GENERAL | ARTICLE

A Taste of Functional Programming — 2

Madhavan Mukund has
been on the Computer
Science faculty at Chennai
Mathematical Institute
since 1992, where he is
currently Professor. His
research interests are
primarily in formal
methods for specifying and
verifying computing
systems. He is the
Secretary of the Indian
Association for Research
in Computing Science
(IARCS) and the National
Coordinator of the Indian
Computing Olympiad.

TA taste of functional program-
ming — 1, Resonance, Vol.12,
No.8, pp.27-48, 2007.

Keywords
Functional programming, poly-
morphism, currying, reductions.

Madhavan Mukund

Functional programming has its roots in Alonzo
Church’s lambda calculus. In the first part' of
this article, we explored some basic notions of
functional programming using the language
Haskell. We now examine some more advanced
concepts, including polymorphism, infinite data
types and computations, and user-defined data

types.

1. Recap

Haskell is a typed functional programming language.
Its built-in scalar types include Int, Float, Char and
Bool for integers, floating point numbers, characters and
boolean values, respectively. A function from type A to
type B has type A -> B. Thus, the function factorial
would have type Int -> Int. Multiple inputs are read
one a time, using currying. For instance, a function plus
that adds two integers would have type Int -> Int ->
Int rather than Int x Int -> Int.

The basic collective type is a list — a sequence of values
with a uniform underlying type. For instance, [3,1,2,1]
is a list of Int. A list with underlying type T has type
[T], so the preceding example has type [Int]. Every
list is built up from the empty list [] by repeated ap-
plications of the operator : that appends an element to
the left of a list. Thus, the list [3,1,2,1] is internally
represented as 3:(1:(2:(1:[1))), or more simply as
3:1:2:1:[], since : associates to the right.

A Haskell program consists of a number of functions.
Each function is specified using one or more definitions
that are scanned from top to bottom. Pattern matching
can be used to simplify definition by cases. For instance,

40

,\,\/\/\/\/v

RESONANCE | September 2007

GENERAL | ARTICLE

here is an inductive definition of the fibonacci func-
tion, where the first line specifies the type of the func-

In Haskell, it is
possible to say that a

tion. function works for
fibonacci :: Int -> Int multiple types by using
fibonacci 0 = 1 type variables. For
fibonacci 1 =1 instance, we can write

fibonacci n = fibonacci (n-1) + fibonacci (n-2) the type of length as
length::[a]->Int. Here,
the letter a in the type
[a]->Int is a type
variable.

For functions on lists, pattern matching can be used
to implicitly decompose a list into its first element, the
head, and the rest of the list, the tail. Here is a function
that inductively computes the length of a list of [Int].

length :: [Int] -> Int
length [] =0
length (x:xs) = 1 + length xs

2. Polymorphism

Observe that the function length works in the same
way for lists of any type. It would be wasteful to have
to write a separate version of such a function for each
different type of list. In Haskell, it is possible to say
that a function works for multiple types by using type
variables. For instance, we can write the type of length
as length::[a]l->Int. Here, the letter a in the type
[al->Int is a type variable. The type [a]l->Int is to
be read as “for any underlying type a, this function is
of type [a]->Int”.

The function reverse reverses the order of elements in
a list and the function concat “dissolves” one level of
brackets in a nested list. Using type variables, we can
specify the most general types of these functions as fol-
lows.

reverse :: [a] -> [a]
concat :: [[a]l]l -> [al

In these type definitions, it is significant that the same
letter a appears on both sides of the =>. This means, for

RESONANCE | September 2007 W ¥

GENERAL | ARTICLE

In a nutshell,
overloading uses the
same symbol to
denote similar
operations on different
types, but the way the
operation is
implemented for each
type is different. On
the other hand,
polymorphism refers
to a single function
definition with a fixed
computation rule that
works for multiple
types in the same
way.

instance, that the type of the list returned by reverse
is the same as the type of the input list. In other words,
all occurrences of a type variable in a type declaration
must be instantiated to the same actual type.

Functions that work in the same way on different types
are called polymorphic, which in Greek means ‘taking
different forms’. We must be careful to distinguish poly-
morphism of the type we have seen with lists from the ad
hoc variety associated with overloading operators. For
instance, in most programming languages, we write +
to denote addition for both integers and floating point
numbers. However, since the underlying representations
used for the two kinds of numbers are completely differ-
ent, we are actually using the same name (+, in this case)
to designate functions that are computed in a different
manner for different base types. This type of situation
is more properly referred to as overloading.

In a nutshell, overloading uses the same symbol to de-
note similar operations on different types, but the way
the operation is implemented for each type is different.
On the other hand, polymorphism refers to a single func-
tion definition with a fixed computation rule that works
for multiple types in the same way.

2.1 Map and Filter

We have seen the built-in function map that allows us to
apply a function £ “pointwise” to each element of a list,
so that map f [x0,x1,...,xk] ~ [(f x0), (f x1),
.o, (F xk)].

