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Abstrat We study the problem of synthesizing distributed implementations from

global spei�ations. We work in the framework of transition systems.

The main question we address is the following.

Given a global transition system TS over a set of ations � together

with a distribution of � into loal omponents h�

1

; : : : ;�

k

i, does

there exist a distributed transition system over h�

1

; : : : ;�

k

i that is

\equivalent" to TS?

We fous on two di�erent types of distributed transition systems|

loosely ooperating systems and synhronously ommuniating systems.

For \equivalene" we onsider three possibilities|state-spae isomor-

phism, language equivalene and bisimulation.

We survey the urrent state of knowledge about the di�erent versions

of the problem that arise from hoosing a onrete notion of equivalene

and a spei� model of distributed transition systems.

1. Introdution

Designing distributed systems has always been a hallenging task. Inter-

ations between individual proesses an introdue subtle errors in the

system's overall behaviour that may pass undeteted even after rigorous

testing. A fruitful approah in reent years has been to speify the be-

haviour of the overall system in a global manner and then automatially

synthesize a distributed implementation from the spei�ation.

The question of identifying when a sequential spei�ation has an

implementation in terms of a desired distributed arhiteture was �rst

raised in the ontext of Petri nets. Ehrenfeuht and Rozenberg [5℄ in-

trodued the onept of regions to desribe how to assoiate plaes of

nets with states of a transition system. In [15℄, Nielsen, Rozenberg and

Thiagarajan use regions to haraterize the lass of transition systems

1



2

that arise from elementary net systems. Subsequently, several authors

have extended this haraterization to larger lasses of nets (for a sample

of the literature, see [2, 12, 17℄).

Here, we onsider distributed transition systems|networks of transi-

tion systems that oordinate their ativity by synhronizing on ommon

ations. We fous on two models of distributed transition systems, whih

we refer to as loosely ooperating systems and synhronously ommuni-

ating systems. The �rst lass has also been alled synhronized produt

systems and has been widely studied [1℄. The seond lass orresponds

to Zielonka's asynhronous automata [18℄. The names we have hosen for

these two lasses are intended to reet more aurately the underlying

struture of the two system models.

Both these models ome with a natural notion of omponent and

indued notions of onurreny and ausality. These models have a

well-understood theory, at least in the linear-time setting [4, 16, 18℄.

Variants of these models are also the basis for system desriptions in a

number of model-heking tools [8, 7℄.

The synthesis problem an broadly be stated as follows:

Given a global transition system TS over a set of ations

� together with a distribution of � into loal omponents

h�

1

; : : : ;�

k

i, does there exist a distributed transition system

over h�

1

; : : : ;�

k

i that is \equivalent" to TS?

We onsider three possible interpretations of the term \equivalene":

state-spae isomorphism, language equivalene and bisimulation. For

the �rst two interpretations, we provide omplete haraterizations. The

synthesis problem with respet to bisimulation is still open in general

and we provide some positive results in the restrited setting where we

are in searh of deterministi implementations.

The paper is organized as follows. We begin by de�ning the two

lasses of distributed transition systems we will be looking at. Next, in

Setion 3, we de�ne the three types of synthesis problems that we are

interested in. These problems are then addressed in turn in Setions 4{

6. In Setion 7 we onsider the synthesis problem in a more abstrat

setting, where onurreny is presented impliitly using an independene

relation. We onlude with a short disussion of related work.

2. Distributed transition systems

We begin by de�ning labelled transition systems, a general framework

for modelling omputing systems.
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Labelled transition system. Let � be a �nite nonempty set of a-

tions. A labelled transition system over � is a struture TS =

(Q;!; q

in

), where Q is a set of states, q

in

2 Q is the initial state and

! � Q� ��Q is the transition relation.

We abbreviate a transition sequene of the form q

0

a

1

�! � � �

a

n

�! q

n

as q

0

a

1

���a

n

�! q

n

. In every transition system TS = (Q;!; q

in

) that we

enounter, we assume that eah state in Q is reahable from the initial

state|that is, for eah q 2 Q there exists a transition sequene q

in

=

q

0

a

1

���a

n

�! q

n

= q.

A large lass of distributed systems an be fruitfully modelled as net-

works of loal transition systems whose moves are oordinated through

ommon ations. To formalize this, we begin with the notion of a dis-

tributed alphabet.

Distributed alphabet. A distributed alphabet over �, or a distri-

bution of �, is a tuple of nonempty sets

e

� = h�

1

; : : : ;�

k

i suh that

S

1�i�k

�

i

= �. For eah ation a 2 �, the loations of a are given by

the set lo

e

�

(a) = fi j a 2 �

i

g. If

e

� is lear from the ontext, we write

just lo(a) to denote lo

e

�

(a).

Without loss of generality, we may assume that �

i

6= �

j

for any

pair of distint omponents of a distributed alphabet. We onsider two

distributions to be the same if they di�er only in the order of their

omponents. Heneforth, for any natural number k, [1::k℄ denotes the

set f1; 2; : : : ; kg.

The �rst model of distributed transition systems that we onsider is

loosely ooperating systems. Eah proess of a loosely ooperating sys-

tem is a loal transition system over one omponent of a distributed

alphabet. The global transition relation fores all proesses that share

an ation a to move jointly when a ours. This synhronization, how-

ever, does not involve any ommuniation of \loal" information between

proesses. Eah proess partiipating in a loosely ooperating transition

is free to hoose for itself any move that is available in its loal transition

relation, independent of how the other proesses hoose to move.

