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Abstract. Replicated data types store copies of identical data across
multiple servers in a distributed system. For the replicas to satisfy even-
tual consistency, these data types should be designed to guarantee con-
flict free convergence of all copies in the presence of concurrent updates.
This requires maintaining history related metadata that, in principle, is
unbounded.

Burkhardt et al have proposed a declarative framework to specify
eventually consistent replicated data types (ECRDTs). Using this, they
introduce replication-aware simulations for verifying the correctness of
ECRDT implementations. Unfortunately, this approach does not yield
an effective strategy for formal verification.

By imposing reasonable restrictions on the underlying network, we
recast their declarative framework in terms of standard labelled partial
orders. For well-behaved ECRDT specifications, we are able to construct
canonical finite-state reference implementations with bounded metadata,
which can be used for formal verification of ECRDT implementations via
CEGAR. We can also use our reference implementations to design more
effective test suites for ECRDT implementations.

1 Introduction

Replicated data types are used by web services that need to maintain multiple
copies of the same data across different servers to provide better availability and
fault tolerance. Clients can access and update data at any copy. Replicated data
types cover a wide class of data stores that include distributed databases and
DNS servers, as well as NoSQL stores such as Redis and memcached. The CAP
theorem [1] shows that it is impossible for replicated data types to provide both
strong consistency and high availability in the presence of network and node
failures. Hence, web services that aim to be highly available in the presence
of faults opt for a weaker notion of consistency known as eventual consistency.
Eventual consistency allows copies to be inconsistent for a finite period of time.
However, the web service must ensure that conflicts arising due to concurrent
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updates across the multiple copies are resolved to guarantee that all the copies
eventually agree. Conflict-free Replicated Data Types (CRDTs), introduced in
[2,3], are a sub class of replicated data types that are eventually consistent and
conflict free.

An abstract specification of a data type describes its properties indepen-
dent of any implementation. Such a specification plays a crucial role in formal
verification of the correctness of any implementation of the data type. Most
of the early work on CRDTs described these data types through implementa-
tions [2–5]. Recently, a comprehensive framework has been proposed in [6] to
provide declarative specifications for a wide variety of replicated data types,
along with a methodology to prove the correctness of an implementation via
replication aware simulations. Unfortunately this strategy does not lend itself to
effective formal verification of the implementations.

Finite state abstractions have been widely studied in the context of formal
verification. Model checking, for instance, uses techniques such as state space
enumeration, abstract interpretation and symbolic execution to algorthmically
verify if an abstract finite state system satisfies its specification. Finite state
models such as automata over distributed words, communicating finite state
machines and Petri nets have been successfully used to model and verify con-
current and distributed systems.

In this paper, we focus on a class of CRDTs known as the Commutative
Replicated Data Types (CmRDTs) whose replicas broadcast every update they
receive from a client. The key contributions of our work are as follows

– Demonstrating the use of labelled partial orders as a framework for providing
declarative specifications of CmRDTs.

– Generalizing the gossip problem introduced in [7] and providing a bounded
solution to this problem assuming bounded concurrency.

– Using the bounded solution of the gossip problem to obtain finite state im-
plementations of CmRDTs whose specifications satisfy certain properties.

The paper is organized as follows. In Section 2 we introduce replicated data
types. Following this, we show how to use standard labelled partial orders as
a framework for declarative specification for CmRDTs. After defining bounded
CmRDTs, we generalize the gossip problem and provide a bounded solution
in Section 5. We then show how this bounded solution can be used to derive a
bounded implementation of CmRDTs. In the next section we show how bounded
implementations can be used in the formal verification of CmRDTs. In the final
section we summarize our work and discuss interesting challenges.

2 Replicated Data Types

We consider distributed systems consisting of a set R of N replicas, denoted
[0..N−1]. We use p, q, r, s and their primed variants to range over R. These
replicas are interconnected through an asynchronous network. We assume that
replicas can crash and recover infinitely often. However, when a replica recovers
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from a crash it is expected to resume operation from some safe state that it
was in before the crash. We are interested in replicated data types that are
implemented on top of such distributed systems.

A replicated data type exposes a set of side-effect-free operations known as
queries for clients to obtain information contained in the data type. It makes
available a set of state-modifying operations known as updates to allow clients to
update the contents of the data type. For example in a replicated set, contains
is a query method, while add and delete are update methods.

At any point, a client can interact with any one of the N replicas. The replica
that services a query (respectively, update) request from the client is said to be
the source replica for that query (respectively, update). The source replica uses
its local information to process the query. Similarly, it updates its local state on
receiving an update request from the client.

In this paper, we restrict our attention to a class of replicated data types
called Commutative Replicated Data Types (CmRDTs), introduced in [2]. In
these data types, each time a replica receives an update request from a client,
it applies the update locally and broadcasts to all the other replicas a message
containing the data that they require to apply this update. On receiving this
broadcast, each replica performs a local update using the data sent by the source
replica. We assume that the updates are delivered in causal order—that is, if
update u1 at replica r1 is initiated before update u2 at replica r2, then every
replica receives information about u1 before information about u2. We shall
define this notion formally in the next section. Under this assumption, we note
that when a replica receives and applies an update operation, its state would
contain the effect of all operations that causally precede the current update.
We now define some terminology introduced in [2,3] to reason about these data
types.

A CmRDT D is a tuple (V,Q,U) where:

– V is the underlying set of values stored in the datatype and is called the
universe of a replicated datatype. For instance, the universe of a replicated
read-write register is the set of integers that the register can hold.

– Q denotes the set of query methods exposed by the replicated data type.
– U denotes the set of update methods.

