l.k], let TS; = (Qi,—i,¢',). We then have Q C
(Q1 x -+ x Q) and g¢in = (¢,...,¢~). Define =,C (Q x Q) as fol-
lows: q =; ¢ iff q[i] = ¢'[i].

Since T'S is a loosely cooperating system, it is clear that conditions (7)
and (7i) are satisfied. To establish condition (iii), fix ¢ € @ and a € X.
Suppose that for each i € loc(a) there is a transition s; N s; such that
s; =; g. Clearly, for each i € loc(a), s; — s implies s;[i] —=; s[i].
Moreover s;[i] = q[i] by the definition of =;. Since T'S is a loosely
cooperating system, this implies ¢ — ¢/, where ¢'[i] = s.[i] for i € loc(a)
and ¢'[i] = ¢[i] otherwise.

(«) : Suppose we are given equivalence relations {=; C (Q X Q) }ic[1..4]
which satisfy conditions (i)—(%ii). For each ¢ € @ and i € [1..k], let

lq]i & {s | s =i q}. For i € [1..k], define the transition system T'S; =
(Qi, =4, q},) over X; as follows:

Qi ={[gi | ¢ € Q}, with ¢!, = [gin;.

m [g; s, [¢']; iff @ € ¥; and there exists s 25 ' with s =; ¢ and
I — !
S = q .

We wish to show that TS is isomorphic to T'Sy || --- || T'Sk. Let
TSy - || TSk = (@, ~>, Gin). We claim that the required isomorphism
is given by the function f : Q — @, where f(q) = ([q]1,---,[¢lk). To
complete the proof, we have to argue that f is well-defined and that it
constitutes a bijection. This can be done by induction on the length of
the shortest path from ¢, to g for each state ¢ in T'S. The details can
be found in [3].

O

Intuitively, condition (i) in the preceding characterization guarantees
that the actions are distributed correctly among the processes. Condi-
tion (ii) is an extensionality condition—the global state of the system is
no more than the product of the local states of the individual processes.
Finally, condition (iii) captures the essence of loose cooperation—any
combination of local choices for an a-move can be combined into a global
a-move.

4.2 Synchronously communicating systems

For synchronously communicating systems, the characterization is sim-
ilar. The only difference is in condition (iii), which has to be appropri-
ately modified to take into account that joint moves in such systems can
depend on contextual information about other processes involved in the
move. However, this contextual information is independent of the states
of processes not involved in the move. In other words, for any action a,
the a-moves enabled at a global state depend only on the local states of
the processes in loc(a). Two global states that agree on their projections
onto the processes in loc(a) must have the same a-transitions enabled.

Theorem 3 Let T'S = (Q,—, qin) be a transition system over ¥ and
let ¥ = (3q,...,5k) be a distribution of . Then, there exists a syn-

chronously communicating system TSy ||| --- ||| TSk over & whose state
space is isomorphic to T'S if and only if for each i € [1..k] there exists
an equivalence relation =; C (Q X Q) such that the following conditions
are satisfied:

(i) If g = ¢' and a ¢ 3;, then q =; ¢ .

(11) If g =; ¢' for every i, then g =¢ .

From global specifications todistributed implementations 9

(111) For q,q' € Q and a € X3, let q =, q' denote that for each i € loc(a),
q =i ¢'. Then, whenever q =, ¢, if there is a move ¢ —s ¢ then
there is also a move ¢ — ¢} such that q1 =, q}.

An effective synthesis procedure. Observe that Theorems 2 and
3 yield effective synthesis procedures for finite-state specifications. The
number of ways of partitioning a finite-state space using equivalence
relations is bounded and we can exhaustively check each choice to see if
it meets criteria (1)-(ii7) in the statements of the two theorems. In both
cases, the number of states of each process in the resulting distributed
transition system is exponential in the size of the original transition
system and the number of components in the distributed alphabet.

5. Synthesis modulo language equivalence

Languages. Let TS = (Q,—,qin) be a transition system over X.
The language of T'S is the set L(T'S) C ¥* consisting of the labels along

all runs of T'S. In other words, L(T'S) = {w | ¢in — ¢,q € Q}.

Notice that L(T'S) is always prefix-closed and always contains the
empty word. Moreover, L(T'S) is regular whenever 7T'S is finite. For the
rest of this section, we assume all transition systems that we encounter
are finite.

