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Abstract

We develop a tense logic for reasoning about the occurrences of events in a subclass of prime

event structures called well branching event structures. The well branching property ensures

that two events being in con
ict can always be traced back | via the causality relation | to

two events being in minimal con
ict. Two events are in minimal con
ict if they are in con
ict

and their \uni�ed" past is con
ict-free. Thus the minimal con
ict relation captures the

branching points of the computations supported by the event structure. Our logical language

has explicit modalities for talking about causality, con
ict, concurrency and minimal con
ict.

We de�ne the semantics of this logic using well branching event structures as Kripke frames.

Our main result is a sound and complete axiomatization of the valid formulas over the chosen

class of frames.
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1 Introduction

Event structures have come to play a central role in the formal study of distributed systems. They

clearly capture the intuition concerning the non-sequential and indeterminate behaviours of distributed

systems. They have a rich mathematical structure [13, 18]. There are natural bridges to other theories of

distributed systems such as net theory and the theory of trace languages [13, 14]. Event structures can

be used to provide the non-interleaved denotational semantics of CCS-like languages as demonstrated

by Winskel [18]. Hence there is a good deal of motivation for developing a logical framework to reason

about the behaviours of distributed systems as represented by event structures.

The general problem of developing proof systems based on syntactic presentations of event structures

(via, say, a CCS-like language) appears to be di�cult. Here we attempt something more modest. Our

aim will be to characterize a subclass of prime event structures called well branching event structures

using a suitably chosen version of tense logic. The modalities that we introduce in our logic will permit

us to explicitly talk about three basic features of distributed systems: causality, con
ict and concurrency.

The strong characterization result proved here should lead to a deeper understanding of the interplay

between the behavioural aspects of distributed systems as captured by event structures and tense logic.

Prime event structures are in some sense the basic form of event structures. A prime event structure

consists of a set of event occurrences partially ordered by a causality relation. In addition, the structure

contains a binary con
ict relation between the events. The con
ict relation is required to be irre
exive,

symmetric and inherited via the causality relation. The idea is that an event can occur in a computation

only if all the events that lie in its past have occurred in the computation. No two events that are in the

con
ict relation can both occur in a computation. Two events that are neither causally related nor in

con
ict are said to be concurrent; whenever they both occur in a computation, they do so with no order

over their occurrences.

In a well branching prime event structure two events being in con
ict can always be traced back |

via the causality relation | to two events being in minimal con
ict. Two events are said to be in in

minimal con
ict if they are in con
ict and no two events in their (uni�ed) past are in con
ict. In such an

event structure, the branching points of a computation | where the system chooses between alternate

courses of action | can be clearly identi�ed in terms of a choice made between two events in minimal

con
ict. These ideas will become more transparent in the next section where we present a brief formal

introduction to well branching prime event structures.

Prime event structures that model the behaviour of realizable distributed systems will certainly be

well branching. In fact, such event structures will have at least two other attributes which we do not

handle in this paper. Firstly, the events will be labelled with the elements of an action set. Secondly,

these event structures will be �nitary; every event will have at most a �nite number of events lying in

its past. The problems that arise when one tries to handle these two attributes will be discussed in the

concluding section.

Turning now to our logical language, it is a tense (temporal) logic with the usual past and future

modalities. In addition it has three unary modalities for expressing concurrency, con
ict and minimal

con
ict. Actually, in the present work, where only well branching event structures are admitted, the

con
ict modality can be expressed in terms of the past, future and minimal con
ict modalities. We

have included the con
ict modality as a �rst class object in our language mainly for technical reasons.

More remarks regarding this point can be found in Section 3 which presents the language and develops

a Kripke-style semantics for it with well branching prime event structures serving as the frames.

The con
ict modality was introduced by Penczek [15]. He also introduced the logical means for talking

about the maximal computations of an event structure called runs. In [16] he uses a modality called the

immediate con
ict modality. However this modality is not interpreted as the minimal con
ict relation.

Instead, it is given a rather weak interpretation. We will discuss in greater detail how our work relates

to Penczek's work in the concluding section.

The main technical contribution of this paper is a sound and complete axiomatization of validity with

respect to the chosen semantics. The axiomatization is presented in Section 4. The completeness proof,

which is somewhat formidable, is spread over Section 5 and the Appendix. In the last section we discuss

related work and issues.
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Figure 1: An Event Structure

2 Event Structures

In this paper, we will deal only with prime event structures and hence we will simply call them event

structures.

De�nition 2.1 An event structure is a triple ES = (E;<;#) where

(i) E is a set of events (or better, event occurrences).

(ii) < � E �E is an irre
exive and transitive causality relation.

(iii) # � E �E is an irre
exive and symmetric con
ict relation.

(iv) # is inherited via < in the sense that e

1

# e

2

< e

3

implies that e

1

# e

3

for every e

1

; e

2

; e

3

in E.

Usually the causality relation is required to be a partial ordering relation. We have made it a strict

partial ordering relation because it �ts in better with the completeness argument.

Let ES = (E;<;#) be an event structure. Then

id

def

= f(e; e) j e 2 Eg

>

def

= f(e; e

0

) j (e

0

; e) 2 <g

�

def

= < [ id

�

def

= > [ id and

co

def

= E � E � ( � [ � [ # ).

The relation co is called the concurrency relation. Observe that the relations

f<;>;#; co; idg partition E �E.

It is necessary to de�ne one more auxiliary relation. Let ES = (E;<;#) be an event structure and

e; e

0

2 E. Then

e #

�

e

0

def

= e # e

0

and 8e

1

; e

0

1

2 E : [ e

1

� e and e

0

1

� e

0

and e

1

# e

0

1

implies e

1

= e and e

0

1

= e

0

]:

#

�

identi�es the minimal elements (under <) of the # relation and is hence called the minimal con
ict

relation. The # relation identi�es pairs of events which are inconsistent with each other and therefore

cannot both occur during any run of the system. #

�

identi�es the branching points in the behaviour

where choices are made between con
icting events. This \basic" con
ict then propagates to causally

related events and \generates" other con
icts.

In general, there may be events in # whose inconsistency cannot be traced back to a pair of events

in #

�

| a typical example consists of two in�nite descending chains of events in # with each other.

However, it is di�cult to �nd useful examples of concurrent systems for modelling which one requires such

event structures. We shall therefore restrict our attention to the class of well branching event structures.

De�nition 2.2 Let ES = (E;<;#) be an event structure. ES is well branching i�

8e; e

0

2 E : e # e

0

implies 9e

1

; e

0

1

2 E : e

1

� e and e

0

1

� e

0

and e

1

#

�

e

0

1

:

Assuming well branching, we can specify an event structure by displaying its < and #

�

relations. The

# relation is then uniquely determined by part (iv) of De�nition 2.1.

Figure 1 is an example of an event structure. The squiggly lines represent the #

�

relation. The

causality relation is shown in the form of the associated Hasse diagram. In this event structure, e

1

# e

6

because e

1

#

�

e

2

< e

6

. It is also easy to see that e

6

co e

7

.

Notice that a well branching event structure may have in�nite descending chains of events | and

even pairs of in�nite descending chains of events in # with each other. All that well branching ensures is

that every pair of events in # is \guarded" below by a pair of events in #

�

. Thus, in Figure 2, every pair

(e

i

; f

j

); i; j � 0, is in #. However, each such element in # can be traced back to the pair (e

0

k

; f

0

k

) 2 #

�

,
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Figure 2: A Well Branching Event Structure that is not Well Founded

where k = max(i; j), and so the event structure is well branching. Thus, well branching is a fairly weak

restriction and does not, in particular, imply well foundedness with respect to <.

The states of an event structure are called con�gurations. A con�guration identi�es a set of events

that have occurred \so far". An event can occur only if all the events in its past have occurred. Two

events that are in con
ict can never both occur in the same stretch of behaviour. Before formalizing

these notions it will be convenient to adopt the following notation.

Let ES = (E;<;#) be an event structure and X � E. Then

#X = fe

0

j 9e 2 X : e

0

� eg

For the singleton feg, we shall write #e instead of #feg.

De�nition 2.3 Let ES = (E;<;#) be an event structure and c � E. Then c is a con�guration i�

(i) c = #c (left-closed)

(ii) (c� c) \ # = ; (con
ict-free)

For the event structure shown in Figure 1, fe

2

; e

5

; e

6

g is a con�guration. fe

2

; e

5

; e

10

g is not a con�guration

because it is not left-closed and fe

3

; e

7

; e

8

g is not a con�guration because it is not con
ict-free.

Let C

ES

denote the set of con�gurations of the event structure ES. In this paper, we will be concerned

with only the local con�gurations of an event structure. The notion of a local con�guration is based on

a simple but crucial observation which lies at the heart of the theory of event structures [13].

Proposition 2.4 Let ES = (E;<;#) be an event structure and e 2 E. Then #e is a con�guration.

Proof Follows easily from the de�nitions.

2

We now de�ne LC

ES

= f#e j e 2 Eg to be the set of local con�gurations of the event structure

ES = (E;<;#). We shall interpret the formulas of our logical language only at the local con�gurations

of an event structure.

The con�guration #e corresponds to the state of the system when the event e has just occurred and

thus represents the view of the system seen by observers participating in e. Suppose that ES = (E;<;#)

models the behaviour of a system of communicating sequential processes. Then at least one process or

agent will be involved in the occurrence of each event. If the agent j participates in e, then #e will

represent the local history of agent j upto the stage where e has occurred, together with the \latest"

histories of all the agents that have communicated with the agent j upto the occurrence of e. This will

be true of every agent that participates in e. In other words, #e represents a \synchronized" set of local

states of the agents that participate in the occurrence of e.

Another motivation for only considering local con�gurations comes from the work of Nielsen, Plotkin

and Winskel. In [13], they show that the poset (C

ES

;�) of con�gurations ordered under inclusion is

prime algebraic and coherent. The fact that this poset is prime algebraic basically means that certain

con�gurations in the poset are \special". These are called the prime elements of the poset. An arbitrary

con�guration is completely characterized by the prime elements that it dominates in the poset. It turns

out that the prime elements of the poset (C

ES

;�) are precisely the local con�gurations, so it makes sense

to tie our assertions about the event structure to these con�gurations.

3 The Language and its Models

We �x P = fp

1

; p

2

; : : :g, a countably in�nite set of atomic propositions. We let p; q with or without

subscripts range over P. The formulas of our language are then de�ned inductively as follows:

(i) Every member of P is a formula.

(ii) If � and � are formulas then so are :�; �_ �;2�;2

-

�;5� �;4� � and 5�

�

�.
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2 and 2

-

will denote the future and past modalities of tense logic respectively. 5� will capture con
ict,

4� will capture concurrency and 5�

�

will capture minimal con
ict.

For the rest of the paper, � will denote the set of formulas of our language. We let �, �, 
 and � with

or without subscripts range over �.

A frame is an ordered pair Fr = (ES;LC

ES

) where ES = (E;<;#) is a well branching event structure

and LC

ES

is the set of local con�gurations of ES. The members of LC

ES

will play the role of possible

worlds in the Kripke-style semantics we are about to de�ne.

A model is an ordered pair M = (Fr; V ) where Fr = (ES;LC

ES

) is a frame and V :P �! 2

LC

ES

is

a valuation function.

