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A Taste of Functional Programming — 1

Madhavan Mukund

Functional programming has its roots in Alonzo
Church’s lambda calculus. A functional program
is a collection of functions that work together to
transform data. Though Lisp brought functional
programming to public attention in the 1950s,
it was John Backus’s 1977 Turing Award lecture
criticizing the limitations of imperative program-
ming languages that led to a resurgence of inter-
est in this field. The 1970s and 1980s saw a num-
ber of advances, leading to the development of
the language Haskell, which carefully combined
ideas from many earlier languages. In this arti-
cle, we explore some basic notions of functional
programming via Haskell.

1. Imperative Programming

Programming languages such as C, C++ and Java, as
well as their predecessors FORTRAN and Pascal, all share
a broadly similar operational style. In each of these lan-
guages, a program is a set of instructions to manipulate
values that are stored in named variables. The process
of computation consists of transforming the initial state
of these variables to a desired final state. This style of
programming is sometimes called imperative, because a
program is a sequence of commands describing how to
manipulate the state.

Imperative programming languages have a close connec-
tion with the way modern computers are designed. This
is usually called the von Neumann architecture, after
the famous mathematician John von Neumann who pro-
posed this design in the 1940s .

In the von Neumann model, programs and data reside in
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Backus proposed a
language that
emphasized the role
of functions and
mechanisms for
combining them to
form larger programs.
Though he made a
distinction between
his proposal and the
style known as
functional
programming, there
were enough
similarities in the two
approaches that his
address inspired a
much greater interest
in functional
programming.

a common memory from which an individual item can
be identified and manipulated using its address. All the
manipulation happens in a separate central processing
unit, or CPU. Thus, executing a program consists of the
CPU continuously fetching data from the memory and
updating it in small units.

In 1977, John Backus, the inventor of FORTRAN, re-
ceived the prestigious Turing Award for his contribu-
tions to Computing Science. Somewhat unexpectedly,
in his Turing Award address, entitled “Can Program-
ming be Liberated from the von Neumann Style?”, he
strongly criticized the way that the von Neumann ar-
chitecture had influenced the evolution of programming
languages.

He coined the phrase von Neumann bottleneck to de-
scribe the constraint placed on computation by having
all data flow through a narrow channel between the CPU
and the memory. His thesis was that programming lan-
guages that were based on this architecture were obliged
to describe computation as a sequence of updates to in-
dividual memory locations. This style of programming
obfuscated the structure of the overall problem being
addressed and made it much harder to break up large
systems into small functional blocks that could be com-
bined in a reliable manner.

Backus proposed a language that emphasized the role of
functions and mechanisms for combining them to form
larger programs. Though he made a distinction be-
tween his proposal and the style known as functional
programming, there were enough similarities in the two
approaches that his address inspired a much greater in-
terest in functional programming.

2. Functional Programming

Functional programming has its roots in an abstract
model of computation called the lambda calculus, pro-

28

-

RESONANCE | August 2007



GENERAL | ARTICLE

posed by Alonzo Church in the 1930s. The lambda cal-
culus provided a notation for describing functions that
could be effectively computed, even though the electronic
computer was yet to be invented at the time! In parallel
with Church’s approach, Alan Turing proposed a more
operational model of an abstract computational device,
now called a Turing machine, in which symbols are writ-
ten on a tape and manipulated by a head that moves
up and down the tape, reading and modifying symbols.
The Turing machine is a direct intellectual ancestor of
the von Neumann architecture.

A functional program can be viewed as a black box
that transforms inputs to outputs. These boxes can be
chained together and combined in other ways to create
larger boxes. In its purest form, data in a functional
program flows from the input to the output and gets
transformed along the way by each box that it passes
through. There is no explicit memory, or state, and
hence the way in which computation is described is fun-
damentally different from imperative programming.

One of the first functional languages to achieve a de-
gree of popularity was Lisp, invented by John McCarthy
in the 1950s. LisP became popular for writing pro-
grams that performed symbolic computations—for exam-
ple, reading and understanding plain text or symbolic
differentiation and integration of algebraic expressions.

