
Regular languages: From automata to logic and back

Madhavan Mukund

Chennai Mathematical Institute
Siruseri 603103, India

Email: madhavan@cmi.ac.in

1 Introduction

The mathematical foundations of computer science predate the development of the first
electronic computers by a few decades. The early 20th century saw pioneering work by
Alonzo Church, Alan Turing and others towards the formulation of an abstract definition
of computability. This effort was in the context of one of David Hilbert’s challenges, the
Entscheidungsproblem, which asked whether all mathematical truths could be deduced “me-
chanically” from the underlying axioms. Church and Turing showed, independently, that it
is impossible to decide algorithmically whether statements in arithmetic are true or false,
and thus a general solution to the Entscheidungsproblem is impossible.

This early research on computability yielded the Turing machine, a compelling abstrac-
tion that captures the essence of an automatic computational device. A Turing machine has
a finite set of control states that guide its behaviour, but it has access to an infinite “tape”
on which it can record intermediate results during a computation. This makes a Turing ma-
chine unrealizable in practice, since it requires an external storage device with unbounded
capacity.

If we restrict our computing devices to use an arbitrarily large, but fixed, amount of
external storage, the situation changes drastically. The number of distinct configurations of
such a machine—all combinations of control states and contents of the external storage—now
becomes bounded. This yields a new abstract model, finite automata, whose properties were
investigated by Stephen Cole Kleene, Michael Rabin, Dana Scott and others in the decades
following Turing’s work.

Initially, the focus was on characterizing the computational power of this restricted class
of machines. However, around the late 1950’s, a deep connection was identified between
finite automata and mathematical logic, which has since played a central role in computer
science.

The aim of this article is to provide a quick introduction to this elegant interplay be-
tween finite automata and mathematical logic. We begin with a self-contained presentation
of finite automata. In Section 3, we describe regular expressions, an alternative notation for
describing the computations that finite automata can perform. Some shortcomings of regular
expressions motivate us to turn to logical specifications in monadic second order logic, intro-
duced in Section 4. The next two sections prove the central theorem due to Julius Richard

1

q1 q2

b b

a

a

Figure 1: A finite automaton

Büchi, Calvin Elgot and Boris Trakhtenbrot, showing that finite automata are expressively
equivalent to specifications in monadic second order logic. We conclude with a discussion
where we provide some pointers to the literature.

2 Finite automata

A finite automaton A consists of a finite set of states Q with a distinguished initial state
qin ∈ Q and a set of accepting or final states F ⊆ Q.

An automaton A processes sequences of abstract actions drawn from a finite alphabet Σ.
The operation of A is given by a transition function δ : Q × Σ → Q. A transition of the
form δ(q, a) = q′ means that whenever A is in state q, the action a takes it to state q′.

Thus, an automaton A over Σ is fully described by its four components (Q, qin, F, δ).
A useful way to visualize an automaton is to represent it as a directed graph, where the
vertices are the states and the labelled edges correspond to the transition function, as shown
in Figure 1. In our pictures, we denote the initial state with an unlabelled incoming arrow
and final states with unlabelled outgoing arrows, so qin = q1 and F = {q1} in this example.

The sequences of actions processed by finite automata are typically called input words
and we usually say that an automaton reads such an input word. To process an input word
w = a1a2 . . . an, the automaton A starts in the initial state qin and traces out a path labelled
by w in the state-transition graph. More formally, a run of A on w = a1a2 . . . an is an
alternating sequence of states and actions q0, a1, q1, a2, q2, . . . , qn−1, an, qn such that q0 = qin
and for each 1 ≤ i ≤ n, δ(qi−1, ai) = qi.

The automata we have defined are deterministic: for each state q and action a, δ(q, a)
fixes uniquely the state to which A moves on reading a in state q. This enforces that A has
exactly one run on each input word. We will relax this condition later.

An automatonA accepts or recognizes an input w if it reaches a final state after processing
w—in other words, the last state of the run of A on w belongs to the set F . The set of words
accepted by A is called the language of A and is denoted L(A).

Example 2.1 Consider the automaton in Figure 1. On input aba, the automaton goes
through the sequence of states q1q2q2q1, while on input babb, the automaton goes through
the sequence of states q1q1q2q2q2. Since F = {q1}, the automaton accepts aba and does not
accept babb. This automaton accepts all words with an even number of a’s—we can show
by induction that after reading any word with an even (respectively, odd) number of a’s, the
automaton will be in state q1 (respectively, q2).