Loosely ooperating systems. Let h�

1

; : : : ;�

k

i be a distribution

of �. For eah i 2 [1::k℄, let TS

i

= (Q

i

;!

i

; q

i

in

) be a transition system

over �

i

. The loosely ooperating system TS

1

k � � � k TS

k

is the transition

system TS = (Q;!; q

in

) over � =

S

1�i�k

�

i

, where:

q

in

= (q

1

in

; : : : ; q

k

in

).
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Q � (Q

1

� � � � �Q

k

) and ! � Q� ��Q are de�ned indutively

by:

{ q

in

2 Q.

{ Let q 2 Q and a 2 �. For i 2 [1::k℄, let q[i℄ denote the i

th

omponent of q. If for eah i 2 lo(a), TS

i

has a transition

q[i℄

a

�!

i

q

0

i

, then q

a

�! q

0

and q

0

2 Q where q

0

[i℄ = q

0

i

for

i 2 lo(a) and q

0

[j℄ = q[j℄ for j =2 lo(a).

A riher model is that of a synhronously ommuniating system. Here,

as before, we have one proess for eah omponent of the distributed

alphabet. However, the moves for eah ation are spei�ed jointly for

all proesses that synhronize on that ation. Thus, the loal behaviour

of eah proess is onditional on the behaviour of the other proesses

that it synhronizes with. Abstratly, this orresponds to the proesses

pooling together the information available to them loally and deiding

on a ombined move based on this shared information.

Synhronously ommuniating systems. Let h�

1

; : : : ;�

k

i be

a distribution of �. For eah i 2 [1::k℄, let P

i

be a proess with a

�nite set of loal states Q

i

that inludes a distinguished initial state

q

i

in

. We assoiate with eah ation a 2 � a transition relation !

a

�

Q

i2lo(a)

Q

i

�

Q

i2lo(a)

Q

i

.

The synhronously ommuniating system TS

1

kk � � � kk TS

k

is the

transition system TS = (Q;!; q

in

) over � =

S

i2[1::k℄

�

i

where:

q

in

= (q

1

in

; : : : ; q

k

in

).

Q � Q

1

� � � � �Q

k

and ! � Q���Q are de�ned indutively as

follows:

{ q

in

2 Q.

{ Let q 2 Q and a 2 � suh that lo(a) = fi

1

; : : : ; i

m

g. For

i 2 [1::k℄, let q[i℄ denote the i

th

omponent of q. Then q

a

�! q

0

provided hq[i

1

℄; : : : ; q[i

m

℄i !

a

hq

0

[i

1

℄; : : : ; q

0

[i

m

℄i and for j =2

lo(a), q[j℄ = q

0

[j℄.

Expressiveness of the two models

It is not diÆult to see that every loosely ooperating system admits a

desription as a synhronously ommuniating system by setting eah

transition relation!

a

to be the diret produt of the loal a-transitions

!

i

\ (Q

i

� fag �Q

i

) over all i 2 lo(a).
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On the other hand, the following example (from [18℄) shows that

synhronously ommuniating systems are stritly more expressive than

loosely ooperating systems.

Example 1 Let � = fa

1

; b

1

; a

2

; b

2

; g be distributed as hfa

1

; b

1

; g;

fa

2

; b

2

; gi. We an onstrut a synhronously ommuniating system

that exhibits the following behaviour: Proess P

i

alternately performs

ation  followed by either a

i

or b

i

suh that between any two 's (whih

are jointly performed by both proesses) P

1

performs a

1

if and only if

P

2

performs a

2

. We an represent this behaviour as (the pre�x losure

of) an extended regular expression [ � (a

1

k a

2

+ b

1

k b

2

)℄

�

, where k

represents the shu�e operation.

To implement this behaviour as a synhronously ommuniating sys-

tem, for i 2 f1; 2g we set Q

i

= fq

i



; q

i

a

; q

i

b

g and q

i

in

= q

i



. The transition

relations are then de�ned as follows:

hq

1



; q

2



i !



hq

1

a

; q

2

a

i, hq

1



; q

2



i !



hq

1

b

; q

2

b

i

q

1

a

!

a

1

q

1



, q

1

b

!

b

1

q

1



q

2

a

!

a

2

q

2



, q

2

b

!

b

2

q

2



In other words, when P

1

and P

2

perform , the joint move oordinates

their behaviour so that either they are onstrained to next perform either

a

1

and a

2

or b

1

and b

2

, respetively.

Informally, the reason that this behaviour annot be aptured by a

loosely ooperating system is that we would have to split up the!



move

into loal omponents and then take the diret produt of these loal

-moves. This would introdue undesirable global moves on  ations,

suh as a move in whih P

1

moves to q

1

a

where a

1

is enabled while P

2

simultaneously moves to q

2

b

where b

2

is enabled. A more formal argument

will be presented later. 2

3. The synthesis problem

Broadly speaking, the synthesis problem for distributed transition sys-

tems is the following. Let TS = (Q;!; q

in

) be a transition system over

� and

e

� = h�

1

; : : : ;�

k

i be a distribution of �. Does there exist a

distributed transition system over

e

� that is \equivalent" to TS?

To make the problem preise, we have to speify what we mean by

\equivalent". In this paper, we will look at three versions of \equiva-

lene".
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State spae equivalene: The state spae of the distributed transi-

tion system should be isomorphi to the global transition system

TS.