Values in Lisp are treated as abstract symbols—there is
no real notion of data type. In the 1970s, Robin Mil-
ner invented a typed functional programming language
called ML as part of a theorem proving system called
LCF. Typed languages are typically easier to program
in than untyped ones and ML led to a resurgence of in-
terest in functional programming. Backus’s 1977 lecture
inspired a lot of research into functional programming
that led to a number of so-called lazy functional lan-
guages such as Miranda.

In its purest form,
data in a functional
program flows from
the input to the
output and gets
transformed along

the way by each box

that it passes
through.

RESONANCE | August 2007 WV

29



GENERAL | ARTICLE

In general, a function
that takes inputs of
type A and produces
outputs of type B has
the type A-> B,
where -> is
intended to resemble

the arrow —

2 It turns out that types can be
automatically calculated for
functions defined in Haskell, so
we need not explicitly specify
the type. We will discuss this in
the second part of this article.

In the 1980s, the functional programming community
made a conscious decision to combine forces and come
up with a single language that unified the features from
the many functional languages that had been developed.
This led to the language Haskell being defined in the mid
1980s. Haskell has since become a standard language for
teaching and research in functional programming. The
language was standardized in 1998 as Haskell 98. Since
then, a number of extensions have been proposed and
may result in a new standard being defined soon.

3. Haskell

Programs in Haskell are functions that transform inputs
to outputs. The description of a function f has two
parts:

1. The types of inputs and outputs.
2. The rule for computing the output from the input.

In mathematics, the type of a function is often implicit:
Consider sqr(z) = 2%, which maps each input to its
square. We could have sqr : Z — Z or sqr : R — R or
sqr : C — C, depending on the context.

Here is a corresponding definition in Haskell.

sqr :: Int -> Int
sqr x = x°2

The first line gives the type of sqr: it says that sqr
reads an Int as input and produces an Int as output 2.
In general, a function that takes inputs of type A and
produces outputs of type B has the type A -> B, where
-> is intended to resemble the arrow —. The second line
gives the rule: it says that sqr x is x”2, where ~ is the
symbol for exponentiation.

The basic types in Haskell correspond to those in many
other programming languages. For instance, Int de-
notes the set of integers, whose range is bounded, as
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usual, by the number of bytes allocated to store a value
of this type. (Haskell also has the type Integer for in-
tegers of arbitrary size.) The type Bool contains the
two boolean values, written True and False. The type
Float contains non-integral numbers-the name comes
from floating-point—while Char denotes the type of char-
acters. This is not an exhaustive list. In this quick intro-
duction to Haskell, we will generally stick to the types
Int and Bool.

3.1 Functions with Multiple Inputs

One attribute that we have not been included in our
function definition is the number of inputs that it reads.
The function sqr that we saw earlier has only one in-
put. On the other hand, we could write a function
with two inputs, such as the mathematical function plus:
plus(m,n) = m + n.

Mathematically, the type of plus would be ZxZ — Z (or
R x R — R). This means that, in addition to the types
of the input and output and the rule for computation,
we also need to include information about the arity of
the function, or how many inputs it takes.

This complication can be avoided by the somewhat dras-
tic assumption that all functions take only one argu-
ment. How then can we define a function such as plus
that needs to operate on two arguments? We say that
plus first picks up the argument m and becomes a new
function plus m, that adds the number m to its argu-
ment n. Thus, we break up a function of two arguments
into a sequence of functions of one argument 3.

What is the type of plus? It takes in an integer m and
yields a new function plus m that is like sgr above: it
reads an integer and generates an output of the same
type, so its type is Z — Z. In Haskell notation, plus
reads an Int and generates a function of type (Int
-> Int), so the type of plus is Int -> (Int -> Int).

In addition to the
types of the input and
output and the rule
for computation, we
also need to include
information about the
arity of the function,
or how many inputs it
takes.

8 This process is called curry-
ing, named after the logician
Haskell B Curry, after whom
Haskell is also named. Ironi-
cally, currying was notinvented
by Haskell Curry. This idea was
first proposed Gottlob Frege
and later refined by Moses
Schonfinkel.
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In general, suppose
we have a function f
at reads n inputs x1,

X2, ..., xn of types t1,

t2

, -, tn @and produces

an output y of type t.

We can verify that the

f:

type of this function
would work out to
> (2 > (.. >
(tn =>1)...)).

