
Mathematical Foundations of Computer Science, 1996

Proceedings, Wojtek Penczek (Ed.),

Lecture Notes in Computer Science 1113, Springer-Verlag (1996) 32{62

Linear Time Temporal Logics over

Mazurkiewicz Traces

Madhavan Mukund and P.S. Thiagarajan

School of Mathematics, SPIC Science Foundation,

92 G N Chetty Rd, Madras 600 017, India

E-mail: fmadhavan,pstg@ssf.ernet.in

Abstract. Temporal logics are a well-established tool for specifying and

reasoning about the computations performed by distributed systems. Al-

though temporal logics are interpreted over sequences, it is often the case

that such sequences can be gathered together into equivalence classes

where all members of an equivalence class represent the same partially

ordered stretch of behaviour of the system. This appears to have im-

portant implications for improving the practical e�ciency of automated

veri�cation methods based on temporal logics. With this as motivation,

we study logics that are directly interpreted over partial orders. We sur-

vey a number of linear time temporal logics whose underlying frames

are Mazurkiewicz traces. We describe automata theoretic methods for

solving the satis�ability and model checking problems for these logics.

It turns out that we still do not know what the \canonical" linear time

temporal logic over Mazurkiewicz traces looks like. We identify here the

criteria that should be met by this elusive logic.

Introduction

Propositional Linear time Temporal Logic (LTL) proposed by Pnueli [Pnu] has

become a well established tool for specifying and reasoning about complex dis-

tributed behaviours [MP]. A central feature of LTL is that its formulas are

interpreted over in�nite sequences. In applications of LTL, the in�nite sequences

consist of the runs of a distributed system with each run being an in�nite se-

quence of states assumed by the system or an in�nite sequence of actions exe-

cuted by the system during the course of a computation. Interesting distributed

systems consist of a number of autonomous sequential agents that coordinate

their behaviour with the help of some communication mechanism. In such sys-

tems, substantial portions of a computation will consist of causally independent

tasks performed by di�erent agents at separate locations. Consequently a single

partially ordered stretch of behaviour of the system will be modelled by many

di�erent runs that di�er from each other only in the order in which they record

causally independent occurrences of actions. This kind of run-based view is often

referred to as an interleaved semantics of distributed systems.

The interleaved view of the behaviour of distributed systems has proved to

be very successful and popular. However it has been known for some time that

the practical e�ectiveness of LTL and related formalisms can be often enhanced

33

by modelling and analyzing the concerned behaviours in terms of partial orders

rather than sequences.

In typical applications, an LTL formula constitutes the speci�cation of the

system behaviour and the veri�cation problem consists of checking whether ev-

ery run of the system is a model of the formula and therefore whether the system

meets the speci�cation. The property expressed by the speci�cation is very often

of the kind where either all the interleaved runs corresponding to a single par-

tially ordered computation have the property or none of the interleavings have

the property. A typical example of such a property is freedom from deadlock,

as pointed out by Valmari [Val]. As a result, it su�ces to verify the desired

property for just one representative run of each partially ordered computation.

The resulting saving in running time and memory usage can be substantial in

practice [GW]. This is the background and motivation underlying the so called

partial order based veri�cation methods which are a subject of active research

[GW, KP, Val].

There is an alternative way to exploit non-sequential behaviours and the at-

tendant partial order based veri�cation methods. It consists of developing tem-

poral logics and related techniques that can be directly applied to specify and

reason about the properties of partial order based runs of a distributed system.

In this paper we survey linear time temporal logics that have arisen from this

approach.

In going from sequences to partial orders it is easy to go overboard because

so many possibilities are available. Fortunately, in the context of distributed

behaviours, Mazurkiewicz has formulated a tractable and yet very fruitful way

of passing from sequences to partial orders [Maz]. The resulting restricted partial

orders are known as Mazurkiewicz traces, often called|as we shall do here|

just traces. The theory of traces is well developed [Die, DR] and is strongly

related to the theory of other well known formalisms such as Petri nets and event

structures. Further, the classical theory of !-regular (word) languages in terms

of its logical, algebraic and automata-theoretic aspects has been successfully

extended to !-regular trace languages [EM, GP]. Finally, the structures that

underlie the partial order based veri�cation methods being developed recently

can be almost always be viewed as traces.

Hence there is a good deal of motivation for formulating linear time temporal

logics that are to be directly interpreted over traces. Many such logics are now

available. In the present survey, we will mainly concentrate on the ones that

ful�ll two criteria:

(i) The logic should be expressible within the �rst order theory of traces.

(ii) The satis�ability problem for the logic should admit a treatment in terms of

asynchronous B�uchi automata.

This seemingly arbitrary choice of criteria can be justi�ed as follows. LTL

is the linear time temporal logic over sequences in that it is equivalent in ex-

pressive power to the �rst order theory of sequences [Zuc]. We consider the task

of identifying the counterpart of LTL for traces to be an important one both

34

from a theoretical and practical standpoint (see the last portion of Section 4).

At present we do not know what this counterpart of LTL looks like. However, it

seems a good starting point to concentrate on those linear time temporal logics

that are at least no more expressive than the �rst order theory of traces.

As for the second criterion, an appealing feature of LTL is that its satis�-

ability and model checking problems can be transparently solved using B�uchi

automata [VW]. This has led to a clean separation of the logical and com-

binatorial aspects of these problems, thus contributing to the development of

automated veri�cation methods and related optimization techniques. The evi-

dence available at present suggests that asynchronous B�uchi automata are an

appropriate machine model for dealing with !-regular trace languages. Hence it

seems worthwhile to lift the interplay between LTL and B�uchi automata to the

level of traces.

In the next section we review the basic aspects of traces. In Section 2 we de-

scribe asynchronous B�uchi automata and present our version of these automata

called, for want of a better name, A2-automata. In Section 3, the heart of the

paper, we present the logic TrPTL (Trace based Propositional Temporal logic of

Linear time) and two of its sublogics TrPTL

con

and TrPTL

. The logic TrPTL

is directly interpreted over traces. We show that the satis�ability and model

checking problems for TrPTL can be solved using A2-automata. We then show

that the syntactic restrictions imposed to obtain TrPTL

con

and TrPTL

lead to

corresponding simpli�cations in the world of automata. After presenting these

results we survey a number of other temporal logics that use traces as their un-

derlying frames. In Section 4 we show that TrPTL is expressible within the �rst

order theory of traces. The �nal section contains concluding remarks.

Most of the results will be presented without proofs. The proofs are either

available in the literature or can be easily manufactured using the results avail-

able in the literature.

1 Traces

The starting point for trace theory is a trace alphabet (�; I), where �, the

alphabet, is a �nite set and I � � � � is an irre
exive and symmetric inde-

pendence relation. In most applications, � consists of the actions performed by

a distributed system while I captures a strong static notion of causal indepen-

dence between actions. The idea is that contiguous independent actions occur

with no causal order between them. Thus, every sequence of actions from � cor-

responds to an interleaved observation of a partially-ordered stretch of system

behaviour. This leads to a natural equivalence relation over execution sequences:

two sequences are equated i� they correspond to di�erent interleavings of the

same partially-ordered stretch of behaviour.

To formulate this equivalence relation precisely, we need some terminology.

For the rest of the section we �x a trace alphabet (�; I) and let a; b range over �.

D = (� ��)� I is called the dependency relation. Note that D is re
exive and

symmetric. A set p � � is called a D-clique i� p�p � D. We set �

1

= �

�

[�

!

35

where �

�

is the set of �nite words over � and �

!

is the set of in�nite words

over �. We let �; �

0

with or without subscripts range over �

1

and �; �

0

with

or without subscripts range over �

�

. The equivalence relation �

I

� �

1

� �

1

induced by I is given by:

� �

I

�

0

i� � �p = �

0

�p for every D-clique p:

Here and elsewhere, if A is a �nite set, � 2 A

1

and B � A then ��B is the

sequence obtained by erasing from � all occurrences of letters in A� B.

Clearly�

I

is an equivalence relation. Notice that if � = �ab�

1

and �

0

= �ba�

1

with (a; b) 2 I then � �

I

�

0

. Thus � and �

0

are identi�ed if they di�er only in the

order of appearance of a pair of adjacent independent actions. In fact, for �nite

words, an alternative way to characterize �

I

is to say that � �

I

�

0

i� �

0

can be

obtained from � by a �nite sequence of permutations of adjacent independent

actions. Unfortunately, the de�nition of �

I

in terms of permutations is too na��ve

to be transported to in�nite words, which is why we work with the less intuitive

de�nition presented here.

The equivalence classes generated by �

I

are called (Mazurkiewicz) traces.

The theory of traces is well developed and documented|see [Die, DR] for basic

material as well as a substantial number of references to related work.

Traces have many equivalent representations. We shall view traces as special

kinds of labelled partial orders. Since sequences can be viewed as labelled total

orders, this representation emphasizes that traces are an elegant and non-trivial

generalization of sequences.

Recall that a �-labelled poset is a structure F = (E;�; �) where � is a

partial order on the set E and � : E ! � is a labelling function. The covering

relation l � E � E is given by: e l e

0

i� e < e

0

(i.e., e � e

0

and e 6= e

0

) and for

every e

00

2 E, e � e

00

� e

0

implies e = e

00

or e

00

= e

0

.

For X � E we de�ne #X to be the set fy j y � x for some x 2 Xg. If X is a

singleton fxg, we write #x instead of #fxg.

We can now formulate traces in terms of labelled partial orders. A trace over

(�; I) is a�-labelled poset F = (E;�; �) which satis�es the following conditions.

� E is a countable set.

� For each e 2 E, #e is a �nite set.

� For all e; e

0

2 E, if e l e

0

then (�(e); �(e

0

)) 2 D.

� For all e; e

0

2 E, if (�(e); �(e

0

)) 2 D then e � e

0

or e

0

� e.

Let TR(�; I) denote the set of �-labelled posets that satisfy the de�nition

above. We now sketch brie
y the proof that �

1

=�

I

and TR(�; I) represent the

same class of objects. We construct representation maps str : �

1

! TR(�; I)

and trs : TR(�; I) ! �

1

= �

I

and state some results which show that these

maps are \inverses" of each other. We shall not prove these results. The details

can be easily obtained using the constructions developed in [WN] for relating

traces and event structures.

Henceforth, we will not distinguish between isomorphic elements in TR(�; I).

In other words, whenever we write F = F

0

for traces F = (E;�; �) and F

0

=

36

(E

0

;�

0

; �

0

), we mean that there is a label-preserving isomorphism between F

and F

0

.

For � 2 �

1

, [�] stands for the �

I

-equivalence class containing �. We use �

to describe the usual pre�x ordering over sequences. Let prf(�) denote the set

of �nite pre�xes of �.

We now de�ne str : �

1

! TR(�; I). Let � 2 �

1

. Then str(�) = (E;�; �)

where:

� E = f�a j �a 2 prf(�)g. Recall that � 2 �

�

and a 2 �. Thus E =

prf(�) � f"g, where " is the null string.

� � � E � E is the least partial order which satis�es:

For all �a; �

0

b 2 E, if �a � �

0

b and (a; b) 2 D then �a � �

0

b.

� For �a 2 E, �(�a) = a.

The map str induces a natural map str

0

from �

1

= �

I

to TR(�; I) de�ned by

str

0

([�]) = str(�). One can show that if �; �

0

2 �

1

, then � �

I

�

0

i� str(�) =

str(�

0

). This observation guarantees that str

0

is well de�ned. In fact, henceforth

we shall write str to denote both str and str

0

.