Let M = (Fr; V ) be a model with Fr = (ES;LC

ES

), ES = (E;<;#), and #e 2 LC

ES

. Then the

notion of a formula � being satis�ed at the local con�guration #e in the modelM is denoted as M; #e j= �

and is de�ned inductively as follows:

M; #e j= p i� #e 2 V (p); for p 2 P:

M; #e j= :� i� M; #e 6j= �:

M; #e j= � _ � i� M; #e j= � or M; #e j= �:

M; #e j= 2� i� 8e

0

2 E : e < e

0

implies M; #e

0

j= �:

M; #e j= 2

-

� i� 8e

0

2 E : e

0

< e implies M; #e

0

j= �:

M; #e j=5� � i� 8e

0

2 E : e # e

0

implies M; #e

0

j= �:

M; #e j=4� � i� 8e

0

2 E : e co e

0

implies M; #e

0

j= �:

M; #e j=5�

�

� i� 8e

0

2 E : e #

�

e

0

implies M; #e

0

j= �:

The formula � is satis�able if there exists a model M = ((ES;LC

ES

); V ) and a local con�guration

#e 2 LC

ES

such that M; #e j= �. � is M-valid | denoted M j= � | i� M; #e j= � for every #e 2 LC

ES

.

� is valid | and this is denoted by j= � | i� � is M -valid for every model M .

We de�ne the derived connectives of the Propositional Calculus (PC) such as ^;

�

and � in terms

of : and _ in the usual way. In addition, we de�ne

3�

def

= :2:�

3

-

�

def

= :2

-

:�

5�

def

= :5� :�

4�

def

= :4� :�

5

�

�

def

= :5�

�

:�

It is easy to verify that 5� � 5

�

�_3

-

5

�

�_5

�

3�_3

-

5

�

3� is a valid formula. Thus we could eliminate

the modality5� from the de�nition of the language and instead make it a derived modality using 5�

�

, 2

and 2

-

. However, it will be very convenient to keep 5� in the logic as a basic operator. We will instead

throw in the above \de�nition" of 5� in terms of 5�

�

, 2 and 2

-

as an axiom of our logical system. In

[9], it is shown that the language which contains the 5� operator but not the 5�

�

operator is strictly less

expressive for the class of models based on well branching event structures.

Also, notice that the usual re
exive forms of the future and past operators are easily expressible in

our logic. �^2� de�nes a re
exive future operator while �^2

-

� de�nes the corresponding re
exive past

operator.

A number of interesting properties of distributed computations can be expressed in our language.

To illustrate, consider a �nite set of sequential agents A

1

; A

2

; : : : ; A

n

. Assume that fQ

1

; Q

2

; : : : ; Q

n

g

is a collection of pair-wise disjoint �nite non-empty sets. Q

i

is the set of local states that agent A

i

can

assume. The agents communicate with each other asynchronously. The means for associating an event

structure with such a system will be assumed to be available (see for example [10]). Let us call such

event structures Communicating Sequential Agents (CSAs).

To reason about such systems in our logic, we specify certain \frame axioms", and focus on models

based on CSAs over which these axioms are valid. We can then use these frame axioms in conjunction

with the general proof system for event structures (which is presented in the next section) to derive facts

about this class of models.

To begin with, suppose that for each i and each q 2 Q

i

we have an atomic proposition, also called q

for convenience, which denotes that the current local state is q. We �rst make the following assertions

(where Q =

[

i

Q

i

).
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(i)

_

q2Q

q

(ii)

^

q;q

0

2Q; q 6=q

0

q

�

:q

0

These ensure that the local con�gurations of the models we consider can be mapped uniquely to the

state space of the agents. In this framework, at

i

def

=

_

q2Q

i

q will denote the fact that the current local

con�guration belongs to A

i

.

We can capture the fact that the individual agents are sequential | i.e. they exhibit no concurrency

in their local behaviours | by asserting

(iii)

^

i

(at

i

�

4� (:at

i

))

The next assertion expresses the important fact that (non-deterministic) choices in the behaviour are

made locally by the individual agents.

(iv)

^

i

(at

i

�

5�

�

at

i

)

To reason about the behaviour of the agents, it is convenient to have the means for talking about the

computations of an event structure ES. Let (C

ES

;�) be the poset of con�gurations of ES ordered

under inclusion. The maximal elements of this poset correspond to the maximal (i.e. \non-extendable")

computations of the event structure, which we shall call the runs of the event structure.

Following [15], we reserve a proposition � to designate a run. Let ES = (E;<;#) be an event

structure. It is easy to verify that r � E is a run i�

8e 2 E : (e 2 r i� 8e

0

2 E : e # e

0

implies e

0

=2 r):

Keeping this in mind, we can demand that the local con�gurations satisfying � constitute a run in any

model we consider by asserting the following:

(v) � � 5� :�

Now suppose that the agents are running a common protocol to achieve a stable property | that is, once

the property is satis�ed in a run it remains true for the remainder of the run. For instance the agents

may be running a protocol such as the snapshot algorithm [3], superimposed on the actual computation,

to detect the termination of the main computation.

Let � denote the fact that an individual agent has \recognized", as a result of running the protocol,

that the system has achieved a stable property { in this case, � would denote that the agent has detected

that the main computation has terminated. If the protocol has worked correctly, � will be become true

in any run within an agent only if the stable property has in fact been achieved, and so � itself must be

\stable" within each agent. The formula

^

j

[at

j

^ �

�

(�

�

2((at

j

^ �)

�

�))] can be used to specify this.

In addition, to verify the protocol we have to check that in each run of the system, if A

i

achieves a

local state satisfying � then every other agent also eventually achieves a local state satisfying �. Notice

that any pair of local states that occur in the same run must either be ordered or in co with each other.

As a result, during a run A

i

can \look across" to all the local states of some other agent A

j

which belong

to the same run using the modalities 2, 2

-

and 4� . Hence, we can specify the correctness of the protocol

by asserting:

at

i

^ � ^�

�

^

j 6=i

[ 2((at

j

^ �)

�

3(at

j

^ � ^ �))^

2

-

((at

j

^ �)

�

3(at

j

^ � ^ �))^

4� ((at

j

^ �)

�

3(at

j

^ � ^ �))]

On the other hand, suppose that the agents are meant to constitute a non-terminating system. We can

specify that the system is free from \local" deadlock by asserting that every run is \perpetual" within

each agent as follows:

^

i

((at

i

^ �)

�

3(at

i

^ �))

5



We can also specify the weaker property that the system as a whole has no �nite computations, though

individual agents may terminate, as follows:

^

i

f(at

i

^ �)

�

[3(at

i

^ �))_

_

j 6=i

( 2((at

j

^ �)

�

3(at

j

^ �))^

2

-

((at

j

^ �)

�

3(at

j

^ �))^

4� ((at

j

^ �)

�

3(at

j

^ �)))]g

This formula asserts that in case an agent is unable to make progress within a run, it must be able to

look across to some other agent which is non-terminating, thereby ensuring that the run is in�nite.

The intuitive notion of frame axioms used in the example can be formalized. Let A = f�

1

; �

2

; : : : ; �

n

g

be a �nite set of formulas. Then, we will say that A semantically entails � | and denote this by A j= �

| i� for every model M , if M j= �

1

^ �

2

^ : : : ^ �

n

then M j= �. Thus, in the example above, the

intention is that the formulas we use for specifying properties about the class of models based on CSAs

should be semantically entailed by the frame axioms (i) through (v) together with a suitably chosen set

of assertions satis�ed by a protocol. This will then ensure that the protocol (semantically) meets the

speci�cations.

We can relate the notions of semantic entailment and validity. To do this, we introduce the modality

E de�ned as follows:

E�

def

= � ^2� ^2

-

� ^5� � ^4� �

E� is to be read as \everywhere �". From the semantics it is obvious that if E� is satis�ed at a local

con�guration in a model then � is satis�ed at every local con�guration in the model. We then have the

following result.

Theorem 3.1 f�

1

; �

2

; : : : ; �

n

g j= � i� j= E(�

1

^ �

2

^ : : :^ �

n

)

�

�

Proof Follows easily from the de�nitions.

2

4 The Axiom System

Our axioms are a combination of standard modal logic axioms and tense logic axioms [1, 4], along with

a few new axioms which re
ect the restrictions imposed on the relations <, # and co in the de�nition of

event structures. We �rst present the logical system in full, and then provide some explanatory remarks.

AXIOM SCHEMES

(A1) All the substitution instances of the tautologies of propositional logic.

(A2) (i) 2(�

�

�)

�

(2�

�

2�) (Deductive Closure)

(ii) 2

-

(�

�

�)

�

(2

-

�

�

2

-

�)

(iii) 5� (�

�

�)

�

(5� �

�

5� �)

(iv) 4� (�

�

�)

�

(4� �

�

4� �)

(v) 5�

�

(�

�

�)

�

(5�

�

�

�

5�

�

�)

(A3) (i) 2�

�

22� (Transitivity of <)

(ii) 2

-

�

�

2

-

2

-

�

(A4) (i) �

�

5� 5� (Symmetry of #, #

�

and co)

(ii) �

�

5�

�

5

�

�

(iii) �

�

4� 4�

(A5) (i) �

�

23

-

� (Relating past and future)
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(ii) �

�

2

-

3�

(A6) 5�

�

25� (Con
ict inheritance)

(A7) 5� � 5

�

� _3

-

5

�

�_5

�

3� _3

-

5

�

3� (Well Branching)

(A8) (i) 5

�

�

�

2

-

(3� _4�) (Con
ict-free past)

(ii) 4�

�

2

-

(3� _4�)

(A9) (i) 3�

�

2(� _3� _3

-

� _5� _4�) (Relating weak and

(ii) 5�

�

5� (� _3� _3

-

� _5� _4�) strong modalities)

(iii) 4�

�

4� (� _3� _3

-

� _5� _4�)

(iv) 3

-

�

�

2

-

(� _3� _3

-

� _4�)

(A10) 5�

�

4� (3� _5� _4�) (Relating 4� and 5� )

(A11) 4�

�

2(3

-

� _5� _4�) (Relating 4� and 2)

(A12) 5�

�

2

-

(3� _5� _4�) (Relating 5� and 2

-

)

INFERENCE RULES

(MP)

�

�

�; �

�

(TG) (i)

�

2�

(ii)

�

2

-

�

(iii)

�

5� �

(iv)

�

4� �

(v)

�

5�

�

�

(UNIQ)

p̂

�

�

�

where p is an atomic proposition not appearing in �

and p̂

def

= p ^2:p^2

-

:p ^4� :p ^5� :p

Axioms A1 and A2 and inference rules MP and TG are standard. A3 and A4 are versions of the modal

logic axioms T and B respectively which express the transitivity of < and the symmetry of #, #

�

and

co. A5 is the standard tense logic axiom relating the past and future modalities. A6 expresses the fact

that con
ict is inherited via <. A7 captures the fact that the event structure is well branching. A8(i)

characterizes #

�

as the minimal con
ict relation while A8(ii) ensures that any two events related by co

have consistent (i.e. con
ict-free) pasts. The remaining axioms are necessary to capture the fact that

the relations <;<

�1

;# and co \cover" the event structure { i.e., any two distinct events are related by

one of these relations.

The rule UNIQ is adapted from [2]. Notice that given a proposition p, the formula p̂ can be true

at at most one local con�guration, by the de�nition of p̂. Hence, we can label each local con�guration

#e

i

by a distinct formula p̂

i

. The rule UNIQ allows us to construct this labelling, which is crucial in

demonstrating the completeness of the axiomatization.

A formula � is a thesis if it is derivable in our axiom system. We denote that � is a thesis by ` �.

Theorem 4.1 (Soundness) If ` � then j= �.

Proof It is routine to verify that the axioms A1 to A12 are valid and that the rules MP and TG preserve

validity.

To show that UNIQ preserves validity requires a little bit of work. We have to show that if p̂

�

� is

valid, and p does not appear in �, then � is valid as well.

This is equivalent to showing that if :� is satis�able then p̂ ^ :� is satis�able (i.e. 6j= � implies

6j= p̂

�

�.)