The send and receive components of a broadcast that follows an update
operation are denoted by send and receive, respectively. We denote by M the
set {send, receive}.

For an instance of an operation o ∈ Q ∪ U ∪M, we use Rep(o), Op(o) and
Args(o) to denote the source replica, operation name and arguments, respec-
tively, of the operation.

Definition 1 (Run) A run of a replicated data type is a pair (α,ϕ) where

– α is a sequence of operations Io1o2 . . . on, where I is a special operation that
initializes the states of all the N replicas, and each oi ∈ Q ∪ U ∪M.

– ϕ is a partial function from [0..n] to 2[0..n] such that
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• dom(ϕ) = {i ≤ n | oi is a send operation}.
• ∀j ∈ ϕ(i) : j > i and oj is a matching receive operation. In particular,

the matching receive operation at replica r is denoted by ϕr(i).

Note that every update operation in a run Io1o2 . . . on will be followed by a
send operation where the source replica broadcasts details of this update to all
other replicas. Without loss of generality, we assume that this send event is the
next event in the run: in other words, if oi is an update event, then the send
event that broadcasts details of oi to all other replicas is the event oi+1.

For α = Io1o2 . . . on, we let α[j] denote the operation oj and α[:j] denote
the prefix Io1o2 . . . oj . Note that α[0] (and hence α[:0]) is always I. The subse-
quence of α consisting of all operations with source replica r is denoted αr. (By
convention, every replica r is a source replica for I.)

The state of replica r at the end of the run α is denoted by Sr(α).

Definition 2 (History) Let (α,ϕ) be a run and r be a replica. The history
of r with respect α, denoted by Hr(α) is the set of all update operations whose
effects are applied at r, either directly or indirectly, to arrive at the state Sr(α).
Formally, Hr(α) is inductively defined as follows:

– For α = I, ∀r ∈ R : Hr(α) = ∅

– For i > 0, Hr(α[:i]) =



Hr(α[:i−1]) if Rep(α[i]) 6= r or
Op(α[i]) ∈ Q ∪ {send}

Hr(α[:i−1]) ∪ {α[i]} if Rep(α[i]) = r and
Op(α[i]) ∈ U

Hr(α[:i−1]) ∪Hs(α[:j]) if Rep(α[i]) = r,
Op(α[i]) = receive,
Rep(α[j]) = s,
and ϕr(j) = i

We define causality and concurrency for pairs of update operations as follows.

Definition 3 (Happened-Before and Concurrency) Let u = α[i] and u′ =
α[j] be update operations at source replicas r and r′, respectively, in a run (α,ϕ).

We say that u has happened before u′, denoted u
hb−→ u′, if u ∈ Hr′(α[:j−1]).

If neither u
hb−→ u′ nor u′

hb−→ u, we say that u and u′ are concurrent. This
is denoted by u ‖ u′.

Strong eventual consistency (SEC) [3] is a stronger variant of eventual consis-
tency [8] that is useful for reasoning about the correctness of replicated systems.

Definition 4 (Strong Eventual Consistency) Let (α,ϕ) be a run and let
r, r′ be a pair of replicas. We say that the replicated data type satisfies strong
eventual consistency if r and r′ are query equivalent whenever Hr(α) = Hr′(α)—
that is, for any query after α, r and r′ return the same values.
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Note that strong eventual consistency does not refer to the order in which up-
dates are applied at a particular replica. As long as the sets of updates applied
at two replicas are the same, the observable behaviour of the replicas is identical.
Commutative replicated data types (CmRDTs) [2,3] are a class of replicated data
types that satisfy strong eventual consistency by construction. The definition of
CmRDTs ensures that replicas do not need to detect or resolve conflicts. The
following characterization of CmRDTs is from [3].

Definition 5 (CmRDT) A replicated data type is said to be a commutative
replicated data type (CmRDT) iff for any pair of update operations u, u′ if u ‖ u′

then u and u′ are commutative. If u
hb−→ u′ then at every replica, the effect of u

is applied before applying the effect of u′.

The recent paper [6] provides a comprehensive declarative framework for
specification of a large class of replicated data types. The framework is very
general and accommodates a wide variety of data stores. For instance, it allows
reasoning about data stores with multiple replicated objects, with arbitrary de-
livery patterns for messages. The variety of features permitted in the declarative
framework render it impractical for effective verification of CmRDTs. Retaining
the core idea from [6], we provide the specifications of CmRDTs in terms of
standard labelled partial orders [9, 10] in the next section.

3 Labelled partial orders models for replicated data types

Let (α,ϕ) be a run of a replicated data type. We define Eα to be the set of events
associated with send and receive operations in α.
Eα = {ei | 0 ≤ i < |α|,Op(α[i]) ∈ U ∪ {receive}}. Each ei ∈ Eα corre-

sponds to some operation α[i] in α. We define Rep(ei), Op(ei) and Args(ei) to
be Rep(α[i]), Rep(α[i]) and Args(α[i]).

We extend ϕ to Eα as follows. For ei ∈ Eα, let α[i] be the corresponding event
in α. If α[i] ∈ U , recall that α[i+1] is assumed to be the send event where the
effect of this update is broadcast to all other replicas. We define ϕα(ei) = {ej |
j ∈ ϕ(i+1)}. Further, we define ϕr,α(ei) = ej if ej ∈ ϕα(ei) ∧ Rep(ej) = r.

For a replica r, let Erα = {e ∈ Eα | Rep(e) = r}. Since each replica is
sequential, all events in Erα are totally ordered. Let ≤rα denote this total order
on Erα. We define �α to be the smallest partial order on Eα such that:

– For any replica r, and any pair of events e, e′ ∈ Erα, e ≤rα e′ =⇒ e �α e′.
– For any event e ∈ Eα with Op(e) = receive, ϕ−1

α (e) �α e.