To go in the other direction let F = (E;�; �) be a trace over (�; I). Then

� 2 E

1

is called a linearization of F i� every e 2 E appears exactly once in �

and, moreover, whenever e; e

0

2 E and e < e

0

, e appears before e

0

in �.

As usual, we can extend the labelling function � : E ! � to words over

E in a canonical way. If � = e

0

e

1

: : : is a word in E

1

then �(�) denotes the

corresponding word �(e

0

)�(e

1

) : : : in �

1

. We can now de�ne the map trs :

TR(�; I)! �

1

= �

I

as follows:

trs(F) = f�(�) j � is a linearization of Fg:

Proposition 1.1

(i) For every � 2 �

1

, trs(str(�)) = [�].

(ii) For every F 2 �

1

, str(trs(F)) = F .

This result justi�es our claim that �

1

= �

I

and TR(�; I) are indeed two equiv-

alent ways of talking about the same class of objects.

In the poset representation of traces, �nite con�gurations play the same role

that �nite pre�xes do in sequences. Let F = (E;�; �) be a trace over (�; I).

Then c � E is a con�guration i� c is �nite and #c = c. We let C

F

denote the set

of con�gurations of F . Notice that ;, the empty set, is a con�guration. It is the

least con�guration under set inclusion.More importantly,#e is a con�guration for

every e. These \pointed" con�gurations associated with the events are also called

prime con�gurations. They constitute the building blocks for the Scott domains

induced by traces [NPW]. We shall see that they also play a fundamental role

in de�ning linear time temporal logics over traces.

We now turn our attention to distributed alphabets. Distributed alphabets

can be viewed as \implementations" of trace alphabets. They form the basis for

de�ning machine models with a built-in notion of independence which recognize

trace languages.

37

Let P be a �nite set of sequential agents called processes. A distributed

alphabet is a family f�

p

g

p2P

where �

p

is a �nite non-empty alphabet for each

p 2 P. The idea is that whenever an action from �

p

occurs, the agent p must

participate in it. Hence the agents can constrain each other's behaviour, both

directly and indirectly.

Trace alphabets and distributed alphabets are closely related to each other.

Let

e

� = f�

p

g

p2P

be a distributed alphabet. Then �

P

, the global alphabet

associated with

e

�, is the collection

S

p2P

�

p

. The distribution of �

P

over P can

be described using a location function loc

e

�

: �

P

! 2

P

de�ned as follows:

loc

e

�

(a) = fp j a 2 �

p

g:

This in turn induces the relation I

e

�

� �

P

� �

P

given by:

(a; b) 2 I

e

�

i� loc

e

�

(a) \ loc

e

�

(b) = ;:

Clearly I

e

�

is irre
exive and symmetric and hence (�

P

; I

e

�

) is a trace alpha-

bet. Thus every distributed alphabet canonically induces a trace alphabet. Two

actions are independent according to

e

� if they are executed by disjoint sets

of processes. Henceforth, we write loc for loc

e

�

whenever

e

� is clear from the

context.

Going in the other direction there are, in general, many di�erent ways to

implement a trace alphabet as a distributed alphabet. A standard approach is

to create a separate agent for each maximalD-clique generated by (�; I). Recall

that a D-clique of (�; I) is a non-empty subset p � � such that p � p � D.

Let P be the set of maximal D-cliques of (�; I). This set of processes induces

the distributed alphabet

e

� = f�

p

g

p2P

where �

p

= p for every process p. The

alphabet

e

� implements (�; I) in the sense that the canonical trace alphabet

induced by it is exactly (�; I). In other words, �

P

= � and I

e

�

= I.

For example, consider the trace alphabet (�; I) where � = fa; b; dg and

I = f(a; b); (b; a)g. The canonical D-clique implementation of (�; I) yields the

distributed alphabet

e

� = ffa; dg; fd; bgg.

As mentioned earlier, distributed alphabets play a crucial role in the automata-

theoretic aspects of trace theory. The fundamental result of Zielonka [Zie] says

that every regular trace language over (�; I) can be recognized by an asyn-

chronous automaton over a distributed alphabet

e

� which implements (�; I).

This result has been extended to !-regular trace languages in terms of asyn-

chronous B�uchi automata by Gastin and Petit [GP].

Distributed alphabets arise naturally in a variety of models of distributed

systems. In particular they are associated with the restricted but very useful

model of a distributed system consisting of a network of sequential agents that

coordinate their behaviour by performing common actions together. The linear

time temporal logics that we consider in this paper will be based on distributed

alphabets.

We conclude this section with a technical remark. Most of the theory of traces

presented in this paper, including the automata-theoretic and logical aspects,

38

constitutes a natural and conservative extension of the existing theory in the

sequential setting. The sequential theory can almost always be recovered by

setting I = ; when dealing with trace alphabets. Correspondingly, when dealing

with distributed alphabets, the sequential case corresponds to having just one

agent|i.e., jPj = 1.

2 Automata over In�nite Traces

From now on we shall focus on in�nite traces. With a little additional work most

of the material we shall present on automata and logics can be extended to handle

�nite traces as well. Through the rest of this section we �x a distributed alphabet

e

� = f�

p

g

p2P

with the induced trace alphabet (�; I), where � =

S

p2P

�

p

and

I = f(a; b) j loc(a) \ loc(b) = ;g.

The terminology and notational conventions developed in the previous sec-

tion are assumed here as well. We will be dealing with many P-indexed fami-

lies. For convenience we shall often write fX

p

g to denote the P-indexed family

fX

p

g

p2P

. A similar convention will be followed in dealing with �-indexed fam-

ilies: fY

a

g will denote the family fY

a

g

a2�

.

Asynchronous B�uchi automata, due to Gastin and Petit [GP], are the basic

class of automata operating over in�nite traces. They constitute a common gen-

eralization of the asynchronous automata of Zielonka [Zie] operating over �nite

traces and a mild variant of the classical B�uchi automata operating over in�nite

sequences. We shall consider here a number of variants of asynchronous B�uchi

automata, each with a slightly di�erent acceptance condition.

We begin with a brief and slightly non-standard presentation of B�uchi au-

tomata. A word !-automaton over � is a pair B = (TS; T) where

� TS = (S; f!

a

g; S

in

) is a �nite state transition system over �. In other

words, S is a �nite set of states, !

a

� S � S is an a-labelled transition

relation for each a 2 � and S

in

� S is a set of initial states.

� T is an acceptance table accompanied by an acceptance condition.

Before considering a number of possibilities for T , let us de�ne the notion

of a run. The �-indexed family of transition relations f!

a

g induces a global

transition relation !

B

� S � � � S given by s

a

�!

B

s

0

i� (s; s

0

) 2 !

a

. Where

B is clear from the context !

B

will be written as !.

Let � 2 �

!

(i.e., � : ! ! � where, as usual, ! = f0; 1; 2; : : :g is the set of

natural numbers). A run of TS over � is a map � : ! ! S such that �(0) 2 S

in

and �(i)

�(i)

�! �(i+1) for every i � 0.

The set of states encountered in�nitely along the run � is denoted inf(�):

inf(�) = fs j for in�nitely many i; �(i) = sg:

Let us now consider just two of the various possibilities for T .

39

(B0) T = F � S.

A run � over � is accepting with respect to B0 i� inf(�) \ F 6= ;. We shall

say that A is a B0-automaton if it uses B0 as its acceptance criterion. Of course,

we shall also refer to these by their standard name; B�uchi automata.

L(A), the language accepted (recognized) by A, is the set of in�nite words

� such that there is an accepting run of A on �. A language L � �

!

is said

to be !-regular i� there exists a B�uchi automaton A over � such that L(A) =

L. As is well known, !-regular languages have equivalent algebraic and logical

presentations, as detailed in the excellent survey [Tho].

A second possibility for T is:

(B1) T � 2

S

.

A run � over � is accepting with respect to B1 i� there exists F 2 T such

that inf(�) � F . It is easy to show that L � �

!

is !-regular i� there exists a

B1-automaton A (i.e., an automaton A that uses B1 as its acceptance criterion)

such that L = L(A). Thus at the level of sequences there is no di�erence in

expressive power between B�uchi automata and B1-automata. As we shall see, at

the level of traces, B0 is weaker than B1.

For de�ning automata on in�nite traces we need to develop some notation.

Let F = (E;�; �) 2 TR(�; I). Then F is an in�nite trace i� E is an in�nite set.

Let TR

!

(�; I) denote the subclass of in�nite traces over (�; I). Often, we shall

write TR

!

instead of TR

!

(�; I).

Let F 2 TR

!

with F = (E;�; �) and let p 2 P. Then e 2 E is a p-event i�

�(e) 2 �

p

. Similarly, e is an a-event i� �(e) = a. We let E

p

denote the set of

p-events and E

a

denote the set of a-events.

There are two natural transition relations that one can associate with F . The

event based transition relation)

F

� C

F

� E � C

F

is de�ned as c

e

=)

F

c

0

i�

e 62 c and c[feg = c

0

. The action-based transition relation !

F

� C

F

�� � C

F

is de�ned as c

a

�!

F

c

0

i� there exists e 2 E such that �(e) = a and c

e

=)

F

c

0

.

To de�ne automata on in�nite traces, we have to �rst de�ne a distributed

version of transition systems. The distributed transition systems we work with

here are essentially the asynchronous automata of Zielonka [Zie]. We begin with

some notation involving local and global states.

Let P be a set of processes. We equip each process p 2 P with a �nite non-

empty set of local p-states, denoted S

p

. We set S =

S

p2P

S

p

and call S the set

of local states.

We let P;Q range over non-empty subsets of P and let p; q range over P. A

Q-state is a map s : Q ! S such that s(q) 2 S

q

for every q 2 Q. We let S

Q

denote the set Q-states. We call S

P

the set of global states.

If Q

0

� Q and s 2 S

Q

then s

Q

0

is s restricted to Q

0

. In other words s

Q

0

is the Q

0

-state s

0

which satis�es s

0

(q

0

) = s(q

0

) for every q

0

in Q

0

. We use a to

abbreviate loc(a) when talking about states (recall that loc(a) = fp j a 2 �

p

g).

Thus an a-state is just a loc(a)-state and S

a

denotes the set of all loc(a)-states.

If loc(a) � Q and s is a Q-state we shall write s

a

to mean s

loc(a)

.

40

A distributed transition system TS over

e

� is a structure (fS

p

g; f!

a

g; S

in

)

where

� S

p

is a �nite non-empty set of p-states for each process p.

� For a 2 �, !

a

� S

a

� S

a

is a transition relation between a-states.

� S

in

� S

P

is a set of initial global states.

The idea is that an a-move by TS involves only the local states of the agents

which participate in the execution a. This is re
ected in the global transition

relation !

TS

� S

P

� � � S

P

which is de�ned as:

s

a

�!

TS

s

0

i� (s

a

; s

0

a

) 2 !

a

and s

P�loc(a)

= s

0

P�loc(a)

:

From the de�nition of!

TS

, it is clear that actions which are executed by disjoint

sets of agents are processed independently by TS.

A trace !-automaton over

e

� = f�

p

g is a pair A = (TS; T) where TS =

(fS

p

g; f!

a

g; S

in

) is a distributed transition system over

e

� and T is an accep-

tance table (which we will elaborate on later).

A trace run of TS over F 2 TR

!

is a map � : C

F

! S

P

such that �(;) 2 S

in

and for every (c; a; c

0

) 2 !

F

, �(c)

a

�!

TS

�(c

0

).

To de�ne acceptance we must now compute inf

p

(�), the set of p-states that

are encountered in�nitely often along �. The obvious de�nition, namely inf

p

(�) =

fs

p

j �(c)(p) = s

p

for in�nitely many c 2 C

F

g, will not work. The complication

arises because some processes may make only �nitely many moves, even though

the overall trace consists of an in�nite number of events.