What is the type of map? The function f is in general
of type a->b. The list that map operates on must be
compatible with the function f, so it must be of type
[al. The list generated by map is of type [b]. Thus,
we have map::(a->b)->[a]->[b]. Notice that there
are two type variables, a and b, in the type definition
for map. These can be independently instantiated to

42

,\,\/\/\/\/v

RESONANCE | September 2007

GENERAL | ARTICLE

different types, and these instantiations apply uniformly
to all occurrences of a and b.

We have also seen that we can filter out values from a
list. Let 1 be of type [a] and let p be a function from
a to Bool. Then, we can define filter as follows.

filter : (a -> Bool) -> [a] —-> [a]

filter p [1 = []

filter p (x:xs) | (p x) x:(filter p xs)
| otherwise = filter p xs

Here, the output of filter is a sublist of the original
list, so the output list has the same type as the original
list.

2.2 Conditional Polymorphism

Recall the function sum that adds up the elements of a
list.

sum [] =0
sum (x:xs) = x + (sum xs)

Clearly, this definition of sum would work for both lists
of Int and lists of Float, so it would be appropriate
to assign it a polymorphic type. However, it would be
wrong to write sum: : [a] ->a because sum works only for
lists whose underlying type supports addition. We need
to assign sum a qualified polymorphic type of the form

sum :: [a] -> a, provided type a supports +

Analogously, consider the function quicksort to sort a
list. If we use concrete types, we have to define sepa-
rate versions of quicksort for each type of list, such as
iquicksort:: [Int]->[Int], fquicksort:: [Float]->
[Float] and ilistquicksort::[[Int]]->[[Int]].

This is clearly undesirable because the actual definition
of quicksort in all these cases is the same. The other
option is to declare quicksort to be of type [a]l->[a].

RESONANCE | September 2007 W

43

GENERAL | ARTICLE

2 This is analogous to a class
implementing an interface in an

object oriented language.

Haskell classifies
types into subsets,
called type classes,
based on the
additional properties
satisfied by the types
in a class. Each type
class carries an
obligation in the form
of some underlying
functions that a type
needs to support to
belong to the class.

Is this reasonable? Can we sort a list of functions of
type [Int->Int->Int] such as [plus, times, max]?

The answer is that we can sort a list of values pro-
vided we can compare these values with each other. In
other words, we need to assign the following type to
quicksort:

[a]l -> [a],

provided we can compare values of type a

quicksort ::

Haskell classifies types into subsets, called type classes,
based on the additional properties satisfied by the types
in a class. Each type class carries an obligation in the
form of some underlying functions that a type needs to
support to belong to the class®. For instance, the set of
all types that support comparison functions <, <=,...is
called Ord.

A subset X of a set Y can also be described in terms
of its characteristic function fx where fx(z) = True if
and only if x € X. Thus, we can think of Ord as a
function that maps types to Bool and write Ord T to
denote whether or not type T belongs to Ord. The type
of quicksort now becomes:

quicksort (Ord a) => [a] —> [a]

This is read as “If a is in Ord, then quicksort is of type
[a]->[a] ”". Note the double arrow notation to denote
“if ... then ...".

An even more basic type class is Eq, the set of all types
that support checking for equality. Why is this a non-
trivial type class? Recall that we have function types of
the form T1 -> T2. One of the most fundamental re-
sults in the theory of computation is that it is not pos-
sible to effectively check whether two computable func-
tions are equal for any nontrivial definition of equality
(for instance, f == g if and only if for each input x, £ x
== g x). Thus, functions do not belong to Eq. A typical

44

,\,\/\/\/\/v

RESONANCE | September 2007

GENERAL | ARTICLE

example of a function that depends on Eq is the built-in
function elem that checks if a value belongs to a list.
Here is an inductive definition of elem.

elem x [] = False
elem x (y:ys) | x ==y True
| otherwise = elem x ys

The most general type for elem is elem: : (Eq a)=>a->
[a]->Bool. Observe that a type can belong to Ord only
if it belongs to Eq. This is because comparison involves
not only the functions < and > but also <=, >=, ... which
imply that we can check equality. Thus, as subsets of
types, Ord is a subset of Eq. Alternatively, we have that
Ord a implies Eq a for any type a.

Another typical type class in Haskell is Num, the col-
lection of all types that supports “numeric” operations
such as +, — and *. We observed earlier that the function
sum that adds up the values in a list will work on any list
whose underlying type supports addition. This means
that we can assign the generic type sum: : (Num a)=>[al
->a.

3. Type Inference

Haskell allows us to pass any type to a function, includ-
ing another function. Consider the function apply, that
takes as input a function f and a value x and returns
the value (f x). In other words, this function applies
f to x. The definition of apply is very straightforward:
apply f x = f x.

What is the type of apply? The first argument is any
function, so we can denote its type as a -> b for some
arbitrary types a and b. The second argument x has
to be fed as an input to f, so its type must be a. The
output of apply is £ x, which has type b. Thus, we have,
apply::(a->b)->a->b.