We say that a pair of events e, e′ ∈ E are concurrent (denoted by e ‖ e′)
when neither e � e′ nor e′ � e.

Definition 6 (Trace) A run (α,ϕ) gives rise to an associated labelled partial
order (Eα, ϕα,�α). We shall use the term trace (borrowed from the theory of
Mazurkiewicz traces [9]) to refer to this labelled partial order.
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We usually drop the subscript α and assume that the trace that we refer to
has an associated run α. Recall that we have assumed that messages are delivered
in causal order. This can be formalized in the trace framework as follows:

∀ei, ej ∈ E : ( Op(ei) = Op(ej) = receive ∧
Rep(ei) = Rep(ej) ∧ ϕ−1(ei) � ϕ−1(ej) ) =⇒ ei � ej .

Definition 7 (Subtrace) Let t = (E , ϕ,�) be a trace. Each subset E ′ ⊆ E
defines a subtrace tE

′
= (E ′, ϕ′,�′) where ϕ′ = ϕ|E′ and �′=� |E′ .

Note that a subtrace can have “holes”—we could have three events e � e′ � e′′
in t and a subtrace t′ containing {e, e′′} but not e′.

If X is a predicate that defines the subset E ′ ⊆ E then tX denotes the
subtrace tE

′
. As special cases, tU and treceive respectively denote the subtraces

consisting of only the update events and receive events in t, respectively. We
shall denote by EU and Ereceive their respective event sets. For a pair of traces
t and t′, the notions t ⊆ t′, t ∪ t′ and t ∩ t′, are defined in the standard manner.
For t = (E , ϕ,�), we write e ∈ t to mean that e ∈ E .

Definition 8 (Downward Closure) Let t = (E , ϕ,�) be a trace. A subset
E ′ ⊆ E is said to be downward closed if ∀e, e′ ∈ E : (e � e′ ∧ e′ ∈ E ′ =⇒ e ∈ E ′)

In particular, for an event e, the downward closure of e is defined to be the
set ↓e = {e′ ∈ E | e′ � e}.

Clearly, the entire set of events E is downward closed. Also, if E ′ and E ′′ are
downward closed subsets of E , then so are E ′∪E ′′ and E ′∩E ′′. If E ′ is a downward
closed set and E ′′ is the set of maximal events in E ′, then E ′ =

⋃
e∈E′′ ↓e.

Definition 9 (Ideal) Let t = (E , ϕ,�) and E ′ ⊆ E. The subtrace tE
′

is said to
be an ideal if E ′ is downward closed.

In particular, if E ′ = ↓e for some e ∈ E, then we refer to the ideal tE
′

as the
prime trace generated by e and denote it by te.

Definition 10 Let t = (E , ϕ,�) be an ideal. Then,

– Events(t) denotes E, the set of events in t.

– Count(t) = |Events(t)| denotes the number of events in E.

– maxSet(t) denotes the set {e ∈ E | @e′ ∈ E : e � e′} of maximal events in t.

– For a replica r, the maximal r event in t, denoted by max r(t), is an event
e such that Rep(e) = r and ∀e′ ∈ E : Rep(e′) = r =⇒ e′ � e. (Note that
max r(t) is always defined since the event corresponding to the initialization
operation I is an r event for every replica r.)

– The r-view of t is the ideal generated by max r(t) and is denoted by ∂r(t).

– The latest r′ event that r is aware of in the ideal t, denoted by latestr→r′(t)
is defined to be max r′(∂r(t)).
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The behaviour of a replicated data type is the set of traces that it generates.
Note that this set is downward closed—if a trace t is present in the set then all
ideals in t are also present in the set. We shall denote this set by T . We let Tp
denote the set of all prime traces in T . In the trace framework, the definitions
of happened-before and concurrency are straightforward.

Definition 11 (Happened Before and Concurrency) Let t = (E , ϕ,�) be
a trace with events e and e′ that are associated with update operations u and

u′, respectively. Then u is said to have happened before u′, denoted u
hb−→ u′, if

e � e′, and u and u′ are said to be concurrent if neither e � e′ nor e′ � e.

We can now reformulate strong eventual consistency (SEC) as follows.

Definition 12 (Strong Eventual Consistency(SEC)) Let t be a trace and
let r, r′ be a pair of replicas. We say that the replicated data type satisfies
strong eventual consistency if the replicas r and r′ are query equivalent whenever
Events(∂r(t)

U ) = Events(∂r′(t)
U ).

Note that strong eventual consistency refers only to the subtraces ∂r(t)
U and

∂r′(t)
U defined by the updates events in the r and r′ views of t. These views

may have different sets of receive events.
We now show how we can specify CmRDTs in the framework of traces.

3.1 Specifications of CmRDTs

The internal state of a replicated data type is exposed to the client via queries.
Hence, a specification framework for a CmRDT should provide mechanisms for
uniformly defining the behaviour of any query operation that is applied at replica
at any stage of the computation, based on the update operations in the history
of the replica at that stage. Note that in the framework of traces, the history
of a replica corresponds to the update events in view of the replica, which is
a prime trace. Hence, we define the specification of a CmRDT with respect to
prime traces.

Definition 13 (Declarative Specification) Let D = (V,Q,U) be a CmRDT.
Let A =

⋃
q∈QArgs(q). The specification of D, is a function SpecD : Q×A×Tp →

V which determines the return value of any query q ∈ Q in any prime trace
t ∈ Tp.

