
Optimized OR-Sets Without Ordering
Constraints

Madhavan Mukund ?, Gautham Shenoy R??, and S P Suresh

Chennai Mathematical Institute, India
{madhavan,gautshen,spsuresh}@cmi.ac.in

Abstract. Eventual consistency is a relaxation of strong consistency
that guarantees that if no new updates are made to a replicated data ob-
ject, then all replicas will converge. The conflict free replicated datatypes
(CRDTs) of Shapiro et al. are data structures whose inherent mathemat-
ical structure guarantees eventual consistency. We investigate a funda-
mental CRDT called Observed-Remove Set (OR-Set) that robustly im-
plements sets with distributed add and delete operations. Existing CRDT
implementations of OR-Sets either require maintaining a permanent set
of “tombstones” for deleted elements, or imposing strong constraints such
as causal order on message delivery. We formalize a concurrent specifica-
tion for OR-Sets without ordering constraints and propose a generalized
implementation of OR-sets without tombstones that provably satisfies
strong eventual consistency. We introduce Interval Version Vectors to
succinctly keep track of distributed time-stamps in systems that allow
out-of-order delivery of messages. The space complexity of our general-
ized implementation is competitive with respect to earlier solutions with
causal ordering. We also formulate k-causal delivery, a generalization of
causal delivery, that provides better complexity bounds.

1 Introduction

The Internet hosts many services that maintain replicated copies of data across
distributed servers with support for local updates and queries. An early exam-
ple is the Domain Name Service (DNS) that maintains a distributed mapping
of Internet domain names to numeric IP addresses. More recently, the virtual
shopping carts of online merchants such as Amazon also follow this paradigm.

The users of these services demand high availability. On the other hand, the
underlying network is inherently prone to local failures, so the systems host-
ing these replicated data objects must be partition tolerant. By Brewer’s CAP
theorem, one has to then forego strong consistency, where local queries about
distributed objects return answers consistent with the most recent update [1].

Eventual consistency is a popular relaxation of consistency for distributed
systems that require high availability alongside partition tolerance [2–4]. In such

? Partially supported by Indo-French CNRS LIA Informel
?? Supported by TCS Research Scholarship

systems, the local states of nodes are allowed to diverge for finite, not necessarily
bounded, durations. Assuming that all update messages are reliably delivered,
eventual consistency guarantees that the states of all the replicas will converge if
there is a sufficiently long period of quiescence [2]. However, convergence involves
detecting and resolving conflicts, which can be problematic.

Conflict free replicated datatypes (CRDTs) are a class of data structures that
satisfy strong eventual consistency by construction [5]. This class includes widely
used datatypes such as replicated counters, sets, and certain kinds of graphs.

Sets are basic mathematical structures that underlie many other datatypes
such as containers, maps and graphs. To ensure conflict-freeness, a robust dis-
tributed implementation of sets must resolve the inherent non-serializability of
add and delete operations of the same element in a set. One such variant is
known as an Observed-Remove Set (OR-Set), in which adds have priority over
deletes of the same element, when applied concurrently.

The näıve implementation of OR-sets maintains all elements that have ever
been deleted as a set of tombstones [5]. Consider a sequence of add and delete
operations in a system with N replicas, in which t elements are added to the
set, but only p are still present at the end of the sequence because of intervening
deletes. The space complexity of the näıve implementation is O(t log t), which is
clearly not ideal. If we enforce causal ordering on the delivery of updates, then
the space complexity can be reduced to O((p+N) log t) [6].

On the other hand, causal ordering imposes unnecessary constraints: even
independent actions involving separate elements are forced to occur in the same
order on all replicas. Unfortunately, there appears to be no obvious relaxation of
causal ordering that retains enough structure to permit the simplified algorithm
of [6]. Instead, we propose a generalized implementation that does not make any
assumptions about message ordering but reduces to the algorithm of [6] in the
presence of causal ordering. We also describe a weakening of causal ordering that
allows efficient special cases of our implementation.

The main contributions of this paper are as follows:

– We identify some gaps in the existing concurrent specification of OR-Sets
[6], which assumes causal delivery of updates. We propose a new concurrent
specification for the general case without assumptions on message ordering.