What if we change the function to apply f twice to x,

Haskell allows us to
pass any type to a
function, including
another function.
Consider the function
apply, that takes as
input a function f and
a value x and returns
the value (f x). In
other words, this
function applies f to x.
The definition of
apply is very
straightforward:
apply f x =fx.

RESONANCE | September 2007 W

45

GENERAL | ARTICLE

Computation in
Haskell consists of
rewriting expressions
using function
definitions. An
expression may have
multiple
subexpressions that
can be simplified. For
instance, if

sqr x = x*x, the
expression sqr (3+4)
may be simplified as
either sqr 7 or
(3+4)*(3+4)
depending on whether
we use the definition
of sqr or + first.

as in the function twice f x = £ (f x)? In this case,
we see that the output (f x) is fed back as an input to
f. This means that the input and output types a and b
must be the same, so f::a->a and the type of twice is
given by twice:: (a->a)->a->a.

The analysis we did by hand when trying to deduce the
type of apply and twice is built into Haskell. Thus, if
we do not provide an explicit type for a function, Haskell
will start with the most general assumption about the
type and impose the constraints inferred from the func-
tion definitions to arrive at a final type.

4. Outermost Reduction and Infinite Data Struc-
tures

Computation in Haskell consists of rewriting expressions
using function definitions. An expression may have mul-
tiple subexpressions that can be simplified. For instance,
if sqr x = x*x, the expression sqr (3+4) may be sim-
plified as either sqr 7 or (3+4)#*(3+4) depending on
whether we use the definition of sqr or + first. In gen-
eral, if the subexpressions that can be reduced overlap,
as in this case, we can always unambiguously declare
one to be inside the other — here (3+4) is inside sqr
(3+4).

In Haskell, the outer expression is always simplified be-
fore the inner one. This outermost strategy is some-
times called lazy — it does not simplify the argument to
a function until the value of the argument is actually
needed in the evaluation of the function. On the other
hand, innermost or eager reduction would always evalu-
ate an argument before it is used. Outermost reduction
sometimes produces a result when innermost reduction
does not. For instance, given the definition power x
0 = 1.0, we have power (8.0/0.0) 0~ 1.0, because
the argument x does not need to be evaluated.

Outermost reduction also permits the definition of infi-

46

,\,\/\/\/\/v

RESONANCE | September 2007

GENERAL | ARTICLE

nite data structures. For instance, the list of all integers
starting at n is given by the function

listfrom n = n: (listfrom (n+1))

After we rewrite listfrom n, the outermost expression
is the one involving :. This is thus evaluated first, re-
sulting in the initial n being generated. Haskell then
tries to expand listfrom (n+1) which, in turn, gen-
erates n+1 and listfrom (n+2) and so on. Thus, the
output of listfrom m is the infinite list [m, m+1,...]
which is denoted [m..] in Haskell.

4.1 Using Infinite Lists

Why are infinite lists useful? It is often conceptually
easier to define a function that returns an infinite list
and extract a finite prefix to get a concrete value. We
illustrate this by writing a function to check connectivity
in a directed graph.

A directed graph is a collection of wertices with some
pairs connected by oriented edges. Figure 1 is an exam-
ple of a directed graph with six vertices. We can describe
the graph using a function edge, as shown to the right
of the graph.

Our goal is to construct a function connected: :Char->
Char->Bool to compute the pairs of vertices that are

B edge :: Char -> Char -> Bool
///////' \\\\\\\‘ edge A’ ’B’ = True
> edge ’A’ ’D’ = True
edge ’B’ ’C’ = True
edge ’C’ ’A’ = True
edge ’C’ ’E’ = True
edge ’D’ ’E’ = True

connected — that is, connected x y is True if and only
*L edge 'F’ ’D’ = True
\ / edge ’F’ ’E’ = True
F

[e—QO

}\\
D
edge x y = False

Why are infinite
lists useful? ltis
often conceptually
easier to define a
function that
returns an infinite
list and extract a
finite prefix to get a
concrete value.

Figure 1. A graph in Haskell.

RESONANCE | September 2007 W\N

47

GENERAL | ARTICLE

if there is a path from x to y using the given set of edges.
We build up the set of paths inductively. Initially we
have paths of length 0 — there is only one. Given a path
of length k, we extend it to a path of length k+1 by
adding an edge. We can represent a path as a list of
nodes, so we have

extendpath :: [Char] -> [[Char]]
extendpath p = [p++c | ¢ <= [’A’..°F’],
edge (last p) cl

where last p returns the last value in the list p. We can
then map extendpath over the list of paths of length &
to get the list of paths of length k+1.

extendall :: [[Char]] -> [[Char]l]
extendall [] [[c] | ¢ <= [’A’..°F’]]
extendall 1 [11 | p <= 1, 11 <- extend p]

The base case of extendall constructs paths that con-
sist of a single node. If we start with the singleton list
of empty paths [[]] and repeatedly apply extendall,
we get lists with longer and longer paths.