2

q1 q2 q3

a, b

b b

a, b

Figure 2: A nondeterministic finite automaton

2.1 Properties of regular languages

A set of words X is said to be a regular language if there exists a finite automaton A
such that X = L(A). Regular languages are closed with respect to boolean operations:
complementation, union and intersection. Complementation is defined with respect to the
set of all words over Σ—this set is normally denoted Σ∗. Thus, given a set of words X , its
complement X is the set Σ∗ \X . Note that the set Σ∗ includes the empty word, ε, of length
zero.

Proposition 2.2 Let X and Y be regular languages. Then X, X ∪ Y and X ∩ Y are also
regular languages.

Proof To show that X is regular, let A be an automaton that accepts X . If we interchange
the final and non-final states of A we obtain an automaton B that accepts every input word
w that A does not accept and vice versa. Thus L(B) = X .

To show that X ∩ Y is regular, let AX = (QX , q
X
in, FX , δX) and AY = (QY , q

Y
in, FY , δY)

be automata that accept X and Y respectively. We construct the direct product AXY with
states QX × QY , initial state (qXin, q

Y
in), final states FX × FY and transition function δXY ,

such that for all qx ∈ QX , qy ∈ QY and a ∈ Σ, δXY ((qx, qy), a) = (δX(qx, a), δY (qy, a)). The
automaton AXY simulates AX and AY in parallel and accepts an input w provided both AX

and AY accept w. Hence, L(AXY) = X ∩ Y .

Since X ∪ Y = X ∩ Y , it follows that X ∪ Y is also regular. We can also give a direct
construction for this case by setting the final states of AXY to (FX ×QY) ∪ (QX × FY). 2

2.2 Nondeterminism

An important generalization of our definition of finite automata is to relax the restriction
that state transitions are deterministic. In a nondeterministic finite automaton, given a
state q and an action a, the automaton may change to one of several alternative new states.
Formally, a nondeterministic finite automaton (NFA) is a tuple A = (Q, qin, F,∆) where
Q, qin and F are as before and the transition function ∆ : Q × Σ → 2Q maps each pair
(q, a) to a subset of states. Notice that it is possible for ∆(q, a) to be empty, in which
case A gets “stuck” on reading a in state q and cannot finish processing the input, and
hence cannot accept it. We can still represent automata as directed graphs with labelled
edges—an example of a nondeterministic automaton is shown in Figure 2. Here, for instance,
∆(q1, b) = {q1, q2} and ∆(q2, a) = ∅.

As with deterministic automata, a nondeterministic automatonA processes an input w by
tracing out a path labelled by w in the state transition graph: a run of A on w = a1a2 . . . an

3

is an alternating sequence of states and actions q0, a1, q1, a2, q2, . . . , qn−1, an, qn such that
q0 = qin and for each 1 ≤ i ≤ n, qi ∈ ∆(qi−1, ai). Notice that a run must read the entire
input.

Clearly, nondeterminism permits an automaton to have multiple runs (or even no run at
all!) on an input. To accept an input, it is sufficient to have one good run: an automaton A
accepts an input w if there exists a run on which A reaches a final state after processing w.

Example 2.3 Consider the automaton in Figure 2. This automaton starts in q1 and must
reach q3 to accept an input. The automaton can stay in states q1 and q3 indefinitely on any
sequence of a’s and b’s. To get from q1 to q3, the automaton must read two consecutive b’s.
Thus, this automaton accepts any word w of the form w1bbw2 with two consecutive b’s. On
such an input, the automaton “guesses” after w1 that it should move to q2 on the next b,
and eventually ends up in q3 where it can remain till the end of w2. If w does not have this
form, it cannot make such a guess: after any b that takes the automaton from q1 to q2, the
next input is an a, on which there is no transition from q2, so the automaton gets “stuck”
and there is no accepting run.

It turns out that nondeterminism does not add any computational power to finite au-
tomata. Given a nondeterministic finite automaton, we can construct an equivalent de-
terministic automaton that simulates all possible runs of the original nondeterministic au-
tomaton on each input. This is known as the subset construction because the deterministic
simulation maintains the set of states that the NFA can be in at each point. We do not
need the details of the subset construction: all we need is the fact that nondeterministic au-
tomata also accept only regular languages, so we can demonstrate that a language is regular
by exhibiting either a deterministic or a nondeterministic finite automaton that accepts it.

3 Regular Expressions

As we have seen, the overall behaviour of an automaton is defined in terms of the language
that it accepts. Thus, two automata that accept the same language are essentially equivalent
from our point of view, though they may vary greatly in their internal structure.