5.1 Loosely Cooperating systems

Product languages. Let L C X* and let & = (34,...,5;) be a
distribution of ¥. For w € ¥*, let w[y, denote the projection of w onto
¥;, obtained by erasing all letters in w which do not belong to ¥;. The
language L is a product language over X if for each i € [1..k] there is a
language L; C X7 such that L = {w | w(yx, € L;,1 € [1..k]}.

We begin with the following basic connection between product lan-
guages and loosely cooperating systems [16].

Lemma 4 L(T'S, || --- || T'S;) = {w | wlx, € L(T'S;),i € [1..k]}.

It turns out that a product language is always the product of its
projections [16].

Lemma 5 Let L C Y% and let ¥ = (3q,...,%) be a distribution of 3.
For i e [1.k], let Ly = {wls,| w € L}. Then, L is a product language if
and only if L = {w | wlx, € L;,7 € [1..k]}.

10

The preceding result allows us to complete Example 1 showing that
synchronously communicating systems are a richer class than loosely
cooperating systems.

Example 1 (continued). Let ¥ = {aj,b1,as,bs,c} be distributed
as ({a1,b1,c},{az,ba,c}). Our goal was to establish that the behaviour
described by the extended regular expression [c - (a1 || a2 + b1 || b2)]*,
where || represents the shuffle operation, cannot be implemented as a
loosely cooperating system.

To verify this, we argue that this is not a product language. It is easy
to see that the projections of the desired behaviour onto ¥; and X5 yield
the languages L; = [c- (a1 +b1)]" and Ly = [¢- (ag + b2)]*. However, the
projections of caibs also lie in Ly and Lo, although caibs is not a string
in the language defined by the expression [c- (a1 || a2 + b1 || b2)]*. O

We can now state the synthesis result for loosely cooperating systems
modulo language equivalence.

Theorem 6 Let T'S = (Q,—,qin) be a finite-state transition system
over ¥ and let ¥ = (Xq,...,Xk) be a distribution of ¥. Then, we
can effectively decide whether there exists a loosely cooperating system

TSy || - || TSk over X such that L(T'Sy || --- || T'Sk) = L(T'S).

Proof: Lemma 5 yields following decision procedure. For i € [1..k],
construct the finite-state system 7'S; such that L(T'S;) = L[x,. This
can be done by relabelling all moves not in 3; by € and then perform-
ing an e-closure on the resulting system. Checking whether L(T'S) =

L(TSy | --- || T'Sk) is then just an instance of the language equivalence
problem for finite-state automata. a
5.2 Synchronously communicating systems

Concurrent alphabet. A distributed alphabet (3q,...,%,) gives
rise to a natural independence relation Ij,. between letters: (a,b) € I}y
if and only if loc(a) N loc(b) = . Thus, a and b are independent when
they are performed by disjoint sets of processes in the system. Clearly,
the relation I, is irreflexive and symmetric. Such a relation is called
an independence relation.

An alphabet equipped with an independence relation is also called a
concurrent alphabet. This notion was introduced by Mazurkiewicz as a
technique for studying concurrent systems from the viewpoint of formal
language theory [9].

From global specifications todistributed implementations 11

Traces and trace languages. Given a concurrent alphabet (3, 1),
I induces a natural equivalence relation ~ on ¥*: two words w and w’
are related by ~ if and only if w’ can be obtained from w by a sequence
of permutations of adjacent independent letters. More formally, w ~ w’
if there is a sequence of words vy, ..., v, such that w = vy, w' = v} and
for each i € [1..k—1], there exist words u;, v} and letters a;, b; satisfying

/ /
V; = uiaibiui, Vir1 = uibiaiui and (ai,bi) el

Actually, ~ defines a congruence on %* with respect to concatenation:
If u ~ o' then for any words wy and ws, wiuws ~ wiu'wsy. Also, both
right and left cancellation preserve ~-equivalence: wu ~ wu' implies
u ~ u' and vw ~ v'w implies u ~ u'.

Equivalence classes of words of 3* under ~ and are called traces. Let
[w] denote the ~-equivalence class corresponding to the word w. Since
the relation ~ is a congruence, the composition operation on traces is
given by

Vu,v € X*. [u][v] = [uv].