Suppose that :� is satis�able. Then there exists a model M = ((ES;LC

ES

); V ) and a local con�g-

uration #e

0

2 LC

ES

such that M; #e

0

j= :�. For � 2 �, let V oc(�) denote the set of propositions that

appear in � | V oc(�) is to be read as the vocabulary of �.

De�ne a new valuation function V

0

as follows:

8q 2 P : V

0

(q) =

�

V (q) if q 2 V oc(:�)

f#e

0

g otherwise
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Let M

0

= ((ES;LC

ES

); V

0

). Let � 2 � such that V oc(�) � V oc(:�). It is easy to verify the following,

by induction on the structure of �.

8#e 2 LC

ES

:M

0

; #e j= � i� M; #e j= �:

Thus we have M

0

; #e

0

j= :�. At the same time, since p =2 V oc(:�), M

0

; #e

0

j= p̂. So M

0

; #e

0

j= p̂ ^ :�

and we are done.

2

We can now de�ne the notion of a theory. Let A = f�

1

; �

2

; : : : ; �

n

g be a �nite set of formulas (here we

mean concrete formulas and not schemes closed under substitution). We say that A derives � | which

we denote as A ` � | i� we can derive � in a �nite number of steps using the formulas f�

1

; �

2

; : : : ; �

n

g

in conjunction with our axioms and inference rules.

To ensure that our axiomatization is sound for �nite theories, we have to parametrize the rule (UNIQ)

by the theory. For example, consider the following derivation, where p; q 2 P.

p̂

�

q̂ ` p̂

�

q̂ (Assumption)

p̂

�

q̂ ` q̂ (UNIQ)

It is easy to verify that p̂

�

q̂ 6j= q̂, and so the rule (UNIQ) is not sound as it stands. Instead, for the

theory A, we have to de�ne the rule (UNIQ

A

) as follows:

(UNIQ

A

)

A ` p̂

�

�

A ` �

where p is an atomic proposition appearing neither in � nor any

of the formulas in A and

p̂

def

= p ^2:p ^2

-

:p ^4� :p^5� :p

The remaining axioms and inference rules do not change for �nite theories. The axiomatization presented

earlier then turns out to be a special case of the general axiomatization of �nite theories, where the set

of assumptions A is empty.

Recall that E� stands for the formula � ^2� ^2

-

� ^5� � ^4� �. We then have the following result.

Theorem 4.2 (Deduction) f�

1

; �

2

; : : : ; �

n

g ` � i� ` E(�

1

^ �

2

^ : : :^ �

n

)

�

�.

Proof Set � = �

1

^�

2

^ : : :^ �

n

. It su�ces to show that � ` � i� ` E�

�

�.

Suppose ` E�

�

�. Then we have � ` E�

�

�. Using the inference rule (TG), it is easy to see that

the following is a derived inference rule:

A ` 


A ` E


Hence, since � ` �, we get � ` E�. Using (MP), we can then derive � ` �.

The proof in the other direction is by induction on the length of the derivation � ` �. Let A =

f�

1

; �

2

; : : : ; �

n

g. The base case, where � is an instance of one of the axioms or is one of the formulas

�

i

2 A is straightforward. For the induction step, the only interesting case is when the rule (UNIQ

A

) is

used to derive �. We then know that at some earlier step in the derivation we have � ` p̂

�

�, where p

does not appear in � or �. By the induction hypothesis, we have ` E�

�

(p̂

�

�). Rewriting this we get

` (E� ^ p̂)

�

� and hence ` p̂

�

(E�

�

�). We can then apply (UNIQ

;

) to obtain ` E�

�

�.

2

From Theorems 3.1, 4.1 and 4.2 it follows that A ` � implies A j= �. We will be able to prove the

implication in the other direction when we establish the completeness of the axiomatization.

We shall need some theses and derived inference rules to prove the completeness of our axiom system.

For convenience, we shall merely state these theses and rules here. The theses and rules are derived in

detail in [12].

We begin with some standard theses and inference rules of the modal logic system K [4]. In what

follows we let

J

range over the set f2;2

-

;5� ;4� ;5�

�

g. 
 will abbreviate :

J

:. We have adopted

the convention that in any formula (scheme) the same value is substituted for all appearances of

J

.

Thus, for example,

J

�

�


� would actually stand for 2�

�

3�, 2

-

�

�

3

-

�, 5� �

�

5�, 4� �

�

4� and

5�

�

�

�

5

�

�.

(TK1)

J

(� ^ �) �

J

�^

J

�

(TK2) 
(� ^ �)

�


 � ^
�
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(TK3)

J

� ^
�

�


 (� ^ �)

(DRK) (i)

�

�

�

J

�

�

J

�

(ii)

�

�

�


�

�


 �

We shall also need the \dual" versions of some of the axioms.

(T6Dual) 3�

�

5� 5�

(T8Dual) 3

-

�

�

4� (3

-

� _4�)

(T10Dual) 4�

�

5� (3

-

� _5� _4�)

(T11Dual) 3�

�

4� (3� _5� _4�)

(T12Dual) 3

-

�

�

5� (3

-

� _5� _4�)

In addition, we need the following theses concerning p̂.

(Tp̂) (i) 3p̂

�

:p^2

-

:p ^5� :p ^4� :p

(ii) 3

-

p̂

�

:p ^2:p ^5� :p ^4� :p

(iii) 5p̂

�

:p ^2:p ^2

-

:p ^4� :p

(iv) 4p̂

�

:p ^2:p ^2

-

:p ^5� :p

(v) 5(p̂ ^ �)

�

5� (p̂

�

�)

Finally, we need a restricted type of substitution rule.

Let f : P ! P be a function mapping atomic propositions to atomic propositions. We can extend f in

an obvious way to

^

f : �! � through the syntax of our language, namely:

^

f(q) = f(q), for all q 2 P

^

f(:�) = :

^

f (�)

^

f(� _ �) =

^

f (�) _

^

f (�)

^

f(

J

�) =

J

(

^

f (�)), where

J

2 f2;2

-

;5� ;4� ;5�

�

g

Since

^

f is uniquely determined by f , henceforth we shall always write f(�) instead of

^

f(�) for all

f : P ! P and � 2 �.

The derived inference rule that we want is

(SUB)

�

f(�)

(f : P ! P)

5 Completeness

We now wish to show that the axiomatization presented in the previous section is complete.

As usual, by a consistent formula, we shall mean a formula whose negation is not a thesis of our

system. Our proof of completeness will establish that every consistent formula is satis�able | in other

words, we show that if 6` :� then 6j= :�.

The �nite set of formulas f�

1

; �

2

; : : : ; �

m

g is consistent i� �

1

^ �

2

^ : : :^ �

m

is consistent. A set of

formulas is consistent i� every �nite subset is. A Maximal Consistent Set (MCS) is a consistent set of

formulas which is not properly included in any other consistent set.

We shall assume the usual properties associated with MCSs. We shall also assume Lindenbaum's

Lemma which says that any consistent set of formulas can be extended to an MCS.

In a model, the set of formulas satis�ed at each local con�guration is an MCS. Thus, given a frame, we

can de�ne a model by associating an MCS with each local con�guration, instead of specifying a valuation

function. Following [1] we call a function assigning MCSs to a frame a chronicle, and a frame together

with a chronicle a chronicle structure.

Clearly not every chronicle structure corresponds to a model. We need to de�ne coherency conditions

which must be satis�ed by the chronicle in order to yield a model. When these conditions are satis�ed, the

chronicle is said to be perfect. A perfect chronicle de�nes a model where the set of formulas satis�ed by

each local con�guration is exactly equal to the MCS assigned to that local con�guration by the chronicle.
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To show that a consistent formula �

0

is satis�able, we shall incrementally construct a chronicle

structure which will eventually be perfect and yield a model for �

0

.

Before de�ning chronicles and perfect chronicle structures, we need to de�ne four binary \semantic"

relations over MCSs as follows.

De�nition 5.1 Let A, B be maximal consistent sets.

(i) A

~

< B

def

= f� j 2� 2 Ag � B:

(ii) A

~

# B

def

= f� j 5� � 2 Ag � B:

(iii) A ~co B

def

= f� j 4� � 2 Ag � B:

(iv) A

~

#

�

B

def

= f� j 5�

�

� 2 Ag � B:

The next result follows from standard arguments, using axiom A5 for (i) and axiom A4 for (ii) to (iv).

Proposition 5.2 Let A, B be maximal consistent sets.

(i) A

~

< B i� f3� j � 2 Bg � A i� f� j 2

-

� 2 Bg � A

i� f3

-

� j � 2 Ag � B.

(ii) A

~

# B i� f5� j � 2 Bg � A i� f� j 5� � 2 Bg � A

i� f5� j � 2 Ag � B.

(iii) A ~co B i� f4� j � 2 Bg � A i� f� j 4� � 2 Bg � A

i� f4� j � 2 Ag � B.

(iv) A

~

#

�

B i� f5

�

� j � 2 Bg � A i� f� j 5�

�

� 2 Bg � A

i� f5

�

� j � 2 Ag � B.

We shall use

~

> to denote the relation (

~

<)

�1

.

The semantic relations de�ned on MCSs are designed to behave like their counterparts in an event

structure. We now verify that our de�nitions do have the desired e�ect.

Proposition 5.3

(i)

~

< is transitive.

(ii)

~

#; ~co and

~

#

�

are symmetric.

(iii)

~

#

�

�

~

#.

Proof (i) and (ii) follow at once from axioms A3 and A4. (iii) follows from A7.

2

We can now de�ne the notion of a chronicle structure.

De�nition 5.4 A chronicle structure is a triple CH = (ES; T; �) where

(i) ES = (E;<;#) is a well branching event structure with #

�

as its minimal con
ict relation.

(ii) T is a function, called a chronicle over ES, which assigns an MCS to each #e 2 LC

ES

.

(iii) � � #

�

.

Abusing notation, we shall always talk of a chronicle T assigning an MCS to an event e rather than to

the corresponding local con�guration #e. Notice that we have augmented the chronicle structure with a

parameter � which singles out a special subset of #

�

. This will be needed because the relation #

�

is not

stable with respect to our incremental construction of chronicle structures. The exact role played by �

will become clearer when we describe the construction.

Next, we need the notion of coherence.
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De�nition 5.5 Let CH = (ES; T; �) be a chronicle structure, where ES = (E;<;#). CH is coherent

i� it satis�es the following conditions.

(i) 8e; e

0

2 E : e < e

0

implies T (e)

~

< T (e

0

):

(ii) 8e; e

0

2 E : e # e

0

implies T (e)

~

# T (e

0

):

(iii) 8e; e

0

2 E : e co e

0

implies T (e) ~co T (e

0

):

(iv) 8e; e

0

2 E : (e; e

0

) 2 � implies T (e)

~

#

�

T (e

0

):

Coherence ensures that the chronicle is consistent with the underlying frame. Notice that for the #

�

relation, the chronicle need only be coherent with respect to the special subset �.

A coherent chronicle may still have \gaps". These gaps can be described in terms of \unful�lled

requirements", in the following sense.

De�nition 5.6 Let CH = (ES; T; �) be a coherent chronicle structure, where

ES = (E;<;#).

(i) A live future requirement is a pair (e;3�) such that e 2 E and 3� 2 T (e) and there does not exist

e

0

such that e < e

0

and � 2 T (e

0

).

(ii) A live past requirement is a pair (e;3

-

�) such that e 2 E and 3

-

� 2 T (e) and there does not exist

e

0

such that e

0

< e and � 2 T (e

0

).

(iii) A live choice requirement is a pair (e;5�) such that e 2 E and 5� 2 T (e) and there does not exist

e

0

such that e # e

0

and � 2 T (e

0

).