Since languages are the basic notion of behaviour, it is useful to be able to abstractly
specify them, rather than having to present concrete implementations in terms of automata.
For instance, it would be useful to have a precise notation to write descriptions of languages
corresponding to the informal descriptions we have seen, such as “all words with an even
number of a’s”, or “all words with two consecutive b’s”

Ideally, the specifications that we write in this manner should be realizable—that is, they
should describe regular languages and there should be an effective algorithm to construct
an automaton from such a specification. Even better would be to show that every regular
language can be described within such a specification language.

One way of abstractly defining languages is to use algebraic expressions. The set of
regular expressions over an alphabet Σ is defined inductively as follows:

• The symbols ∅ and ε are regular expressions.

• Every letter a ∈ Σ is a regular expression.

4

• If e and f are regular expressions, so are e+ f , e · f and e∗.

The operator + denotes union while · denotes concatenation. We usually omit · and
write ef for e · f . The operation ∗ represents iteration and is called the Kleene star.

Each regular expression corresponds to a language. To describe how to associate lan-
guages with regular expressions, we need to define some operations on languages.

Let X and Y be languages. Then:

• XY = {xy | x ∈ X, y ∈ Y }, where xy represents concatenation of words: if x =
a1a2 . . . am and y = b1b2 . . . bn then xy = a1a2 . . . amb1b2 . . . bn.

• X∗ =
⋃

i≥0X
i, where X0 = {ε} and for i > 0, X i = XX i−1.

We can now map regular expressions to languages inductively, using the structure of the
regular expression. For an expression e, let L(e) denote the language associated with e. We
then have the following:

• L(∅) = ∅ and L(ε) = {ε}.

• For each a ∈ Σ, L(a) = {a}.

• L(e+ f) = L(e) ∪ L(f), L(ef) = L(e)L(f) and L(e∗) = (L(e))∗.

It is not difficult to show that if X and Y are regular languages, then XY and X∗ are
also regular. Thus, every regular expression describes a regular language.

The converse is also true, but the translation from automata to expressions is harder:
finite automata do not have any natural inductive structure and the global behaviour of an
automaton cannot easily be decomposed into properties of individual states and transitions.
We will not prove this result here. The final section lists standard references where the
details can be found.

Together, these translations between regular expressions and finite automata yield the
following result.

Theorem 3.1 (Kleene) A language is regular if and only if it is described by a regular
expression.

Example 3.2 Recall the automaton in Figure 1 that accepts words with an even number
of a’s. Any word w with an even number of a’s can be decomposed into blocks w1w2 . . . wk
where each wi has exactly two a’s. The expression b∗ab∗ab∗ describes all words with exactly
two a’s: before the first a, between the two a’s and after the second a we can have zero or
more b’s, which is captured by b∗. We use the Kleene star to allow an arbitrary number of
blocks of this form, resulting in the expression (b∗ab∗ab∗)∗ for this language.

The regular expression for the automaton in Figure 2 is (a + b)∗bb(a + b)∗: any word
in the language starts and ends with an arbitrary sequence of a’s and b’s and contains the
sequence bb in between.

5

We have seen that regular languages are closed under boolean operations such as negation
and conjunction. Hence, regular expressions should also be able to cope with these opera-
tions. However, for instance, the process of going from a regular expression for a language L
to an expression describing the complement of L is far from transparent. Complementation
involves a switch of quantifiers: for example, the language of Figure 2 asks if there exist
two consecutive positions labelled b while the complement language would demand for every
position labelled b, the positions before and after this position are not labelled b. In gen-
eral, regular expressions are convenient for expressing existential properties but are clumsy
for describing universal properties—as another example, consider a variant of the language
from Figure 2 where we ask that every position labelled b occurs as part of a pair of adjacent
positions labelled b.

4 Logical Specifications

Another approach to describing sets of words over an alphabet is to use mathematical logic.
We will write formulas that are interpreted over words: in other words, the formulas we
write can be assigned either the value true or the value false when applied to a given word.
For instance, if we write a formula that expresses the fact that “the first letter in the word is
a”, then this formula will evaluate to true on words of the form abab or aaaa or abbbb, but
will be false for words such as ε, bbba or baaaa that do not start with an a. Thus, a formula
ϕ defines in a natural way a language of words L(ϕ): those words over which ϕ evaluates
to true. This gives us a way to specify languages using logic. Our main goal is to identify a
formal logical notation whose formulas capture precisely the regular languages.