To check if x and y are connected, we only need to check
for paths without loops from x to y — that is, we can as-
sume that the path from x to y does not visit an interme-
diate node z twice. If it did, we can excise the loop from
z to z and get a shorter path that serves our purpose.
If we have n nodes overall, a loop free path can have at
most n—1 edges. This suggests that to check all pairs
of connected nodes, it is sufficient to apply extendall
n times to the initial list containing the empty path.

Haskell has a built-in function iterate such that iterate
f x~ [x,f x,f(f x),...]. We can therefore write
iterate extendall [[]] to generate the list we want.
We can then extract the first n elements of this list (all
paths of length upto n—1) as

firstn = take n (iterate extendall [[]])

48

J\AW RESONANCE | September 2007

GENERAL | ARTICLE

Now, for each path in this list, we extract the start and
end points as follows.

connectedpairs = [(head p, last p) | 1 <- firstn,
p <- 1]

Finally, we can define the function connected.
connected x y = (elem (x,y) connectedpairs)

Notice that we have not bothered about the fact that
extendall generates paths that loop and do other un-
productive things. For instance, the path [’A’,’B’,’C’,
’A’,’B’,’C’] belongs to the sixth iteration of extendall
[[1], but it does not matter. All that we want is a guar-
antee that every pair (x,y) that is connected is enumer-
ated by the nth step.

4.2 Search Problems

In search problems, there is no closed form for the an-
swer and we need to systematically generate all possible
solutions, undoing partial solutions whenever we reach
a dead end. A classical problem of this sort is that of
placing n queens on an n X n chessboard such that no
two queens attack each other. Recall that two queens
attack each other if they lie on the same row, column or
diagonal.

From the problem description, it is immediate that in
any solution to the problem, there is exactly one queen
on each row (and also on each column). Thus, one strat-

i : : Figure 2. The 8
egy for solving the problem is the following: 'gure e ¢ queens

problem.

e Place the first queen on some square of the first row. 3

e In each succeeding row, place a queen at the leftmost
square that is not attacked by any of the earlier queens. q

If we follow this strategy on an 8 x 8 board and place Q
the first queen at the top left corner, after 7 moves, we Q
arrive at the configuration shown in Figure 2. We find

RESONANCE | September 2007 W 49

GENERAL | ARTICLE

Given an arrangement
of k queens, we can
write a function that

computes all valid
extensions of this
arrangement to k+1
queens, analogous to
the function we wrote
to extend paths of
length kin a graph to
paths of length k+1.
We have to ensure
that the new queen is
not in the same
column as any
previously placed
queen.

that there is no valid position on the last row for the
8th queen, so we have to abandon this solution and try
another one. This can be done in a systematic way by
retrying the next possibility for the 7th queen and once
again trying the 8th queen. If all possibilities for the
7th queen fail, we go back and try the next possibility
for the 6th queen. This strategy is called backtracking.

We can represent an arrangement of queens as a list of
integers, where the first integer is the column number of
the first queen in the first row, the second integer is the
column number of the second queen in the second row,
... Thus, the position in Figure 2 is described by the list
[1,3,5,7,2,4,6].

Given an arrangement of & queens, we can write a func-
tion that computes all valid extensions of this arrange-
ment to k41 queens, analogous to the function we wrote
to extend paths of length &k in a graph to paths of length
k+1. We have to ensure that the new queen is not in the
same column as any previously placed queen. We also
calculate, using elementary arithmetic, that the new po-
sition is not on any diagonal that is attacked by any of
the previous positions.

As in the paths example, let us give the name extendall
to the function that computes all valid extensions of a
list of arrangements. We can now solve the n queens
problem by repeatedly applying the function extendall
to the empty arrangement and picking up the values gen-
erated after the nth application. The following function
computes all possible arrangements of n queens on an
n X n board.

queens n = (iterate extendall [[]])!!(n+1)

where 1!!i denotes the element at position i in list 1,
starting from position 0. The following returns just one
such arrangement — the first one that is generated.

queensone n = head ((iterate extendall [])!!(n+1))

50

,\,\/\/\/\/v

RESONANCE | September 2007

GENERAL | ARTICLE

Notice that some of the positions after k iterations may
have no valid extensions (like the arrangment of 7 queens
above). This does not matter. If, at some stage, all
arrangements die out as infeasible, we will get the value
[] consisting of no valid arrangements (as opposed to
[[1], the list consisting of the empty arrangement) which
will just repeat itself indefinitely.

It might appear that we need to generate all possible
arrangements with 1,2,...,7 queens before we can obtain
the first valid arrangement for 8 queens in queensone.
However, Haskell’s outermost evaluation strategy will
actually expand the leftmost solution at each level, so it
will compute the first solution with 8 queens in a depth-
first, rather than a breadth-first, manner.

5. User-Defined Data Types

A data type is a collection of values with a collective
name. For instance, the data type Int consists of the
values {...,-2,-1,0,1,2,...}, while the data type Bool
consists of the values {False,True}. Data types can
be polymorphic and even recursively defined and hence
of unbounded size — for example, lists. In Haskell, we
can extend the set of built-in data types using the data
statement.