Language equivalene: The distributed transition system should

admit the same sequenes of ations as the global transition system

TS.

Bisimulation equivalene: The state spae of the distributed tran-

sition system should be bisimilar to the global transition system

TS.

These three interpretations of the word \equivalene" yield six syn-

thesis problems in all, sine we are onsidering two di�erent types of

distributed transition systems.

Broadly speaking, the results known for these problems an be las-

si�ed as follows:

Synthesis modulo isomorphism an be solved preisely for both

lasses of distributed transition systems using the theory of regions

[2, 3, 5℄.

Synthesis modulo language equivalene an be solved for loosely

ooperating systems in terms of a preise haraterization of the

languages generated by suh systems, based on the projetions

onto the omponents of the distributed alphabet.

For synhronously ommuniating systems, however, the synthe-

sis problem modulo language equivalene is muh harder and is a

elebrated result in the theory of onurrent systems [18℄.

Synthesis modulo bisimulation is still unsolved in the general ase.

A haraterization is known for the relatively simple ase where

the synthesized distributed transition system is required to be de-

terministi [3℄.

4. Synthesis modulo isomorphism

Regions were introdued in [5℄ to haraterize global state spaes that

arise from loal presentations suh as Petri nets. Broadly speaking, a

region of an edge-labelled graph is a subset of verties that satis�es a

suitable onsisteny riterion on the labels of edges that enter and leave

the subset.

In our setting, the basi idea is to label in a onsistent manner eah

state of the input transition system by a k-tuple of loal states (or-

responding to a global state of a distributed transition system). We
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formulate this labelling in terms of loal equivalene relations on the

states of the original system|for eah i 2 [1::k℄, if two states q

1

and

q

2

of the original system are i-equivalent, the interpretation is that the

global states assigned to q

1

and q

2

by the labelling agree on the i

th

om-

ponent. Our presentation is taken from [3℄. A restrited form of this

haraterization was obtained in [11℄, for deterministi transition system

spei�ations.

4.1 Loosely Cooperating systems

Theorem 2 Let TS = (Q;!; q

in

) be a transition system over � and

let

e

� = h�

1

; : : : ;�

k

i be a distribution of �. Then, there exists a loosely

ooperating system TS

1

k � � � k TS

k

over

e

� whose state spae is isomor-

phi to TS if and only if for eah i 2 [1::k℄ there exists an equivalene

relation �

i

� (Q�Q) suh that the following onditions are satis�ed:

(i) If q

a

�! q

0

and a =2 �

i

, then q �

i

q

0

.

(ii) If q �

i

q

0

for every i, then q = q

0

.

(iii) Let q 2 Q and a 2 �. If for eah i 2 lo(a), there exist s

i

; s

0

i

2 Q

suh that s

i

�

i

q, and s

i

a

�! s

0

i

, then for eah hoie of suh

s

i

's and s

0

i

's there exists q

0

2 Q suh that q

a

�! q

0

and for eah

i 2 lo(a), q

0

�

i

s

0

i

.

Proof Sketh: ()) : Suppose TS

1

k � � � k TS

k

is isomorphi to TS.

We must exhibit k equivalene relations f�

i

g

i2[1::k℄

, suh that onditions

(i)|(iii) are satis�ed. Assume, without loss of generality, that TS is in

fat equal to TS

1

k � � � k TS

k

.

For i 2 [1::k℄, let TS

i

= (Q

i

;!

i

; q

i

in

). We then have Q �

(Q

1

� � � � � Q

k

) and q

in

= (q

1

in

; : : : ; q

k

in

). De�ne �

i

� (Q � Q) as fol-

lows: q �

i

q

0

i� q[i℄ = q

0

[i℄.

Sine TS is a loosely ooperating system, it is lear that onditions (i)

and (ii) are satis�ed. To establish ondition (iii), �x q 2 Q and a 2 �.

Suppose that for eah i 2 lo(a) there is a transition s

i

a

�! s

0

i

suh that

s

i

�

i

q. Clearly, for eah i 2 lo(a), s

i

a

�! s

0

i

implies s

i

[i℄

a

�!

i

s

0

i

[i℄.

Moreover s

i

[i℄ = q[i℄ by the de�nition of �

i

. Sine TS is a loosely

ooperating system, this implies q

a

�! q

0

, where q

0

[i℄ = s

0

i

[i℄ for i 2 lo(a)

and q

0

[i℄ = q[i℄ otherwise.

(() : Suppose we are given equivalene relations f�

i

� (Q�Q)g

i2[1::k℄

whih satisfy onditions (i)|(iii). For eah q 2 Q and i 2 [1::k℄, let

[q℄

i

def

= fs j s �

i

qg. For i 2 [1::k℄, de�ne the transition system TS

i

=

(Q

i

;!

i

; q

i

in

) over �

i

as follows:
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Q

i

= f[q℄

i

j q 2 Qg, with q

i

in

= [q

in

℄

i

.

[q℄

i

a

�!

i

[q

0

℄

i

i� a 2 �

i

and there exists s

a

�! s

0

with s �

i

q and

s

0

�

i

q

0

.

We wish to show that TS is isomorphi to TS

1

k � � � k TS

k

. Let

TS

1

k � � � k TS

k

= (

b

Q; ; q̂

in

). We laim that the required isomorphism

is given by the funtion f : Q !

b

Q, where f(q) = ([q℄

1

; : : : ; [q℄

k

). To

omplete the proof, we have to argue that f is well-de�ned and that it

onstitutes a bijetion. This an be done by indution on the length of

the shortest path from q

in

to q for eah state q in TS. The details an

be found in [3℄.