Here is a complete definition of plus in Haskell:

plus :: Int -> (Int -> Int)
plus mn=m+n

Notice that we write plus m n and not plus(m,n)-
there are no parentheses around the arguments to a
function. In fact, the correct bracketing for plus m n is
(plus m) n. This tells us to first feed m to plus to get a
function (plus m) to which we then feed the argument
n.

What if we had a function of three arguments, such as
plus3(m,n,p) = m+n+p? Once again, we assume that
plus3 consumes its arguments one at a time. Having
read m, plus3 becomes a function like plus that we de-
fined earlier, except it adds on m to the sum of its two
arguments. Since the type of plus was Int -> (Int
-> Int), this is the output type of plus3. The input to
plus3 is an Int, so the overall type of plus3is Int ->
(Int -> (Int -> Int)). Here is a complete definition
of plus3 in Haskell:

plus3 :: Int -> (Int -> (Int -> Int))
pPlus mnp=m+n+p

Once again, note the lack of brackets in plus m n p,
which is implicitly bracketed ((plus m) n) p.

In general, suppose we have a function f that reads n
inputs x1, x2, ..., xn of types t1, t2, ..., tn and pro-
duces an output y of type t. We can verify that the
type of this function would work out to f::t1 -> (%2
=> (... => (tn -> t)...)). In this expression, the
brackets are introduced uniformly from the right, so we
can omit the brackets and unambiguously write f::t1
-> t2 -> ... -> tn > t.

3.2 More on Defining Functions

The simplest form of definition is the one we have seen
in sqr, plus and plus3, where we just write a defining
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equation using an arithmetic expression involving the
arguments to the function.

We can also write expressions involving other types. For
instance, for values of type Bool, the operator && de-
notes and, the operator || denotes or and the unary
operator not inverts its argument. Using these, we can
define, for instance, the function xor that checks that
precisely one of its arguments is True.

xor :: Bool -> Bool -> Bool

xor bl b2 = (bl && (not b2)) || ((not bl) &&

3.3 Pattern Matching

Haskell does not limit us to a single definition for a func-
tion. It offers pattern matching as a convenient mech-
anism to break up a single definition with many cases
into independent multiple definitions that are scanned
from top to bottom. The first definition that matches
is used to compute the output. For instance, here is an
alternative definition of xor.

xor :: Bool -> Bool -> Bool
xor True False = True
True

xor False True
xor bl b2 = False

When does a function invocation match a definition?
We have to check that it matches for each argument.
If the definition has a variable for an argument, then
any value supplied when invoking the function matches
on that argument and the value supplied is uniformly
substituted for the variable throughout the definition.
On the other hand, if the definition has a constant value
for an argument, the value supplied when invoking the
function must match precisely.

For instance, in the revised definition of xor, if we in-
voke the function as xor False True, the first defini-
tion does not match, but the second one does. If we

Haskell does not
limit us to a single
definition for a
function. It offers
pattern matching
as a convenient
mechanism to
break up a single
definition with
many cases into
independent
multiple definitions
that are scanned

from top to bottom.
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An inductive

definition of a

function has the

following structure:

¢ f(0) is defined
explicitly

e Forn>0,f(n)is
defined in terms
of fin-1),
f(n-2), ... f(0).

invoke the function as xor True True, the first two de-
finitions both fail to match and we end up using the
third one with bl and b2 set to True.

3.4 Inductive Definitions

An inductive definition of a function has the following
structure:

e f(0) is defined explicitly

e For n > 0, f(n) is defined in terms of f(n—1),
f(n—=2), ... f(0).

For instance, we can define the familiar factorial function
in this way.

e factorial(0) =1
e For n > 0, factorial(n) = n - factorial(n—1)

We can use multiple definitions with pattern matching
to define a function inductively in Haskell. For instance,
here is a definition of the function factorial.

factorial :: Int -> Int =>Int
factorial 0 = 1
factorial n = n*x(factorial (n-1))

If we write, for instance, factorial 3, then only the
second definition matches, leaving us with the expres-
sion 3*(factorial 2), after uniformly substituting 3
for n and simplifying (3-1) to 2. We use the second defi-
nition two more times to get 3*(2x(factorial 1)) and
then 3% (2x (1*(factorial 0))). Now, the first defini-
tion matches, and we get 3*%(2*(1%(1))) which Haskell
can evaluate using its built-in rules for * to return 6.