4.1 Formulating the logic

We begin with an informal presentation of our logical language. The basic entities we deal
with in our logic are positions in words. Thus, the variables that we use in our logic, such as
x and y, denote positions. We use predicates to describe the letters that appear at positions.
For each a ∈ Σ, we have a predicate Pa such that Pa(x) is true in a word w if and only if
the letter at position x in w is a. We can compare positions: x < y is true if the position
denoted by x is earlier than the position denoted by y.

We use the usual logical connectives ¬ (negation), ∨ (disjunction) and ∧ (conjunction) to
combine formulas, as also derived connectives like → (implication), where ϕ→ ψ ≡ (¬ϕ∨ψ)
and ↔ (if and only if), where ϕ ↔ ψ ≡ (ϕ → ψ) ∧ (ψ → ϕ). To these logical connectives,
we add, as usual, the quantifiers ∃ (there exists) and ∀ (for all).

For example, consider the language described by the automaton in Figure 2. A formula
for this language is

∃x.∃y.Pb(x) ∧ Pb(y) ∧ next(x, y), where next(x, y)
△
= x < y ∧ ¬∃z.(x < z ∧ z < y),

which asserts that there are two consecutive positions labelled b in the word—the formula
next(x, y) expresses that position y occurs immediately after x by demanding that there are
no other positions strictly between the two.

6

The first example we saw, Figure 1, is more complicated. We need to assert that the
number of positions labelled a is even. Any formula we write has a fixed set of variables
x1, x2, . . . , xk and can only describe the relationship between k positions in the word at
a time. Intuitively speaking, for words that have more than k a’s, we cannot expect this
formula to assert a property about all positions labelled a. This argument can be formalized,
but the net result is that we have to enrich our language to directly refer to sets of positions.

We introduce a new class of variables, written X, Y, . . . that represent sets of positions.
We write X(y) to denote that the position y belongs to the set X . We are allowed to use
the quantifiers ∃ and ∀ for set variables, just as we do for individual variables.

Let us consider a simpler language than the one in Figure 1—let Le be the set of all
words of even length. To describe this language, we can use a set variable X and restrict the
members of X to precisely the odd positions. To do this, we demand that the first position
be in X and, for any pair of consecutive positions x and y, x is in X if and only if y is not
in X . This captures the fact that X contains every alternate (odd) position, starting from
the first one.

Notice that we can use our logical language to define a constant min to refer to the first
position, for use in such a formula. A formula ϕ(min) that asserts some property involving
the first position min can be rewritten as ∃x.ϕ(x) ∧ (¬∃z.z < x).

Finally, to say that the overall numbers of positions is even, we just assert that the last
position is not in X—like min, we can define max : the position x such that ¬∃z.x < z.
Putting this together, we have the following formula,

∃X.X(min) ∧ ∀y, z.(next(y, z) → (X(y) ↔ ¬X(z))) ∧ ¬X(max),

where we use the abbreviations min, max and next defined earlier.
From this, it is only a small step to describing the language in Figure 1. We relativize

min, max and next to positions labelled a, so mina
△
= Pa(x) ∧ ¬(∃z.z < x ∧ Pa(z)) is the

smallest a-labelled position, maxa
△
= Pa(x) ∧ ¬(∃z.x < z ∧ Pa(z)) is the largest a-labelled

position and nexta(x, y)
△
= Pa(x) ∧ Pa(y) ∧ x < y ∧ ¬(∃z.x < z ∧ z < y ∧ Pa(z)) describes

when two a-labelled positions are consecutive. We can then modify the formula above to use
mina, maxa and nexta in place of min, max and next and capture the fact that the number
of a-labelled positions in a word is even.

To illustrate why logical specifications are more convenient than regular expressions,
let us revisit some of the examples from the end of the previous section. Complementing
logical specifications is easy—we just negate the specification: if ϕ describes a set of words,
¬ϕ describes the complement. How about languages that implicitly incorporate universal
quantifiers, such as “every b occurs as part of a pair of adjacent b’s”? Since we have quantifiers
at our disposal, we can describe this quite easily, as follows.

∀x.

(

Pb(x) → ∃y.

[

(next(y, x) ∧ Pb(y)) ∨ (next(x, y) ∧ Pb(y))

])

This formula asserts that every position labelled b is either immediately preceded by or
followed by another position labelled b.

7

4.2 Monadic second order logic

Formally, the logic we have looked at is called monadic second order logic, or MSO. Second
order refers to the fact that we can quantify over predicates, not just individual elements,
and monadic says that we restrict our attention to 1-place predicates, which are equivalent
to sets.

As we have seen, our formulas are built from the following components.