(iv) A live concurrent requirement is a pair (e;4�) such that e 2 E and 4� 2 T (e) and there does not

exist e

0

such that e co e

0

and � 2 T (e

0

).

(v) A live minimal choice requirement is a pair (e;5

�

�) such that e 2 E and 5

�

� 2 T (e) and there

does not exist e

0

such that (e; e

0

) 2 � and � 2 T (e

0

).

(vi) A live requirement is a pair (e; �) such that (e; �) is a live future requirement or a live past re-

quirement or a live choice requirement or a live concurrent requirement or a live minimal choice

requirement.

Once again, observe that the liveness of a minimal choice requirement is de�ned with respect to � and

not with respect to #

�

.

We can now state the criteria under which a chronicle structure is perfect.

De�nition 5.7 The chronicle structure CH = (ES; T; �) is perfect i� it satis�es the following three

conditions.

(i) CH is coherent.

(ii) CH has no live requirements.

(iii) � = #

�

, where #

�

is the minimal con
ict relation of ES.

From the work of Burgess [1], it follows that demonstrating the satis�ability of a consistent formula

reduces to the problem of constructing a certain type of perfect chronicle structure.

Lemma 5.8 Let CH = (ES; T; �) be a perfect chronicle structure, where

ES = (E;<;#), and let �

0

be a formula such that for some e

0

2 E, �

0

2 T (e

0

). Then �

0

is satis-

�able.

Proof Let V

T

: P ! 2

LC

ES

be given by:

8p 2 P : V

T

(p) = f#e j e 2 E and p 2 T (e)g:

Consider the model M

T

= ((ES;LC

ES

); V

T

).
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Claim 8� 2 � : 8e 2 E :M

T

; #e j= � i� � 2 T (e)

Proof of Claim We omit the proof, which is a simple induction on the structure of �.

Now, since we know that �

0

2 T (e

0

), we get M

T

; #e

0

j= �

0

.

2

For the rest of the section, we �x a consistent formula �

0

. The aim is to construct a perfect chronicle

structure CH = (ES; T; �), with ES = (E;<;#), such that �

0

2 T (e

0

) for some e

0

2 E.

We shall build up CH inductively. With this in mind, we �x a countably in�nite set of events

~

E = fe

0

; e

1

; e

2

; : : :g. Let fq

0

; q

1

; : : : ; q

x

g be the set of atomic propositions that appear in �

0

. Fix an

enumeration of P of the form q

0

; q

1

; : : : ; q

x

; p

0

; p

1

; : : :. Finally, �x an enumeration of

~

E � �, where � is

the set of formulas in our language.

For clarity of presentation, we shall omit a couple of lengthy proofs from this section. These proofs

are provided in the Appendix. This section together with the Appendix provides a complete account of

the inductive construction.

The general idea is to begin by extending �

0

to an MCS A

0

. We can then de�ne a chronicle structure

CH

0

= (ES

0

; T

0

; ;), where ES

0

= (fe

0

g; ;; ;) and T

0

(e

0

) = A

0

.

At stage i in our inductive construction, we shall eliminate one live requirement (e; �) from CH

i

=

(ES

i

; T

i

; �

i

), where ES

i

= (E

i

; <

i

;#

i

) and e 2 E

i

. In general, this will involve adding an event e

i+1

to

E

i

. For example, if � is of the form 4�

0

, we shall add an event e

i+1

such that e co e

i+1

and extend T

i

to T

i+1

so that �

0

2 T

i+1

(e

i+1

) and T

i+1

(e) ~co T

i+1

(e

i+1

).

When we add e

i+1

to E

i

, we also have to �x the relationship between e

i+1

and all the other events

in E

i

. To then extend T

i

to a coherent chronicle T

i+1

on ES

i+1

, we will need to selectively modify the

MCSs assigned by T

i

to the events in E

i

. While doing this, we have to ensure that live requirements that

have been killed at earlier steps remain killed. To achieve all this, we will need to \name" each event

e

i

that we add to our chronicle structure by the formula p̂

i

. Recall that for p 2 P, p̂ abbreviates the

formula p ^2:p ^2

-

:p ^5� :p ^4� :p.

Keeping all this in mind, we shall assume that the chronicle structure CH

i

= (ES

i

; T

i

; �

i

) constructed

at stage i satis�es a set of inductive conditions IC. IC captures the fact that E

i

contains events from

fe

0

; e

1

; : : : ; e

i

g, each event being \named" by p̂

i

| i.e. p̂

i

2 T

i

(e

i

). IC also ensures that �

0

2 T

i

(e

0

) is

maintained as an invariant condition, and that T

i

is a coherent chronicle on ES

i

. The detailed description

of IC is given in the Appendix.

To ensure that CH

0

conforms to IC, we have to be careful about extending �

0

to an MCS A

0

. Since

we want to have T

0

(e

0

) = A

0

, we must ensure that p̂

0

2 A

0

.

De�ne the function g

0

: P ! P as follows.

8p 2 P : g

0

(p) =

�

p; if p 2 fq

0

; q

1

; : : : ; q

x

g

p

i+1

; if p = p

i

for i � 0

In other words, replace p

0

by p

1

, p

1

by p

2

: : :but leave the atomic propositions q

0

; q

1

; : : : ; q

x

untouched.

For � 2 �, let �

0

abbreviate g

0

(�).

Extend the consistent set f�

0

g to a maximal consistent set A. Let A

0

= g

0

(A). Clearly A

0

is free of

p

0

.

Lemma 5.9 A

0

is consistent and �

0

2 A

0

. Moreover A

0

[ fp̂

0

g is consistent.

Proof Suppose A

0

is not consistent. Then we must have ` :�

0

for some �

0

2 A

0

. Let h

0

: P ! P be

given by:

8p 2 P : h

0

(p) =

�

p; if p 2 fq

0

; q

1

; : : : ; q

x

g [ fp

0

g

p

i�1

; if p = p

i

for i � 1

It is easy to check that h

0

(�

0

) = �. Then, by the derived inference rule SUB, ` :�, which is a contra-

diction because � 2 A. Hence A

0

is consistent. Since g

0

(�

0

) = �

0

, �

0

2 A

0

.

Next, we must verify that A

0

[ p̂

0

is consistent. Suppose not. Then ` p̂

0

�

:�

0

for some �

0

2 A

0

. By

the choice of g

0

, �

0

is free of p

0

. Hence, by UNIQ, ` :�

0

, which contradicts the consistency of A

0

.

2

Now extend A

0

[fp̂

0

g to an MCS A

0

. Set CH

0

= (ES

0

; T

0

; ;), where ES

0

= (fe

0

g; ;; ;) and T

0

(e

0

) = A

0

.

We can verify that CH

0

satis�es the inductive conditions IC.
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We now proceed to construct CH

i+1

fromCH

i

. The basic idea is to \kill" some live requirement (e; �)

present in CH

i

. While doing so, we do not wish to \disturb" the fact that �

0

2 T

i

(e

0

) and p̂

j

2 T

i

(e

j

)

for each e

j

2 E

i

; 0 � j � i. At the same time, in case the event e

i+1

is added to E

i

to kill (e; �), it should

be named p̂

i+1

, for which we shall have to \shift up" propositions p

i+1

; p

i+2

: : : as we did for p

0

using g

0

.

Consequently, we shall demand two things of the live requirement (e; �) chosen to be \killed".

(i) At most the propositions q

0

; q

1

; : : : ; q

x

; p

0

; p

1

; : : : ; p

i

may appear in �.

(ii) Among all the live requirements in CH

i

which satisfy (i), (e; �) has the least index in the enumer-

ation which we have �xed for

~

E � �.

To be precise, for j � 0 let �

j

= fq

0

; q

1

; : : : ; q

x

g [ fp

0

; p

1

; : : : ; p

j

g. Let �

j

be the least subset of �

containing �

j

such that if 
 and � are in �

j

then so are :
; 
 _ �;2
;2

-


;5� 
;4� 
 and 5�

�


. Clearly

� =

S

j�0

�

j

:

Among all the live requirements of the form (e

0

; �

0

) in CH

i

which satisfy the condition �

0

2 �

i

, let

(e; �) be the live requirement with the least index (in the enumeration we have �xed for

~

E��). If there

are no such live requirements, set CH

i+1

= CH

i

. Otherwise, assume that e = e

j

, j 2 f0; 1; : : : ; ig. We

shall deal in detail with the case where � is of the form 5

�

�

0

.

The live requirement (e

j

;5

�

�

0

) in CH

i

can be killed in two di�erent ways. In fact, this is the reason

why we give a detailed treatment of this case. For all other cases (e; �) can be killed in only one way.

This will become clearer as we proceed.

The �rst case corresponds to the situation where there already exists e

k

2 E

i

such that �

0

2 T

i

(e

k

)

and e

j

#

�

i

e

k

, but (e

j

; e

k

) =2 �

i

. In other words, e

k

was added at stage k < i to kill some other live

requirement, and (e

j

; e

k

) \accidentally" happens to belong to #

�

i

. In general, we cannot assume that

the event e

k

kills the live requirement (e

j

;5

�

�

0

) because #

�

i

is not stable with respect to our inductive

construction. For example, given (e

j

; e

k

) 2 #

�

i

, we may add e

i+1

to E

i

to kill a past requirement of

the form (e

k

;3

-


), and set e

i+1

<

i+1

e

k

and e

i+1

#

i+1

e

j

whereby (e

j

; e

k

) =2 #

�

i+1

. As a result, if the

liveness of minimal choice requirements were to be de�ned with respect to the relation #

�

i

, requirements

assumed to be killed at earlier stages in the construction may become live again at later stages.

This is precisely the reason why we identify a special subset of #

�

i

by �

i

. From the way we build

up �

i

, it will turn out that if an element of #

�

i

is included in �

i

, then it will always remain in #

�

n

for

all n > i. Thus, by killing a minimal choice requirement using an element in �

i

, we can ensure that the

requirement never becomes live again.

On the other hand, it will turn out that R

i

� R

i+1

for R 2 f<;>;#; cog. The inductive conditions

IC will then ensure that for live requirements of the form (e

j

;3�

0

), (e

j

;3

-

�

0

), (e

j

;5�

0

) and (e

j

;4�

0

),

once the requirement has been killed at some stage k, the requirement never becomes live again at any

later stage.

Suppose then that there exists e

k

2 E

i

such that e

j

#

�

i

e

k

and �

0

2 T

i

(e

k

) and, further, T

i

(e

j

)

~

#

�

T

i

(e

k

).

Set E

i+1

= E

i

, <

i+1

=<

i

, #

i+1

= #

i

and T

i+1

= T

i

. Finally, set �

i+1

= �

i

[ f(e

j

; e

k

); (e

k

; e

j

)g.

It is easy to verify that CH

i+1

is a well de�ned chronicle structure. We know that ES

i+1

= ES

i

and

T

i+1

= T

i

, so all we have to check is that �

i+1

� #

�

i+1

. Since �

i

� #

�

i

by the inductive hypothesis and

the new elements added to �

i

to obtain �

i+1

were assumed to be in #

�

i

, we know that �

i+1

� #

�

i

. But

clearly #

�

i

= #

�

i+1

and so �

i+1

� #

�

i+1

as well.

It is straightforward to check that CH

i+1

satis�es the inductive conditions IC. Clearly (e

j

;5

�

�

0

) is

no longer a live requirement in CH

i+1

. It is also easy to see that for all �

0

2 �

i

and for all e

k

2 E

i

, if

(e

k

; �

0

) is not a live requirement in CH

i

then it is not a live requirement in CH

i+1

either.

Now we consider the more di�cult case. Assume that there does not exist e

k

2 E

i

with e

j

#

�

i

e

k

such that �

0

2 T

i

(e

k

) and T

i

(e

j

)

~

#

�

T

i

(e

k

).