Recognizable trace languages. Sets of traces are called trace lan-
guages—in other words, a trace language over (X,[) is a language of
words over X that is closed with respect to the equivalence ~. A rec-
ognizable trace language is a recognizable (or regular) language over X
that is closed with respect to ~.

Recognizable trace languages can be characterized in terms of the
structure of the minimum DFAs that accept these languages. Let L C >*
be a recognizable string language and let A, = (S,%, 4, sg, Sr) be the
minimum DFA for L. As usual, for w = a; ... an, we let (g, w) denote
the unique state reached by Ay on reading w at state g. Then, it is a
well-known fact that for each pair of words wq,ws over X, §(sin, w1) =
d(Sin, we) if and only if wy =g, we, where =g, is the right-equivalence
relation defined by L, given by

Vu,u' € . u=pg, v Cyyer . welLiffuvel

If L is a recognizable trace language and w ~ w’, then it is easy to see
that w =, w' as well. From this it follows that if L is a recognizable
trace language and A;, = (S,%, 4, sp, Sp) is the minimum DFA for L,
then for each w € X*, for each w' € [w], §(sin, w) = 6(sin, w'). In partic-
ular, this means that for each state s € S and each pair of independent
letters (a,b) € I, it must be the case that d(s,ab) = d(s,ba). In fact,
this turns out to be a characterization of recognizable trace languages.

12

Lemma 7 Let L be recognizable subset of X*. Let Ap = (S, %, 46, so, SF)
be the minimum DFA for L. Then, L is a recognizable trace language
over (3,1) if and only if for each s € S and each pair of letters (a,b) € I,
d(s,ab) = d(s,ba).

A celebrated theorem of Zielonka [18] states that if we are given a dis-
tribution & = (31,...,2k) of ¥ and a recognizable trace language L over
the communication alphabet (X, I},.) induced by f), we can always con-
struct from Ay, the minimum DFA for L, a deterministic synchronously
communicating system 7'Sy ||| --- ||| TSk over ¥ (that is, the global
transition relation of the system is deterministic) such that language of
TSy || --- Il TSk is L. The construction is too intricate to present here,
but we need to slightly qualify Zielonka’s theorem to achieve the main
result that we are after.

The complication is that Zielonka’s theorem holds for synchronously
communicating systems with (global) accepting states, whereas we are
looking at prefix-closed behaviours of distributed transition systems with-
out any accepting states.

Consider, for instance, the language {a, b} over the distributed alpha-
bet ({a},{b}). This language is a recognizable trace language in the
framework of Zielonka’s theorem. The language is recognized by a tran-
sition system with two processes P, and P, where the states of P, are
{qo, q}}, the states of P, are {q1,q}}, the initial state is (qo, q1), the tran-
sition relations are given by gy —, ¢(and ¢1 — ¢} and the final states
are {(q},q1), (¢}, qo)}. By examining the global states of the system at
the end of the words a and b, we can effectively make a global choice
between two independent actions across the system. This is not possible
in our model—if P, and P, can locally perform a and b, respectively, we
cannot rule out the global behaviours ab and ba.

fI-closed languages. Let L be a trace language over (X,1). We
say that L is forward-independence closed (fI-closed) provided wa € L,
wb € L and (a,b) € I always implies wab € L.

It is not difficult to see that the prefix-closed languages associated with
synchronously communicating systems are necessarily fl-closed. We then
have the following version of Zielonka’s theorem

Theorem 8 Let TS = (Q,—,qin) be a finite-state transition system

over ¥ and let $ = (3X1,...,2k) be a distribution of . Then, there
exists a synchronously communicating system TSy || --- ||| TSk over

S such that L(TSy || --- || TSk) = L(TS) if and only if L(TS) is

From global specifications todistributed implementations 13

an fl-closed recognizable trace language over the independence alphabet
(3, 1) induced by 3.

The complexity of Zielonka’s construction is analyzed in [14], which
has an alternative presentation of the proof of Zielonka’s main result.
Let k be the width of the distributed alphabet and let n be the number
of states in the minimum DFA for L(T'S). Then, the number of states
of each process in the resulting synchronously communicating system
TSy || -+ | TSy is 202 nlogm),

6. Synthesis modulo bisimulation

In the course of specifying a system, we may accidentally destroy its
inherent distributed structure. This may happen, for example, if we
optimize the design and eliminate redundant states. In such situations,
we would like to be able to reconstruct a distributed transition system
from the reduced specification. Since the synthesized system will not,
in general, be isomorphic to the specification, we need a criterion for
ensuring that the two systems are behaviourally equivalent. We use
strong bisimulation [10] for this purpose.