Notice that there is no guarantee that an inductive de-
finition in Haskell is correct, nor that it terminates on
all inputs. Reflect, for instance, on what would happen
if we invoked our function as factorial (-1).
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Observe the bracketing in the second definition above.
We write nx(factorial (n-1)). This says we should
compute (n-1), then feed this to factorial and multi-
ply the result by n. If, instead, we write nx(factorial
n-1), Haskell would interpret this as n*((factorial
n)-1) because function application binds more tightly
than arithmetic operators.

3.5 Conditional Definitions

Often, a function definition applies only if certain condi-
tions are satisfied by the values of the inputs. For exam-
ple, to define factorial to work with negative inputs,
we could negate negative inputs and invoke factorial
on the corresponding positive quantity.

factorial :: Int -> Int
factorial 0 = 1
factorial n | n < 0 = factorial (-n)

| n >0 =n % (factorial (n-1))

In this version of factorial, the second definition has
two options depending on the value of n. If n < O,
the first definition applies. If n > 0, the second defi-
nition applies. These conditions are called guards, since
they restrict entry to the definition that follows. Each
guarded definition is signalled using |.

Notice that lines beginning with | are indented. This
tells Haskell that these lines are continuations of the cur-
rent definition. Haskell uses the layout of the program
via indentation to recover the structure of the program,
making the use of braces, semicolons and other punctu-
ation optional.

We can combine definitions of different types. In this
example, the first definition, factorial 0 is a simple
expression while the second definition is a conditional
one.

The guards in a conditional definition are scanned from

Notice that there is
no guarantee that
an inductive
definition in
Haskell is correct,
nor that it
terminates on all
inputs.
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The guards in a

conditional definition
are scanned from top
to bottom. They may
overlap, in which case

the definition that is
used is the one

corresponding to the

first guard that is
satisfied.

top to bottom. They may overlap, in which case the
definition that is used is the one corresponding to the
first guard that is satisfied. For instance, we could write:

factorial :: Int -> Int

factorial 0 = 1

factorial n | n < 0 = factorial (-n)
| n > 1 =n *x (factorial (n-1))
| n > 0 =n * (factorial (n-1))

Now, factorial 2 would match the guard n > 1 while
factorial 1 would match the guard n > 0.

The guards in a conditional definition may also not cover
all cases. For instance, suppose we write:

factorial :: Int -> Int
factorial 0 = 1
factorial n | n < 0 = factorial (-n)
| n > 1 =n * (factorial (n-1))
factorial 1 =1

Now, the invocation factorial 1 matches neither guard
and falls through (fortunately) to the third definition. If
we had not supplied the third definition, any invocation
other than factorial 0 would eventually have tried to
evaluate factorial 1, for which no match would have
been found, leading to an error message.

Often, we do want to catch all leftover cases in the last
guard. Rather than tediously specify the options that
have been left out, we can use the word otherwise as
in the following definition of xor:

xor :: Bool -> Bool -> Bool

xor bl b2 | bl && not(b2) = True
| not(bl) && b2
| otherwise

True
False
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4. How Haskell ‘Computes’

Computation in Haskell is like simplifying expressions in
algebra. Relatively early in school, we learn that (a+b)?
is a®+2ab+b%. This means that wherever we see (z+y)?
in an expression, we can replace it by 22 + 2zy + y2.

In the same way, Haskell computes by rewriting expres-
sions using functions and operators. We say rewriting
rather than simplifying because it is not clear, some-
times, that the rewritten expression is “simpler” than
the original one!

To begin with, Haskell has rewriting rules for operations
on built-in types. For instance, the fact that 642 is 8 is
embedded in a Haskell rewriting rule that says that 6+2
can be rewritten as 8. In the same way, True && False
is rewritten to False.