• Individual variables x, y, . . . and set variables X , Y , . . . denoting positions and sets of
positions, respectively. Recall that we have derived constants min and max that can
be used wherever we use individual variables such as x, y,

• Atomic formulas:

– x = y and x < y over positions, with the natural interpretation.

– X(x), denoting that position x belongs to set X .

– Pa(x) for each a ∈ Σ, denoting that position x is labelled a.

• Complex formulas are built using the usual boolean connectives ¬, ∨, ∧, → and ↔,
together with the quantifiers ∃ and ∀.

Each (nonempty) word w = b1b2 . . . bm over the alphabet Σ = {a1, a2, . . . , an} provides
us a word model

〈w〉 = ({1, 2, . . . , m}, <w, Pw
a1
, Pw

a2
, . . . , Pw

an
)

where

• pos(w) = {1, 2, . . . , m} is the set of positions in w,

• <w is the (natural) ordering on the positions in pos(w),

• for each ai ∈ Σ, Pw
ai
= {j ∈ pos(w) | bj = ai} describes the positions where ai occurs.

We restrict our attention to nonempty words to avoid dealing with some boundary cases
that occur when pos(w) = ∅.

A variable x or X that occurs within the scope of a quantifier is said to be bound.
Variables that are not bound are said to be free. We write ϕ(x1, x2, . . . , xm, X1, X2, . . . , Xn)
to denote that the set of free variables in ϕ is at most {x1, x2, . . . , xm, X1, X2, . . . , Xn}.

The meaning of a bound variable is determined by its binding quantifier: for instance,
if we write ∀x.ϕ(x), this formula is true if ϕ(j) evaluates to true for all possible choices
j ∈ pos(w) for x. However, for free variables we need to additionally fix how the variable is
to be interpreted. Hence, to give meaning to a formula ϕ(x1, x2, . . . , xm, X1, X2, . . . , Xn), we
need

• A word model 〈w〉.

• Positions k1, k2, . . . , km as interpretations of x1, x2, . . . , xm.

8

• Sets of positions K1, K2, . . . , Kn as interpretations of X1, X2, . . . , Xn.

We write

(〈w〉, k1, k2, . . . , km, K1, K2, . . . , Kn) |= ϕ(x1, x2, . . . , xm, X1, X2, . . . , Xn)

to express the fact that ϕ holds in 〈w〉 if each xi is interpreted as ki and each Xj as
Kj. As an abbreviation, we write 〈w〉 |= ϕ[k1, k2, . . . , km, K1, K2, . . . , Kn]. We also write
〈w〉 6|= ϕ[k1, k2, . . . , km, K1, K2, . . . , Kn] to indicate that a formula evaluates to false under
an interpretation.

Example 4.1 Let w = babaa with Σ = {a, b} and

1. ϕ1(x1, X1)
△
= Pb(x1) ∧ ∀y.(x1 < y ∧X1(y) → Pa(y))

2. ϕ2
△
= ∃x.∃y.(Pb(x) ∧ Pb(y) ∧ next(x, y))

Then

1. 〈w〉 |= ϕ1[1, {2, 4, 5}].

2. 〈w〉 6|= ϕ1[1, {2, 3, 4, 5}].

3. 〈w〉 6|= ϕ2.

Notice that ϕ2 has no free variables, so it can be interpreted directly on a word model 〈w〉.

A formula with no free variables is called a sentence. Sentences can be interpreted
directly on word models. We can thus associate with each sentence ϕ, a language of words
L(ϕ) = {w | 〈w〉 |= ϕ}. Such a language is said to be MSO-definable.

If we restrict our formulas to not use set variables or set quantifiers, the corresponding
logic is called first-order logic, or FO. For instance, ϕ2 in Example 4.1 is an FO sentence. A
language described by an FO sentence is said to be FO-definable.

The main result we are interested in is that MSO-definability is equivalent to regularity.

Theorem 4.2 (Büchi, Elgot, Trakhtenbrot) A language of nonempty words over Σ is
regular if and only if it is MSO-definable. The transformation in both directions is effective.

To prove this result, we need to extend our definitions so that we associate languages
with arbitrary formulas, not just sentences. Let ϕ(x1, x2, . . . , xm, X1, X2, . . . , Xn) be a for-
mula with free variables. We have seen that models for such formulas are of the form
(〈w〉, k1, k2, . . . , km, K1, K2, . . . , Kn). For each position j ∈ pos(w), we record whether
j = k1, j = k2, . . . , j = km, j ∈ K1, j ∈ K2, . . . , j ∈ Kn. This gives us a bit vector of length
m + n for each position j. Formally, we can represent (〈w〉, k1, k2, . . . , km, K1, K2, . . . , Kn)
as a word over the alphabet Σ× {0, 1}m+n. Clearly, for a sentence, m = n = 0, so the word
associated with a model is just the word itself.

