GENERAL | ARTICLE

Model Checking

Automated Verification of Computational Systems

Madhavan Mukund

The ACM Turing Award for 2007 was awarded to
Clarke, Emerson and Sifakis for their invention
of model-checking, an automated technique for
verifying finite-state computing systems. In this
article, we describe the central ideas underlying
their approach.

1. Introduction

Each year, the Association for Computing Machinery
(ACM) confers the A M Turing Award for “contribu-
tions of lasting and major technical importance to the
computer field”. This is the most prestigious award in
computing science and can be considered the equivalent
of the Nobel Prize for the subject.

The Turing award for 2007, announced in 2008, was
shared by Edmund M Clarke (Carnegie-Mellon Univer-
sity, USA), E Allen Emerson (University of Texas at
Austin, USA) and Joseph Sifakis (Verimag, Grenoble,
France) for their “role in developing model-checking into
a highly effective verification technology, widely adopted
in the hardware and software industries.”

In this article, we give a quick introduction to the central
ideas behind model-checking.

2. Verification of Programs

The need to verify the correctness of programs is as old
as programming itself. From the 1960s, it was realized
that mathematical logic provides a suitably precise lan-
guage to formulate properties of programs. The method
proposed was to attach appropriate logical assertions
about the values of variables and the relationships

Madhavan Mukund is
Professor at Chennai
Mathematical Institute.
His research interests are
primarily in formal
methods for specifying and
verifying computing
systems. He is the
Secretary of the Indian
Association for Research
in Computing Science
(IARCS) and the National
Coordinator of the Indian
Computing Olympiad.

Keywords
Automated verification, model
checking, temporal logic.

-

RESONANCE | July 2009

667

GENERAL | ARTICLE

In Hoare logic, each
piece of program text
C is annotated by two

logical assertions,

the precondition and

'Pnueli received the Turing
award in 1996 for this contribu-

tion.

the postcondition.

The main difficulty
with this approach

lies in automating the

logical reasoning
involved.

between them to different points in the text of a pro-
gram and use these assertions to prove the program cor-
rect.

This approach was formalized by C A R Hoare, build-
ing on ideas of Robert Floyd, in a system called ‘Hoare
logic’. In Hoare logic, each piece of program text C
is annotated by two logical assertions, the precondition
and the postcondition, yielding a Hoare triple written as
{Pre}C{Post}. The interpretation is that if Pre holds
before the execution of C, then Post is guaranteed to
hold after the execution of C'. Given a sequence of pro-
gram blocks C,Cjy, ..., Ck, one can then string together
a proof of correctness by showing that { Pre;}C;{ Post;}
is a valid Hoare triple for each block C; and that Post;
implies Pre;;q for each pair of consecutive blocks.

The main difficulty with this approach lies in automat-
ing the logical reasoning involved. Automation is re-
quired for the technique to scale up to large programs.
Independently, there are difficulties applying this tech-
nique to concurrent programs, where components exe-
cute independently, communicating through mechanisms
such as shared variables or message channels.

2.1 Temporal Logic

In 1977, Amir Pnueli proposed an alternative approach
to reason about concurrent programs using another log-
ical formalism called ‘temporal logic’'. In Hoare logic,
the proof of correctness works with the actual program
text. Pnueli’s approach was to build an abstract model
of the program, capturing the features essential for ver-
ification. These features are then encoded as logical
propositions. As the program executes, it goes through
a sequence of different states, each described by a dif-
ferent combination of these logical propositions.

An important aspect of Pnueli’s approach is that it is
intended to deal with systems that are not expected to

668

“’\/\/\/\/\" RESONANCE | July 2009

GENERAL | ARTICLE

terminate, such as operating systems, schedulers and
controllers. For such reactive systems, each execution
of the system normally generates an infinite sequence of
states.

Temporal logic is a language for asserting properties
about logical propositions as they vary over a sequence
of states. For instance, in temporal logic we can write
formulas of the form “in a future state f holds” and
“henceforth f holds in all states”.

There are two main flavours of temporal logic, linear-
time and branching-time. In linear-time temporal logic,
which was Pnueli’s original formulation, each execution
of the system is analyzed independently. In this inter-
pretation, a system satisfies a formula f, if f holds along
every execution.