In addition to the built-in rules, the function definitions
that we supply are also used for rewriting. For instance,
given the following definition of factorial

factorial :: Int -> Int =>—Int
factorial 0 = 1
n*x(factorial (n-1))

factorial n

here is how factorial 3 would be evaluated. We use
~» to denote rewrites to:

(factorial (3-1))
(factorial (2))

(2 * factorial (2-1))
(2 * factorial (1))

factorial 3

(2
(2
(2
2

(1 * factorial (0)))
(1 % 1))
1)

¥ X X X X ¥ X * X
* ¥ *

SO A A A A ¢

DWW WwWwwwwww

(2 * (1 * factorial (1-1)))

Haskell computes by
rewriting expressions
using functions and
operators. We say
rewriting rather than
simplifying because it
is not clear,
sometimes, that the
rewritten expression is
“simpler” than the
original one!
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In Haskell, the result
of a computation is
an expression that
cannot be further
simplified. In
general, itis
guaranteed that any
path we follow leads
to the same result, if
a result is found.

When rewriting expressions, brackets may be opened up
to change the order of evaluation. Sometimes, more than
one rewriting path may be available. For instance, we
could have completed the computation above as follows.

factorial 3 ~» 3 x (factorial (3-1))
~» 3 * (factorial (2))
~» 3 % (2 % factorial (2-1))

~» (3 * 2) * (factorial (2-1)) New expression!
~ 6 * (factorial (2-1)))

~ 6

In Haskell, the result of a computation is an expression
that cannot be further simplified. In general, it is guar-
anteed that any path we follow leads to the same result,
if a result is found. It could happen that one choice of
simplification yields a result while another does not. For
instance, consider the following definition of the function
power that computes 2" for non-negative integer expo-
nents.

power :: Float -> Int -> Float
power x 0 = 1.0
power x n | n > 0 = x * (power x (n-1)

If we consider the expression power (8.0/0.0) 0, we
could use the first rule and observe that the value x is
not used in the final answer, resulting in the following
reduction:

power (8.0/0.0) 0~ 1.0

However, if we first try to simplify (8.0/0.0), we get
an expression without a value so, in a sense, we have

power (8.0/0.0) O ~» Error

Haskell uses a form of simplification that is called lazy—
it does not simplify the argument to a function until the
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value of the argument is actually needed in the evalua-
tion of the function. In particular, Haskell would eval-
uate the expression above to 1.0. We will examine the
consequences of having such a lazy evaluation strategy
in the second part of this article.

5. Lists

Suppose we want a function that finds the maximum of
all values from a collection. We cannot use an individual
variable to represent each value in the collection because
when we write our function definition we have to fix the
number of variables we use, which limits our function to
work only with collections that have exactly that many
variables.

Instead, we need a way to collectively associate a group
of values with a variable. In Haskell, the most basic
way of collecting a group of values is to form a list. A
list is a sequence of values of a fixed type and is writ-
ten within square brackets separated by commas. Thus,
[1,2,3,1] is a list of Int, while [True,False,True] is
a list of Bool. Lists can be nested: we can have lists of
lists. For instance, [[1,2],[3],[4,4]] is a list, each
of whose members is a list of Int. The underlying type
of a list must be uniform: we cannot write lists such as
[1,2,True] or [[7],8].

A list of underlying type T has type [T]. Thus, [1,2,3,1]
is of type [Int], [True,False,True] is of type [Bool],
and [[1,2],[3],[4,4]] isof type [[Int]]. The empty
list is uniformly denoted [] for all list types.

Internally, Haskell builds lists incrementally, one ele-
ment at a time, starting with the empty list. This in-
cremental building can be done from left to right (each
new element is tagged on at the end of the current list)
or from right to left (each new element is tagged on at
the beginning of the current list). For historical reasons,
Haskell chooses the latter.

Haskell uses a form
of simplification that
is called lazy — it
does not simplify the
argument to a
function until the
value of the
argument is actually
needed in the
evaluation of the
function.

Internally, Haskell
builds lists
incrementally, one
element at a time,
starting with the
empty list. This
incremental building
can be done from left
to right (each new
element is tagged on
at the end of the
current list) or from
right to left (each new
element is tagged on
at the beginning of the
current list).
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In general, the
inductive step in a
list based
computation will
use both the head
and the tail of the
list to build up the
final value.