For instance, consider the distributed alphabet

e

�

0

= ffag; fbgg. In the cor-

responding distributed transition system, there are two processes p and q which

execute a's and b's completely independently. Consider the trace F = (E;�; �)

where jE

p

j = 1 and E

q

is in�nite|i.e., all the in�nite words in trs(F) contain

one a and in�nitely many b's. Let s

p

be the state of p after executing a. Then,

there will be in�nitely many con�gurations whose p-state is s

p

, even though p

only moves a �nite number of times.

Continuing with the same example, consider another in�nite trace F

0

=

(E

0

;�

0

; �

0

) over the same alphabet where both E

p

and E

q

are in�nite. Once

again, let s

p

be the local state of p after reading one a. Further, let us suppose

that after reading the second a, p never returns to the state s

p

. It will still be the

case that there are in�nitely many con�gurations whose p-state is s

p

: consider

the con�gurations c

0

; c

1

; c

2

; : : : where c

j

is the �nite con�guration after one a

and j b's have occurred.

So, we have to de�ne inf

p

(�) carefully in order to be able to distinguish

whether or not process p is making progress. The appropriate formulation is as

follows:

Case 1 E

p

is �nite: inf

p

(�) = fs

p

g, where �(#E

p

) = s and s

p

= s(p).

Case 2 E

p

is an in�nite set:

inf

p

(�) = fs

p

j for in�nitely many e 2 E

p

; s

e

(p) = s

p

; where �(#e) = s

e

g.

We can now begin to consider various acceptance tables.

41

(A0) T = fF

p

g with F

p

� S

p

for each p.

A run � over F is accepting with respect to A0 i� inf

p

(�) \ F

p

6= ; for

every p. The trace language accepted by the A0-automaton A (i.e., where T is

of the form A0) is the set L

Tr

(A) = fF j 9 an accepting run of TS over Fg.

A0-automata are the obvious common generalization of asynchronous automata

and B�uchi automata. It turns out that A0-automata are not expressive enough:

the acceptance criterion cannot distinguish whether or not an agent executes

in�nitely many actions.

To bring this out and to motivate the acceptance condition we are after, we

will put down a crude de�nition of !-regular trace languages.

A trace language over

e

� is just a subset of TR

!

. To de�ne !-regular trace

languages, we exploit the result from the previous section linking �

1

= �

I

and

TR(�; I) which permits us to associate a language of in�nite words with each

trace language. We can then transport the de�nition of !-regularity from subsets

of �

!

to in�nite traces.

Let L � �

!

. Then L is I-consistent i� for every � 2 �

!

, if � 2 L then

[�] � L. Thus if L is I-consistent either all members of the �

I

-equivalence class

[�] are in L or none of them are in L.

Let L

0

� TR

!

. We say that L

0

is an !-regular trace language i� there exists

an I-consistent !-regular language L � �

!

such that L

0

= fstr(�) j � 2 Lg.

Stated di�erently, L

0

� TR

!

is a !-regular trace language i� L =

S

ftrs(F) j

F 2 L

0

g is a !-regular subset of �

!

. As in the word case, algebraic and logical

presentations of !-regular trace languages have been worked out [EM, GP].

These presentations have a
avour which is pleasingly similar to the classical

algebraic and logical characterisations of !-regular subsets of �

!

.

Returning to the distributed alphabet

e

�

0

= (fag; fbg), let (�

0

; I

0

) denote the

corresponding trace alphabet. Consider L � TR

!

(�

0

; I

0

) consisting of the single

trace F = (E;�; �) such that E

a

and E

b

are both in�nite sets. It is easy to check

that L is a !-regular trace language but, as argued in [GP], no A0-automaton

over

e

� can recognize L.

It is worth noting that having multiple entries in the acceptance table does

not help. In other words, one might consider the following acceptance criterion.

(A0

0

) T = fT

0

; T

1

; : : : ; T

n

g with T

i

= fF

i

p

g

p2P

and F

i

p

� S

p

for each i 2

f1; 2; : : :; ng and each p 2 P. A run � of TS over F 2 TR

!

is accepting with

respect to A0

0

i� there exists i such that inf

p

(�) \F

i

p

6= ; for each p.

The reason why A0

0

does not help is that the class of languages accepted by

A0-automata is closed under union, thanks to the presence of multiple global

initial states. We can construct an A0-automaton A

i

= (TS; T

i

) for each entry

T

i

from the table of an A0

0

-automaton A = (TS; T). If T = fT

0

; T

1

; : : : ; T

n

g,

it is clear that L(A) =

S

i2f1;2;:::;ng

L(A

i

). Thus, every A0

0

-automaton can be

simulated by an A0-automaton.

Gastin and Petit showed that the following acceptance condition provides

a suitable generalization of classical B�uchi automata to the setting of in�nite

traces.

42

(A1) T = fT

1

; T

2

; : : : ; T

n

g with T

i

= fF

i

p

g

p2P

and F

i

p

� S

p

for each i 2

f1; 2; : : :; ng and each p 2 P. A run � of TS over F 2 TR

!

is accepting with

respect to A1 i� there exists i such that inf

p

(�) � F

i

p

for each p.

The condition A1 is an extension of the sequential condition B1 in a dis-

tributed setting. Notice that A1 \couples" together �nal sets of the components

in each entry T

i

2 T .

Theorem 2.1 ([GP]) L � TR

!

is a !-regular trace language i� there exists

an A1-automaton A such that L

Tr

(A) = L.

Subsequently, Niebert has shown that the A1 condition can be modi�ed to

avoid coupling �nal sets across processes [Nie]. In e�ect, it is possible to have

a local B1 table for each process and de�ne a run � to be accepting if for each

process p, inf

p

(�) satis�es p's B1 table. Going one step further, we arrive at the

acceptance criterion A2, which is the one we will use in connection with the

logics to be studied in the next section.

(A2) T = f(F

!

p

; F

p

)g

p2P

with F

!

p

, F

p

� S

p

for each p.

A run � over F = (E;�; �) is accepting with respect to A2 i� for each process

p the following conditions are met.

Case 1 E

p

is �nite: Then inf

p

(�) \ F

p

6= ;.

Case 2 E

p

is an in�nite set: Then inf

p

(�) \ F

!

p

6= ;.

Thus, on an input F , the decision as to whether a process p uses F

p

or F

!

p

to determine acceptance depends on whether or not p executes in�nitely many

actions in F .

Theorem 2.2

(i) The class of languages accepted by A2-automata is closed under union.

(ii) The class of languages accepted by A1-automata is identical to the class of

languages accepted by A2-automata.

Proof Sketch.

(i) Suppose A

1

andA

2

are two A2-automata.Then we construct an A2-automaton

A which is the disjoint union of A

1

and A

2

. The global initial states of A

will determine for each run whether A

1

or A

2

(but not both!) is going to be

explored. It is easy to check that L(A) = L(A

1

) [L(A

2

).

(ii) Let A = (TS; T) be an A1-automaton. From part (i), it su�ces to consider

the case where T has just one entry. So assume that T = fT

1

g and T

1

= fF

p

g.

Let TS = (fS

p

g; f!

a

g; S

in

). De�ne the A2-automaton A

0

= (TS

0

; T

0

) as

follows. TS

0

= (fS

0

p

g; f)

a

g; S

0

in

) where:

� S

0

p

= S

p

� 2

F

p

� fon; o�g for each p.

� Let s

0

a

; t

0

a

be a-states in TS

0

such that s

0

a

(p) = (s

p

; X

p

; u

p

) and t

0

a

(p) =

(t

p

; Y

p

; v

p

) for each p 2 P. Then (s

0

a

; t

0

a

) 2)

a

i� there exists (s

a

; t

a

) 2 !

a

such that the following conditions are satis�ed for each p 2 loc(a).

(1) u

p

= on, s

p

= s

a

(p) and t

p

= t

a

(p).

43

(2) If X

p

= ; then Y

p

= F

p

. Otherwise, Y

p

= X

p

� ft

p

g.

� S

0

in

= fs

0

2 S

0

P

j 9s 2 S

in

: 8p 2 P: 9u

p

2 fon; o�g: s

0

(p) = (s(p); ;; u

p

)g

� T

0

= f(G

!

p

; G

p

)g where for each p,

G

!

p

= S

p

� f;g � fong

G

p

= F

p

� 2

F

p

� fo�g

It is easy to check that L

Tr

(A) = L

Tr

(A

0

).

Conversely, let A = (TS; T) be an A2-automaton with TS =

(fS

p

g; f!

a

g; S

in

) and T = f(F

!

p

; F

p

)g. We say that A is in standard form if

it satis�es:

� F

!

p

\ F

p

= ; for each p.

� If (s

a

; t

a

) 2 !

a

and p 2 loc(a), then s

a

(p) 62 F

p

.

Thus, if A is in standard form, the p-states in F

p

are \dead" and are disjoint

from F

!

p

. It is a simple exercise to verify that every A2-automaton A can be

converted to an A2-automatonA

0

in standard form such that L

Tr

(A) = L

Tr

(A

0

).

So, let A = (TS; T) be an A2-automaton in standard form with TS =

(fS

p

g; f!

a

g; S

in

) and T = f(F

!

p

; F

p

)g. Let G be the set of functions of the

form g : P ! S such that g(p) 2 F

!

p

[F

p

for each p. De�ne the A1-automaton

A

0

= (TS

0

; T

0

) where TS

0

= TS and T

0

= fT

0

g

g

g2G

, such that for each g 2 G,

T

0

g

= ffg(p)gg

p2P

. It is easy to verify that L

Tr

(A) = L

Tr

(A

0

). 2

We now argue that the emptiness problem for A2-automata is decidable.

This will be required to settle the satis�ability problem for the logics consid-

ered in the next section. Let A = (TS; T) be an A2-automaton be with TS =

(fS

p

g; f!

a

g; S

in

) and T = f(F

!

p

; F

p

)g. Though it is not strictly necessary, it

will be illuminating to �rst associate a language of in�nite words with A.

Let � 2 �

!

. Then a (word) run of TS over � is a map � : ! ! S

P

such that

�(0) 2 S

in

and �(i)

�(i)

�!

TS

�(i+1) for each i � 0. The run � over � is accepting

i� the following conditions are satis�ed for each p.

(i) If i 2 ! such that �(j) =2 �

p

for every j � i then s

i

(p) 2 F

p

, where s

i

= �(i).

(ii) If �(j) 2 �

p

for in�nitely many j then for in�nitely many i it is the case

that s

i

(p) 2 F

!

p

, where s

i

= �(i).

We de�ne L

seq

(A), the language of in�nite words accepted by A to be the

set of all words � such that there exists an accepting run of A over �. The

distributed nature of TS together with the basic properties of the maps str and

trs de�ned earlier lead to the next result.

Theorem 2.3 For any A2-automaton A, L

Tr

(A) = fstr(�) j � 2 L

seq

(A)g:

Consequently L

Tr

(A) 6= ; i� L

seq

(A) 6= ;.

44

Similar statements hold, of course, for A0-automata and A1-automata.

All the A2-automata that we construct in the next section will be in standard

form. So assume that A = (TS; T) is an A2-automaton in standard form with

TS = (fS

p

g; f!

a

g; S

in

) and T = f(F

!

p

; F

p

)g. Construct the directed graph

G

A

= (S

P

; E

A

) where S

P

is the set of global states of TS and (s; s

0

) 2 E

A

if

there exists a 2 � such that s

a

�!

TS

s

0

. We also label each edge in G

A

with a set

of processes. Let � : E

A

! 2

P

be given by �((s; s

0

)) =

S

floc(a) j s

a

�!

TS

s

0

g.