2

Intuitively, ondition (i) in the preeding haraterization guarantees

that the ations are distributed orretly among the proesses. Condi-

tion (ii) is an extensionality ondition|the global state of the system is

no more than the produt of the loal states of the individual proesses.

Finally, ondition (iii) aptures the essene of loose ooperation|any

ombination of loal hoies for an a-move an be ombined into a global

a-move.

4.2 Synhronously ommuniating systems

For synhronously ommuniating systems, the haraterization is sim-

ilar. The only di�erene is in ondition (iii), whih has to be appropri-

ately modi�ed to take into aount that joint moves in suh systems an

depend on ontextual information about other proesses involved in the

move. However, this ontextual information is independent of the states

of proesses not involved in the move. In other words, for any ation a,

the a-moves enabled at a global state depend only on the loal states of

the proesses in lo(a). Two global states that agree on their projetions

onto the proesses in lo(a) must have the same a-transitions enabled.

Theorem 3 Let TS = (Q;!; q

in

) be a transition system over � and

let

e

� = h�

1

; : : : ;�

k

i be a distribution of �. Then, there exists a syn-

hronously ommuniating system TS

1

kk � � � kk TS

k

over

e

� whose state

spae is isomorphi to TS if and only if for eah i 2 [1::k℄ there exists

an equivalene relation �

i

� (Q�Q) suh that the following onditions

are satis�ed:

(i) If q

a

�! q

0

and a =2 �

i

, then q �

i

q

0

.

(ii) If q �

i

q

0

for every i, then q = q

0

.
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(iii) For q; q

0

2 Q and a 2 �, let q �

a

q

0

denote that for eah i 2 lo(a),

q �

i

q

0

. Then, whenever q �

a

q

0

, if there is a move q

a

�! q

1

then

there is also a move q

0

a

�! q

0

1

suh that q

1

�

a

q

0

1

.

An e�etive synthesis proedure. Observe that Theorems 2 and

3 yield e�etive synthesis proedures for �nite-state spei�ations. The

number of ways of partitioning a �nite-state spae using equivalene

relations is bounded and we an exhaustively hek eah hoie to see if

it meets riteria (i){(iii) in the statements of the two theorems. In both

ases, the number of states of eah proess in the resulting distributed

transition system is exponential in the size of the original transition

system and the number of omponents in the distributed alphabet.

5. Synthesis modulo language equivalene

Languages. Let TS = (Q;!; q

in

) be a transition system over �.

The language of TS is the set L(TS) � �

�

onsisting of the labels along

all runs of TS. In other words, L(TS) = fw j q

in

w

�! q; q 2 Qg.

Notie that L(TS) is always pre�x-losed and always ontains the

empty word. Moreover, L(TS) is regular whenever TS is �nite. For the

rest of this setion, we assume all transition systems that we enounter

are �nite.

5.1 Loosely Cooperating systems

Produt languages. Let L � �

�

and let

e

� = h�

1

; : : : ;�

k

i be a

distribution of �. For w 2 �

�

, let w�

�

i

denote the projetion of w onto

�

i

, obtained by erasing all letters in w whih do not belong to �

i

. The

language L is a produt language over

e

� if for eah i 2 [1::k℄ there is a

language L

i

� �

�

i

suh that L = fw j w�

�

i

2 L

i

; i 2 [1::k℄g.

We begin with the following basi onnetion between produt lan-

guages and loosely ooperating systems [16℄.

Lemma 4 L(TS

1

k � � � k TS

i

) = fw j w�

�

i

2 L(TS

i

); i 2 [1::k℄g.

It turns out that a produt language is always the produt of its

projetions [16℄.

Lemma 5 Let L � �

�

and let

e

� = h�

1

; : : : ;�

k

i be a distribution of �.

For i 2 [1::k℄, let L

i

= fw�

�

i

j w 2 Lg. Then, L is a produt language if

and only if L = fw j w�

�

i

2 L

i

; i 2 [1::k℄g.
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The preeding result allows us to omplete Example 1 showing that

synhronously ommuniating systems are a riher lass than loosely

ooperating systems.

Example 1 (ontinued). Let � = fa

1

; b

1

; a

2

; b

2

; g be distributed

as (fa

1

; b

1

; g; fa

2

; b

2

; g). Our goal was to establish that the behaviour

desribed by the extended regular expression [ � (a

1

k a

2

+ b

1

k b

2

)℄

�

,

where k represents the shu�e operation, annot be implemented as a

loosely ooperating system.

To verify this, we argue that this is not a produt language. It is easy

to see that the projetions of the desired behaviour onto �

1

and �

2

yield

the languages L

1

= [ � (a

1

+ b

1

)℄

�

and L

2

= [ � (a

2

+ b

2

)℄

�

. However, the

projetions of a

1

b

2

also lie in L

1

and L

2

, although a

1

b

2

is not a string

in the language de�ned by the expression [ � (a

1

k a

2

+ b

1

k b

2

)℄

�

. 2

We an now state the synthesis result for loosely ooperating systems

modulo language equivalene.