5.1 Enumerated Data Types

This simplest form of data type is one consisting of a
finite set of values. We can define such a type using the
data statement, as follows.

data Day = Sun | Mon | Tue | Wed | Thu | Fri
| Sat

Having introduced this new type, we can directly use it
in functions such as:

weekend :: Day -> Bool
weekend Sun = True
weekend Sat = True

RESONANCE | September 2007 W

GENERAL | ARTICLE

weekend d = False
We can also write a function nextday.

nextday :: Day -> Day
nextday Sun = Mon

nextday Sat = Sun

What happens if we ask Haskell to evaluate nextday
Sat? The answer is computed correctly as Sun but we
get a message saying Cannot find "show" function
for Day. Similarly, if we ask whether Tue == Wed, the
response is Cannot infer instance Eq Day.

The problem is that we have not associated the new data
type with any type classes, including the most basic ones
such as Eq and Show. The class Show consists of those
types whose values can be displayed — that is, the value
can be converted to a String and printed on screen.
The most natural definitions for Eq and Show are that
each value is distinct and equal only to itself and each
value is displayed in the same way it is defined. We can
include these “default” definitions for Eq and Show using
the word deriving as follows:

data Day = Sun | Mon | Tue | Wed | Thu | Fri
| Sat
deriving (Eq, Show)

In the same way, we can derive a definition for Ord — the
default definition would order the values in the sequence
they are presented, namely Sun < Mon < ...< Sat.

5.2 Data Types with Parameters

We can go beyond finite enumerated types and describe
data types with a parameter, as in the following exam-
ple.

52

W RESONANCE | September 2007

GENERAL | ARTICLE

data Shape = Square Float | Circle Float | Rectangle Float Float
deriving (Eq, Ord, Show)

size :: Shape -> Float
size (Square x) = x
size (Circle r) =r

size (Rectangle 1 w) = l+w

Each variant of Shape has a constructor — Square, Circle
or Rectangle. Each constructor is attached to a group
of values, which can vary from constructor to construc-
tor. The values Sun, Mon, ...in the type Day are also
constructors with zero values attached.

What happens when we derive Eq for Shape? At the
level of Shape, this will ensure that (Square x) is equal
to (Square y) provided x == y (thus, for the inner
value, it derives equality from Float) but (Square x) is
never equal to (Circle y). Since we also derive Ord, we
have Square < Circle < Rectangle so (Square x) <
(Circle y) for all x and y and (Circle z) < (Circle
w) if z < w.

5.3 Polymorphic Data Types

We can extend our definition of Shape to permit any nu-
meric type as the parameter. Here is the corresponding
definition.

data (Num a) => (Shape a) = Square a | Circle a | Rectangle a a
deriving (Eq, Ord, Show)

size :: (Shape a) -> a
size (Square x) = x
size (Circle r) =r

size (Rectangle 1 w) = 1l+w

Note the conditional dependence on Num a. Observe
also that we need to include the type parameter a in the
name of the type — the data type is Shape a not just
Shape.

RESONANCE | September 2007 W

GENERAL | ARTICLE

The constructor Listof

t

combines a value of
ype Int with a nested
instance of Mylist.

For example, a value

of type Mylist
corresponding to the
list [1,3,2] is written
Listof 1 (Listof 3
(Listof 2 Empty).

5.4 Recursive Data Types
We can have recursive data types. Here is an example.
data Mylist = Empty | Listof Int Mylist

Here the constructors are Empty and Listof. Empty
has zero arguments and is hence a constant, represent-
ing the base case of the recursive type. The constructor
Listof combines a value of type Int with a nested in-
stance of Mylist. For example, a value of type Mylist
corresponding to the list [1,3,2] is written Listof 1
(Listof 3 (Listof 2 Empty). In Haskell’s built-in de-
finition of lists, Empty is written as [] and Listof is
written as an infix constructor “:”, so the value above
becomes the more familiar 1:(3:(2:[]1).

It is a small step to extend Mylist to be polymorphic.
data Mylist a = Empty | Listof a (Mylist a)

Now, a term that uses the constructor Listof has a
value of type a and a nested list of the same type. Note
again that the full name of the type is Mylist a, not
just Mylist.

We could use multiple types. For instance, here is a
list in which types a and b alternate, beginning with a
value of type a. The alternation of types is achieved
by inverting the order of a and b in the nested copy of
Twolist.

data Twolist a b = Empty | Listof a (Twolist b

5.5 Stacks

Haskell provides the built-in collective data type list. It
is often convenient to have additional collective types.
One such type is a stack. A stack is a structure in which
we can add elements one at a time and remove elements
one at a time such that the element removed first is the

54

W RESONANCE | September 2007

a)

GENERAL | ARTICLE

one that was most recently added — a last-in-first-out
structure. The insert operation is usually called push
and the remove operation is usually called pop. Thus,
we have:

push :: a -> (Stack a) -> (Stack a)
pop :: Stack a -> (a,Stack a)

Notice that pop requires the stack to be nonempty and
returns a pair of values — the element at the top of the
stack and the resulting stack with this value removed.