Another approach is to combine all possible executions
of the system into a single (infinite) tree. Each path
in the tree represents one possible execution and the
branching points capture the nondeterministic choices.
These choices typically arise from the fact that we are
dealing with concurrent programs, so we cannot always
fix the order in which events occur across independent
components in the system. In branching-time logic, as-
sertions are interpreted over this single computation tree
representing the overall behaviour of the system. Tem-
poral assertions are quantified with respect to paths, so
we can say “over all paths f holds” and “there exists a
path over which f holds”.

2.2 Model Checking

In mathematical logic, a traditional question is satisfia-
bility — given a formula f, is there a structure in which f
is true? However, the application of logic in verification
gives rise to another natural question — given a structure
M and a formula f, is f true in M? This corresponds
to asking if a program meets its specification and is now

Temporal logic is a
language for
asserting properties
about logical
propositions as
they vary over a
sequence of states.

We are dealing with
concurrent
programs, so we
cannot always fix
the order in which
events occur
across independent
components in the
system.

-

RESONANCE | July 2009

669

GENERAL | ARTICLE

°The term ‘model-checking’ was
firstused by Clarke and Emerson
in [1].

The primary
contribution of Clarke,
Emerson and Sifakis
was to pose model-
checking as an
algorithmic problem
and provide an
efficient solution in the
setting of reactive
systems with respect
to temporal logic
assertions.

Figure 1. Peterson's algo-
rithm for mutual exclusion.

known as the model-checking problem?.

The primary contribution of Clarke, Emerson and Sifakis
[1, 2] was to pose model-checking as an algorithmic prob-
lem and provide an efficient solution in the setting of re-
active systems with respect to temporal logic assertions.

In the rest of the article, we illustrate their approach
using an example. We first show how to extract an ab-
stract model from a concurrent program. We then for-
malize a version of branching-time temporal logic and
describe how the corresponding model-checking algo-
rithm works.

3. Modelling Concurrent Programs

Our running example will be Peterson’s algorithm for
solving the problem of mutually exclusive access to a
shared resource by two concurrent processes [3]. The
processes can communicate with each other using shared
variables. However, no assumption is made about how
the actions of the two processes interleave. For instance,
if a process decides to move based on the current value
of a shared variable, it may happen that the value of
the variable is changed by the other process between
the time it is tested and the next action is taken in the
first process.

Peterson’s algorithm is shown in Figure 1. The processes
are numbered 0 and 1. The solution uses three shared

Process 0

while(trae) {
requesty «— true;
turn — false;
while (request; A —turn){
// "Busy" wait
}
// Enter critical section
/o
// Leave critical section
requesty — false:

Process 1

while(trae) {
request; — true;
turn «— true;
while (request, M turn){
// "Busy" wait
h
// Enter critical section
P
// Leave critical section
request, «— false:

670

e

RESONANCE | July 2009

GENERAL | ARTICLE

variables, request,, request; and turn. The algorithm
describes what Clarke and Emerson call the “synchro-
nization skeleton” of the system — it only reflects the
mechanism to coordinate mutually exclusive access to
the shared resource, abstractly referred to as the ‘criti-
cal section’, without bothering about the actual nature
of this shared resource. Notice that each process is in
an infinite loop, signifying that this represents a reac-
tive system that is not expected to terminate in a finite
time.

In our abstract model of this system, each state records
the values of the three shared variables. In addition, we
associate three phases with each process, idle, trying and
critical. Initially both processes are idle. After assign-
ing the variables request; and turn, process ¢ goes from
the idle phase to the trying phase, which corresponds to
the “busy wait” loop in the program text that checks
for appropriate values of turn and the other process’s
request. If the test succeeds, the process enters the crit-
ical section and hence the critical phase of its activity.
On completing this phase, it resets request; and returns
to the idle phase.

Thus, the state of the system is captured by nine Boolean
values {rg,r1,u, ig, i1, to, t1, co, c1}. The values {rq, r1,u}
correspond to the shared variables request, request; and
turn, respectively. The values {i;,t;,c;} describe which
of the three phases — idle, trying or critical — process j
is in.

We can represent the different states of the program in
terms of a diagram, as shown in Figure 2. Each state is
labelled by the Boolean values true in that state. Any
value not shown is implicitly false in the given state. The
arrows indicate the transitions that occur between states
when one of the processes executes a statement. Solid
arrows correspond to moves of process 0 while dashed
arrows correspond to moves of process 1.