The basic list-building operator, denoted :, takes an el-
ement and a list and returns a new list. For instance
1:[2,3,4] returns [1,2,3,4]. As mentioned earlier,
all lists in Haskell are built up right to left, starting
with the empty list. So, internally the list [1,2,3,4]
is actually 1:(2:(3:(4:[1))). We always bracket the
binary operator : from right to left, so we can unam-
biguously leave out the brackets and write [1,2,3,4] as
1:2:3:4:[]. It is important to note that all the human
readable forms of a list [x1,x2,x3,...,xn] are inter-

Thus, there is no difference between the lists [1,2,3],
1:[2,3],1:2:[3] and 1:2:3:[].

5.1 Defining Functions on Lists

Many functions on lists are defined by induction on the
structure of the list. The base case specifies a value for
the empty list. The inductive case specifies a way to
combine the leftmost element with an inductive evalua-
tion of the function on the rest of the list. The functions
head and tail return the first element and the rest of
the list for all nonempty lists. These functions are un-
defined for the empty list. We can use head and tail
in our inductive definitions.

Here is a function that computes the length of a list of
Int.

length :: [Int] -> Int
length [] = 0
length 1 1 + (length (tail 1))

Notice that if the second definition matches, we know
that 1 is nonempty, so tail 1 returns a valid value.

In general, the inductive step in a list based computation
will use both the head and the tail of the list to build
up the final value. Here is a function that computes the
sum of the elements of a list of Int.
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sum :: [Int] -> Int
sum [] =0
sum 1 = (head 1) + (sum (tail 1))

5.2 Using Pattern Matching in List Functions

We can implicitly decompose a list into its head and tail
by providing a pattern with two variables to denote the
two components of a list, as follows:

length :: [Int] -> Int
length [] =0
length (x:xs) =1 + (length xs)

Here, in the second definition, the input list 1 is implic-
itly decomposed so that x gets the value head 1 while
xs gets the value tail 1. The bracket around (x:xs) is
needed; otherwise, Haskell will try to compute (length
x) before dealing with the :. In this example, the list is
broken up into a single value x and a list of values xs.
This is to be read as “the list consists of an x followed
by many z’s” and is a useful convention for naming lists.

By using pattern matching to directly decompose a list
into its head and tail, we can avoid having to invoke
the built-in functions head and tail explicitly in most
function definitions.

Here is a function append that combines two lists into a
single larger list. For example append [3,2] [4,6,7]
should evaluate to [3,2,4,6,7].

append :: [Int] -> [Int] -> [Int]
append [] ys = ys
append (x:xs) ys = x:(append xs ys)

This is such a useful function that Haskell has a built-in
binary operator ++ for this. Thus [1,2,3] ++ [4,3]
~ [1,2,3,4,3].

We can reverse a list by first reversing the tail of the list
and then appending the head of the list at the end, as
follows.

We can reverse a
list by first
reversing the tail of
the list and then
appending the
head of the list at
the end.
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reverse :: [Int] -> [Int]
reverse [] = []
reverse (x:xs) = (reverse xs)++[x]

The functions sum, length and reverse are actually
basic list functions in Haskell, like the functions head
and tail. T'wo other useful built-in functions in Haskell
are take and drop. The expression take n 1 returns
the first n values in 1 while drop n 1 returns the list
obtained by omitting the first n values in 1. For any
list 1 and any integer n we are guaranteed that 1 ==
(take n 1) ++ (drop n 1). In particular, this means
that if n < 0, take n 1is [] and drop n 1 is 1, while
if n > (length 1), take n 1is 1 and drop n 1is [].

6. Map, Filter and List Comprehension

Suppose we want to square each element in a list of
integers. Assuming we have already defined sqr, we
could write the following.

squareall :: [Int] -> [Int]
squareall [] = []
squareall (x:xs) = (sqr x):(squareall xs)

On the other hand, suppose we have a list each of whose
elements is itself of type [Int], and we want to compute
the length of each of these lists. We could write the
following.

listlengths :: [[Int]] -> [Int]
listlengths [] = []
listlengths (x:xs) = (length x):(listlengths xs)

Notice that these two functions share a similar structure.
We have an input list ¢ and a function f that is applied
to each element in /. The built-in function map allows
us to apply a function f ‘point wise’ to each element of
a list. In other words,

map f [x0,x1,..,xk] = [(f x0),(f x1),...,(f xk)]

42 W RESONANCE | August 2007




GENERAL | ARTICLE

An important point to notice is that we can pass a func-
tion to another function, as we do in map, without any
fuss in Haskell. There is no restriction in Haskell about
what we can pass as an argument to a function: if it can
be assigned a type, it can be passed.