9

Example 4.3 Let w = babaa, k1 = 1, K1 = {3} and K2 = {1, 2, 4, 5}. Then, we represent
(〈w〉, k1, K1, K2) as a word over Σ× {0, 1}3 as follows.

w

k1
K1

K2

b

1
0
1

a

0
0
1

b

0
1
0

a

0
0
1

a

0
0
1

5 From automata to logic . . .

One half of proving the Büchi-Elgot-Trakhtenbrot theorem consists of associating an MSO-
formula with each regular language. In general, let us assume that our regular language
is described by an NFA. Given an NFA A, we have to construct a sentence ϕA such that
〈w〉 |= ϕA if and only if w ∈ L(A). To do this, we write a formula that describes successful
runs of A.

As a concrete example, let us consider the automaton Figure 2 that accepts all words
with two consecutive b’s. This automaton has three states {q1, q2, q3}. For each state qi, we
associate a set variable Xi denoting the positions in which a run of the automaton assumes
state qi. For instance, on the inputs abbab, the accepting run q1, a, q1, b, q2, b, q3, a, q3, b, q3
would be encoded as follows, omitting the last state.

w

X1

X2

X3

a

1
0
0

b

1
0
0

b

0
1
0

a

0
0
1

b

0
0
1

In general, if an automaton A has k states, we use k set variables X1, X2, . . . , Xk to
describe runs of A. We can describe in MSO the constraints that X1, X2, . . . , Xk should
satisfy to constitute an accepting run.

(i) The Xi’s partition the set of positions—at each position the automaton is in exactly
one state.

(ii) At the first position, the automaton is in an initial state.

(iii) For each pair of consecutive positions x, y, the states at x and y and the letter at x
describe a valid transition.

(iv) At the final position, there is a transition leading to an accepting state.

Concretely, here is how we write these properties in MSO for the automaton in Figure 2.

(i) ∃X1, X2, X3.[∀x.(X1(x) ∨X2(x) ∨X3(x)) ∧ ¬∃x.(X1(x) ∧X2(x))
∧ ¬∃x.(X1(x) ∧X3(x))
∧ ¬∃x.(X2(x) ∧X3(x))]

In general, we would write

∃X1, X2, . . . , Xk.[∀x.(X1(x) ∨X2(x) ∨ · · · ∨Xk(x)) ∧
∧

i 6=j

¬∃x.(Xi(x) ∧Xj(x))].

10

(ii) X1(min).

(iii) ∀x, y.next(x, y) → X1(x) ∧ Pa(x) ∧X1(y) ∨ X1(x) ∧ Pb(x) ∧X1(y)
X1(x) ∧ Pb(x) ∧X2(y) ∨ X2(x) ∧ Pb(x) ∧X3(y)
X3(x) ∧ Pa(x) ∧X3(y) ∨ X3(x) ∧ Pb(x) ∧X3(y)

In general, we would write

∀x, y.next(x, y) →
∨

(qi,a,qj)∈∆

(Xi(x) ∧ Pa(x) ∧Xj(y)).

(iv) (X2(max) ∧ Pb(max)) ∨ (X3(max) ∧ Pa(max)) ∨ (X3(max) ∧ Pb(max)).

In general, we would write
∨

(qi,a,qj)∈∆,qj∈F

Xi(max) ∧ Pa(max).

This establishes the first half of the Büchi-Elgot-Trakhtenbrot theorem. For every NFA
A over Σ, we can write a sentence ϕA that describes all successful runs of A such that
L(A) = L(ϕA). In other words, A accepts w if and only if 〈w〉 |= ϕA.

6 . . . and back

In the converse direction, for each formula ϕ(x1, x2, . . . , xm, X1, X2, . . . , Xn), we have to
construct an automaton Aϕ over Σ × {0, 1}m+n such that L(ϕ) = L(Aϕ). We build up Aϕ

by induction on the structure of ϕ.
To reduce the number of cases we have to consider, we define a subset MSOmin of MSO

that is expressively equivalent to the original language. In MSOmin, we eliminate individual
variables, so we only have set variables and set quantifiers. An individual position x will be
represented as a singleton set {x}. The atomic formulas in MSOmin are as follows.

• X ⊆ Y and X ⊆ Pa.

• singleton(X) — “X is a singleton set”.