The "synchronization
skeleton" of the
system reflects the
mechanism to
coordinate mutually
exclusive access to
the shared resource.

RESONANCE | July 2009 W

671

GENERAL | ARTICLE

3 Queille and Sifakis used a
closely related logic in [2].

Figure 2. An abstract model
of Peterson's algorithm.

For instance, the transition from the state {ig, i1} to the
state {rg,ig, 41} corresponds to the initial statement in
the loop where process 0 sets request, to true. Similarly,
the transition from {rg, r1, to, i1} to {ro, r1,u, to, t1} rep-
resents the step where process 1 sets turn to true and
enters its trying phase (process 0 is already in its trying
phase when this transition occurs). Notice that in states
{ro,r1,u,tg, t1} and {rg, 1, to, t1}, where both processes
are simultaneously in the trying phase, only one of the
two processes can move. This graphically illustrates the
clever way in which the three shared variables combine
in Peterson’s algorithm to guarantee mutual exclusion.

4. Branching-time Temporal Logic

We now define a temporal logic that can be used to as-
sert properties of abstract models like the one in Figure
2. As we had mentioned earlier, we can work either in
a linear-time framework or in a branching-time frame-
work. Our exposition is based on the branching-time
temporal logic used by Clarke and Emerson in [1] be-
cause it admits one of the most direct algorithms for
the model-checking problem?.

e)

Goiq | [To] a 1 T
L,U v N \fo:ia '\E'U-‘{J
: e\
— [— 1
(Tﬁ’/ g, T | /au r '.‘\ p. T
-fg./.l /0,-.'1/, tg. iy \ o0, fl/

' —
[

1 e
! | rg fl H gL T,
f i \ co: b f1
ro.rl.} (ag :1 "‘
r“n-h)

L’iﬂj P \ID 8 \"\]
If.f(u ,ﬁ :Ifo :{;ﬁ ag n
\i,‘_lj

S =
: . /
|
". u aD) o
N Lfg i || i, -‘1)
'\

ri,u To. T, ﬂ

_f N ig. .'1

\3_// |

672

e

RESONANCE | July 2009

GENERAL | ARTICLE

(i

LY,
s
" b I B
k_ID_h/ F.D-"i-lj in, @
f I-\ x’{ ".]
rf I.i I I'u ¥ I'i I I'u

The first step is to unwind our abstract model into a
computation tree. Let us assume that the system in
Figure 2 starts execution in the state {ig,i;}. From this
state it can move to two different states, depending on
whether process 0 or process 1 moves. From each of
these states, we again have two possible moves. If we
systematically explore the states we can reach, we obtain
the tree shown in Figure 3. In the tree, we make a fresh
copy of each state that we encounter. Notice, for exam-
ple, that at the third level we have two separate copies
of the state {rg,r1, 9,41} since these are reached by two
different execution sequences of the global system. Each
path in the tree describes one possible evolution of the
system. Since the original program is designed to run
forever, paths in the tree are, in general, infinite.

The computation tree is a single structure capturing the
complete behaviour of the model. For instance, to iden-
tify if it is possible for both processes to be simultane-
ously in the trying phase, it suffices to check if a state
containing {tg,t1} is reachable in the tree. To further
verify if the system can deadlock — for example, both
processes are in the trying phase but each is stuck wait-
ing for a condition to become true, so no progress can
be made — we can check whether there is a node in the

Figure 3. The computation
tree for Peterson's algo-
rithm.

The computation
tree is a single
structure capturing
the complete
behaviour of the
model.

-

RESONANCE | July 2009

673

GENERAL | ARTICLE

tree that has no successor nodes. In other words, a
system never deadlocks if and only if every path in its
computation tree is infinite.

Branching-time
temporal logic is a
formalism for

expressing Branching-time temporal logic is a formalism for ex-
properties of the pressing properties of the computation tree generated
computation tree by an abstract model. The specific version of branching-
generated by an time temporal logic that we work with is called Compu-
abstract model. tation Tree Logic, or CTL.