Theorem 6 Let TS = (Q;!; q

in

) be a �nite-state transition system

over � and let

e

� = h�

1

; : : : ;�

k

i be a distribution of �. Then, we

an e�etively deide whether there exists a loosely ooperating system

TS

1

k � � � k TS

k

over

e

� suh that L(TS

1

k � � � k TS

k

) = L(TS).

Proof: Lemma 5 yields following deision proedure. For i 2 [1::k℄,

onstrut the �nite-state system TS

i

suh that L(TS

i

) = L�

�

i

. This

an be done by relabelling all moves not in �

i

by " and then perform-

ing an "-losure on the resulting system. Cheking whether L(TS) =

L(TS

1

k � � � k TS

k

) is then just an instane of the language equivalene

problem for �nite-state automata. 2

5.2 Synhronously ommuniating systems

Conurrent alphabet. A distributed alphabet h�

1

; : : : ;�

n

i gives

rise to a natural independene relation I

lo

between letters: (a; b) 2 I

lo

if and only if lo(a) \ lo(b) = ;. Thus, a and b are independent when

they are performed by disjoint sets of proesses in the system. Clearly,

the relation I

lo

is irreexive and symmetri. Suh a relation is alled

an independene relation.

An alphabet equipped with an independene relation is also alled a

onurrent alphabet. This notion was introdued by Mazurkiewiz as a

tehnique for studying onurrent systems from the viewpoint of formal

language theory [9℄.
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Traes and trae languages. Given a onurrent alphabet (�; I),

I indues a natural equivalene relation � on �

�

: two words w and w

0

are related by � if and only if w

0

an be obtained from w by a sequene

of permutations of adjaent independent letters. More formally, w � w

0

if there is a sequene of words v

1

; : : : ; v

k

suh that w = v

1

, w

0

= v

k

and

for eah i 2 [1::k�1℄, there exist words u

i

; u

0

i

and letters a

i

; b

i

satisfying

v

i

= u

i

a

i

b

i

u

0

i

; v

i+1

= u

i

b

i

a

i

u

0

i

and (a

i

; b

i

) 2 I:

Atually, � de�nes a ongruene on �

�

with respet to onatenation:

If u � u

0

then for any words w

1

and w

2

, w

1

uw

2

� w

1

u

0

w

2

. Also, both

right and left anellation preserve �-equivalene: wu � wu

0

implies

u � u

0

and uw � u

0

w implies u � u

0

.

Equivalene lasses of words of �

�

under � and are alled traes. Let

[w℄ denote the �-equivalene lass orresponding to the word w. Sine

the relation � is a ongruene, the omposition operation on traes is

given by

8u; v 2 �

�

: [u℄[v℄ = [uv℄:

Reognizable trae languages. Sets of traes are alled trae lan-

guages|in other words, a trae language over (�; I) is a language of

words over � that is losed with respet to the equivalene �. A re-

ognizable trae language is a reognizable (or regular) language over �

that is losed with respet to �.

Reognizable trae languages an be haraterized in terms of the

struture of the minimumDFAs that aept these languages. Let L � �

�

be a reognizable string language and let A

L

= (S;�; Æ; s

0

; S

F

) be the

minimum DFA for L. As usual, for w = a

1

: : : a

m

, we let Æ(q; w) denote

the unique state reahed by A

L

on reading w at state q. Then, it is a

well-known fat that for eah pair of words w

1

; w

2

over �, Æ(s

in

; w

1

) =

Æ(s

in

; w

2

) if and only if w

1

�

R

L

w

2

, where �

R

L

is the right-equivalene

relation de�ned by L, given by

8u; u

0

2 �

�

: u �

R

L

u

0

def

= 8v 2 �

�

: uv 2 L i� u

0

v 2 L

If L is a reognizable trae language and w � w

0

, then it is easy to see

that w �

R

L

w

0

as well. From this it follows that if L is a reognizable

trae language and A

L

= (S;�; Æ; s

0

; S

F

) is the minimum DFA for L,

then for eah w 2 �

�

, for eah w

0

2 [w℄, Æ(s

in

; w) = Æ(s

in

; w

0

). In parti-

ular, this means that for eah state s 2 S and eah pair of independent

letters (a; b) 2 I, it must be the ase that Æ(s; ab) = Æ(s; ba). In fat,

this turns out to be a haraterization of reognizable trae languages.
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Lemma 7 Let L be reognizable subset of �

�

. Let A

L

= (S;�; Æ; s

0

; S

F

)

be the minimum DFA for L. Then, L is a reognizable trae language

over (�; I) if and only if for eah s 2 S and eah pair of letters (a; b) 2 I,

Æ(s; ab) = Æ(s; ba).

A elebrated theorem of Zielonka [18℄ states that if we are given a dis-

tribution

e

� = h�

1

; : : : ;�

k

i of � and a reognizable trae language L over

the ommuniation alphabet (�; I

lo

) indued by

e

�, we an always on-

strut from A

L

, the minimum DFA for L, a deterministi synhronously

ommuniating system TS

1

kk � � � kk TS

k

over

e

� (that is, the global

transition relation of the system is deterministi) suh that language of

TS

1

kk � � � kk TS

k

is L. The onstrution is too intriate to present here,

but we need to slightly qualify Zielonka's theorem to ahieve the main

result that we are after.

The ompliation is that Zielonka's theorem holds for synhronously

ommuniating systems with (global) aepting states, whereas we are

looking at pre�x-losed behaviours of distributed transition systems with-

out any aepting states.