We call X � S

P

a good component i� X is a maximal strongly connected

component in G

A

which meets one the following conditions for each p.

(i) There exists s 2 X such that s(p) 2 F

p

. (Because A is in standard form this

implies that s

0

(p) = s

00

(p) 2 F

p

for every s

0

; s

00

2 X).

(ii) There exists s 2 X such that s(p) 2 F

!

p

and for some s

0

2 X, (s

0

; s) 2 E

A

and p 2 �((s

0

; s)).

From Theorem 2.3 we know that L

Tr

(A) is non-empty i� L

seq

(A) is. It is

not di�cult to prove that L

seq

(A) is non-empty i� G

A

has a good component.

It is known that the maximal strongly connected components of a digraph can

be computed in time which is linear in the size of the digraph [AHU]. Clearly,

the size of G

A

is bounded by the number of global states of A. As a consequence

it is easy to derive the next result.

Theorem 2.4 Let A be an A2-automaton in standard form. Then L

Tr

(A) 6= ;

i� G

A

has a good component. For p 2 P, let n

p

= jS

p

j denote the number of

p-states. Let n = maxfn

p

g

p2P

and m = jPj. Then checking that G

A

has a good

component can be done in time O(m

2n

).

We conclude this section with a few remarks on deterministic automata

over in�nite traces. As with automata on in�nite words, non-deterministic A2-

automata on in�nite traces are strictly more expressive than deterministic A2-

automata. In the absence of determinacy, complementation is di�cult. When

applying these automata to settle questions in logic, complementation is often

required to handle negation in formulas. (Fortunately, the automata-theoretic

treatment of linear time temporal logic on traces which we will describe here

does not require complementation.)

To obtain determinacy without loss of expressive power one must use a more

sophisticated acceptance criterion corresponding to the Muller, Rabin or Streett

acceptance conditions for in�nite words. Here, we will look only at the Muller

acceptance condition.

(M) T = fT

1

; : : : ; T

n

g with T

i

= fF

i

p

g and F

i

p

� S

p

for each i and each p. A

run � over F 2 TR

!

is accepting with respect to M i� there exists T

i

2 T such

that inf

p

(�) = F

i

p

for each p.

Diekert and Muscholl [DM] showed that deterministic M-automata are as

expressive as non-deterministic A1-automata. Their proof however does not lead

to a determinization construction for A1-automata.

45

There are two independent solutions available in the literature for the dif-

�cult problem of complementing A1-automata. Muscholl �rst showed how to

directly construct a non-deterministic A1-automaton which is the complement

of the given automaton [Mus]|this approach does not yield a determinization

construction for A1-automata. In [Mus] the complementation is carried out for

asynchronous cellular B�uchi automata, in which there is one agent for each let-

ter. To transport this complementation result to A1-automata, one has to resort

to a simulation which carries non-trivial overheads in the size of the alphabet.

The second solution due to Klarlund, Mukund and Sohoni [KMS] is a direct

determinization construction for A1-automata which then easily leads to the

complementation result. In both cases, the blow-up in the local state space of

each process is exponential in the global state space of the original automa-

ton, which is essentially optimal. Surprisingly in both [Mus] and [KMS], the A1

acceptance condition must be �rst transformed into an equivalent one which

describes in considerable detail the communication patterns established by the

in�nite trace that is being examined for acceptance.

3 Linear Time Temporal Logics over Traces

A variety of linear time temporal logics to be interpreted over traces have been

proposed in the literature. As mentioned in the Introduction, our focus here will

be on those logics which meet the following criteria:

(i) The logic should be expressible within the �rst order theory of traces.

(ii) The logic should admit a treatment in terms of asynchronous B�uchi automata

of one kind or the other.

We begin with the logic TrPTL (Trace based Propositional Temporal logic

of Linear time). This is the earliest and|to date|the most expressive linear

time logic of the chosen kind. For a detailed treatment of this logic the reader

is referred to [Thi1]. After presenting TrPTL we will consider two subsystems

denoted TrPTL

con

(connected TrPTL) and TrPTL

(product TrPTL). These

subsystems are obtained by placing suitable syntactic restrictions on the for-

mulas. The interesting point is that these restrictions result in proportionate

simpli�cation of the automata theoretic constructions associated with the log-

ics. Towards the end of the section we will take a quick look at other temporal

logics that have been proposed with traces as the underlying frames.

Henceforth, it will be notationally convenient to deal with distributed al-

phabets in which the names of the processes are positive integers. Through

this section and the next, we �x a distributed alphabet

e

� = f�

i

g

i2P

with

P = f1; 2; : : :;Kg and K � 1. We let i; j and k range over P. As before, let

P;Q range over non-empty subsets of P. The trace alphabet induced by

e

� is

denoted (�; I). We assume the terminology and notations developed in the pre-

vious sections. In particular when dealing with a P-indexed family fX

i

g

i2P

, we

will often write just fX

i

g.

46

The logic TrPTL is parameterized by the class of distributed alphabets. Hav-

ing �xed

e

� we shall often almost always write TrPTL to mean TrPTL(

e

�), the

logic associated with

e

�. Fix a set of atomic propositions AP with p; q ranging

over AP . Then �

TrPTL(

e

�)

, the set of formulas of TrPTL(

e

�), is de�ned induc-

tively via:

� For p 2 AP and i 2 P, p(i) is a formula (which is to be read \p at i").

� If � and � are formulas, so are :� and � _ �.

� If � is a formula and a 2 �

i

then hai

i

� is a formula.

� If � and � are formulas so is � U

i

�.

From now on, we denote �

TrPTL(

e

�)

as just �. In the semantics of the logic

which will be based on in�nite traces, the i-view of a con�guration will play a

crucial role. Let F 2 TR

!

with F = (E;�; �). Recall that E

i

= fe j e 2 E and

�(e) 2 �

i

g. Let c 2 C

F

and i 2 P. Then #

i

(c) is the i-view of c and it is de�ned

as:

#

i

(c) =#(c \E

i

):

We note that #

i

(c) is also a con�guration. It is the \best" con�guration that

the agent i is aware of at c. We say that #

i

(c) is an i-local con�guration. Let

C

i

F

= f#

i

(c) j c 2 C

F

g be the set of i-local con�gurations. For Q � P and

c 2 C

F

, we let #

Q

(c) denote the set

S

f#

i

(c) j i 2 Qg. Once again, #

Q

(c) is a

con�guration. It represents the collective knowledge of the processes in Q about

the con�guration c.

The following basic properties of traces follow directly from the de�nitions.

Proposition 3.1 Let F = (E;�; �) be an in�nite trace. The following state-

ments hold.

(i) Let �

i

= � \(E

i

� E

i

). Then (E

i

;�

i

) is a linear order isomorphic to ! if

E

i

is in�nite and isomorphic to a �nite initial segment of ! if E

i

is �nite.

(ii) (C

i

F

;�) is a linear order. In fact (C

i

F

� f;g;�) is isomorphic to (E

i

;�

i

).

(iii) Suppose #

i

(c) 6= ; where c 2 C

F

. Then there exists e 2 E

i

such that #

i

(c) =#e.

In fact e is the �

i

-maximum event in (c \E

i

).

(iv) Suppose Q � Q

0

� P and c 2 C

F

. Then #

Q

(c) =#

Q

(#

Q

0

(c)). In particular,

for a single process i, #

i

(c) =#

i

(#

i

(c)).

We can now present the semantics of TrPTL. A model is a pair M =

(F; fV

i

g

i2p

) where F = (E;�; �) 2 TR

!

and V

i

: C

i

F

! 2

AP

is a valuation

function which assigns a set of atomic propositions to i-local con�gurations for

each process i. Let c 2 C

F

and � 2 �. Then M; c j= � denotes that � is satis�ed

at c in M and it is de�ned inductively as follows:

� M; c j= p(i) for p 2 AP i� p 2 V

i

(#

i

(c)).

� M; c j= :� i� M; c 6j= �.

� M; c j= � _ � i� M; c j= � or M; c j= �

47

� M; c j= hai

i

� i� there exists e 2 E

i

� c such that �(e) = a and M; #e j= �.

Moreover, for every e

0

2 E

i

, e

0

< e i� e

0

2 c.

� M; c j= � U

i

� i� there exists c

0

2 C

F

such that c � c

0

and M; #

i

(c

0

) j= �.

Moreover, for every c

00

2 C

F

, if #

i

(c) �#

i

(c

00

) �#

i

(c

0

) then M; #

i

(c

00

) j= �.

Thus TrPTL is an action based agent-wise generalization of LTL. Indeed

both in terms of its syntax and semantics, LTL corresponds to the case where

there is only one agent and where this agent can execute only one action at any

time. With P = f1g and �

1

= fa

0

g one then writes p instead of p(1), O� instead

of ha

0

i� and � U� instead of � U

i

�. The semantics of TrPTL when specialized

down to this case yields the usual LTL semantics. In the next section we will say

more about the relationship between TrPTL and LTL.

Returning to TrPTL, the assertion p(i) says that the i-view of c satis�es the

atomic proposition p. Observe that we could well have p(i) satis�ed at c but

not p(j) (with i 6= j). It is interesting to note that all atomic assertions (that

we know of) concerning distributed behaviours are local in nature. Indeed, it is

well-known that global atomic propositions will at once lead to an undecidable

logic in the current setting [LPRT, Pen].

Suppose M = (F; fV

i

g) is a model and c

a

�!

F

c

0

with j =2 loc(a). Then

M; c j= p(j) i� M; c

0

j= p(j). In this sense the valuation functions are local.

There are, of course, a number of equivalent ways of formulating this idea which

we will not get into here.

The assertion hai

i

� says that the agent i will next participate in an a-event.

Moreover, at the resulting i-view, the assertion � will hold. The assertion � U

i

�

says that there is a future i-view (including the present i-view) at which � will

hold and for all the intermediate i-views (if any) starting from the current i-view,

the assertion � will hold.

Before considering examples of TrPTL speci�cations, we will introduce some

notation. We let �; � with or without subscripts range over �. Abusing notation,

we will use loc to denote the map which associates a set of locations with each

formula.

� loc(p(i)) = loc(hai

i

�) = loc(� U

i

�) = fig.

� loc(:�) = loc(�).

� loc(� _ �) = loc(�) [loc(�).

In what follows, �

i

= f� j loc(�) = figg is the set of i-type formulas. A basic

observation concerning the semantics of TrPTL can be phrased as follows:

Proposition 3.2 Let M = (F; fV

i

g) be a model, c 2 C

F

and � a formula such

that loc(�) � Q. Then M; c j= � i� M; #

Q

(c) j= �.

A corollary to this result is that in case � 2 �

i

thenM; c j= � i�M; #

i

(c) j= �.

As a result, the formulas in �

i

can be used in exactly the same manner as one

would use LTL (in the setting of sequences) to express properties of the agent

i. Boolean combinations of such local assertion can be used to capture various

48

interaction patterns between the agents implied by the logical connectives as

well as the coordination enforced by the distributed alphabet

e

�.

For writing speci�cations, apart from the usual derived connectives of propo-

sitional calculus such as ^,) and �, the following operators are also available

� >

4

= p

1

(1) _ :p

1

(1) denotes the constant \True", where AP = fp

1

; p

2

; : : :g.

We use ? = :> to denote \False". .

� 3

i

�

4

= > U

i

� is a local version of the 3 modality of LTL.

� 2

i

�

4

= :3

i

:� is a local version of the 2 modality of LTL..

� Let X � �

i

and X = �

i

� X. Then � U

X

i

�

4

= (� ^

V

a2X

[a]

i

?) U

i

�. In

other words � U

X

i

� is ful�lled using (at most) actions taken from X. We set

3

X

i

�

4

= > U

X

i

� and 2

X

i

�

4

= :3

X

i

:�.