We highlight the key differences between our declarative specification and
the one proposed in [6]. Since messages in CmRDTs are causally delivered, the
� relation in the trace framework captures both the visibility relation vis and
the replica order relation ro from [6]. However, while � is a partial order, vis
is only defined to be an acyclic relation over the events, while ro is the union
of total orders that is recovered by restricting � to events of the same replica.
In [6], the execution context of an event is defined to be the set of all events that
are visible to the event. The specification defines the return value of each query
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in every execution context. In the trace framework, the execution context for an
event is the ideal generated by that event.

We now provide declarative specifications for a few CmRDTs in the frame-
work of traces.

PN counters A PN counter maintains a counter by keeping track of the number
of increments and decrements it receives. A query should return the latest count
that a replica is aware of.

– U = {Inc,Dec}
– Q = {Fetch} and arity(Fetch) = 0
– Specification: Let t be a trace. Let I = {e ∈ t | Op(e) = Inc} and D =
{e ∈ t | Op(e) = Dec}. In any prime trace t,

SpecCounter (Fetch,⊥, t) = Count(tI)− Count(tD)

MV registers An MV register is a read-write register that on a read, returns
the values of the latest (possibly concurrent) writes.

– U = {Write}
– Q = {Read} and arity(Read) = 0
– Specification: Let W = {e ∈ t | Op(e) = Write}. In any prime trace t,

SpecMVReg(Read ,⊥, t) =
⋃

Args(maxSet(tW ))

OR sets An OR set is a distributed set that follows the “add-wins” semantics
for concurrent adds and deletes of the same element.

– U = {Add ,Delete}
– Q = {Contains} and arity(Contains) = 1
– Specification: For an element x ∈ V, define a predicate Ux = {e ∈ t | x ∈

Args(e)}. In any prime trace t,

SpecORSet(Contains, (x), t) = True ⇐⇒ ∃e ∈ maxSet(tUx) : Op(e) = Add

In the next section, we discuss how declarative specifications in terms of
labelled partial orders can be used to obtain bounded implementations for a
class of well-behaved CmRDTs.

4 Bounded CmRDTs

In this section we discuss sufficient conditions for replicated data types to have
a bounded implementation.

Definition 14 We say that an implementation of a CmRDT is bounded if the
information maintained by every replica and the contents of each message prop-
agating an update are bounded, regardless of the length of the computation.
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Finite state implementations have played an important role in formal verifica-
tion of reactive systems. We shall see later that they can be used for verification
of replicated data types as well. We use the example of OR-Sets to discuss the
challenges involved in arriving at a bounded implementation.

Observe that if the universe V of an OR-Set is unbounded, we cannot hope
to achieve a bounded implementation since we need labels of unbounded size to
name the elements in V, even if the size of the actual set is bounded. Hence, we
assume that V is bounded, in order to achieve a bounded implementation.

If the size of V is bounded by K, then the number of unique queries is
also bounded by K. In the OR-Set specification, for an element x ∈ V, the
query contains(x) requires only the maximal x-events present in the view of the
replica. The number of such maximal x-events is bounded by N . This implies
that the number of events required to answer a query at any point in time is
bounded by KN . Thus, in a reference implementation, it suffices to keep track
of only this finite fragment of the partial order at any replica. Replicas can purge
from their view events that are no longer relevant for answering any queries.

However, this requires the causal order between the relevant events to be
correctly maintained by the replicas. Typically, vector clocks have been used to
track causality among the events of a distributed system. However, vector clocks
grow monotonically as the computation progresses. Hence, any implementation
that uses vector clocks cannot be bounded.

Earlier work such as [7, 11] has implemented bounded timestamping in dis-
tributed systems by solving what is known as the gossip problem. In the next
section, we present a generalized version of the gossip problem and provide a
bounded solution to it. We then use the bounded solution to arrive at a bounded
implementation for a class of well behaved replicated data types.

5 Generalized Gossip Problem

Consider a distributed system with N replicas. Whenever a replica interacts
with a client, it does some local processing and broadcasts a message to all the
other replicas. This is similar to the behaviour of CmRDTs described earlier.
Suppose now that every replica keeps track of the latest event it knows about
every other replica in the system. During a broadcast, along with the message,
each replica r also sends across its knowledge about the latest event of every
other replica r′ in the system. A recipient r′′ needs to correctly compute for
every replica r′ whether its knowledge of the latest r′ event is more up to date
than the knowledge of r′ that it has received from r. This is known as the gossip
problem, and has been studied in [7, 11].

In the generalized gossip problem, instead of maintaining just the latest
events, we assume that every replica keeps track of a bounded subtrace of its
view which we refer to as the primary information.

Definition 15 (Information graphs) An information graph G of a trace t =
(E ,�, ϕ) is a subtrace tE where E ⊆fin EU . We denote the set of all information
graphs of t by G(t). Let G =

⋃
t∈T G(t).
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Definition 16 (Primary information) A primary information function is a
function f : Tp → G that assigns an information graph to each prime trace so
that the following conditions are satisfied.

– f(t) ∈ G(t).
– For any trace t = ↓e and e′ ∈ maxSet(t \ {e}), f(t) ∩ ↓e′ ⊆ f(↓e′).

A primary information function f is said to be bounded if ∃M ∀t : |f(t)| ≤M .

Our goal is to ensure that f(↓e) can be computed from f(↓e1), . . . , f(↓en) and
e, where {e1, . . . , en} = maxSet(↓e \ {e}). We refer to this as the (generalized)
gossip problem for a primary information function f . Observe that even if
f(t) is a bounded set for every t, we still need an unbounded set of labels to
unambiguously identify the events.

We say that the gossip problem for f has a bounded solution if we can update
f using a bounded set of labels to identify the events. Clearly we must ensure
that no two distinct events in the primary information have the same labels.
Hence, each replica needs to identify which of its events are in the primary
information of other replicas. To capture this, we define secondary information.