In general, synthesizing a behaviourally equivalent distributed imple-
mentation from a reduced specification appears to be a hard problem.
In this section, we show how to solve the problem for reduced specifica-
tions which can be implemented as deterministic distributed transition
systems—that is, the global transition system generated by the imple-
mentation is deterministic. Notice that the specification itself may be
nondeterministic. Since many distributed systems implemented in hard-
ware, such as digital controllers, are actually deterministic, our charac-
terization yields a synthesis result for a large class of useful systems.

We begin by recalling the definition of bisimulation.

Definition 9 A bisimulation between a pair of transition systems T'S1 =
(Q1,—1,4¢L) and TSy = (Q2, —2,4¢2) is a relation R C (Q1 X Q2) such
that:

" (¢..q%) € R.

If (q1,92) € R and @1 = qy, there exists ¢}, qo =, ¢, and
(41, 93) € R.

If (q1,92) € R and ¢ LR qh, there exists q}, q L ¢y and
(41, 93) € R.

The synthesis problem modulo bisimilarity can now be formulated
as follows. If T'S = (Q,—,¢in) is a transition system over 3 and ¥ =

14

(31,...,2) is a distribution of X, does there exist a loosely cooperating
system T'Sy || --- || TSk (respectively, a synchronously communicating
system T'Sy ||| - -« ||| T'Sk) over & such that TS || -- - || TSy (respectively,
TSy || --- |I| TSk) is bisimilar to 7'S?

For deterministic transition systems, bisimilarity coincides with lan-
guage equivalence. We can use this fact to get a simple characterization
of transition systems which are bisimilar to deterministic distributed
transition systems. We first recall a basic definition.

Bisimulation quotient. Let T'S = (Q, —, qin) be a transition sys-
tem and let ~pg be the largest bisimulation relation between T'S and
itself. The relation ~7g defines an equivalence relation over (). For
q € Q, let [g] denote the ~rg-equivalence class containing g. The bisim-
ulation quotient of T'S is the transition system 7'S/.,c = (Q, ~, [gin])
where

= Q={lglgcQ})
m [q] ~ [¢] if there exist ¢, € [¢] and ¢} € [¢] such that q; —— ¢}.

The following results then follow easily.

Theorem 10 Let T'S be a transition system over X and let S be a
distribution of 3.

(i) The system T'S is bisimilar to a deterministic loosely cooperating
system over ¥ if and only if the bisimulation quotient T'S/~ . is
deterministic and the language L(TS) is a product language over
3.

(1i) The system TS is bisimilar to a deterministic synchronously com-
municating system over 5 if and only if the bisimulation quotient
TS/, is deterministic and the language L(T'S) is a recognizable
trace language over (X, Ij,.).

Proof Sketch: Part (i) follows from Lemma 5, since we can construct
a finite-state automaton for each projection L; of L onto ¥; and then
determinize these automata individually to obtain a deterministic loosely
cooperating system.

Part (ii) is a direct consequence of our adaptation of Zielonka’s the-
orem, which guarantees that if L(7'S) is an fI-closed recognizable trace
language then we can always synthesize a deterministic synchronously
communicating system with the same language. O

From global specifications todistributed implementations 15

7. The synthesis problem for concurrent
alphabets

We now examine the situation where the distributed nature of the system
in specified abstractly in terms of a concurrent alphabet rather than
explicitly in terms of a distributed alphabet. The synthesis problem for
concurrent alphabets can be phrased as follows:

Let (X,) be a communication alphabet and let T'S = (Q, —
,qin) be a transition system over X.. Does there exist a distri-
bution ¥ = (31,..., S of ¥ with I;,; = I and a distributed
transition system over S that is “equivalent” to T'S? (As
before, the term equivalence can mean state-space isomor-
phism, language equivalence or bisimilarity.)

Implementing a concurrent alphabet

Given a concurrent alphabet (3, I), there are several ways to construct
a distribution & = (31,..., %) of ¥ so that the independence relation
I, induced by loc coincides with I.