To kill the live requirement (e

j

;5

�

�

0

) in this case, we will extend ES

i

to ES

i+1

so that E

i+1

=

E

i

[ fe

i+1

g and R

i+1

\ (E

i

� E

i

) = R

i

for R 2 f<;>;#; cog. We will transform T

i

to T

i+1

in such a

way that T

i+1

(e

k

) \ �

i

= T

i

(e

k

) \ �

i

for all e

k

2 E

i

, 0 � k � i. We will ensure that (e

j

; e

i+1

) 2 �

i+1

and �

0

2 T

i+1

(e

i+1

) so that (e

j

;5

�

�

0

) is not a live requirement in CH

i+1

. Naturally, in all this we must

ensure that CH

i+1

satis�es the inductive assumptions IC.

The actual steps involved in the construction are as follows.

First we must \free" p

i+1

so that e

i+1

can be labelled with p̂

i+1

. To do this, de�ne the function
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g

i+1

: P ! P as follows:

8p 2 P : g

i+1

(p) =

�

p; if p 2 fq

0

; q

1

; : : : ; q

x

g [ fp

0

; p

1

; : : : ; p

i

g

p

k+1

; if p = p

k

for k � i+ 1

In other words, g

i+1

replaces p

i+1

by p

i+2

, p

i+2

by p

i+3

: : :but leaves q

0

; q

1

; : : : ; q

x

and p

0

; p

1

; : : : ; p

i

untouched. For � 2 �, let �

0

abbreviate g

i+1

(�).

For convenience, let A

k

denote T

i

(e

k

) and let A

0

k

denote g

i+1

(A

k

) for e

k

2 E

i

, 0 � k � i. By

Lemma 5.9, A

0

k

is consistent for all such k.

The next step in the construction is to transform T

i

to T

i+1

. We begin by creating a consistent set of

formulas containing �

0

and p̂

i+1

which is in

~

#

�

with A

0

j

.

Lemma 5.10 A

0

i+1

= f�

0

j 5�

�

�

0

2 A

0

j

g [ f�

0

g [ fp̂

i+1

g is consistent.

Proof Suppose not. Then ` p̂

i+1

�

:(�

0

^ �

0

) for some �

0

such that 5�

�

� 2 A

j

. The de�nition of g

i+1

ensures that �

0

is free of p

i+1

. Since we chose (e

j

;5

�

�

0

) as the live requirement to be killed at stage i,

we know that 5

�

�

0

2 �

i

and so �

0

2 �

i

as well. But p

i+1

=2 �

i

, so �

0

is also free of p

i+1

. Hence, by the

rule UNIQ, we get ` :(�

0

^ �

0

). By TG, we then get ` 5�

�

:(�

0

^ �

0

) and hence ` :5

�

(�

0

^ �

0

). Now,

consider the function h

i+1

: P ! P given by:

8p 2 P : h

i+1

(p) =

�

p; if p 2 fq

0

; q

1

; : : : ; q

x

g [ fp

0

; p

1

; : : : ; p

i+1

g

p

k�1

; if p = p

k

for k � i+ 2

Since h

i+1

(:5

�

(�

0

^ �

0

)) = :5

�

(� ^ �

0

), using the derived rule SUB we get ` :5

�

(� ^ �

0

). But we

began with 5�

�

� 2 A

j

. Since 5

�

�

0

2 A

j

as well and A

j

is an MCS, by TK3 we get 5

�

(� ^ �

0

) 2 A

j

. So

5

�

(� ^ �

0

) is consistent, which is a contradiction.

2

Extend A

0

i+1

to an MCS B

i+1

. We now have to go back and extend A

0

j

to an MCS that is in

~

#

�

with

B

i+1

.

Lemma 5.11 A

0

j

[ f� j 5�

�

� 2 B

i+1

g is consistent.

Proof Suppose not. Then ` �

0

�

:� for some � 2 A

j

and 5�

�

� 2 B

i+1

. But then, by axiom A4(ii),

5�

�

5

�

� 2 A

j

and hence 5�

�

5

�

�

0

2 A

0

j

. As a result, 5

�

�

0

2 A

0

i+1

� B

i+1

. Now, applying DRK(ii)

to ` �

0

�

:�, we get ` 5

�

�

0

�

5

�

:�, which then implies that 5

�

:� 2 B

i+1

. This contradicts the

assumption that 5�

�

� 2 B

i+1

.

2

Now extend A

0

j

[ f� j 5�

�

� 2 B

i+1

g to an MCS B

j

. It is easy to verify that B

j

~

#

�

B

i+1

.

T

i+1

will assign B

i+1

to e

i+1

and B

j

to e

j

. We must now extend T

i+1

to the events in E

i

� fe

j

g. We

shall deal with the concrete case where e

k

2 E

i

� fe

j

g and e

k

<

i

e

j

. Let A

�

k

= f� j 2

-

� 2 B

j

g.

Lemma 5.12 A

0

k

[A

�

k

is consistent.

Proof Suppose not. Then ` �

0

�

:� for some � 2 A

k

and 2

-

� 2 B

j

. Since T

i

was a coherent chronicle

on ES

i

, we must have had A

k

~

< A

j

. So, 3

-

� 2 A

j

and hence 3

-

�

0

2 A

0

j

� B

j

. Applying DRK(ii)

to ` �

0

�

:� we get ` 3

-

�

0

�

3

-

:�, which implies that 3

-

:� 2 B

j

. This contradicts the assumption

2

-

� 2 B

j

.

2

Extend A

0

k

[A

�

k

to an MCS B

k

. It is straightforward to verify that B

k

~

< B

j

.

For the cases e

k

>

i

e

j

, e

k

#

i

e

j

and e

k

co

i

e

j

, we set A

�

k

to f� j 2� 2 B

j

g, f� j 5� � 2 B

j

g and

f� j 4� � 2 B

j

g respectively. In each case, by an argument similar to Lemma 5.12, A

0

k

[A

�

k

is consistent

and can be extended to an MCS B

k

.

At this stage, for each e

k

2 E

i+1

, 0 � k � i + 1, we have managed to �nd an MCS B

k

which shall

use to de�ne T

i+1

. We can now de�ne CH

i+1

= (ES

i+1

; T

i+1

; �

i+1

), where ES

i+1

= (E

i+1

; <

i+1

;#

i+1

),

as follows:

(i) E

i+1

= E

i

[ fe

i+1

g.

(ii) <

i+1

=<

i

[ f(e

k

; e

i+1

) j e

k

2 E

i

; 0 � k � i; and B

k

~

< B

i+1

g

[ f(e

i+1

; e

k

) j e

k

2 E

i

; 0 � k � i; and B

i+1

~

< B

k

g

.
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(iii) >

i+1

= (<

i+1

)

�1

.

(iv) #

i+1

= #

i

[ f(e

k

; e

i+1

); (e

i+1

; e

k

) j e

k

2 E

i

; 0 � k � i; and B

k

~

# B

i+1

g.

(v) co

i+1

= (E

i+1

�E

i+1

)� (<

i+1

[ >

i+1

[ #

i+1

[ id

i+1

).

(vi) 8e

k

2 E

i+1

: T

i+1

(e

k

) = B

k

.

(vii) �

i+1

=

8

>

>

>

<

>

>

>

:

�

i

[ f(e

j

; e

i+1

); (e

i+1

; e

j

)g if the live requirement considered at stage

i was of the form (e

j

;5

�

�

0

)

(which we are assuming to be the case)

�

i

otherwise

We have to do a fair amount of work to prove the next result. The details are given in the appendix.

Lemma 5.13 CH

i+1

is a well de�ned chronicle structure which satis�es the inductive conditions IC.

Clearly, by our construction, the live requirement (e

j

;5

�

�

0

) that we selected for killing in CH

i

is not

live in CH

i+1

. To ensure that our inductive construction works properly, we �nally have to show that

all live requirements killed at earlier stages remain \dead" in CH

i+1

.

Lemma 5.14 8e 2 E

i

: 8� 2 �

i

: (e; �) is not a live requirement in CH

i

implies that it is not a live

requirement in CH

i+1

.

Proof This follows from the following two observations.

(i) In extending CH

i

to CH

i+1

we preserve the semantic relationships between the MCSs assigned by

T

i

.

(ii) Formulas from �

i

are left untouched in the MCSs assigned by T

i

during the process of \shifting

up" propositions to accommodate p̂

i+1

in T

i+1

(e

i+1

).

2

The other four types of live requirements | (e

j

;3�

0

); (e

j

;3

-

�

0

); (e

j

;5�

0

); (e

j

;4�

0

) | are also killed by

adding an event e

i+1

to E

i

and extending ES

i

to ES

i+1

and T

i

to T

i+1

in a suitable manner. The proce-

dure is almost identical to that described above for the case (e

j

;5

�

�

0

). Virtually the only change to be

made is in the step where B

i+1

is constructed. For live requirements of the form (e

j

;3�

0

); (e

j

;3

-

�

0

); (e

j

;5�

0

)

and (e

j

;4�

0

), B

i+1

and B

j

must be suitably de�ned so that B

j

~

< B

i+1

; B

j

~

> B

i+1

; B

j

~

# B

i+1

and

B

j

~co B

i+1

respectively. The new event e

i+1

can then be \hooked up" to the other events in E

i

exactly

as described above, yielding a chronicle structure CH

i+1

in which the requirement considered at stage i

is no longer live. In all four cases �

i

is left untouched | i.e �

i+1

= �

i

.

Thus, we can construct an in�nite sequence of chronicle structures CH

0

; CH

1

; : : : so that each member

of the sequence satis�es the inductive conditions IC. Now de�ne CH = (ES; T; �) where:

� ES = (E;<;#), with E =

S

i�0

E

i

; <=

S

i�0

<

i

, and # =

S

i�0

#

i

.

� T : E ! 2

�

is given by:

8e

i

2 E : T (e

i

) =

[

fT

j

(e

i

) \ �

j

j j � ig:

� � =

S

i�0

�

i

.

We can then verify the following result, whose proof is given in the Appendix.

Lemma 5.15 CH = (ES; T; �) is a perfect chronicle structure in which �

0

2 T (e

0

).

From the preceding lemma and Lemma 5.8 it follows that every consistent formula �

0

is satis�able. We

have thus established our main result.

Theorem 5.16 (Completeness) If j= � then ` �.

It is straightforward to extend this result to obtain completeness for �nite theories.
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Corollary 5.17 Let f�

1

; �

2

; : : : ; �

n

g be a �nite set of formulas. If f�

1

; �

2

; : : : ; �

n

g j= � then f�

1

; �

2

; : : : ; �

n

g `

�.

Proof By Theorem 3.1, we know that f�

1

; �

2

; : : : ; �

n

g j= � i� j= E(�

1

^�

2

^ : : :^�

n

)

�

�. Since our ax-

iomatization is complete, we know that j= E(�

1

^�

2

^ : : :^�

n

)

�

� implies ` E(�

1

^�

2

^ : : :^�

n

)

�

�. By

Theorem 4.2, f�

1

; �

2

; : : : ; �

n

g ` � i�

` E(�

1

^ �

2

^ : : :^ �

n

)

�

� and we are done.

2

6 Discussion

In this paper we have obtained a sound and complete axiomatization of the class of well branching prime

event structures. We have achieved this using a temporal logic which appears to be rich in expressive

power.

Our completeness proof leans heavily on the techniques developed in our earlier work [11]. However,

the logic considered there did not have the 5�

�

operator. Moreover the frames for the logic consisted of

all prime event structures. As noted earlier, what we really need is a logic that characterizes �nitary

prime event structures. It is easy to check that every �nitary prime event structure is also well branching.