� �(i)

4

= � U

i

� (or equivalently ? U

i

�). �(i) is to be read as \� at i". If

M = (F; fV

i

g) is a model and c 2 C

F

then M; c j= �(i) i� M; #

i

(c) j= �. It

could of course be the case that loc(�) 6= fig.

A simple but important observation is that every formula is a boolean com-

bination of formulas taken from

S

i2P

�

i

. In TrPTL we can say that a speci�c

global con�guration is reachable from the initial con�guration. Let f�

i

g

i2P

be

a family with �

i

2 �

i

for each i. Then we can de�ne a derived connective

3(�

1

; �

2

; : : : ; �

K

) which has the following semantics at the empty con�gura-

tion. Let M = (F; fV

i

g) be a model. Then M; ; j= 3(�

1

; �

2

; : : : ; �

k

) i� there

exists c 2 C

F

such that M; c j= �

1

^ �

2

^ � � � ^ �

K

.

To de�ne this derived connective set �

0

1

= �

1

and, for 1 < i � K, set

�

0

i

= �

i

�[f�

j

j 1 � j < ig. Then 3(�

1

; �

2

; : : : ; �

K

) is the formula:

3

�

0

1

1

(�

1

^3

�

0

2

2

(�

2

^3

�

0

3

3

(�

3

^ � � �3

�

0

K

K

�

K

)) � � �):

The idea is that the sequence of actions leading up to the required con�gu-

ration can be reordered so that one �rst performs all the actions in �

1

, then all

the actions in �

2

� �

1

etc. Hence, if now is an atomic proposition, the formula

3(now(1); now(2); : : : ; now(K)) is satis�ed at the empty con�guration i� there

is a reachable con�guration at which all the agents assert now.

Dually, safety properties that hold at the initial con�guration can also be

expressed. For example, let crt(i) be the atomic assertion declaring that the

agent i is currently in its critical section. Then it is possible to write a formula

'

ME

which asserts that at all reachable con�gurations at most one agent is in

its critical section, thereby guaranteeing that the system satis�es the mutual

exclusion property. We omit the details of how to specify '

ME

.

On the other hand, it seems di�cult to express nested global and safety

properties in TrPTL. This is mainly due to the local nature of the modalities

which results in information about the past sneaking into the semantics even

though there are no explicit past operators in the logic. In particular, TrPTL

admits formulas that are satis�able but not root-satis�able.

A formula � is said to be root-satis�able i� there exists a modelM such that

M; ; j= �. On the other hand, � is said to be satis�able i� there exists a model

49

M = (F; fV

i

g) and c 2 C

F

such that M; c j= �. It turns out that these two

notions are not equivalent. Consider the distributed alphabet

e

�

0

= f�

1

; �

2

g

with �

1

= fa; dg and �

2

= fb; dg. Then it is not di�cult to verify that the

formula p(2)(1) ^ 2

2

:p(2) is satis�able but not root-satis�able. (Recall that

p(2)(1) abbreviates ? U

1

p(2)). One can however transform every formula � into

a formula �

0

such that � is satis�able i� �

0

is root satis�able.

This follows from the observation that every � can be expressed as a boolean

combination of formulas taken from the set

S

i2P

�

i

. Hence the given formula �

can be assumed to be of the form � =

W

m

j=1

(�

j1

^�

j2

^� � �^�

jK

) where �

ji

2 �

i

for each j 2 f1; 2; : : : ;mg and each i 2 P. Now convert � to the formula�

0

where

�

0

=

W

m

j=1

3(�

j1

; �

j2

; � � � ; �

jK

). (Recall the derived modality 3(�

1

; �

2

; : : : ; �

K

)

introduced earlier.) From the semantics of 3(�

1

; �

2

; : : : ; �

K

) it follows that � is

satis�able i� �

0

is root-satis�able.

Hence, in principle, it su�ces to consider only root-satis�ability in develop-

ing a decision procedure for TrPTL. There is of course a blow-up involved in

converting satis�able formulas to root-satis�able formulas. If one wants to avoid

this blow-up then the decision procedure for checking root-satis�ability can be

suitably modi�ed to yield a direct decision procedure for checking satis�ability

as done in [Thi1]. In any case, it is root satis�ability which is of importance from

the standpoint of model checking. Hence here we shall only develop a procedure

for deciding if a given formula of TrPTL is root-satis�able.

As a �rst step we augment the syntax of our logic by one more construct.

� If � is a formula, so is O

i

�. In the modelM = (F; fV

i

g), at the con�guration

c 2 C

F

, M; c j= O

i

� i� M; c j= hai

i

� for some a 2 �

i

. We also de�ne

loc(O

i

�) = fig.

Thus O

i

� �

W

a2�

i

hai

i

� is a valid formula and O

i

is expressible in the former

syntax. It will be however more e�cient to admit O

i

as a �rst class modality.

Fix a formula �

0

. Our aim is to e�ectively associate an A2-automaton A

�

0

with �

0

such that �

0

is root-satis�able i� L

Tr

(A

�

0

) 6= ;. Since the emptiness

problem for A2-automata is decidable (Theorem 2.4), this will yield the desired

decision procedure. Let CL

0

(�

0

) be the least set of formulas containing �

0

which

satis�es:

� :� 2 CL

0

(�

0

) implies � 2 CL

0

(�

0

).

� � _ � 2 CL

0

(�

0

) implies �; � 2 CL

0

(�

0

).

� hai

i

� 2 CL

0

(�

0

) implies � 2 CL

0

(�

0

).

� O

i

� 2 CL

0

(�

0

) implies � 2 CL

0

(�

0

).

� � U

i

� 2 CL

0

(�

0

) implies �; � 2 CL

0

(�

0

). In addition, O

i

(� U

i

�) 2 CL

0

(�

0

).

We then de�ne CL(�

0

) to be the set CL

0

(�

0

) [f:� j � 2 CL

0

(�

0

)g.

Thus CL(�

0

), sometimes called the Fisher-Ladner closure of �

0

, is closed

under negation with the convention that ::� is identi�ed with �. From now we

shall write CL instead of CL(�

0

).

A � CL is called an i-type atom i� it satis�es:

50

� 8� 2 CL. � 2 A i� :� 62 A.

� 8� _ � 2 CL. � _ � 2 A i� � 2 A or � 2 A.

� 8� U

i

� 2 CL. � U

i

� 2 A i� � 2 A or (� 2 A and O

i

(� U

i

�) 2 A).

� If hai

i

�, hbi

i

� 2 A

i

then a = b.

AT

i

denotes the set of i-type atoms. We now need to de�ne the notion of a

formula in CL being a member of a collection of atoms. Let � 2 CL and fA

i

g

i2Q

be a family of atoms with loc(�) � Q and A

i

2 AT

i

for each i 2 Q. Then the

predicate � 2 fA

i

g

i2Q

is de�ned inductively as:

� If loc(�) = fjg then � 2 fA

i

g

i2Q

i� � 2 A

j

.

� If � = :� then � 2 fA

i

g

i2Q

i� � 62 fA

i

g

i2Q

.

� If � = �

1

_ �

2

then �

1

_ �

2

2 fA

i

g

i2Q

i� �

1

2 fA

i

g

i2Q

or �

2

2 fA

i

g

i2Q

.

The construction of the A2-automaton A

�

0

is guided by the construction

due to Vardi and Wolper for LTL [VW]. However in the much richer setting of

traces it turns out that one must make crucial use of the latest information that

the agents have about each other when de�ning the transitions of A

�

0

. It has

been shown by Mukund and Sohoni [MS] that this information can be kept track

of by a deterministic A2-automaton whose size depends only on

e

�. (Actually

the automaton described in [MS] operates over �nite traces but it is a trivial

task to convert it into A2-automaton having the desired properties). To bring

out the relevant properties of this automaton, let F 2 TR

!

with F = (E;�; �).

For each subset Q of processes, the function latest

F;Q

: C

F

� P ! Q is given by

latest

F;Q

(c; j) = ` i� ` is the least member of Q (under the usual ordering over

the integers) with the property #

j

(#

q

(c)) � #

j

(#

`

(c)) for every q 2 Q. In other

words, among the agents in Q, ` has the best information about j at c, with ties

being broken by the usual ordering over integers.

Theorem 3.3 ([MS]) There exists an e�ectively constructible deterministic A2-

automaton A

�

= (TS; T) with TS = (f�

i

g; f)

a

g; �

in

) such that:

(i) L

Tr

(A

�

) = TR

!

.

(ii) For each Q = fi

1

; i

2

; : : : ; i

n

g, there exists an e�ectively computable function

gossip

Q

: �

i

1

� �

i

2

� � � � � �

i

n

�P ! Q such that for every F 2 TR

!

, every

c 2 C

F

and every j 2 P, latest

F;Q

(c; j) = gossip

Q

(
(i

1

); : : : ;
(i

n

); j) where

�

F

(c) =
 and �

F

is the unique (accepting) run of A

�

over F .

Henceforth, we refer to A

�

as the gossip automaton. Each process in the gossip

automaton has 2

O(K

2

logK)

local states, where K = jPj. Moreover the function

g

Q

can be computed in time which is polynomial in the size of K.

Each i-state of the automaton A

�

0

will consist of an i-type atom together

with an appropriate i-state of the gossip automaton. Two additional component

will be used to check for liveness requirements. One component will take values

from the set N

i

= f0; 1; 2; : : :; jU

i

jg where U

i

= f� U

i

� j � U

i

� 2 CLg. This

component will be used to ensure that all \until" requirements are met. The

51

other component will take values from the set fon,o�g. This will be used to

detect when an agent has quit.

The automaton A

�

0

can now be de�ned.

De�nition 3.4 A

�

0

= (TS; T), where TS = (fS

i

g; f!

a

g; S

in

) and

T = f(F

!

i

; F

i

)g are de�ned as follows:

(i) For each i, S

i

= AT

i

��

i

�N

i

� fon,o�g. Recall that �

i

is the set of i-states of

the gossip automaton and N

i

= f0; 1; 2; : : :; jU

i

jg with U

i

= f� U

i

� j � U

i

� 2

CLg.

(ii) Let s

a

; s

0

a

2 S

a

with s

a

(i) = (A

i

;

i

; n

i

; v

i

) and s

0

a

(i) = (A

0

i

;

0

i

; n

0

i

; v

0

i

) for each

i 2 loc(a). Then (s

a

; s

0

a

) 2 !

a

i� the following conditions are met.

(1) (

a

;

0

a

) 2)

a

(recall that f)

a

g is the family of transition relations of the

gossip automaton) where

a

;

0

a

2 �

a

such that

a

(i) =

i

and

0

a

(i) =

0

i

for each i 2 loc(a).

(2) 8i; j 2 loc(a), A

0

i

= A

0

j

.

(3) 8i 2 loc(a) 8hai

i

� 2 CL. hai

i

� 2 A

i

i� � 2 A

0

i

.

(4) 8i 2 loc(a) 8O

i

� 2 CL. O

i

� 2 A i� � 2 A

0

i

.

(5) 8i 2 loc(a)8hbi

i

� 2 CL. If hbi

i

� 2 A

i

then b = a.

(6) Suppose j 62 loc(a) and � 2 CL with loc(�) = fjg. Further suppose

that loc(a) = fi

1

; i

2

; : : : ; i

n

g. Then � 2 A

0

i

i� � 2 A

`

where ` =

gossip

loc(a)

(

i

1

;

i

2

; : : : ;

i

n

; j).