• X < Y — “X 6= ∅, Y 6= ∅ and for each x ∈ X , y ∈ Y , x < y”.

Once again, complex formulas are built using the boolean connectives ¬, ∨, ∧, → and
↔ and the quantifiers ∃ and ∀.

It is not difficult to see show that we can express every MSO formula in MSOmin.

• x = y translates as singleton(X) ∧ singleton(Y) ∧X ⊆ Y ∧ Y ⊆ X .

• x < y translates as singleton(X) ∧ singleton(Y) ∧X < Y .

• X(y) translates as singleton(Y) ∧ Y ⊆ X .

• Pa(x) translates as singleton(X) ∧X ⊆ Pa.

11

Since we no longer have individual variables, an MSOmin formula is of the form ϕ(X1, X2, . . . , Xn)
and a word model of ϕ can be encoded as a word over Σ× {0, 1}n.

Recall that our aim is to associate with each such formula ϕ(X1, X2, . . . , Xn), an automa-
ton Aϕ over Σ× {0, 1}n such that L(ϕ) = L(A), where Aϕ is built up inductively, based on
the structure of ϕ.

We begin with automata corresponding to the atomic formulas in MSOmin.

• X ⊆ Y

Given a word w over Σ × {0, 1}n, our automaton checks that whenever a position
belongs to X , it also belongs to Y . Without loss of generality, let X = X1 and
Y = X2. Our automaton checks that whenever the X1 component is 1, so is the X2

component.

q1

#

0

0

∗

,

#

0

1

∗

,

#

1

1

∗

Here # denotes any letter in Σ and ∗ denotes an arbitrary bit vector in {0, 1}n−2. This

automaton accepts an input provided it does not contain

#

1

0

∗

, which would denote

a position in the input that belongs to X1 but not X2.

• X ⊆ Pa

Again, without loss of generality, let X = X1. Our automaton then looks like this.

q1

#

0

∗

,

a

1

∗

This automaton checks that whenever X1 = 1, the letter read is a. If X1 = 0, the
letter read is irrelevant.

• singleton(X)

As before, we assume that X = X1. We check that there is exactly one 1 along the
component corresponding to X1.

q1 q2

#

0

∗

#

1

∗

#

0

∗

12

• X < Y

As usual, let X = X1 and Y = X2. We demand that each x ∈ X comes before each
y ∈ Y . For this, we check that all 1’s in the X1 component of the input come before
any 1 in the X2 component. We loop in q1, insisting that the X2 component remain 0.
We “guess” when we have seen the last 1 in the X1 component and make a transition
to q2, from which point we insist that we see no more 1’s in the X1 component. In this
automaton, ? denotes 0 or 1.

q1 q2

#

?

0

∗

#

?

0

∗

#

0

?

∗

Having translated the atomic formulas, we must look at the connectives used to build up
complex formulas. We have already seen that regular languages are closed with respect to
Boolean operations, so given automata corresponding to ϕ and ψ, we can build automata
for ¬ϕ and ϕ ∨ ψ, and hence for all boolean combinations of ϕ and ψ.

There is one minor complication to take care of in the case of a binary connective such
as ∨. When we write ϕ ∨ ψ, the two components will typically have different sets of free
variables. In fact, we can always rename the variables so that they have disjoint sets of
free variables, so the overall formula is of the form ϕ(X1, X2, . . . , Xm) ∨ ψ(Y1, Y2, . . . , Yn).
By induction, we would have automata Aϕ and Aψ over Σ × {0, 1}m and Σ × {0, 1}n,
respectively, corresponding to ϕ and ψ. We have to reconcile the alphabets of these two
automata when we combine them. We need an alphabet Σ × {0, 1}m+n that can describe
membership in {X1, X2, . . . , Xm, Y1, Y2, . . . , Yn}, the set of free variables of the compound
formula. Fortunately, it is a simple matter to pad out the alphabets of Aϕ and Aψ with
extra empty tracks to create equivalent automata over Σ× {0, 1}m+n. We omit the details.

This leaves us with the quantifiers ∃ and ∀. Since ∀X.ϕ(X) ≡ ¬∃X.¬ϕ(X), it suffices to
consider just ∃.

Consider a formula of the form ψ(X2, X3, . . . , Xn) ≡ ∃X1.ϕ(X1, X2, . . . , Xn). This for-
mula is true if we can associate some set of positions with X1 such that ϕ(X1, X2, . . . , Xn)
is true. By the induction hypothesis, we already have an automaton Aϕ(X1,X2,...,Xn) over
Σ×{0, 1}n whose language is the same as that of ϕ(X1, X2, . . . , Xn). From this automaton,
we must construct an automaton Aψ(X2,X3,...,Xn) over Σ × {0, 1}n−1 whose language is the
same as that of ψ(X2, X3, . . . , Xn).