Thus the present work, in comparison to [11] represents advances on two fronts; the set of frames has

been suitably shrunk (though not as much as we would have liked) and the logical language, due to the

addition of the 5�

�

operator, is provably more expressive [9]. The present completeness proof also requires

some new ideas and is a lot more delicate.

Partial orders have also been considered as structures for temporal logics by | among others |

Pinter and Wolper [17] and Katz and Peled [5]. In these studies assertions are tied directly to the global

states of the system. Also, there are no modalities for directly expressing concurrency and con
ict.

In [6, 7] and in the much improved [8] a subclass of event structures is used to model systems of

communicating sequential agents. The logical language consists of future and past modalities indexed by

the names of the agents. There are no modalities to express con
ict and concurrency.

As mentioned earlier, Penczek [15, 16] has carried out closely related work. He was the �rst one to

identify the 5� operator and use it to exploit the important notion of a run. In [15] a sound and complete

axiomatization of (all) prime event structures is given. In our notation, the logical language consists of

the 2, 2

-

and the 5� operators with neither the 4� operator nor the 5�

�

operator. Moreover, a special

proposition � is reserved in the language and is used to mark the runs of an event structure. A frame

consists of an event structure together with a run. The valuation function is required to ensure that the

special proposition � is assigned the run associated with the frame.

It is easy to check that we could, if we wished to, follow the same route using well branching event

structures. As in [15] we would add � � 5� :� as an axiom to our system. We would then get a sound and

complete axiomatization (with respect to the extended notion of frames and models) in the presence of the

additional operators 4� and 5�

�

. Consequently the resulting logic would be more powerful in comparison

to [15] with the added advantage that non-well branching event structures would not arise in the process

of producing models for consistent formulas.

We feel however that it is better to retain a \pure" notion of frames and embed the notion of a run

into theories concerning speci�c applications as indicated in Section 3. This is so because this nice idea of

Penczek to logically talk about runs can be extended in a number of useful ways. And these extensions,

if brought into the \core" language, would lead to more and more elaborate notions of frames. It would

then be di�cult to distinguish the foundation from the superstructure, so to speak.

For instance one could reserve a special proposition � and use it mark the sequential components of

an event structure. By a sequential component we mean a maximal co-free subset of the events. The

axiom � � 4� :� will then capture this notion. One could reserve two more propositions � and � and use

them to mark the maximal chains and anti-chains of an event structure. The respective characteristic

axioms would be � � 4� :� ^ 5� :� and � � 2:� ^ 2

-

:�. We could go further down this road but we

will stop here. The point however is that the logic presented here appears to be well suited for capturing

many interesting behavioural notions concerning event structures.

Turning now to [16], Penczek also introduces what he calls an immediate con
ict operator which we

will denote here as 5�

m

. However, all that is required of the corresponding frame relation #

m

is that it
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should generate the con
ict relation # via the causality relation in the obvious sense. As a result, for a

�xed # very many subsets of # could play the role of #

m

. In particular, #

m

could be # itself! Stated

di�erently, all that is demanded semantically from 5�

m

is that the axiom A7 be sound. The problem

of course is that A8(i) which is in some sense the characteristic axiom for the minimal con
ict relation

cannot be formulated in [16] due to the absence of the 4� operator.

It is worth pointing out in this connection that the term immediate con
ict is suggested by net

theory. With each event structure, one can associate a special kind of net called an occurrence net [18].

For occurrence nets the notion of two events being in immediate con
ict is well-de�ned | they should

share a pre-condition. However, the means for associating occurrence nets with event structures suggested

in [18], and also in [13], would identify #

m

with #. Thus the notion of immediate con
ict, applied to

prime event structures, is not an interesting behavioural notion.

At present we do not know any thing about the decidability of our system. The �nite model property

does not hold and hence standard �ltration techniques are not applicable. It seems di�cult to identify a

suitable notion of a pseudo model in which the causality relation will be just a preorder. Stated di�erently,

what is lacking is a �nite representation of event structures that are possibly in�nite but \regular". The

model checking problem is also at present not meaningful because we do not know what �nite but \cyclic"

event structures look like. Notice in this connection that the weaker system of [15] is shown by Penczek

to be decidable.

As mentioned in Section 1, we lack the means for handling labelled event structures. One possibility

would be to introduce next state and previous state operators and use reserved propositions to code up

the label set. Once again due to the lack of a suitable notion of a pseudo model, standard techniques

cannot be applied to obtain completeness.

Finally the problem of characterizing �nitary event structures seems to be a di�cult one. The standard

well foundedness axiom for irre
exive frames 3

-

�

�

3

-

(�^2

-

:�) will certainly be sound for �nitary event

structures. However, the past of an event will in general be a partially ordered set rather than a totally

ordered set. Hence even well foundedness seems to be hard to capture let alone �nitariness.
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A Appendix

Here we �ll in the details of the completeness proof which are missing in Section 5. In this appendix,

we describe in detail the inductive hypotheses IC which are used in our incremental construction of a

perfect chronicle and then provide the proofs of Lemmas 5.13 and 5.15.

First, we need some preliminary results concerning the semantic relations de�ned on MCSs. We begin

with a characterization of

~

#

�

in terms of

~

#.

Lemma A.1 Suppose A and B are MCSs such that A

~

# B and p is an atomic proposition such that

p̂ 2 B and 5

�

p̂ 2 A. Then A

~

#

�

B.

Proof It su�ces to show that f5

�

� j � 2 Bg � A. Suppose that � 2 B and 5

�

� =2 A. Then, since

A is an MCS, :5

�

� 2 A and hence 5�

�

:� 2 A. We know that 5

�

p̂ 2 A, so in fact 5

�

p̂ ^ 5�

�

:� 2 A.

Hence, by TK3, 5

�

(p̂ ^ :�) 2 A and so, by axiom A7, 5(p̂ ^ :�) 2 A as well. But, by Tp̂(v),

5(p̂ ^ :�)

�

5� (p̂

�

:�) so we must have 5� (p̂

�

:�) 2 A. Then, since A

~

# B, (p̂

�

:�) 2 B by the

de�nition of

~

#. But (p̂

�

:�) 2 B and p̂ 2 B implies that :� 2 B, which is a contradiction.

2

Let E = fe

1

; e

2

; e

3

g be a set of three events. Suppose we choose relations R

12

; R

13

2 f<;>;#; cog and

let e

1

R

12

e

2

and e

1

R

13

e

3

. It is easy to verify that we can always complete the \triangle", choosing an

appropriate R

23

2 f<;>;#; cog, such that setting e

2

R

23

e

3

yields a valid event structure ES = (E;<;#).

The next lemma establishes an analogous result for MCSs.

Lemma A.2 Let A, B and C be distinct MCSs such that A

~

R

1

B and A

~

R

2

C for

~

R

1

;

~

R

2

2 f

~

<;

~

>;

~

#; ~cog

as speci�ed in Table 1. Then it must be the case that B

~

R

3

C,

~

R

3

2 f

~

<;

~

>;

~

#; ~cog, for at least one of the

options speci�ed for

~

R

3

in the corresponding row of Table 1.

~

R

1

~

R

2

~

R

3

~

<

~

<

~

<;

~

>;

~

#; ~co

~

<

~

>

~

>

~

<

~

#

~

#

~

< ~co

~

>;

~

#; ~co

~

>

~

>

~

<;

~

>; ~co

~

>

~

#

~

<;

~

#; ~co

~

> ~co

~

<; ~co

~

#

~

#

~

<;

~

>;

~

#; ~co

~

# ~co

~

>;

~

#; ~co

~co ~co

~

<;

~

>;

~

#; ~co

Table 1:

Proof Consider the case where A

~

< B and A

~

< C. Since B and C are distinct, there exists � 2 B

such that � =2 C. Now, suppose that (B;C) =2 f

~

>;

~

<;

~

#; ~cog. Then, by Proposition 5.2, there exist




1

; 


2

; 


3

; 


4

2 B such that 3


1

=2 C, 3

-




2

=2 C,

5


3

=2 C and 4


4

=2 C.

Let �

def

= �^


1

^


2

^


3

^


4

. Since A

~

< B and � 2 B, Proposition 5.2 guarantees that3� 2 A. Hence, by

axiom A9(i) we must have 2(� _ 3� _ 3

-

� _ 5� _ 4�) 2 A,

since A is an MCS. But then, since A

~

< C, we appeal to the de�nition of

~

< to conclude that (� _

3� _ 3

-

� _ 5� _ 4�) 2 C. Hence, � 2 C or 3� 2 C or 3

-

� 2 C or 5� 2 C or 4� 2 C. If

� 2 C, then � 2 C as well. Alternatively, if 3� 2 C, then since �

def

= � ^ 


1

^ 


2

^ 


3

^ 


4

and

` 3(� ^ 


1

^ 


2

^ 


3

^ 


4

)

�

3� ^ 3


1

^3


2

^3


3

^3


4

(TK2), we must have 3


1

2 C. Similarly, if
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3

-

� 2 C then 3

-




2

2 C, if 5� 2 C then 5


3

2 C and if 4� 2 C then 4


4

2 C. In any case, we obtain a

contradiction.

The proofs of the other cases are similar. Instead of axiom A9(i), we would have to use axioms A5,

A6, A9(ii) to A9(iv) and A10 and theses T8Dual, T11Dual and T12Dual.

The requirement that the MCSs be distinct is strictly necessary only for the cases which use axiom

A9, but the more restrictive statement of the lemma will be su�cient for our purposes.

2

Note that there are no entries for

~

#

�

in the table above. It turns out that it is su�cient to establish the

following result in this connection.

Lemma A.3 Let A;B and C be MCSs such that A

~

#

�

B and A

~

> C. Then, either B

~

> C or B ~co C.

Proof Similar to the proof of Lemma A.2, using axiom A8(i).

2

The next lemma demonstrates why we have been naming MCSs using formulas of the form p̂.

Lemma A.4 Let A be an MCS such that p̂ 2 A, p 2 P. Then, for any other MCS B, (A;B) can be in

at most one of the semantic relations f

~

<;

~

>;

~

#; ~cog.

Proof Consider the case where A

~

# B. By Proposition 5.2, we know that5p̂ 2 B. But 5p̂

�

:p^2:p^

2

-

:p^4� :p by the thesis Tp̂(iii). By again appealing to Proposition 5.2, it follows that (A;B) =2 f

~

<;

~

>; ~cog.

A similar argument can be used for the cases A

~

< B, A

~

> B and A ~co B.

2

With these preliminaries out of the way, we can now describe in detail the inductive hypotheses IC.

Recall that at stage i we assume that we have built up a chronicle structure CH

i

= (ES

i

; T

i

; �

i

), where

ES

i

= (E

i

; <

i

;#

i

). Henceforth let co

i

and #

�

i

denote the concurrency and minimal con
ict relations of

ES

i

respectively. The inductive conditions satis�ed by CH

i

consist of �ve clauses.

(C1) E

i

� fe

0

; e

1

; : : : ; e

i

g.

(C2) For 0 � j � i, if e

j

2 E

i

then p̂

j

2 T

i

(e

j

).

(C3) �

0

2 T

i

(e

0

).

(C4) 8e

j

; e

k

2 E

i

; 0 � j; k � i : T

i

(e

j

)

~

R T

i

(e

k

) i� e

j

R

i

e

k

, where R 2 f<;>;#; cog.

(C5) 8e

j

; e

k

2 E

i

; 0 � j; k � i : (e

j

; e

k

) 2 �

i

implies T

i

(e

j

)

~

#

�

T

i

(e

k

).