We also add the following function that checks if the
given stack is empty.

isempty :: (Stack a) -> Bool

We have yet to define how to represent a stack. Here is
one possible definition:

data Stack a = Empty | St a (Stack a)

We can now instantiate the functions in terms of this
definition.

push :: a -> (Stack a) -> (Stack a)
push x s = St x s

pop :: Stack a -> (a,Stack a)
pop (St x s) = (x,s)

isempty :: (Stack a) -> Bool
isempty Empty = True
isempty s = False

Except for renaming constructors, our definition of the
data type Stack is the same as that of the handcrafted
list data type Mylist that we defined last time. This
suggests that we could directly use the built-in list type
and write

data Stack a = St [a]

A stack is a structure
in which we can add
elements one at a
time and remove
elements one at a
time such that the
element removed
first is the one that
was most recently
added — a last-in-
first-out structure.

-

RESONANCE | September 2007

55

GENERAL | ARTICLE

A queue is a first-in-
first-out structure.
Like a stack, it has
basic operations to
add and remove
elements, but the
element that is
removed is the one
that was added
earliest.

Adding an element to

a queue takes time
proportional to the
size of the queue.

Removing an element

In

takes constant time.
contrast, in a stack,
both push and pop
take constant time,
independent of the
size of the stack.

We need a constructor to associate with the value [a],
but otherwise all the functions we use are derived from
the structure of lists.

push x (St xs) = St (x:xs)
pop (St (x:xs)) = (x,St xs)
isempty (St 1) = (1 == [])

5.6 Queues

A queue is a first-in-first-out structure. Like a stack, it
has basic operations to add and remove elements, but
the element that is removed is the one that was added
earliest. Here are the operations that we would like to
perform on queues:

addq :: a -> (Queue a) -> (Queue a)
removeq :: (Queue a) -> (a,Queue a)
isemptyq :: (Queue a) -> Bool

Observe that the signatures are the same as those for
the functions push, pop and isempty that we defined
for stacks, modulo the new name of the datatype. We
can again implement a queue using a list, as follows.

data Queue a = Qu [a]

addg x (Qu xs) = (Qu xs ++ [x])
removeq (Qu (x:xs) = (x,Qu xs)
isempty (Qu 1) = (1 == [])

Here, removeq and isemptyq have essentially the same
definition as pop and isempty for stacks. Only addq is
different — the new element is appended at the end of
the list rather than at the beginning.

This is an important difference — adding an element to
a queue takes time proportional to the size of the queue.
Removing an element takes constant time. In contrast,
in a stack, both push and pop take constant time, inde-
pendent of the size of the stack.

56

W RESONANCE | September 2007

GENERAL | ARTICLE

Suppose we push and pop n elements in a stack. This
will take O(n) time, regardless of the way the pushes and
pops are interleaved. On the other hand, for a queue,
if we first do n addq’s and then n removeq’s, it takes
time O(n?) to build up the queue, since each addq takes
time proportional to the length of the queue. We could,
of course, reverse the representation and add elements
to the front of the list and remove them from the rear.
Then, addq would be a constant time operation while
removeq would take time proportional to the length of
the list.

Can we do better? Can we find an implementation of
a queue in which n addq’s and n removeq’s take O(n)
time, regardless of the order in which these operations
appear? We imagine that we break a queue into two
parts and use a separate list to represent the front and
the rear. Since we remove elements from the front por-
tion, the first element in the front should be at the head.
We add elements to the end of the rear, so, to avoid tra-
versing the rear portion each time we add a new element,
we maintain the rear portion in reverse, with the end of
the queue at the head of the list.

Here is the data declaration and the definition of addgq.

data Queue a = Nuqu [a] [a]
addqg x (Nuqu ys zs) = Nuqu ys (x:zs)

Recall that zs represents the rear of the queue, in re-
verse, so the last element of the queue is at the head of
zs, and x is added before this element.

How about removeq? If the left list is nonempty, we just
extract its head. If it is empty, we reverse the entire rear
into the front and then extract its head.

removeq (Nuqu (x:xs) ys) = (x,Nuqu xs ys)
removeq (Nuqu [] ys) =
removeq (Nuqu (reverse ys) [])

RESONANCE | September 2007 W

GENERAL | ARTICLE

A tree is a structure in
which each node has
multiple successors,
called children. There
is a special node,
called the root, from
which the tree begins.

Figure 3. Trees.

1 3
/\ /\
2 5 2 5

/NN N

i1 3 61 4 6

Why is this any better? After all, after adding n el-
ements the queue would be Nuqu []1 [xn,...,x2,x1],
so the first removeq will take O(n) time, since reverse
takes O(n) time. Note, however, that the O(n) time

taken to extract x1 also transfers [x2,..,xn] to the
front of the queue. Thus, after one removeq, we have
Nuqu [x2,...,xn] []. The next n — 1 removeq oper-

ations take only O(1) time each. In this way, overall,
adding n elements and then removing them takes only
O(n) operations. The O(n) cost of extracting the first
element can be thought of as amortized, or spread out,
over the next n — 1 removeq operations.