Definition 17 (Secondary information) A function F : R × Tp → 2(E0)

(E0 =
⋃
t∈Tp Events(t)) is a secondary information function for a primary in-

formation function f if, for each prime trace t = ↓e:

1. Events(f(∂r(t))) ∩ EU ⊆ F (r, t) ⊆ Events(t) ∩ Er.
2. F (r, t) = F (r, ↓ max r(t)) if e is not an r-event.
3. F (r, t) is computable from e,

⋃
e′∈maxSet(↓e\{e}) F (Rep(e′), ↓e′) and f(t), if

e is an r-event.
4. If e and e′ are r-events such that e′ ∈ ↓e \ F (r, ↓e), then for any r′ and t′,

e ∈ ∂r′(t′) =⇒ e′ 6∈ f(∂r′(t
′)).

5. For an r-event e′ ∈ t \F (r, t), if e′ ∈ f(↓e′′), then ϕr′′(e
′′) ∈ ∂r(t) for all r′′.

A secondary information function F is said to be bounded if ∃M ∀r ∀t :
|F (r, t)| ≤M .

The first three conditions are straightforward: they say that F is locally updat-
able and that it subsumes f . The fourth condition states, in essence, that r can
reuse the label of an event e′ that has left F (r, t) for a new event e, since at the
point when another replica r′ receives e, e′ would have moved out of its primary
information, so there is no ambiguity in the labelling. The last condition is subtle
and crucial for the next proof. It states that if r has generated a label for an
event e′ and potentially reused it for a later event after e′ leaves F (r, t), then
there is no update event e′′ by another replica r′ that could potentially send this
reused label later to an agent. In other words, such sends have been delivered to
all replicas before r reuses the label.

Theorem 18 (Bounded solution for gossip). Let f be a primary informa-
tion function such that the gossip problem for f has a solution. It has a bounded
solution if there is a bounded secondary information function F for f .
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Proof. Let the gossip problem for f have a solution, and let the bound on F be
M . Clearly M + 1 labels suffice to label each event in F (r, t) uniquely, for any
t. We fix a label set L of size M + 1. For any t, we label events in F (r, t) with
pairs (r, `), such that ` ∈ L. We also maintain a marking function that identifies
events in f(t), and the ordering ≺ restricted to f(t). As a trace progresses, we
can reassign an unused label (there is at least one) to each new event in the
set F . Since both f and F after each event e are computable from the values
of f and F at the maximal r events in t, the marking and ordering can also be
updated.

Finally, replica r can reuse labels for events in F (r, t) without fear of confusion
because of condition 4 in the definition of secondary information. If e′ and e are
two r update events with e′ ≺ e that are assigned the same label (r, `), then
clearly e′ ∈ t \F (r, t). When r′ receives the event e (let us say this receive event
is e1 and t′ = ↓e1), e′ 6∈ f(∂r′(t

′)) = f(t′). Thus r′ can decide if the received
event is new or old by referring to the f at the receive event.

Let e′ and e be r-update events such that t =↓e and e′ ∈ t \F (r, t). Suppose
r uses the same label (r, `) for e and e′. A replica r′′ can receive an event with
label (r, `) from a replica r′ 6= r. This means that there is an r′-event e′′ such
that e′ ∈ f(↓e′′). (Note that replicas communicate their primary information
to others.) But condition 5 ensures that ϕr′′(e

′′) ∈ ∂r(t), so this send happens
before the label (r, `) is reused.

Thus there is no ambiguity caused either by sends by the same replica or by
sends by different replicas. This shows that a bounded secondary information
function implies a bounded labelling solution. ut

5.1 Bounded Solution

In the gossip problem considered in [7,11], the primary information f at t is the
set {max r′(∂r(t)) | r, r′ ∈ R} along with some more information that ensures
that the gossip problem for f is solvable. A bounded solution for f is provided
in [11] when f itself is bounded, but under additional restrictions on the traces
of the system. A notion of acknowledgements is introduced, and all traces of the
system are required to have at most B unacknowledged messages.

In [11], replicas piggyback acknowledgements to previously received messages
in their subsequent broadcasts. Hence, the bound on unacknowledged messages
requires that replicas communicate with each other at regular intervals. Such a
solution would not work in CmRDTs, because replicas broadcast messages only
when they interact with a client. Hence, we need a stronger guarantee from the
underlying messaging system. One such condition is defined below.

Definition 19 (B-concurrency) A trace t is B-concurrent if for every e ∈
t, |{e′ ∈ t | e′ ‖ e}| ≤ B. A system is B-concurrent if all its traces are B-
concurrent.

The following theorem is the main result in this section. It implies (in conjunc-
tion with Theorem 18) that for a B-concurrent system and a bounded primary
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information function f , if the gossip problem for f has a solution, then it has a
bounded solution.

Theorem 20. If f is a bounded primary function defined on a B-concurrent
system, there is a bounded secondary information function for f .

Proof. Let the bound on f be M . To define the function F , we need the notion
of recent updates. An r-update event e is recent (in a trace t) if e ∈ f(∂r(t))
or there are at most B r-updates after e in ∂r(t). We define the function F as
follows: F (r, t) = {e ∈ ∂r(t) | e is a recent r-update event}.

Clearly |F (r, t)| ≤ M + B + 1 for any r and t, and conditions 1, 2 and 3 in
the definition of secondary information function easily hold.