(7) Let i 2 loc(a), U

i

= f�

1

U

i

�

1

; �

2

U

i

�

2

; : : : ; �

n

i

U

i

�

n

i

g. Then u

0

i

and u

i

are related to each other via:

u

0

i

=

�

(u

i

+1) mod (n

i

+1); if u

i

= 0 or �

u

i

2 A

i

or �

u

i

U

i

�

u

i

62 A

i

u

i

; otherwise

(8) For each i 2 loc(a), v

i

= on. Moreover, if v

0

i

= o� then hai

i

� 62 A

0

i

for

every i 2 loc(a) and every hai

i

� 2 CL.

(iii) Let s 2 S

P

with s(i) = (A

i

;

i

; u

i

; v

i

) for every i. Then s 2 S

in

i� �

0

2

fA

i

g

i2P

and
 2 �

in

where
 2 �

P

satis�es
(i) =

i

for every i. Further-

more, u

i

= 0 for every i. Finally, for every i, v

i

= o� implies that hai

i

� 62 A

i

for every hai

i

� 2 CL.

(iv) For each i, F

!

i

� S

i

is given by F

!

i

= f(A

i

;

i

; u

i

; v

i

) j u

i

= 0 and v

i

= ong

and F

i

� S

i

is given by F

i

= f(A

i

;

i

; u

i

; v

i

) j v

i

= o�g.

The automaton A

�

0

extends the automata theoretic construction for LTL

described in [VW] to the setting of TrPTL. The main new feature is the use

of the gossip automaton in step (ii)(6) when dealing with formulas located at

agents not taking part in the current action. A detailed explanation of A

�

0

can

be found in [Thi1].

This construction di�ers from the original construction for TrPTL presented

in [Thi1] in a number of ways. Each S

i

in [Thi1] was de�ned to be AT

1

�

AT

2

� � � � � AT

K

�

e

U

i

� fact

+

i

; act

�

i

; stop

i

g with

e

U

i

as the set of subsets of U

i

.

The acceptance condition used was A1. Using A2, we need just two elements

52

fon; o�g to record when an agent has quit. Using the counter N

i

instead of

e

U

i

leads to a more compact description of A

�

0

. The signi�cant improvement,

namely, replacing AT

1

�AT

2

� � � ��AT

K

by just AT

i

is due to Narayan Kumar

[Nar]. The arguments described in [Thi1] go through in the present setting with

minor modi�cations. These arguments lead to the next set of results.

Theorem 3.5

(i) �

0

is root-satis�able i� L

Tr

(A

�

0

) 6= ;.

(ii) The number of local states of A

�

0

is bounded by 2

O(max(n;m

2

logm))

where

n = j�

0

j and m is the number of agents mentioned in �

0

. Clearly, m � n.

It follows that the root-satis�ability problem (and in fact the satis�ability

problem) for TrPTL is solvable in time 2

O(max(n;m

2

logm)�m)

.

The number of local states of each process in A

�

0

is determined by two

quantities: the length of �

0

and the size of the gossip automaton A

�

. As far as

the size of A

�

is concerned, it is easy to verify that we need to consider only

those agents in P that are mentioned in loc(�

0

), rather than all agents in the

system.

The model checking problem for TrPTL can be phrased as follows. A �nite

state distributed program over

e

� is a pair Pr = (A

Pr

; V

Pr

) where A

Pr

=

((fS

Pr

i

g; f)

Pr

a

g; S

Pr

in

); f(S

i

; S

i

)g) is an A2-automaton modelling the state space

of Pr and V

Pr

: S ! 2

AP

is an interpretation of the atomic propositions over

the local states of the program. (In this context, one assumes AP to be a �nite

set.)

Let � be a run of A

Pr

over F = (E;�; �). Then � induces the model

M

�

via V

Pr

as follows: M

�

= (F; fV

�

i

g) where for each i and each c 2 C

F

,

V

�

i

(#

i

(c)) = V

Pr

(s

i

) \P , where s = �(c) and s

i

= s(i). Viewing a formula �

0

as

a speci�cation, we say that Pr meets the speci�cation �

0

|denoted Pr j= �

0

|

if for every F 2 Tr

!

and for every run � of A

Pr

over F , it is the case that

M

�

; ; j= �

0

.

The model checking problem is to determine whether Pr j= �

0

. This problem

can be solved by \intersecting" the program automaton A

Pr

with the formula

automaton A

:�

0

to yield an automaton A such that L

Tr

(A) = L

Tr

(A

Pr

) \

L

Tr

(A

:�

0

). It turns out that L

Tr

(A) = ; i� Pr j= �

0

. It is easy to construct A.

The only point to care of is that the i-local states of A should consist of only

those pairs (s

i

; s

0

i

) (where s

i

is an i-local state of A

Pr

and s

0

i

= (A

0

i

;

0

i

; n

0

i

; v

0

i

) is

an i-local state of A

:�

0

) such that V

Pr

(s

i

)\AP = A

i

\AP . The details can be

found in [Thi1].

It turns out that this model checking problem has time complexity O(jA

Pr

j �

2

O(max(n;m

2

logm)�m)

) where jA

Pr

j is the size of the global state space of the

A2-automaton modelling the behaviour of the given program Pr and, as before,

n = j�

0

j and m is the number of agents mentioned in �

0

, where �

0

is the

speci�cation formula.

We now turn to two interesting sublogics of TrPTL. The �rst is the sublogic

TrPTL

con

, which consists of the so called connected formulas of TrPTL. We

53

de�ne �

con

TrPTL

(from now on written as �

con

) to be the least subset of � satisfying

the following conditions:

(i) p(i) 2 �

con

for every p 2 P and every i 2 P.

(ii) If �; � 2 �

con

, so are :� and � _ �.

(iii) If � 2 �

con

and a 2 �

i

such that loc(�) � loc(a) then hai

i

� 2 �

con

.

(iv) If �; � 2 �

con

with loc(�) = loc(�) = fig then � U

i

� 2 �

con

. Actually one

need only demand that loc(�), loc(�) �

T

floc(a) j a 2 �

i

g but this leads to

notational complications that we wish to avoid here.

(v) If � 2 �

con

and loc(�) = fig then O

i

� 2 �

con

. (Once again one needs to just

demand that � �

T

floc(a) j a 2 �

i

g.)

Connected formulas were �rst identi�ed by Niebert and used by Huhn [Huh].

They have also been independently identi�ed by Ramanujam [Ram]. Thanks

to the syntactic restrictions imposed on the next state and until formulas, past

information is not allowed to creep in. Indeed one can prove the following:

Proposition 3.6 Let � 2 �

con

. Then � is satis�able i� � is root-satis�able.

Yet another pleasing feature of TrPTL

con

is that the gossip automaton can

be eliminated in the construction of the automaton A

�

0

whenever �

0

2 �

con

. In

fact one can do a bit more.

Let �

0

2 �

con

and let CL

i

= CL \ �

i

for each i (recall that CL is an

abbreviation for CL(�

0

)). We rede�ne an i-type atom to be a subset A of CL

i

such that:

� 8� 2 CL

i

� 2 A i� :� 62 A.

� 8� _ � 2 CL

i

. � _ � 2 A i� � 2 A or � 2 A.

� 8� U

i

� 2 CL

i

� U

i

� 2 A i� � 2 A or � 2 A and O

i

(� U

i

�) 2 A.

As before (but with the new de�nition in operation!), AT

i

is the set of i-type

atoms.

Let � 2 CL with loc(�) � Q. The notion of � belonging to a family of atoms

fA

i

g

i2Q

, with A

i

2 AT

i

for each i 2 Q, is de�ned inductively in the obvious

way|if loc(�) = fig then � 2 fA

i

g

i2Q

i� � 2 A

i

etc. etc. The construction of

A

�

0

is as speci�ed in De�nition 3.4 with the following modi�cations:

(i) S

i

= AT

i

� N

i

� fon,o�g for each i 2 P. Thus the gossip automaton is

eliminated and AT

i

is the set of i-type atoms of the new kind.

(ii) (1) This condition is obviously dropped.

(2) Interestingly enough, this condition is also dropped.

(3) This condition is modi�ed to 8hai

i

� 2 CL

i

:hai

i

� 2 A

i

i� � 2 fA

0

j

g

j2loc(a)

:

In addition, condition (ii)(6) is dropped, while conditions (ii)(4), (ii)(5), (ii)(7)

and (ii)(8) remain unchanged. Parts (iii) and (iv) are modi�ed to eliminate all

references to the gossip automaton. After these alterations, it is not di�cult to

prove the following result.

54

Theorem 3.7 Let �

0

2 �

con

and A

�

0

be constructed as detailed above.

(i) �

0

is satis�able i� L

Tr

(A

�

0

) 6= ;.

(ii) The satis�ability problem for TrPTL

con

is solvable in time 2

O(j�

0

j)

.

Once again, a suitably modi�ed statement can be made about the associated

model checking problem. At present we do not know whether or not TrPTL is

strictly more expressive than TrPTL

con

. We shall formulate this question more

rigorously in the next section.

Yet another sublogic of TrPTL is called product TrPTL and is denoted as

TrPTL

. Let �

, the set of formulas of TrPTL

, be the least subset of � which

satis�es:

(i) p(i) 2 �

for every p 2 P and every i 2 P.

(ii) If �; � 2 �

then so are :� and � _ �.

(iii) If � 2 �

with loc(�) = fig and a 2 �

i

then hai

i

� 2 �

.

(iv) If �; � 2 �

with loc(�) = loc(�) = fig then � U

i

� 2 �

.

Clearly �

� �

con

� �. In case �

0

2 �

, the automaton A

�

0

can be sim-

pli�ed even further (than the case when �

0

2 �

con

). A

�

0

essentially consists of

a synchronized product of B�uchi automata. A detailed treatment of TrPTL

is provided in [Thi2]. The interest in this subsystem lies in the fact that the

accompanying program model is particularly simple and commonplace. Namely,

it consists of a �xed set of �nite state transition systems that coordinate their

behaviour by performing common actions together. Here we shall just sketch the

construction for A

�

0

.

A product B�uchi automaton over

e

� is a structure A = (fTS

i

g

i2P

; S

in

; T)

where TS

i

= (S

i

;!

i

) for each i with !

i

� S

i

��

i

� S

i

as the local transition

relation of the agent i. Everything else is as in the de�nition of an A2-automaton.

Thus the key di�erence is that each agent comes with its own local transition

relation. From these agent transition relations, one can derive the action indexed

transition relations f!

a

g as follows: (s

a

; s

0

a

) 2 !

a

i� s

a

(i)

a

�! s

0

a

(i) for every

i 2 loc(a). Thus product B�uchi automata are a (strict) subclass of the class of

A2-automata.

Given �

0

2 �

, the construction of A

�

0

proceeds as in the case where �

0

2

�

con

. The only di�erence is, we must de�ne the transition relations f!

i

g

i2P

instead of the transition relations f!

a

g

a2�

. This can be done as follows:

Let s

i

; s

0

i

2 S

i

with s

i

= (A

i

; u

i

; v

i

) and s

0

i

= (A

0

i

; u

0

i

; v

0

i

). Let a 2 �

i

. Then

s

i

a

i

�! s

0

i

i� the following conditions are satis�ed:

(i) 8hai

i

� 2 CL. hai

i

� 2 A

i

i� � 2 A

0

i

.

(ii) 8O

i

� 2 CL. O

i

� 2 A i� � 2 A

0

i

.

(iii) If hbi

i

� 2 A

i

then b = a.

(iv) u

i

and u

0

i

are related to each other just as in part (ii)(7) of De�nition 3.4.

(v) v

i

and v

0

i

satisfy part (ii)(8) of De�nition 3.4.

As shown in [Thi2] one can establish the following result for TrPTL

.