The basic assertions in CTL are the logical propositions
that we use to describe the states of the system — in the
case of Peterson’s algorithm, we have nine basic asser-
tions {rg, r1,u,ig, i1, to, t1, Co, C1}-

Formulas in CTL are evaluated at states in the computa-
tion tree. Remember that each state is defined in terms
of the logical propositions that hold in that state. Thus,
a basic assertion is true at a state whenever the cor-
responding logical proposition holds at that state. For
instance, at the root node of the tree in Figure 3, the
basic assertions ig and i; are true and all other basic
assertions are false.

We can qualify formulas with temporal modalities assert-
ing where the formula holds along a path. These come
in two basic forms.

e Next The formula Xf holds at a state s along
a path in the computation tree if f holds at its
successor state along the path.

e Until The formula fUg holds at a state s along
a path in the computation tree if ¢ holds at some
future state along the path and, starting at the

We can qualify current state, f holds at each state until the state
formulas with temporal where ¢ holds. Note that fUg holds in a trivial
modalities asserting way at s if g already holds at s.

where the formula

holds along a path. Two useful special cases of the Until modality are worth

674 “’\/\/\/\/\" RESONANCE | July 2009

GENERAL | ARTICLE

recording explicitly.

e Eventually The formula Ff holds at a state s
along a path in the computation tree if f holds at
some future state along the path.

e Henceforth The formula Gf holds at a state s
along a path in the computation tree if f holds at
every future state along the path.

A temporal formula is evaluated with respect to a fixed
path in the tree. In CTL, every temporal modality must
be accompanied by a path quantifier describing whether
the property holds along all paths or along some path.
We write A to denote the quantifier “over all paths” and
E to denote the quantifier “there exists a path”.

Once we pair up each a temporal formula with a path
quantifier, we are back to evaluating formulas at states
rather than over paths. Thus, for example, AXf holds
at a state s in the tree if f holds in every successor state
of s, and EfUg holds at a state s if there is some path
originating at s along which fUg holds.

We are, of course, also allowed to combine formulas us-
ing the usual Boolean connectives (and (A), or (V) and
not (—)), as well as derived connectives such as logical
implication (=-). Note, however, that the strong restric-
tion in CTL requiring us to pair path quantifiers with
temporal modalities prevents us from directly writing
assertions such as E(GF f), which captures the property
that there is a path along which f holds infinitely often
— GFf says that at every point along the path, there
is a further point where f holds, so after every f we
must see one more f in the future, yielding an infinite
subsequence of states where f holds.

Here are some examples of properties that we can ex-
press in CTL.

A temporal formula
is evaluated with
respect to a fixed
path in the tree.

RESONANCE | July 2009 W

675

GENERAL | ARTICLE

e Deadlock Recall that a state is deadlocked if it
has no successor state. Let tt denote the formula
“true” which is true at every state (for instance, tt
can be an abbreviation for the tautology roV —ryg).
Then EXtt asserts that a state has a successor,
from which it follows that “EXtt = AX—tt asserts
that a state has no successor. Thus the formula
EF(AX—=tt) holds at the root of the computation
tree precisely when there is a reachable deadlocked
state.

e Progress We would like to ensure that whenever
a process attempts to enter the critical region, it
eventually makes progress and succeeds. We have
used the logical propositions ¢; and ¢; to denote
that process i is in its trying phase and its criti-
cal phase, respectively. The progress property we
want for process i is captured by asserting the tem-
poral formula ¢;Uc; along every path originating
from each state where t; holds. This is equiva-
lent to requiring that the logical implication t; =
At;Uc; holds at every state in the tree. Thus, Pe-
terson’s algorithm satisfies the progress condition
if the formula AG(to = AtOUCO)/\AG(tl = AtlUcl)
holds at the root of the computation tree.

5. Model-checking CTL Formulas

We now have all the ingredients available to formulate
and describe the model-checking problem for CTL. We
assume we have an abstract model of the system at hand
— a graph consisting of states and transitions in which
each state is labelled by the logical propositions that
hold at that state, like the model for Peterson’s algo-
rithm in Figure 2. We fix a state s in this model M and
ask whether a given CTL formula f holds at the root of
the computation tree obtained by unravelling the model
M starting with state 5.