(C2) ensures that each event e

j

present in E

i

is assigned the unique name p̂

j

by T

i

. Note that the \("

direction of (C4) along with (C5) imply that CH

i

is coherent. We have chosen to state the conditions

separately because it turns out to be more convenient. Also, note that (C4) does not cover the case

e

j

#

�

i

e

k

. It is thus possible that e

j

#

�

i

e

k

whereas (T

i

(e

j

); T

i

(e

k

)) =2

~

#

�

.

Before beginning the proof of Lemma 5.13, we explicitly state and prove a result which has been

mentioned in passing while describing the inductive construction.

Recall that we had abbreviated T

i

(e

k

) by A

k

for all e

k

2 E

i

. To kill the live requirement (e

j

;5

�

�

0

), we

constructed an MCS B

i+1

containing �

0

and modi�ed the MCS A

j

to an MCS B

j

such that B

j

~

#

�

B

i+1

.

We then modi�ed the MCSs A

k

corresponding to events e

k

2 E

i

� fe

j

g to MCSs B

k

, ensuring that the

relationship between A

j

and A

k

was preserved between B

j

and B

k

.

We can now verify the following result.

Lemma A.5 For all e

k

2 E

i

, 0 � k � i, the following conditions hold:

(i) B

k

\ �

i

= T

i

(e

k

) \ �

i

and p̂

k

2 B

k

.

(ii) For k 6= j, if A

k

~

R A

j

then B

k

~

R B

j

for

~

R 2 f

~

<;

~

>;

~

#; ~cog.

Proof

(i) By the de�nition of g

i+1

, for every � 2 �

i

we have g

i+1

(�) = � and so � 2 A

0

k

i� � 2 A

k

. But

then our construction ensures that A

0

k

� B

k

and hence T

i

(e

k

) \ �

i

� B

k

\ �

i

.
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To establish B

k

\ �

i

� T

i

(e

k

) \ �

i

, suppose that there exists � 2 B

k

\ �

i

such that � 2 B

k

� A

k

.

Then � =2 A

k

and consequently :� 2 A

k

. But this would imply that :� 2 A

0

k

� B

k

as well, which

contradicts the consistency of B

k

.

Since p̂

k

2 �

i

and p̂

k

2 T

i

(e

k

) for all e

k

2 E

i

, it follows from the previous argument that p̂

k

2 B

k

as

well.

(ii) Consider the case A

k

~

< A

j

. Then f� j 2

-

� 2 B

j

g = A

�

k

� B

k

by construction and so B

k

~

< B

j

.

(A

�

k

was de�ned immediately preceding Lemma 5.12). Similar remarks apply to the other cases.

2

Now we can prove Lemma 5.13.

Lemma 5.13 CH

i+1

is a well de�ned chronicle structure which satis�es the inductive conditions IC.

Proof To verify that CH

i+1

is a well de�ned chronicle structure, we have to check that ES

i+1

is a well

branching event structure and that �

i+1

� #

�

i+1

. It is then clear from the de�nition of T

i+1

that T

i+1

is a chronicle on ES

i+1

.

Some of the inductive conditions can be veri�ed before proving that CH

i+1

is a chronicle structure.

Condition (C1) Assuming that E

i

� fe

0

; e

1

; : : : ; e

i

g, our construction guarantees that E

i+1

� fe

0

; e

1

; : : : ; e

i+1

g,

so CH

i+1

satis�es condition (C1).

Condition (C2) Lemma A.5(i) guarantees that we have not disturbed any of the formulas p̂

k

in going

from T

i

(e

k

) to T

i+1

(e

k

) for e

k

2 E

i

. We have also ensured that p̂

i+1

2 B

i+1

= T

i+1

(e

i+1

), so CH

i+1

satis�es (C2).

Condition (C3) We know that �

0

2 T

i

(e

0

) since CH

i

satis�ed condition (C3). Since �

0

2 �

0

� �

i

,

by Lemma A.5(i), �

0

2 T

i+1

(e

0

) as well, so CH

i+1

satis�es (C3).

Condition (C4) To verify that CH

i+1

satis�es (C4) requires more e�ort. We have to show the

following:

8e

k

; e

m

2 E

i+1

: 8R 2 f<;>;#; cog : e

k

6= e

m

implies (e

k

R

i+1

e

m

i� B

k

~

R B

m

)

There are two cases to consider | either fe

k

; e

m

g � E

i

or one of the two events is e

i+1

.

Case 1: e

k

and e

m

both belong to E

i

.

From the de�nition of ES

i+1

it is clear that <

i

=<

i+1

\(E

i

� E

i

) and #

i

=

#

i+1

\ (E

i

� E

i

). From this it also follows at once that co

i

= co

i+1

\ (E

i

� E

i

). Hence, we can

conclude that e

k

R

i+1

e

m

i� e

k

R

i

e

m

, for R 2 f<;>;#; cog. Since CH

i

satis�es (C4) by the induction

hypothesis, we know that e

k

R

i

e

m

i� A

k

~

R A

m

for R 2 f<;>;#; cog. Thus, we only have to verify that

A

k

~

R A

m

i� B

k

~

R B

m

.

We �rst show that A

k

~

R A

m

implies B

k

~

R B

m

, for R 2 f<;>;#; cog.

In case e

k

= e

j

or e

m

= e

j

, the result follows from Lemma A.5(ii). Hence assume that e

k

6= e

j

and

e

m

6= e

j

.

Suppose that A

k

~

R A

m

for some R 2 f<;>;#; cog. We shall deal with the case where A

k

~co A

m

.

The other cases can be handled similarly.

First, since CH

i

satis�es (C4), we know that e

k

co

i

e

m

. Since ES

i

is an event structure, the pairs

(e

k

; e

j

) and (e

m

; e

j

) must each belong to one of the relations

f<

i

; >

i

;#

i

; co

i

g. Thus, we have to consider all possible \triangles" involving these three events which �x

e

k

co

i

e

m

. Once again, we shall consider only one representative case.

Consider the case where e

k

co

i

e

j

and e

m

co

i

e

j

. From the induction hypothesis (C4) and LemmaA.5(ii)

it follows that B

k

~co B

j

and B

m

~co B

j

. Note that B

k

6= B

m

because p̂

k

2 B

k

and p̂

k

=2 B

m

. Hence,

we can appeal to Lemma A.2 and conclude that (B

k

; B

m

) belongs to at least one relation from the set

f

~

<;

~

>;

~

#; ~cog. However, by Lemma A.4 B

k

and B

m

cannot be related by more that one of these four

relations. Hence B

k

and B

m

must be related by exactly one of these four relations. Since 4p̂

k

2 A

m

and (4p̂

k

)

0

= 4p̂

k

, we know that 4p̂

k

2 A

0

m

� B

m

as well. Then by Tp̂(iv), we have 2:p

k

2 B

m

and
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2

-

:p

k

2 B

m

and 5� :p

k

2 B

m

and hence, by Proposition 5.2, (B

k

; B

m

) =2 f

~

<;

~

>;

~

#g. Thus, it must be

the case that B

k

~co B

m

.

Next, we must show that B

k

~

R B

m

implies A

k

~

R A

m

for R 2 f<;>;#; cog. Suppose that (B

k

; B

m

) 2

~

R, for some R 2 f<;>;#; cog and (A

k

; A

m

) =2

~

R. Since ES

i

is an event structure, we know that

(e

k

; e

m

) 2 R

�

i

for some R

�

2 f<;>;#; cog. Then, since T

i

satis�es condition (C4), it must be the case

that (A

k

; A

m

) 2

~

R

�

and so R

�

6= R. But, by the preceding argument, we must have (B

k

; B

m

) 2

~

R

�

as

well. This is a contradiction, because p̂

k

2 B

k

and thus, by Lemma A.4, (B

k

; B

m

) can belong to at most

one semantic relation from f

~

<;

~

>;

~

#; ~cog.

Case 2: e

k

= e

i+1

or e

m

= e

i+1

.

Assume without loss of generality that e

m

= e

i+1

. We �rst show that (B

k

; B

i+1

) is contained in

exactly one of the semantic relations f

~

<;

~

>;

~

#; ~cog.

By Lemma A.4, (B

k

; B

i+1

) can belong to at most one of the four semantic relations because p̂

k

2 B

k

.

Hence it su�ces to show that (B

k

; B

i+1

) is contained in at least one of the four relations.

If e

k

= e

j

, we know that B

j

~

#

�

B

i+1

, which implies that B

j

~

# B

i+1

since

~

#

�

�

~

#.

On the other hand, suppose e

k

2 E

i

�fe

j

g. Since ES

i

is an event structure, we know that (e

k

; e

j

) 2 R

i

for some R 2 f<;>;#; cog. Since ES

i

satis�es (C4), A

k

~

R A

j

. So, by Lemma A.5(ii) we know that

B

k

~

R B

j

. Since we also know that B

j

~

# B

i+1

, we can appeal to Lemma A.2 to show that (B

k

; B

i+1

)

must belong to at least one semantic relation.

Returning to the main proof, we know that (B

k

; B

i+1

) belongs to exactly one semantic relation from

the set f

~

<;

~

>;

~

#; ~cog. By the de�nition of <

i+1

and #

i+1

, the result follows at once for the case where

(e

k

; e

i+1

) 2 f<

i+1

; >

i+1

;#

i+1

g. Therefore, consider the case where e

k

co

i+1

e

i+1

. This implies that

(B

k

; B

i+1

) =2 f

~

<;

~

>;

~

#g and so it must be the case that B

k

~co B

i+1

.

Having veri�ed that (C4) holds, we can show that ES

i+1

is well de�ned.

Claim: ES

i+1

is a well branching event structure

It su�ces to show that ES

i+1

is an event structure. Since E

i+1

is a �nite set it will then follow that

ES

i+1

is in fact well branching.

We know that ES

i

is an event structure and that <

i

=<

i+1

\(E

i

� E

i

) and #

i

= #

i+1

\ (E

i

� E

i

).

By the de�nition of <

i+1

and #

i+1

, it then follows that <

i+1

and #

i+1

are irre
exive and that #

i+1

is

symmetric. Thus, all we have to establish is that <

i+1

is transitive and that #

i+1

is inherited via <

i+1

.

Now suppose that e

k

<

i+1

e

l

<

i+1

e

m

. Since T

i+1

satis�es (C4), we know that B

k

~

< B

l

~

< B

m

. Hence,

by Lemma A.2 it follows that B

k

~

< B

m

. Thus, by (C4), we have e

k

<

i+1

e

m

and so <

i+1

is transitive.

Next, suppose that e

k

#

i+1

e

l

<

i+1

e

m

. Once again, by (C4) we have B

k

~

# B

l

~

< B

m

and thus

B

k

~

# B

m

by Lemma A.2. So, by (C4), e

k

#

i+1

e

m

. Hence #

i+1

is inherited via <

i+1

. This establishes

the claim.

Now all that remains to be shown is that CH

i+1

satis�es (C5) and that �

i+1

� #

�

i+1

.

Condition(C5) We have to verify the following:

8e

k

; e

m

2 E

i+1

: (e

k

; e

m

) 2 �

i+1

implies T

i+1

(e

k

)

~

#

�

T

i+1

(e

m

):

Suppose both e

k

and e

m

belong to E

i

. Then (e

k

; e

m

) 2 �

i

. Since CH

i

was a chronicle structure, in ES

i

we must have had e

k

#

�

i

e

m

. Hence e

k

#

i

e

m

as well. So e

k

#

i+1

e

m

, since #

i

= #

i+1

\ (E

i

� E

i

).

Therefore, since T

i+1

satis�es (C4), B

k

~

# B

m

. We also know that A

k

~

#

�

A

m

in CH

i

by the inductive

assumption (C5). Hence, 5

�

p̂

k

2 A

m

. Since (5

�

p̂

k

)

0

= 5

�

p̂

k

, 5

�

p̂

k

2 A

0

m

� B

m

as well. But, by

Lemma A.1, from B

k

~

# B

m

and 5

�

p̂

k

2 B

m

we get B

k

~

#

�

B

m

.