Condition 4 is relatively simple. e′ ∈ (↓e \ F (r, ∂r(↓e))) implies that e′ 6∈
f(∂r(↓e)). Hence for any t′ such that e ∈ ∂r′(t

′), by definition of a primary
information function, it is the case that e′ 6∈ f(∂r′(t

′)).
Condition 5 is proved as follows. If e′ ∈ t\F (r, t), then there areB+1 r-update

events after e′. Suppose there is e′′ with e′ ∈ f(↓e′′) such that ϕr′′(e
′′) 6∈ ∂r(t),

for some replica r′′. Then there are more than B events concurrent with e′′,
which contradicts B-concurrency.

Thus whenever f is a primary information function with a bound M in a
B-concurrent system, there is a secondary information function F for f with
bound M +B + 1. ut

5.2 Bounding CmRDTs using Generalized Gossip Problem

Definition 21 Let D = (V,Q,U) be a CmRDT. We say that a function fD :
Tp → T is a specification-subtrace function iff:

∀q ∈ Q ∀t ∈ Tp ∀args ∈ Varity(q) : SpecD(q, args, t) = SpecD(q, args, fD(t))

Thus, a specification-subtrace function picks for every prime trace a subtrace
that is sufficient to answer every query of the CmRDT, as per its specification.
The identity map is a trivial specification-subtrace function for any CmRDT.

We now provide a sufficient condition for a CmRDT to have a bounded
implementation.

Theorem 22. A CmRDT D = (V,Q,U) has a bounded implementation in
a distributed system whose underlying network guarantees B-concurrent traces
if there exists a locally computable specification-subtrace function fD that is a
bounded primary information function

Proof. From Theorem 20, we know that the generalized gossip problem has a
bounded solution in a distributed system whose traces are B-concurrent. The
bounded solution for the gossip problem with primary information function
fD maintains at every replica r in any trace t, fD(∂r(t)). Since fD is also a
specification-subtrace function for D, by definition, the information maintained
is sufficient to answer every query correctly as per the specification of D.
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Thus, whenever a replica gets an update request u(args) from the client, it is
sufficient if it annotates the new event e with u(args) and invokes the bounded
solution to the generalized gossip problem. Also, it is sufficient to implement
each query operation q ∈ Q as per the specification of SpecD(q, args, fD(∂r(t))).
This provides a bounded implementation for D. ut

Let us revisit the case of OR-Sets for which |V| ≤ K.

Definition 23 Let t ∈ Tp be any prime-ideal of an OR-Set. Let E(x, t) =
{e ∈ t | Args(e) = x ∧Op(e) ∈ U}. Let

E(t) = {
⋃
r∈R

max r(t
U )} ∪

⋃
x∈V

maxSet(∂r(t)
E(x,t)).

We define fORSet(t) = tE(t).

From the definition of fORSet and the specification of OR-Sets presented
earlier in Section 3, the following result is evident:

Lemma 24. fORSet is a specification-subtrace function for OR-Sets.

We show that fORSet is a bounded primary information function.

Lemma 25. fORSet is a computable bounded primary information function.

Proof. In the following proof, we drop the subscript ORSet from fORSet and use
f , for ease of presentation.

Let t ∈ Tp be any prime ideal.
From the definition, f(t) is a subtrace of t consisting of only the maximal U

events corresponding to each element x ∈ V along with the maximal r-update
events for each replica r. Thus, f(t) ∈ G(t).

Let t = ↓e and e′ ∈ maxSet(t \ {e}). Let t′ = ↓e′. Now, an event e′′ ∈ f(t) iff
∃r ∈ R such that e′′ is an r-maximal update event in t or ∃x ∈ V such that e′′

is a maximal x-event in t. For an e′′ ∈ t′, since t′ ⊆ t, it is clear that if e′′ is a
maximal x-event in t then, e′′ is also a maximal x-event in t′. Similarly if e′′ ∈ t′
and e′′ is an r-maximal update event in t then e′′ is an r-maximal update event
in t′. Thus, e′′ ∈ f(t′). Hence, f(t) ∩ t′ ⊆ f(t′).

Thus we have shown that f is a primary information function.
For each replica r, there is one maximal r-update event in any trace t. For

each element x, there can be at most N maximal x-events in any prime ideal t.
Since |V| ≤ K, there can be at most KN events corresponding to the maximal
update events. Thus, in any prime ideal t, |f(t)| ≤ KN , so f is bounded.

Finally to show that f admits a solution to the generalized gossip problem, we
establish that f(t) can be locally computed from e, and

⋃
e′∈maxSet(t\{e}) f(↓e′).

We introduce the following notation which will be used below: For any prime
trace t′′, we write f(t′′) = (E′′,→′′) to denote that the set of events in f(t′′) is
E′′ and the trace order restricted to E′′ in f(t′′) is →′′.

Now, let Rep(e) = r. We consider the following cases:
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Case e is an x-update event: Let {e′} = maxSet(t \ {e}). Let t′ = ↓e′, with
f(t′) = (E′,→′). Let Em = {e}∪E′ and→m =→′∪{(e′′, e) | e′′ ∈ E′}, with
tm = (Em,→m). It is easy to see that if e′′ ∈ f(t) then e′′ ∈ Em. Moreover,
since f(t′) ∈ G(t′) and t′ ⊆ t, the ordering on events of f(t′) is given by →′
which is consistent with their ordering in t. Finally e is a maximal event in
t and hence is above other event in Em. Both these are captured in →m.
Hence we can compute f(t) by picking the subtrace of tm containing the
maximal r′ events for every r′ ∈ R and maximal y events for every y ∈ V.
Thus f(t) can be computed from f(t′) and e.