We begin by building the dependence graph for (3,7). Let D =
(X x ¥) \ I be the dependence relation generated by (2,). Construct a
undirected graph Gp = (X, F) such that E = {(a,b) | (a,b) € D}.

One way to distribute X is to create a process p, for every edge e in
Gp. For each letter a, we then set loc(a) to be the set of processes corre-
sponding to edges incident on the vertex labelled a. In this distribution,
each component of ¥ consists of precisely two letters. We call this the
finest distribution corresponding to (%, I).

Alternatively, we can create a process pc for each maximal clique C' in
Gp. Then, for each letter a and each clique C, p¢ € loc(a) if and only if
the vertex labelled a belongs to C. We call this the coarsest distribution
for (X, 1).

In both cases, it is easy to see that I}, = I. There may also be other
distributions between the coarsest and finest distributions that induce
I. In general, we just have to ensure that there for every pair (a,b) € D,
there is a process P; with {a,b} C P,—the process P; “witnesses” the
dependency between a and b.

Example 11 If ¥ = {a,b,c,d} and I = {(a,b), (b,a)}, then all of the
following distributions induce I.

m The finest distribution, ({a,c}, {a,d}, {b,c}, {b,d},{c,d}).
m The coarsest distribution, ({a,c,d}, {b,c,d}).

16

= An intermediate distribution, ({a,c,d},{b,c},{b,d}).

A preorder on distributions. Let & = (31,...,5) and T' =
(I'q,...,Ty) be distributions of ¥. Then X < I if for each i € [1..k],
there exists j € [1..] such that ¥; C I';. If ¥ S T' we say that X is finer

than I', or [is coarser than 3.

It is not difficult to establish the following result [3].

Lemma 12 Let ¥ = (X1,...,2k) and [= (T1,...,Ty) be distributions
of X such that ¥ S L. Then, for each distributed transition system
TS, || --- || TSk over &, there exists an isomorphic distributed transition
system TS |- TS, over I

It turns out that this result does not hold in the general case, for
arbitrary pairs of distributions ¥ and I' that are not related by the
preorder. From Lemma 12 we derive the following corollary regarding
the problem of synthesis modulo isomorphism for concurrent alphabets.

Corollary 13 Let (X,1) be a concurrent alphabet and T'S = (Q, —, ¢in)
be a transition system over X. Then, the synthesis problem modulo iso-
morphism for distributed transition systems has a solution for T'S if and
only if it has a solution with respect to the coarsest distribution that
induces 1.

For synthesis modulo language equivalence, a similar result holds for
loosely cooperating systems—the synthesis problem has a solution if and
only if it has a solution corresponding to the coarsest distribution.

However, for synchronously communicating systems, we can make a
much stronger statement. Zielonka’s theorem holds for any distribution
that induces the same independence relation as the original concurrent
alphabet. In other words, for synchronously communicating systems we
have the following result.

Theorem 14 Let (X,1) be a concurrent alphabet and T'S = (Q, —, ¢in)
be a transition system over ¥ such that L(TS) is an fI-closed recog-

nizable trace language over (3,1). Then, for any distribution ¥ =
(31,...,2k) such that Ij,. = I we can construct a (deterministic) syn-

chronously communicating system TSy ||| --- ||| TSk over ¥ such that
LTSI -+ WTSk) = L(TS).

From global specifications todistributed implementations 17

8. Discussion

The synthesis problem modulo isomorphism has been studied in a num-
ber of contexts, notably in the area of Petri nets. As we remarked in
the Introduction, the theory of regions [5] was first developed to solve
this problem in the context of nets. A synthesis result for elementary net
systems was first proposed in [15]. This was extended to place-transition
nets with a step-based semantics in [12]. There have been a number of
related results in the area—see, for instance, the surveys [2, 17].

The problem modulo language equivalence has recently been lifted
from the setting of synchronous communication to the setting of message-
passing. Over the past few years, the graphical specification formal-
ism known as Message Sequence Charts (MSCs) has become popular
for specifying systems with asynchronous communication. In general,
an MSC-based specification may not admit a finite-state implementa-
tion (where finite-state means that the set of reachable configurations
is finite—that is, not only is each process locally finite-state, but there
is also a uniform bound on the sizes of all the message buffers in the
system). The class of MSC specifications that do admit finite-state im-
plementations constitute the so-called regular MSC languages, which
have been characterized in [6]. In [13], the synthesis problem modulo
language equivalence is solved for regular MSC languages, where the
distributed implementation is in terms of message-passing automata.