We can now write the functions squareall and
listlengths in terms of map:

squareall 1 = map sqr 1
listlengths 1 = map length 1

Actually, the process of reduction in functional program-
ming can take place anywhere within an expression, so
we can always replace ‘equals by equals’. This allows us
to further simplify these definitions as:

squareall = map sqr
listlengths = map length

Then, in any context of the form squareall 1, reduc-
tion allows us to replace squareall by map sqr to get
map sqr 1.

Another useful operation on lists is to select elements
that match a certain property. For instance, we can
select the even numbers from a list of integers as follows.

evenonly :: [Int] -> [Int]

evenonly [] = []

evenonly (n:ns) | mod n 2 ==
| otherwise

evenonly ns

We have used the built-in function mod to check that
a number is even: mod m n returns the remainder that
results when m is divided by n. A related function is div
—div m n returns the integer part of (m divided by n).
We can think of evenonly as the result of applying the
test

iseven :: Int -> Bool
iseven n = (mod n 2 == 0)

n: (evenonly ns)

An important point to
notice is that we can
pass a function to
another function, as
we do in map,
without any fuss in
Haskell. There is no
restriction in Haskell
about what we can
pass as an argument
to a function: if it can
be assigned a type, it
can be passed.

Actually, the process
of reduction in
functional
programming can
take place anywhere
within an expression,
so we can always
replace ‘equals by
equals’.
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Let Ibelistandletp

be a function from the
underlying type of the

list to Bool. Then,

filter p | retains those
elements in | for which

p evaluates to True.

to each element of the input list and retaining those
values that pass this test.

This is a general principle that we can use to filter out
values from a list. Let 1 be list and let p be a func-
tion from the underlying type of the list to Bool. Then,
filter p 1 retains those elements in 1 for which p eval-
uates to True. Thus, we can write evenonly as filter
iseven.

6.1 List Comprehension: Combining Map and
Filter

In set theory, we can build new sets from old sets us-
ing notation called set comprehension. For instance,
given the set of integers {1,2,...,m}, we can define
the set of squares of the even numbers in this set as
{n? | n € {1,2,...,m}, even(n)}, where even(n) is a
predicate that evaluates to true precisely when n is even.

Analogously, we can build new lists from old lists using
list comprehension. For instance, the list of squares of
all the even numbers from 1 to m is given by

[n"2 | n<- [1..m], iseven n ]

where iseven is the function we wrote earlier to check if
n is even and [1..m] is Haskell’s shortcut for denoting
the list [1,2,...,m]. The notation <- is supposed to
look like the element of notation € from set theory. This
expression is interpreted as follows:

For each n in the list [1..m], if iseven n is
true, append n~2 to the output.

The first part, n <= [1..m], is referred to as the gen-
erator, which supplies the initial list of values to be op-
erated on. The function iseven n serves to filter the
list while n~2 on the left of the | is a function that is
mapped onto all elements that survive the filter. In fact,
it is possible to give a precise translation of list compre-
hension in terms of map, filter and a function called

44
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concat, which takes a list of lists and “dissolves” one
level of brackets, merging its contents into a single long
list.

Rather than go into the precise translation of list com-
prehension in terms of map, filter and concat, we look
at some illustrative examples of how to use this notation.

We first write a function to compute the list of divisors
of a number n.

divisors n = [m | m<- [1..n], mod n m == 0 ]

This says that the divisors of n are precisely those num-
bers between 1 and n such that there is no remainder
when n is divided by the number.

We can now write a function that checks whether n is
prime, as follows:

prime n = (divisors n == [1,n])

In other words, n is a prime if its list of divisors is pre-
cisely [1,n]. Notice that 1 (correctly) fails to be a prime
under this criterion because divisors 1 = [1] which is
not the same as [1,1].

7. Declarative Programming

One advantage of functional programming is that it al-
lows us to describe algorithms in a form that directly
reflects the structure of the algorithm. This style is
sometimes referred to as declarative programming-the
program declares what it computes in a natural way.
We illustrate the declarative aspect of Haskell by writ-
ing functions for three common algorithms for sorting a
list.