Let Aϕ(X1,X2,...,Xn) = (Q, qin, F,∆). For convenience, we will represent input letters from
Σ× {0, 1}k as row vectors rather than as column vectors.

We retain (Q, qin, F) and build our new automaton Aψ(X2,X3,...,Xn) = (Q, qin, F,∆
′) such

that (q, [a, x], q′) ∈ ∆′ if and only if either (q, [a, 0, x], q′) ∈ ∆ or (q, [a, 1, x], q′) ∈ ∆. In other
words, the new automaton “guesses” a value for the X1 component at each step. It is not
difficult to show that there is an accepting run qin, [a1, x1], q1, [a2, x2], q2, . . . , qn−1, [an, xn],
qn of Aψ(X2,X3,...,Xn), where qn ∈ F , if and only if there is some accepting run qin, [a1, b1, x1],

13

q1, [a2, b2, x2], q2, . . . , qn−1, [an, bn, xn], qn of Aϕ(X1,X2,...,Xn), where each bj ∈ {0, 1}. The
sequence b1b2 . . . bn describes the structure of the “witness” X1 that is required to make
ψ(X2, X3, . . . , Xn) true.

This establishes the second half of the Büchi-Elgot-Trakhtenbrot theorem—every MSO
formula ϕ(x1, x2, . . . , xm, X1, X2, . . . , Xn) can be effectively transformed into an automaton
Aϕ over Σ× {0, 1}m+n such that L(ϕ) = L(Aϕ).

7 Discussion

We have seen that monadic second order logic provides an appealing way to abstractly specify
regular languages. Though MSO offers many advantages with respect to other expressively
equivalent notations such as regular expressions, there is one glaring disadvantage: the cost
of translating MSO formulas to automata. Larry Stockmeyer has shown that there is an
unbounded family of MSO formulas such that each formula with n symbols in the family

blows up into an automaton with 22
·

·

·

2

states where the height of the tower of exponentials
is proportional to n.

Despite this, the connection between MSO and automata has laid the foundation for
an important area of computer science called automated verification. The idea is to use
logical specifications to describe abstract properties of computational systems and then use
automata theory to check if a proposed implementation conforms to the specification. If
the specification is given by a formula ϕ, we can use the theory developed in the chapter to
construct an automaton Aϕ that accepts L(ϕ), the set of all words consistent with ϕ. Given
a potential implementation, described as another automaton B, to check that B exhibits only
“legal” behaviours with respect to ϕ, it suffices to verify that L(B) ⊆ L(Aϕ). In practice, we
move from MSO to other logical formalisms such as temporal logic for which the translation
from logic to automata is more tractable.

Further reading

We do not provide pointers to the original papers in these areas by Turing, Kleene, Rabin
and Scott, Büchi and others. The original references are standard and the material is so
classical by now that it appears in a number of textbooks and surveys.

All standard textbooks on automata theory cover finite automata and their connection
to regular expressions in full detail—examples include [2] and [3]. Textbooks that cover the
connection between MSO and finite automata are more rare. However, there are excellent
survey articles such as [5], which present this connection between MSO and finite automata
in a richer context, over infinite words. There are now numerous books that deal with
automated verification in the context that we have discussed here, including [1]. For a more
concise and accessible introduction, see [4].

Acknowledgment This article borrows heavily from Wolfgang Thomas’s lecture notes on
Applied Automata Theory, informally available from various sources on the Internet. I thank
S.P. Suresh for reading through an earlier draft of this article and pointing out omissions
and inconsistencies.

14

References

[1] Edmund M. Clarke, Orna Grumberg and Doron A. Peled: Model Checking,
MIT Press (2000).

[2] John E. Hopcroft, Rajeev Motwani and Jeffrey D. Ullman: Introduction
to Automata Theory, Languages and Computation, Addison-Wesley (2007).

[3] Dexter Kozen: Automata and Computability, Springer-Verlag (1997).

[4] Stephan Merz: Model Checking: A Tutorial Overview, in Modeling and Verification
of Parallel Processes, Lecture Notes in Computer Science, Volume 2067, Springer-Verlag
(2001) 3–38.

[5] Wolfgang Thomas: Automata on infinite objects, in Jan van Leeuwen (ed.), Hand-
book of Theoretical Computer Science, Volume B, North-Holland, Amsterdam (1990)
133–191.

15