Consider, for instane, the language fa; bg over the distributed alpha-

bet hfag; fbgi. This language is a reognizable trae language in the

framework of Zielonka's theorem. The language is reognized by a tran-

sition system with two proesses P

a

and P

b

where the states of P

a

are

fq

0

; q

0

0

g, the states of P

b

are fq

1

; q

0

1

g, the initial state is hq

0

; q

1

i, the tran-

sition relations are given by q

0

!

a

q

0

0

and q

1

!

b

q

0

1

and the �nal states

are fhq

0

0

; q

1

i; hq

0

1

; q

0

ig. By examining the global states of the system at

the end of the words a and b, we an e�etively make a global hoie

between two independent ations aross the system. This is not possible

in our model|if P

a

and P

b

an loally perform a and b, respetively, we

annot rule out the global behaviours ab and ba.

fI-losed languages. Let L be a trae language over (�; I). We

say that L is forward-independene losed (fI-losed) provided wa 2 L,

wb 2 L and (a; b) 2 I always implies wab 2 L.

It is not diÆult to see that the pre�x-losed languages assoiated with

synhronously ommuniating systems are neessarily fI-losed. We then

have the following version of Zielonka's theorem

Theorem 8 Let TS = (Q;!; q

in

) be a �nite-state transition system

over � and let

e

� = h�

1

; : : : ;�

k

i be a distribution of �. Then, there

exists a synhronously ommuniating system TS

1

kk � � � kk TS

k

over

e

� suh that L(TS

1

kk � � � kk TS

k

) = L(TS) if and only if L(TS) is
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an fI-losed reognizable trae language over the independene alphabet

(�; I

lo

) indued by

e

�.

The omplexity of Zielonka's onstrution is analyzed in [14℄, whih

has an alternative presentation of the proof of Zielonka's main result.

Let k be the width of the distributed alphabet and let n be the number

of states in the minimum DFA for L(TS). Then, the number of states

of eah proess in the resulting synhronously ommuniating system

TS

1

kk � � � kk TS

k

is 2

O(2

k

n log n)

.

6. Synthesis modulo bisimulation

In the ourse of speifying a system, we may aidentally destroy its

inherent distributed struture. This may happen, for example, if we

optimize the design and eliminate redundant states. In suh situations,

we would like to be able to reonstrut a distributed transition system

from the redued spei�ation. Sine the synthesized system will not,

in general, be isomorphi to the spei�ation, we need a riterion for

ensuring that the two systems are behaviourally equivalent. We use

strong bisimulation [10℄ for this purpose.

In general, synthesizing a behaviourally equivalent distributed imple-

mentation from a redued spei�ation appears to be a hard problem.

In this setion, we show how to solve the problem for redued spei�a-

tions whih an be implemented as deterministi distributed transition

systems|that is, the global transition system generated by the imple-

mentation is deterministi. Notie that the spei�ation itself may be

nondeterministi. Sine many distributed systems implemented in hard-

ware, suh as digital ontrollers, are atually deterministi, our hara-

terization yields a synthesis result for a large lass of useful systems.

We begin by realling the de�nition of bisimulation.

De�nition 9 A bisimulation between a pair of transition systems TS

1

=

(Q

1

;!

1

; q

1

in

) and TS

2

= (Q

2

;!

2

; q

2

in

) is a relation R � (Q

1

�Q

2

) suh

that:

(q

1

in

; q

2

in

) 2 R.

If (q

1

; q

2

) 2 R and q

1

a

�!

1

q

0

1

, there exists q

0

2

, q

2

a

�!

2

q

0

2

and

(q

0

1

; q

0

2

) 2 R.

If (q

1

; q

2

) 2 R and q

2

a

�!

2

q

0

2

, there exists q

0

1

, q

1

a

�!

1

q

0

1

and

(q

0

1

; q

0

2

) 2 R.

The synthesis problem modulo bisimilarity an now be formulated

as follows. If TS = (Q;!; q

in

) is a transition system over � and

e

� =
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h�

1

; : : : ;�

k

i is a distribution of �, does there exist a loosely ooperating

system TS

1

k � � � k TS

k

(respetively, a synhronously ommuniating

system TS

1

kk � � � kk TS

k

) over

e

� suh that TS

1

k � � � k TS

k

(respetively,

TS

1

kk � � � kk TS

k

) is bisimilar to TS?

For deterministi transition systems, bisimilarity oinides with lan-

guage equivalene. We an use this fat to get a simple haraterization

of transition systems whih are bisimilar to deterministi distributed

transition systems. We �rst reall a basi de�nition.

Bisimulation quotient. Let TS = (Q;!; q

in

) be a transition sys-

tem and let �

TS

be the largest bisimulation relation between TS and

itself. The relation �

TS

de�nes an equivalene relation over Q. For

q 2 Q, let [q℄ denote the �

TS

-equivalene lass ontaining q. The bisim-

ulation quotient of TS is the transition system TS=

�

TS

= (

b

Q; ; [q

in

℄)

where

b

Q = f[q℄ j q 2 Qg.

[q℄

a

 [q

0

℄ if there exist q

1

2 [q℄ and q

0

1

2 [q

0

℄ suh that q

1

a

�! q

0

1

.

The following results then follow easily.

Theorem 10 Let TS be a transition system over � and let

e

� be a

distribution of �.

(i) The system TS is bisimilar to a deterministi loosely ooperating

system over

e

� if and only if the bisimulation quotient TS=

�

TS

is

deterministi and the language L(TS) is a produt language over

e

�.