Case e is a receive event: Let {e′, e′′} = maxSet(t \ {e}). Let Rep(e′) = r
and Rep(e′′) = r′ Let t = ↓e, t′ = ↓e′ and t′′ = ↓e′′. We let f(t′) = (E′,→′)
and f(t′′) = (E′′,→′′).
By causal delivery, every event e′′′ ∈ t′′ \ {e′′} is already in t′. So if such
an e′′′ 6∈ f(t′) then e′′′ 6∈ f(t). Also, any event e′′′ ∈ (f(t′) ∩ t′′) \ f(t′′)
is not going to feature in f(t), from the definition of primary information.
Such an event can be identified correctly in f(t′) since it will be the case
that (e′′′,max r′(t

′)) ∈→′. Thus, the events required to compute f(t) are
Em = {e′′} ∪ E′ \ {e′′′ | e′′′ = max r′(t

′) ∨ e′′′ →′ max r′(t
′)}. Let →m=

(Em×Em)∩ (→′ ∪ →′′). Then, f(t) can be computed from tm = (Em,→m)
by picking the subtrace from tm consisting of the maximal r′′ events from
every replica r′′ and maximal x-events for every element x ∈ V. Thus f(t)
can be computed from f(t′), f(t′′) and e. ut

Hence, from Lemmas 24 and 25 we can conclude that an OR Set with a
bounded universe has a bounded implementation in a distributed system whose
underlying network guarantees B-concurrent traces.

We present the bounded implementation for OR-Sets via a bounded solution
for the generalized gossip problem in Algorithm 1 (page 18). The algorithm
stores the relevant information view of a replica in (V, P ). It uses a free set of
labels F which can be used to label a new update event at the replica and a
retired set of labels R (line 4) which keeps track of the labels that are no longer
relevant but might still be active in the system.

Lines 9–19 describe the generateNode() method that generates a new node
corresponding to the latest update event (Line 38). This method picks an unused
label from F (line 12) and increments the retired-duration of the labels in R (line
13). The labels which have been in the retired set for a duration of B-sends can
be recycled (Lines 15, 16). The node consists of the replica id, the label and the
private information that the client would have passed on to the replica (Line 18).
We shall later see that this private information will be the name of the update
function as well as the argument to it.

Helpers getRep() and getLabel() return the replica id and the label asso-
ciated with a node, respectively (Lines 21–29). Helper getMaximal() returns
the maximal events in the partial order (V ′, P ′) (Lines 31–35).

The send() method (Lines 37–41) creates a new node and computes the new
partial order with this new node as the maximal node (Lines 38–40). It locally
recomputes the value of the primary information (Line 41) and then broadcasts
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the updated partial order to all the other replicas (Line 42). The receive()
method recomputes the relevant information based on the new information that
the replica has received.

recomputeRelevant() method merges the relevant information at the
replica along with the updated partial order that it has received and recom-
putes the relevant information from this new subtrace (Line 49). It then records
the nodes that were present in the relevant information prior to recomputing
but are no longer present (Line 53 and 54). It retires the labels corresponding to
these nodes (Line 55). Finally it updates its primary information with the one
that was computed in Line 50 (Line 56).

The second part of the algorithm describes how OR Sets can be implemented
using the bounded solution to the gossip problem. Whenever a replica receives
an update request from the client, it invokes the send() method with the up-
date name and the argument as the private information (Lines 18–22). Lines
9–20 implement the specification-subtrace function for OR-Set that retains only
the maximal events corresponding to each element of the universe along with
the maximal events corresponding to each replica in the system. Lines 28–34
implement the exists query method that returns True if there is at least one
maximal node corresponding to the x that was added due to an add update
operation.

6 Applications to verification

A bounded reference implementation can be used for verification. We outline
two scenarios in which such an implementation is useful.

CEGAR Counterexample Guided Abstraction Refinement, or CEGAR, is an
iterative technique to verify reachability properties of software systems [12]. In
the CEGAR approach, one uses abstraction techniques from program analysis
and other domains to build a finite-state abstraction of a given implementation.
This abstraction is designed to over-approximate the behaviour of the original
system.

The finite-state approximation is run through a model-checker to verify if
the safety property is met. If no unsafe state is reachable, it means that the
original system is safe since the abstracted system over-approximates the actual
behaviour. On the other hand, if the model-checker asserts that an unsafe state
is reachable, the counterexample generated by the model-checker is executed on
the original system. If the counterexample is valid, a bug has been found. If the
counterexample is infeasible, the abstraction was too coarse and a refinement of
the abstraction is calculated. This process is iterated until a safe abstraction is
reached or a valid bug is detected.

As we have noted, implementations of replicated data types need to keep
track of metadata about past operations in order to reconcile conflicts. These
are typically done using unbounded objects such as counters or vector clocks. To
apply CEGAR to such an implementation, we can derive a finite state abstraction
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and run it synchronously with our bounded reference implementation. We can
characterize each reachable state of the abstraction as legal or illegal depending
on whether or not it is query equivalent to the reference implementation. We
can then follow the usual CEGAR methodology outlined above.

Testing of distributed systems While verification approaches such as CE-
GAR can be used in a white box setting where we have access to internal details
of the implemenation under test, in a black box scenario we have to rely on
testing.

Effective testing of distributed systems is a challenging task. The first prob-
lem is that we cannot typically test the system globally, so we have to apply
tests locally using notations such as TTCN [13]. Even when such a methodology
is available, there are two criteria that are difficult to establish for test suites:
coverage and redundancy. In both cases, the main source of complexity is the
presence of concurrency. In a concurrent system, it is very difficult to estimate
if a test suite covers a reasonable set of reachable global states because of many
different linearizations possible. Secondly, it is not obvious to what extent tests
are overlapping, again because of reordering of independent events.