55

Theorem 3.8 Let �

0

2 �

and A

�

0

be constructed as above.

(i) �

0

is satis�able i� L

Tr

(A

�

0

) 6= ;.

(ii) The satis�ability problem for TrPTL

can be solved in time 2

O(j�

0

j)

.

Once again, one can make suitably modi�ed statements about the accompa-

nying model checking problem. As mentioned earlier, the program model in this

setting consists of a �xed set (one for each i) �nite state transition systems.

We conclude this section with a quick look at some related logics. Katz and

Peled introduced the logic ISTL [KP] which can be easily viewed as a tempo-

ral logic over traces. However, it has branching time modalities which permit

quanti�cation over the so called observations of a trace. ISTL uses global atomic

propositions rather than local atomic propositions. Penczek has also studied a

number of temporal logics (including a version of ISTL) with branching time

modalities and global atomic propositions [Pen]. His logics are interpreted di-

rectly over the space of con�gurations of a trace resulting in a variety of axiom-

atizations and undecidability results. We feel that local atomic propositions (as

used in TrPTL) are crucial for obtaining tractable partial order based tempo-

ral logics. Niebert has considered a �-calculus version of TrPTL [Nie] and has

obtained a decidability result using a variant of asynchronous B�uchi automata.

Since this logic uses \local" �xed points, it is not clear at present what is the

expressive power of this logic. The four linear time temporal logics studied by

Ramanujam in a closely related setting [Ram] can be easily captured as four

sublogics of TrPTL through purely syntactic restrictions. Two of the resulting

sublogics are TrPTL

and TrPTL

con

. It is not clear at present whether the other

two logics admit a simpler treatment in terms of asynchronous B�uchi automata

(than the one for TrPTL).

The temporal logic of causality (TLC) proposed by Alur, Peled and Penczek

is basically a temporal logic over traces [APP]. The concurrent structures used in

[APP] as frames for TLC can be easily represented as traces over an appropriately

chosen trace alphabet. The interesting feature of TLC is that its branching time

modalities are interpreted over causal paths. In a trace (E;�; �), the sequence

e

0

e

1

� � � 2 E

1

is a causal path if e

0

l e

1

l e

2

� � �. This logic is almost certainly

not expressible within the �rst order theory of traces although it admits an

elementary time (in fact essentially exponential time) decision procedure.

Finally, Ebinger has also proposed a linear time temporal logic to be inter-

preted over traces [Ebi]. An interesting property of this logic is that when its

frames are restricted to be �nite traces then it is exactly equivalent to the �rst

order theory of �nite traces. Unfortunately the decidability of this logic is set-

tled using a translation into the �rst order theory of in�nite traces. Hence the

decision procedure has non-elementary time complexity.

4 Expressiveness Issues

Our main aim here is to show that TrPTL is expressible within the �rst order

theory of traces. In order to simplify the presentation, we shall eliminate atomic

56

propositions and instead use the single constant > standing for \True" (and

? = :> standing for \False"). The resulting logic will also be called TrPTL

accompanied by the notations and terminology developed in the previous section.

The function loc which assigns a set of processes to a formula works exactly as

before except that we start with loc(>) = ;. As will be seen later, this will entail

minor changes in the de�nition of the syntax of TrPTL

con

and TrPTL

. For

now, we repeat that the syntax of �, the set of formulas of TrPTL is now given

by:

� ::= > j :� j � _ � j hai

i

� j � U

i

�:

As before, for hai

i

� to be a formula we require a 2 �

i

. Local atomic propositions

can be coded up into the actions and hence their elimination does not result in

loss of expressive power.

A model is just an in�nite trace F 2 TR

!

. We set F; c j= > for every c 2 C

F

.

The rest of the semantics is as before. L

�

, the !-trace language de�ned by the

formula� is given by, L

�

= fF j F 2 TR

!

and F; ; j= �g. We say that L � TR

!

is TrPTL-de�nable i� there exists � 2 � such that L = L

�

.

First we shall compare the expressive powers of TrPTL, TrPTL

con

and TrPTL

.

In order to do so, we must de�ne the syntax of the two sublogics in the present

setting. For TrPTL

con

the only changes that are required are:

� > 2 �

con

.

� If �; � 2 �

con

such that loc(�); loc(�) � fig then � U

i

� 2 �

con

.

For TrPTL

, the only changes that are required are

� > 2 �

.

� If � 2 �

such that loc(�) � fig and if a 2 �

i

then hai

i

� 2 �

.

� If �; � 2 �

with loc(�); loc(�) � fig then � U

i

� 2 �

.

The notion of L � TR

!

being TrPTL

con

-de�nable or TrPTL

-de�nable is

formulated in the obvious way. Since �

� �

con

� � it is clear that TrPTL is

at least as expressive as TrPTL

con

which in turn is at least as expressive as

TrPTL

. As mentioned earlier we do not know at present if TrPTL is strictly

more expressive than TrPTL

con

, though we conjecture that this the case.

We do know however that TrPTL

con

is strictly more expressive than TrPTL

.

To illustrate this it will be convenient to extend the notion of de�nability to

subsets of �

!

. We say that L � �

!

is TrPTL-de�nable i� L is I-consistent

and fstr(�) j � 2 Lg is TrPTL-de�nable. This notion is de�ned for TrPTL

con

and TrPTL

in the obvious way. Hence in order to show that TrPTL

con

is more

expressive than TrPTL

it su�ces to exhibit some L � �

!

which is I-consistent

and is TrPTL

con

-de�nable but not TrPTL

-de�nable.

Let

e

� = f�

1

; �

2

gwith �

1

= fa; a

0

; dg and �

2

= fb; b

0

; dg. Let � = fa; a

0

; b; b

0

; dg.

Consider L � �

!

given by:

L = (d(ab+ ba+ a

0

b

0

+ b

0

a

0

))

!

:

It turns out that L is not TrPTL

-de�nable. Clearly L is I-consistent. As shown

in [Thi2], for L to be TrPTL

-de�nable, it must be a so-called (synchronized)

product language. As a result, it would have to possess the following property:

57

(PR) Suppose � 2 �

!

. Then � 2 L i� there exist �

1

; �

2

2 L such that � ��

1

=

�

1

��

1

and � ��

2

= �

2

��

2

.

Now let � = (dab

0

)

!

, �

1

= (dab)

!

and �

2

= (da

0

b

0

)

!

. Clearly � ��

1

= �

1

��

1

and � ��

2

= �

2

��

2

. Since �

1

; �

2

2 L, this implies that � 2 L which it is not.

Hence L cannot be a product language and therefore is not TrPTL

-de�nable.

On the other hand, it is a simple exercise to come up with a formula � 2 �

con

such that fstr(�) j � 2 Lg = L

�

.

We now turn to FO(

e

�), the �rst order theory of in�nite traces over

e

�. One

starts with a countable set of individual variables X = fx

0

; x

1

; : : :g with x; y; z

with or without subscripts ranging over X. For each a 2 � there is a unary

predicate symbol R

a

. There is also a binary predicate symbol �.

R

a

(x) and x � y are atomic formulas. If ' and '

0

are formulas, so are :',

'_'

0

and (9x)'. The structures for this �rst order theory are elements of TR

!

.

Let F 2 TR

!

with F = (E;�; �) and let I : X ! E be an interpretation.

Then F j=

FO

I

R

a

(x) i� �(I(x)) = a and F j=

FO

I

x � y i� I(x) � I(y). The

remaining semantic de�nitions go along the expected lines. Each sentence '

(i.e., a formulawith no free occurrences of variables) de�nes the !-trace language

L

'

= fF j F j=

FO

'g.

We say that L � TR

!

is FO-de�nable i� there exists a sentence ' in FO(

e

�)

such that L = L

'

. As before we will say that L � �

!

is FO-de�nable i� L is

I-consistent and fstr(�) j � 2 Lg is FO-de�nable.

Using the fact that LTL has the same expressive power as the �rst order

theory of sequences, one can show that L � �

!

is FO-de�nable i� it is I-

consistent and LTL-de�nable [EM]. It will be worthwhile to pin down the notion

of LTL-de�nability. In the current setting, remembering that (�; I) is the trace

alphabet induced by

e

�, we de�ne the syntax of the logic LTL(�) as follows:

LTL(�) ::= > j :� j � _ � j hai� j � U�:

A model is a in�nite word �. For � 2 �

!

and n 2 !, the notion of � 2 LTL(�)

being satis�ed at stage n is denoted by �; n j= �. This satisfaction relation is

de�ned in the usual manner. The only point of interest might be that �; n j= hai�

i� �(n+1) = a and �; n+1 j= �. We say that L � �

!

is LTL-de�nable i� there

exists � 2 LTL(�) such L = L

�

where L

�

= f� 2 �

!

j �; 0 j= �g.

The result in [EM] relating FO-de�nable subsets of TR

!

and LTL-de�nable

subsets of �

!

can now be phrased as follows.

Proposition 4.1 Let L � �

!

. Then, the following statements are equivalent.

(i) L is I-consistent and LTL-de�nable.

(ii) fstr(�) j � 2 Lg is an FO-de�nable subset of TR

!

.

We now wish to concentrate on showing that TrPTL is expressible within

the �rst order theory of in�nite traces.

58

To show this, we will freely use the standard derived connectives of Propo-

sitional Calculus, together with universal quanti�cation and abbreviations such

as x = y for (x � y) ^ (y � x), x � y � z for (x � y) ^ (y � z) etc.

An event e is an i-event i� �(e) 2 �

i

. With this in mind, we let x 2 E

i

stand for the formula

W

a2�

i

R

a

(x). The key to the result we are after is the

observation that con�gurations of a trace can be described using predicates of

bounded dimension. In what follows we let Q;Q

0

; Q

00

range over the non-empty

subsets of P. For Q = fi

1

; i

2

; : : : ; i

n

g, the formula con�g(fx

i

g

i2Q

) is de�ned as:

con�g(fx

i

g

i2Q

) = ('

1

^ '

2

^ '

3

); where

'

1

=

V

i2Q

x

i

2 E

i

;

'

2

=

V

i;j

V

a

(R

a

(x

i

) ^R

a

(x

j

))) x

i

= x

j

;

'

3

=

V

i;j

(8y) (y 2 E

j

^ y � x

i

)) y � x

j

:

We can now write down a formula describing prime con�gurations|recall that

a prime con�guration is one of the form #e, where e 2 E. Let loc(a) � Q. Then

the formula prime

a

(fx

i

g

i2Q

) is de�ned as

con�g(fx

i

g

i2Q

) ^

^

i2loc(a)

^

j2Q�loc(a)

R

a

(x

i

) ^ (x

j

� x

i

):

A careful examination of this formula along with the basic properties of traces

at once leads to the next result.

Proposition 4.2 Let F = (E;�; �) 2 TR

!

and let I : X ! E be an interpre-

tation. Then F j=

FO

I

prime

a

(fx

i

g

i2Q

) i� there exists an a-event e such that for

each j 2 Q, I(x

j

) is the �

j

-maximum event in #e \ E

j

and for each j =2 Q,

#e \E

j

= ;.

For each � 2 � we now de�ne the sentence Sat(;; �) and the set of formu-

las fSat(fx

i

g

i2Q

; �) j fx

i

g

i2Q

� X and ; 6= Q � Pg through simultaneous

induction as follows:

� Sat(;;>) = Sat(fx

i

g

i2Q

;>) = (9x) x = x.

� Sat(;;:�) = :Sat(;; �).

Sat(fx

i

g

i2Q

;:�) = :Sat(fx

i

g

i2Q

; �).

� Sat(;; �_ �) = Sat(;; �)_ Sat(;; �).