676 “’\/\/\/\/\" RESONANCE | July 2009

GENERAL | ARTICLE

Recall that the computation tree rooted at § is typi-
cally an infinite object, so we cannot exhaustively verify
whether formula f holds by explicitly constructing this
tree and examining all its paths. Instead, we proceed by
observing that we can reduce the question of checking
whether a formula holds at a state to questions about
its constituent parts, or subformulas. For instance, a
formula of the form f A g holds at a state s if and only
if both f and g, which are subformulas, hold at s. This
observation forms the basis for an inductive procedure
by which we label the model with subformulas of f so
that a state s is labelled by a subformula g of f whenever
g holds at f.

The simplest subformulas of f are the basic assertions
corresponding to the logical propositions attached to
states in the abstract model. Since we have explicit
information about which logical propositions are true in
every state, it is a simple matter to label each state by
the set of basic assertions that hold at that state.

The Boolean connectives A, V and — are easy to handle.
A state s can be labelled with the formula gA ¢’ provided
it has already been labelled with both g and ¢’. A state
s can be labelled with the formula g V ¢’ provided it
has already been labelled with either g or ¢’. A state s
can be labelled with the formula —¢ provided we have
finished assigning the label g to all states and the state
s has not been labelled g.

The interesting point is that this labelling algorithm can
be extended to temporal assertions in CTL.

e EXg, AXg: We label a state s with the subfor-
mula EXg provided it has some successor that has
already been labelled with ¢g. Similarly, we label
a state s with the subformula AXg provided that
every successor of s has already been labelled with

g.

We can reduce the

question of checking

whether a formula
holds at a state to
questions about its

constituent parts, or

subformulas.

RESONANCE | July 2009 W

677

GENERAL | ARTICLE

e EgUg’: There are two cases to consider.

1. If a state s has already been labelled with ¢’, we
can immediately assert that gUg’ holds along every
path originating at s, so we directly label s with
the formula EgUg’.

2. Otherwise, we observe that it must be the case
that ¢ holds at s and gUg’ holds along some path
originating from s. This, in turn, amounts to re-
quiring that EgUg’ holds at some successor of s.
In other words, if ¢’ does not hold at s, then the
formula g A EX(EgUg’) must hold at s in order for
EgUg’ to hold at s.

Putting these two observations together, we have the
following iterative procedure to label states with a sub-
formula of the form EgUg’.

1. For every state s labelled with ¢, add the label
EgUg'.

2. For every state s labelled with g that has a suc-
cessor state labeled EgUg’, label s with EgUg’.

3. Repeat Step 2 until no further states are labelled
EgUg'.

Each iteration of Step 2 propagates the label to one more
state. This procedure must terminate in a finite number
of steps because we only have a finite number of states
in our model to which the label EgUg’ can be added.

AgUg’: This case is similar to the previous one. Here we
observe that AgUg’ holds a state s if either ¢’ holds at s
or g holds at s and AgUg’ holds at every successor of s.
This immediately yields an iterative labelling procedure
like the one we just described for EgUg’.

678

«/\/\/\/\/\f RESONANCE | July 2009

GENERAL | ARTICLE

N
-r/-ti I{ti}
[\I{:r.} {f.’}-l;.’_{ fF_)I{ﬁ}
[
.
i, b
Step 1 T, b, Efo{:}l\h — Step 2
.~.‘D
f I{tr EaUb}
| f.' f
{a,EaUb} {f? EaUb}
.']
{ﬂ b, EaUb 1\
Step 3 ° Step 4

As we had mentioned earlier, F and G are special cases
of the modality U. Formally, Ff is the same as ttUf
and Gf is the same as —=F—f. This means that we can
translate all formulas of the form EFf, AFf EGf and
AGf in terms of EU and AU and apply the labelling
procedure described above.

Figure 4 illustrates the labelling procedure on a simple
model with four states. In this example, we would like to
check whether the assertion EaUb holds at the state sq,
where a and b are basic assertions. Here is the sequence
in which labels are generated by our model-checking al-
gorithm.

1. Label each state with the basic assertions corre-
sponding to the logical propositions that hold at

Figure 4. The CTL model-
checking algorithm for
EaUb

One extremely
useful feature of
model-checking is
that when the
algorithm fails, it
yields some
information about
why the formula
failed to hold.

that state.

RESONANCE | July 2009

679

GENERAL | ARTICLE

Suggested Reading

1

2]

3]

[4]

[5]

[6]

E M Clarke and E A
Emerson, Design and Syn-
thesis of Synchronization
Skeletons Using Branching-
Time Temporal Logic, in D
Kozen (ed.) Workshop on
Logic of Programs, Springer
Lecture Notes in Computer
Science, Vol.131, pp.52-71,
1981.