For the coverage problem, we can construct test suites that cover different
portions of the state space of the reference implementation. If this coverage is
widespread, we can have more confidence in the coverage of the implementation
under test. For redundancy, once again we can use the underlying independence
relation to identify when two tests overlap by checking how much the corre-
sponding traces overlap as partial orders. In the replicated data type scenario,
we may in fact want to generate redundant test cases that differ only in the
order of concurrent events in order to validate eventual consistency.

7 Conclusion and Summary

The theory of replicated data types is still at a formative stage. In early work [2,3]
eventually consistent replicated data types have been specified operationally, in
terms of a proposed implementation. This often leaves the actual behaviour of
the data type unclear under different combinations of concurrent updates.

This deficiency has been addressed in [6], which introduces a theory of declar-
ative specifications for replicated data types. However, the model proposed in [6]
is very general and hence ineffective for actual verification.

Most practical distributed systems provide strong guarantees on the underly-
ing message subsystem, such as causal delivery. In fact, causal delivery is assumed
to hold for the implementations described in [2, 3]. If we assume causal deliv-
ery, we have shown that we can drastically simplify the declarative framework
proposed in [6] and work with standard labelled partial orders.

Borrowing ideas from Mazurkiewicz trace theory, we have formulated a gen-
eralization of the gossip problem and shown that this can be used to derive
bounded implementations for replicated data types, provided we have an addi-
tional guarantee of bounded concurrency. Though bounded concurrency seems
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like a very strong property, it is automatically achieved if we combine causal
message delivery with bounded message delays. The only complication that can
arise is from a replica crashing. However, if we assume that when a replica wakes
up from a crash, it first processes all pending receive actions before initiating any
sends, we retain bounded concurrency. Note that causal delivery is also infeasible
if we do not make similar assumptions about how a crashed process recovers.

Our main contribution is a systematic approach to construct bounded refer-
ence implementations for replicated data types. We have argued that this kind
of implementation is useful for both verification and testing.

In future work, we would like to explore further benefits of declarative spec-
ifications for replicated data types. In particular, one challenging problem is to
develop a theory in which we can compose such specifications to derive complex
replicated data types by combining simpler ones.
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Algorithm 1 Bounded Reference Implementation

Bounded Reference Implementation

1 V : Set of nodes
2 P : Partial order on V
3 F : Set of available labels.
4 R: Set of pair of retired labels and

a modulo B+1 counter.
5 // E captures the relation ≺
6 // Each replica stores a copy of

V , E, F and R
7 initially ∅, ∅,L, ∅
8
9 helper generateNode(priv):

10 Returns v ∈ N
11 Let l ∈ F
12 Let F := F \ {l}
13 Let R′ := {(l′, c′ + 1) | (l′, c′) ∈ R}
14 Let F ′ := {(l′, c′) ∈ R′ | c′ = B}
15 R := R′ \ F ′

16 F := F ∪ {l′ | (l′, c′) ∈ F ′}
17 Let rep := myID()
18 Let v′ := (l, rep, priv)
19 return v′

20
21 helper getRep(v):
22 Returns the replica associated with a Node.
23 Let v = (l, r, p)
24 return r
25
26 helper getLabel(v):
27 Returns the replica associated with a Node.
28 Let v = (l, r, p)
29 return l
30
31 helper getMaximal(V ′, P ′):
32 Returns the set of maximal nodes in the

partial order
33 Let V max := {v ∈ V ′ |
34 ¬∃v′ ∈ V ′ : (v, v′) ∈ P ′}
35 return V max

36
37 generic send(priv):
38 Let v′ := generateNode(priv)
39 Let V ′ := V ∪ {v′}
40 Let P ′ := P ∪ {(v, v′) | v ∈ V }
41 recomputeRelevant(V ′, P ′)
42 Broadcast (V ′, P ′) to all other replicas
43
44 generic receive(V ′, P ′):
45 recomputeRelevant(V ′, P ′)

46 helper recomputeRelevant(V ′, P ′):
47 // Recomputes the relevant information
48 // in the partial order (V ∪ V ′, E ∪ P ′)
49 // and retires the irrelevant labels.
50 Let (V ′′, P ′′) := f(V ∪ V ′, P ∪ P ′)
51 Let {v′} := getMaximal(V ′, P ′)
52 Let rep := myId()
53 Let L := {getLabel(v) |
54 v∈V ∪ {v′}\V ′′, getRep(v)=rep}.
55 Let R := R ∪ {(l, 0) | l ∈ L}
56 (V, P ) := (V ′′, P ′′)

OR Set

1 helper getOp(v):
2 Let v = (l, r, (opname, x))
3 return opname
4
5 helper getArgs(v):
6 Let v = (l, r, (opname, x))
7 return x
8
9 helper fORSet (V

′, P ′):
10 For x ∈ V:
11 Let Vx := {v ∈ V ′ | getArgs(v) = x}
12 Let Px := P ′′ ∩ (Vx × Vx)
13 Let V max

x := getMaximal(Vx, Px)
14 For r ∈ R:
15 Let Vr := {v ∈ V ′ | getRep(v) = r}
16 Let Pr := P ′′ ∩ (Vr × Vr)
17 Let V max

r := getMaximal(Vr, Pr)
18 Let V ′′ :=

⋃
x∈V V

max
x ∪

⋃
r∈R V max

r

19 Let P ′′ := P ′ ∩ (V ′′ × V ′′)
20 return (V ′′, P ′′)
21
22 update add(x):
23 send((add, x))
24
25 update delete(x):
26 send((delete, x))
27
28 query exists(x):

29 Let V add
x := {v ∈ V |

getArgs(v) = x ∧ getOpv = add}
30 If V add

x 6= ∅:
31 Then
32 return True
33 Else:
34 return False
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