As we have seen here, very little is known about the synthesis problem
modulo bisimulation. In general, one needs to expand on the input
transition system to derive an implementation that is bisimilar to the
global specification and yet has the structure of a distributed transition
system. The chief difficulty is that it is difficult to quantify the collapse
in the state space that occurs when one takes the bisimulation quotient
of a distributed transition system. To put it another way, the difficulty
lies in bounding the size of the synthesized system in terms of the size of
the input system. In fact, the state of our knowledge is so poor in this
area that even the following seemingly trivial problem is still open.

Let T'S = (Q,—, ¢in) be a transition system over ¥ and let
Y= (31,...,2k) be a distribution of 3. Suppose that T'S
is finite-state and is bisimilar to a (possibly infinite-state)
loosely cooperating system T'S; || --- || TSy over . Then,
is it necessarily the case that T'S is also bisimilar to a finite-
state loosely cooperating system T'S"y || -« - || TS’y over ¥7

18

References

[1]

[15]
[16]

[17]

18]

A. Arnold: Finite transition systems and semantics of communicating systems,
Prentice-Hall (1994).

E. Badouel and Ph. Darondeau: Theory of Regions. Lectures on Petri nets I
(Basic Models), LNCS 1491 (1998) 529-588.

I. Castellani, M. Mukund and P.S. Thiagarajan: Synthesizing distributed tran-
sition systems from global specifications, Proc. FSTTCS 19, LNCS 1739 (1999)
219-231.

W. Ebinger, A. Muscholl: Logical definability on infinite traces, Theor. Comput.
Sci., 154 (1996) 67-84.

A. Ehrenfeucht and G. Rozenberg: Partial 2-structures; Part II, State spaces of
concurrent systems, Acta Inf. 27 (1990) 348-368.

J.G. Henriksen, M. Mukund, K. Narayan Kumar and P.S. Thiagarajan: Regular

Collections of Message Sequence Charts, Proc. MFCS 2000, LNCS 1893 (2000),
405-414.

G.J. Holzmann: The model checker SPIN, IEEE Trans. on Software Engineering,
23, 5 (1997) 279-295.

R.P. Kurshan: Computer-Aided Verification of Coordinating Processes: The
Automata-Theoretic Approach, Princeton University Press (1994).

A. Mazurkiewicz: Basic notions of trace theory, in: J.W. de Bakker, W.-
P. de Roever, G. Rozenberg (eds.), Linear time, branching time and partial
order in logics and models for concurrency, LNCS, 354 (1989) 285-363.

R. Milner: Communication and Concurrency, Prentice-Hall, London (1989).

R. Morin: Decompositions of asynchronous systems, Proc. CONCUR’98, LNCS
1466 (1998) 549-564.

M. Mukund: Petri Nets and Step Transition Systems, Int. J. Found. Comput.
Sci. 3, 4 (1992) 443-478.

M. Mukund, K. Narayan Kumar, M. Sohoni: Synthesizing distributed finite-
state systems from MSCs, Proc. CONCUR 2000, LNCS 1877 (2000) 521-535.
M. Mukund, M. Sohoni: Gossiping, asynchronous automata and Zielonka's the-
orem, Report T'CS-94-2, Chennai Mathematical Institute (1994). Available via
http://www.cmi.ac.in/techreps

M. Nielsen, G. Rozenberg and P.S. Thiagarajan: Elementary transition systems,
Theor. Comput. Sci. 96 (1992) 3-33.

P.S. Thiagarajan: A trace consistent subset of PTL, Proc. CONCUR’95, LNCS
962 (1995) 438-452.

G. Winskel and M. Nielsen: Models for concurrency, in S. Abramsky, D. Gabbay
and T.S.E. Maibaum, eds, Handbook of Logic in Computer Science, Vol 4, Oxford
(1995) 1-148.

W. Zielonka: Notes on finite asynchronous automata, R.A.I.R.O.—Inform.
Théor. Appl., 21 (1987) 99-135.