(ii) The system TS is bisimilar to a deterministi synhronously om-

muniating system over

e

� if and only if the bisimulation quotient

TS=

�

TS

is deterministi and the language L(TS) is a reognizable

trae language over (�; I

lo

).

Proof Sketh: Part (i) follows from Lemma 5, sine we an onstrut

a �nite-state automaton for eah projetion L

i

of L onto �

i

and then

determinize these automata individually to obtain a deterministi loosely

ooperating system.

Part (ii) is a diret onsequene of our adaptation of Zielonka's the-

orem, whih guarantees that if L(TS) is an fI-losed reognizable trae

language then we an always synthesize a deterministi synhronously

ommuniating system with the same language. 2
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7. The synthesis problem for onurrent

alphabets

We now examine the situation where the distributed nature of the system

in spei�ed abstratly in terms of a onurrent alphabet rather than

expliitly in terms of a distributed alphabet. The synthesis problem for

onurrent alphabets an be phrased as follows:

Let (�; I) be a ommuniation alphabet and let TS = (Q;!

; q

in

) be a transition system over �. Does there exist a distri-

bution

e

� = h�

1

; : : : ;�

k

i of � with I

lo

= I and a distributed

transition system over

e

� that is \equivalent" to TS? (As

before, the term equivalene an mean state-spae isomor-

phism, language equivalene or bisimilarity.)

Implementing a onurrent alphabet

Given a onurrent alphabet (�; I), there are several ways to onstrut

a distribution

e

� = h�

1

; : : : ;�

k

i of � so that the independene relation

I

lo

indued by lo oinides with I.

We begin by building the dependene graph for (�; I). Let D =

(���) n I be the dependene relation generated by (�; I). Construt a

undireted graph G

D

= (�; E) suh that E = f(a; b) j (a; b) 2 Dg.

One way to distribute � is to reate a proess p

e

for every edge e in

G

D

. For eah letter a, we then set lo(a) to be the set of proesses orre-

sponding to edges inident on the vertex labelled a. In this distribution,

eah omponent of

e

� onsists of preisely two letters. We all this the

�nest distribution orresponding to (�; I).

Alternatively, we an reate a proess p

C

for eah maximal lique C in

G

D

. Then, for eah letter a and eah lique C, p

C

2 lo(a) if and only if

the vertex labelled a belongs to C. We all this the oarsest distribution

for (�; I).

In both ases, it is easy to see that I

lo

= I. There may also be other

distributions between the oarsest and �nest distributions that indue

I. In general, we just have to ensure that there for every pair (a; b) 2 D,

there is a proess P

i

with fa; bg � P

i

|the proess P

i

\witnesses" the

dependeny between a and b.

Example 11 If � = fa; b; ; dg and I = f(a; b); (b; a)g, then all of the

following distributions indue I.

The �nest distribution, (fa; g; fa; dg; fb; g; fb; dg; f; dg).

The oarsest distribution, (fa; ; dg; fb; ; dg).
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An intermediate distribution, (fa; ; dg; fb; g; fb; dg).

2

A preorder on distributions. Let

e

� = h�

1

; : : : ;�

k

i and

e

� =

h�

1

; : : : ;�

`

i be distributions of �. Then

e

� .

e

� if for eah i 2 [1::k℄,

there exists j 2 [1::`℄ suh that �

i

� �

j

. If

e

� .

e

� we say that

e

� is �ner

than

e

�, or

e

� is oarser than

e

�.

It is not diÆult to establish the following result [3℄.

Lemma 12 Let

e

� = h�

1

; : : : ;�

k

i and

e

� = h�

1

; : : : ;�

`

i be distributions

of � suh that

e

� .

e

�. Then, for eah distributed transition system

TS

1

k � � � k TS

k

over

e

�, there exists an isomorphi distributed transition

system



TS

1

k � � � k



TS

`

over

e

�.

It turns out that this result does not hold in the general ase, for

arbitrary pairs of distributions

e

� and

e

� that are not related by the

preorder. From Lemma 12 we derive the following orollary regarding

the problem of synthesis modulo isomorphism for onurrent alphabets.

Corollary 13 Let (�; I) be a onurrent alphabet and TS = (Q;!; q

in

)

be a transition system over �. Then, the synthesis problem modulo iso-

morphism for distributed transition systems has a solution for TS if and

only if it has a solution with respet to the oarsest distribution that

indues I.

For synthesis modulo language equivalene, a similar result holds for

loosely ooperating systems|the synthesis problem has a solution if and

only if it has a solution orresponding to the oarsest distribution.

However, for synhronously ommuniating systems, we an make a

muh stronger statement. Zielonka's theorem holds for any distribution

that indues the same independene relation as the original onurrent

alphabet. In other words, for synhronously ommuniating systems we

have the following result.

Theorem 14 Let (�; I) be a onurrent alphabet and TS = (Q;!; q

in

)

be a transition system over � suh that L(TS) is an fI-losed reog-

nizable trae language over (�; I). Then, for any distribution

e

� =

h�

1

; : : : ;�

k

i suh that I

lo

= I we an onstrut a (deterministi) syn-

hronously ommuniating system TS

1

kk � � � kk TS

k

over

e

� suh that

L(TS

1

kk � � � kk TS

k

) = L(TS).
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8. Disussion

The synthesis problem modulo isomorphism has been studied in a num-

ber of ontexts, notably in the area of Petri nets. As we remarked in

the Introdution, the theory of regions [5℄ was �rst developed to solve

this problem in the ontext of nets. A synthesis result for elementary net

systems was �rst proposed in [15℄. This was extended to plae-transition

nets with a step-based semantis in [12℄. There have been a number of

related results in the area|see, for instane, the surveys [2, 17℄.