5.7 Trees

A tree is a structure in which each node has multiple suc-
cessors, called children. There is a special node, called
the root, from which the tree begins. The root is usually
drawn as the topmost node in the tree. Every node other
than the root has a unique parent (the node of which
it is a child), and hence a unique path back to the root
following parent links. Figure 3 shows two examples of
trees.

In the trees we have drawn, a value is stored at each
node. As in lists, these values have a uniform type —
Int, in the examples above. A bottom level node with
no children is called a leaf node. Non-leaf nodes are
called internal nodes. Internal nodes in a tree need not
have a uniform number of children. For instance, the
node with value 5 in the left tree has only one child
while the node with value 2 has two children. The order
of the children is important. In the trees we have drawn,
each node has up to two children and the two children
are oriented as left and right. Thus, for the tree on the
left, 2 is the left child of the root 4 and 3 is the right
child of 2. Notice that though 5 has only one child, 6,
this is a right child, not a left child.

58

J\/\W RESONANCE | September 2007

GENERAL | ARTICLE

We will typically look at binary trees, in which each node
has up to two children. Here is one way to describe a
binary data over an arbitrary type a.

data BTree a = Nil | Node (BTree a) a (BTree a)

Lists have a linear structure, so there is only one measure
of size for a list, the length of the list. Trees are two
dimensional, so we consider two quantities:

e Size : the number of nodes in the tree

e Height : the length of the longest path from a root
to a leaf

We can compute both of these quantities inductively, as
with lists.

size :: (Btree a) -> Int
size Nil = O
size (Node tl1 x t2) =1 + (size t1) + (size t2)

height (Btree a) -> Int
height Nil = 0

Lists have a linear
structure, so there is
only one measure of
size for a list, the
length of the list.
Trees are two
dimensional, so we
consider two
quantities:

Size: the number of
nodes in the tree;
Height : the length of
the longest path from
aroot to a leaf.

height (Node t1 x t2) = 1 + max (height t1) (height t2)

5.8 Binary Search Trees

An important use of binary trees is to store values that
we may want to look up later. For instance, a binary
search tree could be used to store a dictionary of words.
A binary search tree is a tree with no duplicate values
that satisfies the following property at every node v: all
values in the subtree rooted at v that are smaller than
the value stored at v lie in the left subtree of v and all
values in the subtree rooted at v that are larger than
the value stored at v lie in the right subtree of v. To
emphasize that the values in the tree can be ordered,
we elaborate slightly on the Haskell definition of binary

trees to describe search trees.

RESONANCE | September 2007

59

GENERAL | ARTICLE

A binary search tree is
a tree with no
duplicate values that
satisfies the following
property at every node
v: all values in the
subtree rooted at v
that are smaller than
the value stored at v
lie in the left subtree
of v.and all values in
the subtree rooted at
v that are larger than
the value stored at v
lie in the right subtree
of v.

Figure 4. A skewed search
tree.

data (0Ord a) => STree a = Nil | Node (STree a)
a (STree a)

Observe that the structure of an STree is identical to
that of a normal BTree, but there is a type class depen-
dence on 0rd, similar to the one we have seen for poly-
morphic functions such as quicksort. We have changed
the name of the data structure from BTree a to STree
a to emphasize that we are working with search trees
rather than ordinary binary trees.

Both the trees in Figure 3 are examples of search trees
over the values [1,2,3,4,5,6]. Though these two trees
look reasonably well balanced, this is not always the
case. For instance, Figure 4 shows a highly unbalanced
search tree over the same set of values.

To find a value in a binary search tree, we start at the
root. At each node, if we have not already found the
value we are looking for, we can use the search tree prop-
erty to decide whether to search in the right subtree or
the left subtree. We keep walking down the tree in this
fashion till we find the value we seek or we reach a leaf
node from where we cannot descend further. Thus, each
lookup in a binary search tree traverses, in the worst
case, a single path from the root to a leaf node.

How much time does it take to look up a value in a
balanced search tree with n nodes? A tree is balanced
if at each node the size of the left subtree differs from
the size of the right subtree by at most 1. Initially, we
search for the value in the entire tree, with n nodes. If
we do not find the value at the root, we search either
the left or the right subtree. Since the tree is balanced,
the number of nodes in each of these subtrees is at most
5. In this way, we successively search trees of size n,
5.4, till we reach a leaf node, a subtree of size 1.
The length of this sequence is clearly bounded by logn
— in other words, the height of a balanced search tree

with n nodes is logn.

60

,\,\/\/\/\/V

RESONANCE | September 2007

GENERAL | ARTICLE

Here is a Haskell definition of the search procedure we
just described:

findtree (Stree a) -> a -> Bool
findtree Nil x = False
findtree (Node tleft y tright) x

| ==y = True

| x <y findtree tleft x

| otherwise = findtree tright x

Search trees are not static objects. In general, we have
to insert new values into search trees and remove stale
values from search trees.