7.1 Insertion Sort

Suppose we had a deck of cards to be arranged in se-
quence. We begin with the top card and create a new

One advantage of
functional
programming is that it
allows us to describe
algorithms in a form
that directly reflects
the structure of the
algorithm. This style
is sometimes referred
to as declarative
programming — the
program declares
what it computes in a
natural way.
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deck with just one card, that is trivially sorted. We then
take each card from the unsorted deck, one at a time,
and insert it into the correct slot of the partially sorted
deck. We can formalize this for lists using the following
inductive definition.

isort [1 = []

isort (x:xs) = insert x (isort xs)
where
insert x [] = [x]

insert x (y:ys) | (x <= y) = x:y:ys
| otherwise y:(insert x ys)

This sorting algorithm is called insertion sort, which is
why we have used the name isort for the function. We
have used the Haskell construct where that allows us to
add a new local definition attached to the main function.

7.2 Merge Sort

A more efficient way to sort lists is to use a technique
called divide and conquer. Suppose we divide the list
into two halves and sort them separately. Can we com-
bine two sorted lists efficiently into a single sorted list?
We examine the first element of each list and pick up
the smaller one, and continue to combine what remains
inductively. We call this process merging and define it

as follows.
merge [] ys = ys
merge xs [] = xs

x: (merge xs (y:ys))
y: (merge (x:xs) ys)

merge (x:xs) (y:ys) Ix <=y
|otherwise

Now, we split a list of size n into two lists of &, recur-

sively sort them and merge the sorted sublists as follows:

mergesort [] = []
mergesort [x] = [x]
mergesort 1 = merge (mergesort (front 1))
(mergesort (back 1))
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where
front 1 = take (div (length 1) 2) 1
back 1 = drop (div (length 1) 2) 1

Note that we need explicit base cases for both the empty
list and the singleton list. If we omit the case mergesort
[x], we would end up with the unending sequence of
simplifications below

mergesort [x] = merge (mergesort []) (mergesort [x])
merge [] (mergesort [x]))

mergesort [x]

7.3 Quicksort

In merge sort, we split the list into two parts directly.
Since the second part could have had elements smaller
than those in the first part and vice versa, we have to
spend some time merging the two sorted lists.

What if we could locate the median (middle) value in the
list? We could then collect all the elements less than the
median in one half and those bigger than the median in
the other half. If we sort these two halves inductively, we
can directly combine them using ++ rather than merge.

Unfortunately, finding the median value is not easier
than sorting the list. However, we can use a variation of
this idea by picking up an arbitrary element of the list
and using it to split the list into a lower half and upper
half. This algorithm is called quicksort, and is due to C
A R Hoare (1961).

quicksort []1 = []

quicksort (x:xs) = (quicksort lower) ++ [splitter]
++ (quicksort upper)
where
splitter = x
lower = [yl y<-xs, y<=x]
upper =[yly<-xs,y>x]
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This definition of
quicksort, in
particular, shows how
effective functional
programming is for
expressing
algorithms
declaritively.
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This definition of quicksort, in particular, shows how
effective functional programming is for expressing algo-
rithms declaritively. In imperative programming lan-
guages, the clarity of the underlying algorithm is ob-
fuscated by a scan that swaps elements within the ar-
ray to partition the given list into the form lower ++
[splitter] ++ upper. Programming this partitioning
process correctly takes a bit of practice and typically
results in novices being afraid of quicksort, despite the
fact that it is one of the most efficient ways in practice
to sort a list.

8. Experimenting with Haskell

A number of compilers and interpreters are available in
the public domain for Haskell. The easiest to install
and use is the interpreter Hugs, which runs on both
Windows and Unix based systems. There is an active
website, http://www.haskell.org, that has pointers
to software, tutorials, books and reference material on
Haskell.

9. What next?

In this article, we have described some of the basic fea-
tures of Haskell. Building on this foundation, we will
look, in the next part, at some of the ideas that make
functional programming a very powerful and attractive
paradigm. These include:

e Polymorphism — the ability to define functions that
behave in the same way on many different input types.

e [nfinite data types and computations — these arise as
a consequence of lazy evaluation and can be fruitfully
used to simplify some types of computations.

e User defined data types — how we can define data types
such as binary trees and manipulate them directly.
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