The problem modulo language equivalene has reently been lifted

from the setting of synhronous ommuniation to the setting of message-

passing. Over the past few years, the graphial spei�ation formal-

ism known as Message Sequene Charts (MSCs) has beome popular

for speifying systems with asynhronous ommuniation. In general,

an MSC-based spei�ation may not admit a �nite-state implementa-

tion (where �nite-state means that the set of reahable on�gurations

is �nite|that is, not only is eah proess loally �nite-state, but there

is also a uniform bound on the sizes of all the message bu�ers in the

system). The lass of MSC spei�ations that do admit �nite-state im-

plementations onstitute the so-alled regular MSC languages, whih

have been haraterized in [6℄. In [13℄, the synthesis problem modulo

language equivalene is solved for regular MSC languages, where the

distributed implementation is in terms of message-passing automata.

As we have seen here, very little is known about the synthesis problem

modulo bisimulation. In general, one needs to expand on the input

transition system to derive an implementation that is bisimilar to the

global spei�ation and yet has the struture of a distributed transition

system. The hief diÆulty is that it is diÆult to quantify the ollapse

in the state spae that ours when one takes the bisimulation quotient

of a distributed transition system. To put it another way, the diÆulty

lies in bounding the size of the synthesized system in terms of the size of

the input system. In fat, the state of our knowledge is so poor in this

area that even the following seemingly trivial problem is still open.

Let TS = (Q;!; q

in

) be a transition system over � and let

e

� = h�

1

; : : : ;�

k

i be a distribution of �. Suppose that TS

is �nite-state and is bisimilar to a (possibly in�nite-state)

loosely ooperating system TS

1

k � � � k TS

k

over

e

�. Then,

is it neessarily the ase that TS is also bisimilar to a �nite-

state loosely ooperating system TS

0

1

k � � � k TS

0

k

over

e

�?



18

Referenes

[1℄ A. Arnold: Finite transition systems and semantis of ommuniating systems,

Prentie-Hall (1994).

[2℄ E. Badouel and Ph. Darondeau: Theory of Regions. Letures on Petri nets I

(Basi Models), LNCS 1491 (1998) 529{588.

[3℄ I. Castellani, M. Mukund and P.S. Thiagarajan: Synthesizing distributed tran-

sition systems from global spei�ations, Pro. FSTTCS 19, LNCS 1739 (1999)

219{231.

[4℄ W. Ebinger, A. Musholl: Logial de�nability on in�nite traes, Theor. Comput.

Si., 154 (1996) 67{84.

[5℄ A. Ehrenfeuht and G. Rozenberg: Partial 2-strutures; Part II, State spaes of

onurrent systems, Ata Inf. 27 (1990) 348{368.

[6℄ J.G. Henriksen, M. Mukund, K. Narayan Kumar and P.S. Thiagarajan: Regular

Colletions of Message Sequene Charts, Pro. MFCS 2000, LNCS 1893 (2000),

405{414.

[7℄ G.J. Holzmann: The model heker SPIN, IEEE Trans. on Software Engineering,

23, 5 (1997) 279{295.

[8℄ R.P. Kurshan: Computer-Aided Veri�ation of Coordinating Proesses: The

Automata-Theoreti Approah, Prineton University Press (1994).

[9℄ A. Mazurkiewiz: Basi notions of trae theory, in: J.W. de Bakker, W.-

P. de Roever, G. Rozenberg (eds.), Linear time, branhing time and partial

order in logis and models for onurreny, LNCS, 354 (1989) 285{363.

[10℄ R. Milner: Communiation and Conurreny, Prentie-Hall, London (1989).

[11℄ R. Morin: Deompositions of asynhronous systems, Pro. CONCUR'98, LNCS

1466 (1998) 549{564.

[12℄ M. Mukund: Petri Nets and Step Transition Systems, Int. J. Found. Comput.

Si. 3, 4 (1992) 443{478.

[13℄ M. Mukund, K. Narayan Kumar, M. Sohoni: Synthesizing distributed �nite-

state systems from MSCs, Pro. CONCUR 2000, LNCS 1877 (2000) 521{535.

[14℄ M. Mukund, M. Sohoni: Gossiping, asynhronous automata and Zielonka's the-

orem, Report TCS-94-2, Chennai Mathematial Institute (1994). Available via

http://www.mi.a.in/tehreps

[15℄ M. Nielsen, G. Rozenberg and P.S. Thiagarajan: Elementary transition systems,

Theor. Comput. Si. 96 (1992) 3{33.

[16℄ P.S. Thiagarajan: A trae onsistent subset of PTL, Pro. CONCUR'95, LNCS

962 (1995) 438-452.

[17℄ G. Winskel and M. Nielsen: Models for onurreny, in S. Abramsky, D. Gabbay

and T.S.E. Maibaum, eds, Handbook of Logi in Computer Siene, Vol 4, Oxford

(1995) 1{148.

[18℄ W. Zielonka: Notes on �nite asynhronous automata, R.A.I.R.O.|Inform.

Th�eor. Appl., 21 (1987) 99{135.