J P Queille and J Sifakis,
Specification and Verifica-
tion of Concurrent Systems
in CESAR, in M Dezani-
and 8]
Montanari (eds.), Interna-

Ciancaglini

tional Symposium on Pro-
gramming, Springer Lecture
Notes in Computer Science,
Vol.137, pp.337-351, 1982.
G L Peterson, Myths about
the Mutual Exclusion Prob-
lem, Information Processing
Letters, Vol.12(3), pp.115—
116, 1981.

O Grumberg and H Veith
(eds.), 25 Years of Model
Checking — History, Achi-
evements, Perspectives,
Springer Lecture Notes in
Computer Science, Vol.
5000, 2008.

E Allen Emerson, The Be-
ginning of Model Checking:
A Personal Perspective, in
[4], pp.27-45.

E M Clarke, O Grumberg
and D A Peled, Model Check-
ing, MIT Press 1999.

2. Label state s3 with EaUb since it is already labelled
b.

3. Label state so with EaUb since it is already labelled
a and it has a successor labelled EaUb.

4. Label state sq with EaUb since it is already labelled
a and it has a successor labelled EaUb.

At this point sg has been labelled by the formula that we
are attempting to model-check, so the algorithm reports
success.

It is easy to verify that the algorithm fails for the formula
AaUb. We are able to label s3 and s, with AaUb, but
not s;. When we reach sq we find that it is labelled a

but not all its successors are labelled AaUb, so we cannot
add the label AaUb to sq.

One extremely useful feature of model-checking is that
when the algorithm fails, it yields some information ab-
out why the formula failed to hold. For instance, in
the previous example, we can identify that AaUb fails
to hold at sg because it also fails to hold at one of the
successors of sg, namely s;. This in turn is due to the
fact that no state labelled b is reachable from s;. This
kind of diagnostic information makes model-checking a
valuable tool for debugging concurrent programs.

The model-checking algorithm for CTL works in time
proportional to |M| - |f|, where |M| denotes the size of
the abstract model (as a graph) and |f| is the length
of the formula f. This is because we have to label the
model with all subformulas in f, so we have |f| rounds
of labelling. In each round, we may have to traverse
the entire graph to propagate the subformula label to all
states, so each round of labelling takes time proportional
to |M]|.

680

e

RESONANCE | July 2009

GENERAL | ARTICLE

6. Beyond CTL Model-checking

After the pioneering work of Emerson, Clarke and Sifakis,
model-checking algorithms have been devised for other
variants of temporal logic, including linear-time tempo-
ral logic. Model-checking algorithms systematically ex-
plore all executions of the model that are relevant for
interpreting formulas in the underlying temporal logic.
However, the algorithms for other temporal logics are
typically more complicated than the model-checking al-
gorithm for CTL, which is unexpectedly simple, both
conceptually and from the point of view of computa-
tional complexity.

The main bottleneck to the practical applicability of
model-checking is the fact that the size of the abstract
model is typically very large. This is particularly true for
concurrent systems with a large number of independent
components. The global state space of such a concur-
rent system is the product of the local state spaces and
hence grows exponentially in the number of components.
This is often referred to as the state explosion problem
in model-checking.

A lot of research has gone into techniques for overcoming
the state explosion problem. One important develop-
ment has been the invention of symbolic model-checking,
in which the model is described implicitly using logical
formulas, rather than explicitly representing all reach-
able states and transitions as a graph. Another fruitful
area of current research is to extend model-checking to
systems with an infinite number of states.

A recent collection of articles surveying the state of the
art in model-checking can be found in [4]. In partic-
ular, this collection includes an informative article by
Emerson on the history of model-checking [5]. An in-
depth treatment of model-checking can be found in the
textbook by Clarke, Grumberg and Peled [6].

The main bottleneck to
the practical
applicability of model-
checking is the fact
that the size of the
abstract model is
typically very large.

Address for Correspondence
Madhavan Mukund
Chennai Mathematical
Institute
H1 SIPCOT IT Park
Padur PO
Siruseri 603 103, India.
Email:madhavan@cmi.ac.in
http://www.cmi.ac.in/
~madhavan

RESONANCE | July 2009 W

681