Where should we insert a value into a search tree? From
the definition of a search tree, there is only one possibil-
ity. Search for the value in the tree. If it already exists,
there is nothing to be done. Otherwise, we reach a leaf
node. This is the same path that we would have to fol-
low to find the new value after it has been inserted. So,
insert the new value as a left or right child of the leaf
node where the unsuccessful search terminates.

inserttree (Stree a) -> a -> (Stree a)
inserttree Nil x = Node Nil x Nil
inserttree (Node tleft y tright) x

| x == = Node tleft y tright
| x <y = Node (inserttree tleft x) y tright
| otherwise = Node tleft y (inserttree tright x)

Clearly, the maximum number of steps required to in-
sert a value into a search tree is equal to the length of
the longest path in the tree. Thus, if the search tree is
balanced and has n nodes, inserttree takes time logn,
but will not in general preserve the balanced structure
of the tree.

How do we delete a value from a tree? We interpret
“delete x from t7 as “delete x from t if the value exists
in t”. Suppose we want to delete a value x from a tree

Where should we
insert a value into a
search tree? From
the definition of a
search tree, there is
only one possibility.
Search for the value
in the tree. Ifit
already exists, there
is nothing to be done.
Otherwise, we reach
a leaf node. So,
insert the new value
as a left or right child
of the leaf node where
the unsuccessful
search terminates.

The maximum
number of steps
required to insert a
value into a search
tree is equal to the
length of the longest
path in the tree.

-

RESONANCE | September 2007

61

GENERAL | ARTICLE

t1

y::X

W/ \Z
/\

t2

/\

t3

t4

Figure 5. Deleting a value

from a search tree.

whose root is y. If x < y, we inductively delete x from
the left subtree of y. Similarly, if x > y, we inductively
delete x from the right subtree of y. So, the interesting
case is when y == x, as shown in Figure 5.

If we remove y, we have a hole at the root of the tree.
It is tempting to move either w (or z) into this place
and recursively delete w from the left subtree (or z from
the right subtree). However, this would not preserve the
structure of the tree — for instance, if we move w up to
the root, values in the tree t2, which are bigger than w,
will end up to the left of w.

The correct solution is to move the largest value from
the left subtree of y (or the smallest value from the right
subtree of y) in place of y. The largest value in a search
tree can be found easily, by following the rightmost path
in the tree. Removing this value from a tree is also a rel-
atively easy operation. Here is a function that removes
the maximum value from a nonempty tree, returning
both the value and the modified tree, after deletion.

deletemax :: (STree a) -> (a,STree a)

deletemax (Node tl1 y Nil) = (y,tl1)

deletemax (Node tl y t2) = (z, Node tl y tz)
where (z,tz) = deletemax t2

We can now rewrite deletetree as follows:

deletetree :: (Stree a) -> a -> (Stree a)
deletetree Nil x = Nil
deletetree (Node tleft y tright) x
| x <y = Node (deletetree tleft x) y tright
| x >y = Node tleft y (deletetree tright x)

-— In all cases below, we must have x ==y

deletetree (Node Nil y tright) x = tright
deletetree (Node tleft y tright) x
Node tz z tright

where (z,tz) = deletemax tleft

62

J\/\W RESONANCE | September 2007

GENERAL | ARTICLE

5.9 Balanced Binary Search Trees

In general, the functions insert and delete that we
have described may result in skewed trees where the
height is not logarithmic in the size. We can induc-
tively maintain balance in a tree by appropriately rotat-
ing parts of a tree after each update. A typical rotation
is shown in Figure 6. We will not go into the details of
how to use such rotations to maintain a balanced search
tree. However, it is instructive to note that the restruc-
turing shown in Figure 6 can be directly rendered in
Haskell as follows, again emphasizing the clarity that is
achieved with a declarative style of programming.

rotateright (Node x (Node y tl t2) t3) =
Node y t1 (Node x t2 t3)

6. Conclusion

This concludes our two-part introduction to functional
programming in Haskell®. We have seen that functional
programming allows us to describe complex computa-
tions in a declarative manner. Haskell’s type mechanism
supports a sophisticated version of conditional polymor-
phism. Outermost evaluation allows us to describe in-
finite data structures, which can be fruitfully used in
solving search problems. Finally, we have seen that we
can define and manipulate user-defined data types quite

Figure 6. A tree rotation.

3 A number of compilers and
interpreters are available in the
public domain for Haskell. The
easiest to install and use is the
interpreter Hugs, which runs on
both Windows and Unix based
systems.
website, http://www.haskell.org,
that has pointers to software,
tutorials, books and reference
material on Haskell.

There is an active

Address for Correspondence
Madhavan Mukund
Chennai Mathematical
Institute
H1, SIPCOT IT Park
Padur PO
Siruseri 603 103, India
Email:madhavan@cmi.ac.in
http://www.cmi.ac.in/
~madhavan

naturally.

RESONANCE | September 2007

63

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