On the other hand, suppose that e

k

= e

i+1

or e

m

= e

i+1

. Without loss of generality, assume that

e

m

= e

i+1

. Then e

k

= e

j

and by the construction of B

j

and B

i+1

we are assured that B

j

~

#

�

B

i+1

.
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Claim: �

i+1

� #

�

i+1

Since T

i+1

satis�es (C5), we know that (e

k

; e

m

) 2 �

i+1

implies that B

k

~

#

�

B

m

and so B

k

~

# B

m

.

Thus, since T

i+1

satis�es (C4), e

k

#

i+1

e

m

. Now suppose that e

l

2 E

i+1

such that e

l

<

i+1

e

k

. Then, by

(C4), we know that B

l

~

< B

k

. Hence, by Lemma A.3, either B

l

~

< B

m

or B

l

~co B

m

which implies, again

by (C4), e

l

<

i+1

e

m

or e

l

co

i+1

e

m

. Symmetrically, for any e

l

<

i+1

e

m

we can argue that e

l

<

i+1

e

k

or

e

l

co

i+1

e

k

. Hence e

k

#

�

i+1

e

m

.

2

Finally, we prove Lemma 5.15. Recall that our inductive construction yielded a chronicle structure

CH = (ES; T; �), where:

� ES = (E;<;#), with E =

S

i�0

E

i

; <=

S

i�0

<

i

, and # =

S

i�0

#

i

.

� T : E ! 2

�

is given by:

8e

i

2 E : T (e

i

) =

[

fT

j

(e

i

) \ �

j

j j � ig:

� � =

S

i�0

�

i

.

Lemma 5.15 CH = (ES; T; �) is a perfect chronicle structure in which �

0

2 T (e

0

).

Proof We establish this result by proving a series of claims. As usual, let

co = (E �E) � (< [ > [ # [ id).

Claim 1 T assigns an MCS to each element of E.

Proof of Claim First, we show that for every e 2 E, T (e) is a consistent set. Consider

e

k

2 E. Suppose that �; � 2 T (e

k

). Let � 2 �

i

and � 2 �

j

. Let n = MAX(i; j; k). Then,

by Lemma A.5(i), it follows that �^ � 2 T

n

(e

k

). Since T

n

(e

k

) is an MCS, �^ � is consistent

and so T (e

k

) must be consistent.

Next, we show that T (e

k

) is an MCS. Suppose that T (e

k

) [ f�g is consistent and � =2 T (e

k

).

Let � 2 �

i

and n = MAX(i; k). Then, since T

n

(e

k

) is an MCS, we must have � 2 T

n

(e

k

) or

:� 2 T

n

(e

k

). If � 2 T

n

(e

k

), then � 2 T (e

k

) by the de�nition of T , which is a contradiction.

On the other hand, if :� 2 T

n

(e

k

) then :� 2 T (e

k

), again by the de�nition of T , which

implies that T (e

k

) [ f�g is not consistent, which is again a contradiction.

Claim 2

(i) 8R 2 f<;>;#; cog : R

i

= R \ (E

i

�E

i

).

(ii) 8e

j

; e

k

2 E : 8R 2 f<;>;#; cog : e

j

R e

k

i� e

j

R

n

e

k

where

n = MAX(j; k).

(iii) ES is an event structure.

(iv) 8e

j

2 E : p̂

j

2 T (e

j

).

Proof of Claim (i) follows at once from the fact that at every stage i, in passing from

CH

i

to CH

i+1

we ensured that <

i

=<

i+1

\(E

i

�E

i

) and #

i

= #

i+1

\ (E

i

�E

i

), which also

implies that co

i

= co

i+1

\ (E

i

� E

i

). (ii) and (iii) follow immediately from (i). (iv) follows

from Lemma A.5(i) and the de�nition of T .

Claim 3 8e

j

; e

k

2 E : 8R 2 f<;>;#; cog : e

j

R e

k

i� T (e

j

)

~

R T (e

k

).

Proof of Claim Let e

j

R e

k

| say e

j

co e

k

. Consider 4� � 2 T (e

j

). We have to verify that

� 2 T (e

k

). Let 4� � 2 �

i

and let n = MAX(i; j; k). Then 4� � 2 T

n

(e

j

). We know by Claim 2

that e

j

co

n

e

k

and, since T

n

satis�ed the inductive condition (C4), T

n

(e

j

) ~co T

n

(e

k

). Hence

� 2 T

n

(e

k

) and so � 2 T (e

k

). Hence T (e

j

) ~co T (e

k

). The other cases can be proved in a

similar manner.

Next, suppose that T (e

j

)

~

R

1

T (e

k

) for some R

1

2 f<;>;#; cog and that (e

j

; e

k

) =2 R

1

.

Since ES is an event structure, (e

j

; e

k

) belongs to some relation R

2

2 f<;>;#; cog such

that R

1

6= R

2

. By the �rst part of the argument, we must have (T (e

j

); T (e

k

)) 2

~

R

2

as well.

But, by Claim 2, p̂

k

2 T (e

k

). Hence, by Lemma A.4, (T (e

j

); T (e

k

)) belongs to at most one

semantic relation and so we have a contradiction.
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Henceforth, we let #

�

denote the minimal con
ict relation in ES.

Claim 4

(i) 8e

j

; e

k

2 E : (e

j

; e

k

) 2 � implies T (e

j

)

~

#

�

T (e

k

).

(ii) � � #

�

.

Proof of Claim

(i) Let e

j

; e

k

2 E, such that (e

j

; e

k

) 2 �. Then it must be the case that for some n,

(e

j

; e

k

) 2 �

n

. But then, since CH

n

satis�ed (C5) we know that T

n

(e

j

)

~

#

�

T

n

(e

k

). From

this, we can conclude that T

n

(e

j

)

~

# T

n

(e

k

) and hence e

j

#

n

e

k

since CH

n

satis�ed (C4).

Hence e

j

# e

k

as well, and so, by Claim 3, T (e

j

)

~

# T (e

k

). Also, since we must have had

5

�

p̂

k

2 T

n

(e

j

), we must have 5

�

p̂

k

2 T (e

j

) as well. Hence, by Lemma A.1, it must be the

case that T (e

j

)

~

#

�

T (e

k

).

(ii) By part (i), if (e

j

; e

k

) 2 � then T (e

j

)

~

#

�

T (e

k

). This implies that T (e

j

)

~

# T (e

k

) and so

we must have e

j

# e

k

by Claim 3. Suppose that e

m

< e

j

in ES. Then, by Claim 3, we know

that T (e

m

)

~

< T (e

j

) and hence, by Lemma A.3, T (e

m

)

~

< T (e

k

) or T (e

m

) ~co T (e

k

). From this,

using Claim 3 again, we can conclude that e

m

< e

k

or e

m

co e

k

. Similarly, for any e

l

< e

k

,

we can verify that e

l

< e

j

or e

l

co e

j

. Thus e

j

#

�

e

k

.

Claim 5 T kills all requirements in CH.

Proof of Claim Suppose that e

k

2 E and � 2 T (e

k

) where � is of the form 3�, 3

-

�, 5�,

4� or 5

�

�. Then, we must show that there exists e

j

2 E such that � 2 T (e

j

) and e

j

> e

k

,

e

j

< e

k

, e

j

# e

k

, e

j

co e

k

or e

j

� e

k

respectively.

Once again, we establish this for only one concrete case. Suppose that � = 5

�

�. Let

5

�

� 2 �

i

and m = MAX(i; k). Then 5

�

� 2 T

m

(e

k

). Let n be the index of (e

k

;5

�

�) in the

enumeration we have �xed for

~

E ��. Then for some l, m � l � m+ (n� 1), (e

k

;5

�

�) must

be the live requirement chosen to be killed in CH

l

and hence in CH

l+1

we have e

j

2 E

l+1

such that (e

j

; e

k

) 2 �

l+1

and � 2 T

l+1

(e

j

). Clearly � 2 �

m

and since l + 1 > m, we must

have � 2 T (e

j

) and (e

j

; e

k

) 2 � as required.

Claim 6 � = #

�

.

Proof of Claim By Claim 4(ii), we know that � � #

�

. Hence it su�ces to show that

#

�

� �.

Suppose e

j

#

�

e

k

. Then e

j

# e

k

and so, by Claim 3, T (e

j

)

~

# T (e

k

). We know that p̂

j

2 T (e

j

)

and thus5p̂

j

2 T (e

k

). From the axiomA7 we can conclude that f5

�

p̂

j

;3

-

5

�

p̂

j

;5

�

3p̂

j

;3

-

5

�

3p̂

j

g\

T (e

k

) 6= ;.

Suppose that 3

-

5

�

p̂

j

2 T (e

k

). By Claim 5, there exists e

m

such that e

m

< e

k

and 5

�

p̂

j

2

T (e

m

). Once again, by Claim 5, there exists e

l

such that (e

m

; e

l

) 2 � and p̂

j

2 T (e

l

). If e

l

and e

j

are distinct events, T (e

l

) and T (e

j

) must belong to some semantic relation from the

set f

~

<;

~

>;

~

#; ~cog. However, for any p 2 P, from the de�nition of p̂ it follows that no semantic

relation can exist between two MCSs which both contain p̂. Hence we must have e

l

= e

j

and

thus (e

m

; e

j

) 2 �. Since � � #

�

, e

m

#

�

e

j

, which contradicts e

j

#

�

e

k

. In a similar fashion,

we can show that 5

�

3p̂

j

and 3

-

5

�

3p̂

j

cannot be in T (e

k

).

Hence we must have 5

�

p̂

j

2 T (e

k

). Again applying Claim 5 and the reasoning above, we

must in fact have (e

j

; e

k

) 2 � and we are done.

Claim 7 ES is a well branching event structure.

Proof of Claim From Claim 2(iii) we already know that ES is an event structure, so all

we have to verify is that ES is well branching.

Suppose e

j

; e

k

2 E such that e

j

# e

k

. Then, by Claim 3, T (e

j

)

~

# T (e

k

) and, since p̂

j

2 T (e

j

),

5p̂

j

2 T (e

k

). Once again, from A7 we can conclude that f5

�

p̂

j

;3

-

5

�

p̂

j

;5

�

3p̂

j

;3

-

5

�

3p̂

j

g \

T (e

k

) 6= ;.
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If 5

�

p̂

j

2 T (e

k

), then clearly (e

j

; e

k

) 2 � by previous arguments and hence e

j

#

�

e

k

by

Claim 4(ii). On the other hand, if 3

-

5

�

p̂

j

2 T (e

k

), then we have shown in the proof of

Claim 6 that there exists e

m

< e

k

such that e

m

#

�

e

j

. Using a similar argument, we can

show that if 5

�

3p̂

j

2 T (e

k

), then there exists e

l

< e

j

such that e

l

#

�

e

k

and, �nally, if

3

-

5

�

3p̂

j

2 T (e

k

) then there exist e

l

< e

j

and e

m

< e

k

such that e

l

#

�

e

m

.

Hence, given e

j

# e

k

in ES, there must exist e

l

� e

j

and e

m

� e

k

such that e

l

#

�

e

m

and so

ES is well branching.

From Claims 1 through 4 and Claim 7, we can conclude that CH is a coherent chronicle structure.

Claims 5 and 6 then show that CH is in fact perfect.

The fact that �

0

2 T (e

0

) follows immediately from the fact that �

0

2 �

0

, by de�nition, and that

�

0

2 T

0

(e

0

) by construction.

2
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