Sat(fx

i

g

i2Q

; � _ �) = Sat(fx

i

g

i2Q

; �)_ Sat(fx

i

g

i2Q

; �).

� Sat(;; hai

j

�) =

W

Q�loc(a

(9x

i

1

; 9x

i

2

; : : : ; 9x

i

n

) '

1

^ '

2

^ '

3

where Q = fi

1

; i

2

; : : : ; i

n

g and

'

1

= prime

a

(fx

i

g

i2Q

);

'

2

= Sat(fx

i

g

i2Q

; �);

'

3

= (8y) (y 2 E

j

^ y � x

j

)) y = x

j

:

59

Sat(fx

i

g

i2Q

; hai

j

�) is de�ned according to two cases.

Case 1 j =2 Q: Sat(fx

i

g

i2Q

; hai

j

�) = Sat(;; hai

j

�).

Case 2 j 2 Q

Sat(fx

i

g

i2Q

; hai

j

�) =

W

Q

0

�loc(a)

(9y

k

1

; 9y

k

2

; : : :9y

k

n

) '

1

^ '

2

^ '

3

where Q

0

= fk

1

; k

2

; : : : ; k

n

g and fy

k

g

k2Q

0

is disjoint from fx

i

g

i2Q

and

'

1

= prime

a

(fy

k

g

k2Q

0

);

'

2

= Sat(fy

k

g

k2Q

0

; �);

'

3

= 8y (y 2 E

j

) (y < y

j

, y � x

j

)):

� Sat(;; � U

j

�) = Sat(;; �) _ (Sat(;; �) ^ Sat(;;

W

a2�

j

hai

j

� U

j

�).

Sat(fx

i

g

i2Q

; � U

j

�) is de�ned according to two cases.

Case 1 j 62 Q: Sat(fx

i

g

i2Q

; � U

j

�) = Sat(;; � U

j

�).

Case 2 j 2 Q:

Sat(fx

i

g

i2Q

; � U

j

�) =

W

a2�

j

W

Q

0

�loc(a)

(9y

k

1

; 9y

k

2

; : : :9y

k

n

) '

1

^'

2

^'

3

^

'

4

where Q

0

= fk

1

; k

2

; : : : ; k

n

g and fy

k

g

k2Q

0

is disjoint from fx

i

g

i2Q

and

'

1

= prime

a

(fy

k

g

k2Q

0

);

'

2

= x

j

� y

j

;

'

3

= Sat(fy

k

g

k2Q

0

; �);

'

4

= 8z(z 2 E

j

^ x

j

� z < y

j

)) '

0

4

:

where '

0

4

=

W

a2�

j

W

Q

00

�loc(a)

(9z

`

1

; 9z

`

2

; : : : ; 9z

`

m

) '

0

41

^ '

0

42

^'

0

43

with Q

00

= f`

1

; `

2

; : : : ; `

m

g and fz

`

g

`2Q

00

disjoint from both fx

i

g

i2Q

and

fy

k

g

k2Q

0

and

'

0

41

= prime

a

(fz

`

g

`2Q

00

);

'

0

42

= (z = z

j

);

'

0

43

= Sat(fz

`

g

`2Q

00

; �):

Let f be the map which sends each formula in � to a sentence in FO(

e

�) via

f(�) = Sat(;; �). Using the previous proposition and the semantics of TrPTL,

it is not di�cult to prove the following:

Theorem 4.3

(i) For every F 2 TR

!

, F; ; j= � i� F j=

FO

f(�).

(ii) If L � TR

!

is TrPTL de�nable then it is also FO(

e

�)-de�nable.

As mentioned earlier we do not know at present if TrPTL is expressively

complete|i.e., whether every L � TR

!

which is FO(

e

�)-de�nable is also TrPTL-

de�nable. Clearly from Proposition 4.1 it follows that the expressive complete-

ness of TrPTL can be characterized as follows:

60

Corollary 4.4 The following statements are equivalent:

(i) TrPTL is expressively complete.

(ii) For every L � �

!

, if L is I-consistent and L is LTL-de�nable then L is

TrPTL de�nable.

We believe that TrPTL is not expressively complete. This leads to the fol-

lowing question: What is the linear time temporal logic of in�nite traces? Such

a logic should possess the following properties:

(TR1) It should be expressively complete.

(TR2) It should admit a decision procedure (preferably in terms of asynchronous

B�uchi automata) whose time complexity is 2

p(n;m)

where n is the size of the

input formula, m = j�j and p is a (low degree) polynomial in n and m.

(TR3) It should be possible to transparently express global liveness and safety

properties in the logic.

It is worth noting that TrPTL and most of the decidable temporal logics over

traces mentioned earlier such as [Nie] and [APP] cannot express all global in-

variant properties. The somewhat awkward semantics of the logic in [Ebi] also

makes it event-based and hence not suitable for expressing invariant properties.

However we believe that it should be possible to de�ne a logic with a variant of

the until operator de�ned in [Ebi] which will be able to capture global liveness

and safety properties in a straightforward manner.

Any linear time temporal logic over traces which ful�lls the properties (PR1){

(PR3) will be a very useful speci�cation tool. In particular it will exactly capture

properties that are expressible by I-consistent formulas in LTL|(� 2 LTL(�) is

I-consistent i� L

�

is I-consistent). This is important because it is such properties

which can be veri�ed e�ciently using partial order based veri�cation methods

[GW, Val].

5 Conclusion

In this paper we have considered linear time temporal logics over traces. Our

emphasis has been on TrPTL and its two sublogics TrPTL

con

, TrPTL

. The

choice of these logics has been mainly motivated by the fact that they are ex-

pressible within the �rst order theory of traces and the fact that they can be

studied using asynchronous B�uchi automata.

Our formulation of asynchronous B�uchi automata in terms of the acceptance

condition A2 appears to be particularly suited for logical studies. The present

constructions are much more compact and transparent than the ones in [Thi1]

which used A1 as the acceptance condition. We feel that, in the future, alternat-

ing versions of our automata will play an important role in the study of temporal

logics over traces.

As we have mentioned a number of times, an important open problem is to

pin down a linear time temporal logic for traces (assuming it exists!) which will

61

ful�ll the properties set out in the previous section. A solution to this problem

will at once open up the possibility of investigating branching time temporal

logics where path quanti�cation is over traces.

References

[AHU] A.V. Aho, J.E. Hopcroft and J.D. Ullman: The Design and Analysis of

Algorithms, Addison-Wesley, Reading (1974).

[APP] R. Alur, D. Peled and W. Penczek: Model-Checking of Causality Prop-

erties, Proc. 10th IEEE LICS (1994).

[Die] V. Diekert: Combinatorics on traces, LNCS 454 (1990).

[DM] V. Diekert and A. Muscholl: Deterministic Asynchronous Automata for

In�nite Traces, Acta Inf., 31 (1993) 379-397.

[DR] V. Diekert, G. Rozenberg (Eds.): The Book of Traces, World Scienti�c,

Singapore (1995).

[Ebi] W. Ebinger: Charakterisierun�g von Sprachklassenunendlicher Spuren durch

Logiken, Ph.D. Thesis, Institut f�ur Informatik, Universit�at Stuttgart,

Stuttgart, Germany (1994).

[EM] W. Ebinger and A. Muscholl: Logical De�nability on In�nite Traces,

Proc. ICALP '93, LNCS 700 (1993) 335{346.

[GP] P. Gastin and A. Petit: Asynchronous Cellular Automata for In�nite

Traces, Proc. ICALP '92, LNCS 623 (1992) 583{594.

[GW] P. Godefroid and P. Wolper: A Partial Approach to Model Checking,

Inform. and Comput., 110 (1994) 305{326.

[Huh] M. Huhn: On Semantic and Logical Re�nement of Actions, Technical Re-

port, Institut f�ur Informatik, Universit�at Hildesheim, Germany (1996).

[KP] S. Katz and D. Peled: Interleaving Set Temporal Logic, Theor. Comput.

Sci., 75 (3) (1992) 21{43.

[KMS] N. Klarlund, M. Mukund and M. Sohoni: Determinizing B�uchi asyn-

chronous automata, Proc. FST&TCS 1995, LNCS 1026 (1995) 456{470.

[LPRT] K. Lodaya, R. Parikh, R. Ramanujam and P.S. Thiagarajan: A logical

study of distributed transition systems, Inform. and Comput., 119 (1995)

91{118.

[MP] Z. Manna and A. Pnueli: The Temporal Logic of Reactive and Concurrent

Systems (Speci�cation), Springer-Verlag, Berlin (1991).

[Maz] A. Mazurkiewicz: Concurrent Program Schemes and their Interpretations,

Report DAIMI-PB-78, Computer Science Department, Aarhus University,

Denmark (1978).

[MS] M. Mukund and M. Sohoni: Keeping track of the latest gossip: Bounded

time-stamps su�ce, Proc. FST&TCS '93, LNCS 761 (1993) 388{399.

[Mus] A. Muscholl: On the complementation of B�uchi asynchronous cellular au-

tomata, Proc. ICALP '94, LNCS 820 (1994) 142{153.

[Nar] K. Narayan Kumar: An Improved Decision Procedure for TrPTL, Unpub-

lished Manuscript, Tata Institute of Fundamental Research, Bombay, India

(1994).

[Nie] P. Niebert: A �-Calculus with Local Views for Systems of Sequential

Agents, Proc. MFCS'95, LNCS 969 (1995) 563{573.

[NPW] M. Nielsen, G.D. Plotkin and G. Winskel: Petri Nets, Event Structures

and Domains I, Theor. Comput. Sci., 13 (1980) 86{108.

62

[Pen] W. Penczek: Temporal Logics for Trace Systems: On Automated Veri�ca-

tion, Int. J. Found. of Comput. Sci., 4(1) (1993) 31-68.

[Pnu] A. Pnueli: The Temporal Logic of Programs, Proc. 18th IEEE FOCS (1977)

46{57.

[Ram] R. Ramanujam: Locally Linear Time Temporal Logic, To appear in Proc.

11th IEEE LICS (1996).

[Tho] W. Thomas: Automata on in�nite objects, in J. van Leeuwen (ed.), Hand-

book of Theoretical Computer Science, Volume B, North-Holland, Amsterdam

(1990) 133{191.

[Thi1] P.S. Thiagarajan: A Trace Based Extension of Linear Time Temporal

Logic, Proc. 9th IEEE LICS (1994) 438{447. Full version available as: TrPTL:

A Trace Based Extension of Linear Time Temporal Logic, Report TCS-93-6,

School of Mathematics, SPIC Science Foundation, Madras, India (1993).

[Thi2] P.S. Thiagarajan: A Trace Consistent Subset of PTL, Proc. CONCUR'95,

LNCS 962 (1995) 438-452. Full version available as: PTL over Product State

Spaces, Report TCS-95-4, School of Mathematics, SPIC Science Foundation,

Madras, India (1995).

[Val] A. Valmari: Stubborn Sets for Reduced State Space Generation, LNCS 483

(1990) 491{515.

[VW] M. Vardi, P. Wolper: An automata theoretic approach to automatic pro-

gram veri�cation, Proc. 1st IEEE LICS (1986) 332{345.

[WN] G. Winskel and M. Nielsen: Models for Concurrency, In: S. Abramsky and

D. Gabbay (Eds.), Handbook of Logic in Computer Science, Vol 3, Oxford

University Press, Oxford (1994).

[Zie] W. Zielonka: Notes on �nite asynchronous automata, R.A.I.R.O.|Inf.

Th�eor. et Appl., 21 (1987) 99{135.

[Zuc] L. Zuck: Past Temporal Logic, Ph.D. Thesis, Weizmann Institute, Rehovot,

Israel (1986).