– We present a generalized implementation of OR-sets whose worst-case space
complexity is O((p+Nm) log t), where m is the maximum number of updates
at any one replica. We introduce Interval Version Vectors to succinctly keep
track of distributed-time stamps in the presence of out-of-order messages.

– We formally prove the correctness of our generalized solution, from which
the correctness of all earlier implementations follows.

– We introduce k-causal delivery, a delivery constraint that generalizes causal
delivery. When updates are delivered in k-causal order, the worst-case space
complexity of our generalized implementation is O((p+Nk) log t). Since 1-
causal delivery is the same as causal delivery, the solution presented in [6] is
a special case of our generalized solution.

2

The paper is organized as follows. In Section 2, we give a brief overview of
strong eventual consistency and conflict free replicated datatypes (CRDTs). In
the next section, we describe the näıve implementation of OR-Sets and the exist-
ing concurrent specification that assumes causal delivery. In Section 4, we pro-
pose a generalized specification of OR-sets along with an optimized implementa-
tion, neither of which require any assumption about delivery constraints. In the
next section, we introduce k-causal delivery and analyze the space-complexity
of the generalized algorithm. In Section 6, we provide a proof of correctness for
the generalized solution. We conclude with a discussion about future work.

2 Strong Eventual Consistency and CRDTs

We restrict ourselves to distributed systems with a fixed number of nodes (or
replicas). We allow both nodes and network connections to fail and recover in-
finitely often, but we do not consider Byzantine faults. We assume that when a
node recovers, it starts from the state in which it crashed.

In general, concurrent updates to replicas may conflict with each other. The
replicas need to detect and resolve these conflicts to maintain eventual consis-
tency. For instance, consider two replicas r1 and r2 of an integer with value 1.
Suppose r1 receives an update multiply(3) concurrently with an update add(2)
at r2. If each replica processes its local update before the update passed on by
the other replica, the copies at r1 and r2 would have values 5 and 9, respectively.

Conflict resolution requires the replicas to agree on the order in which to
apply the set of updates received from the clients. In general, it is impossible to
solve the consensus problem in the presence of failures [7]. However, there are
several eventually consistent data structures whose design ensures that they are
conflict free. To characterize their behaviour, a slightly stronger notion of even-
tual consistency called strong eventual consistency (SEC) has been proposed [8].

Strong eventual consistency is characterized by the following principles

– Eventual delivery: An update delivered at some correct replica will even-
tually be delivered to all correct replicas.

– Termination: All delivered methods are eventually enabled (their precon-
ditions are satisfied) and method executions terminate.

– Strong Convergence: Correct replicas that have been delivered the same
updates have equivalent state.

Strong convergence ensures that systems are spared the task of performing
conflict-detection and resolution. Datatypes that satisfy strong eventual con-
sistency are called conflict-free replicated datatypes (CRDTs).

Conflict-free Replicated DataTypes (CRDTs)

In a replicated datatype, a client can send an update operation to any replica.
The replica that receives the update request from the client is called the source

3

replica for that update. The source replica typically applies the update locally
and then propagates information about the update to all the other replicas. On
receiving this update, each of these replicas applies it in its current state.

Replicated datatypes come in two flavours, based on how replicas exchange
information about updates. In a state-based replicated data object, the source
replica propagates its entire updated state to the other replicas. State-based
replicated objects need to specify a merge operation to combine the current
local state of a replica with an updated state received from another replica to
compute an updated local state. Formally, a state-based replicated datatype is
a tuple O = (S, S⊥, Q, U,m) where S is the set of all possible states of the
replicated object, S⊥ is the initial state, Q is the set of all side-effect free query
operations, U is the set of all update-operations that source replicas apply locally,
and m : S × S → S is the merge function.

Propagating states may not be practical—for instance, the payload may be
prohibitively large. In such cases replicas can, instead, propagate update oper-
ations. These are called operation based (op-based) replicated datatypes. When
a source replica receives an update request, it first computes the arguments re-
quired to perform the actual update and sends a confirmation to the client. This
is called the update-prepare phase and is free of side-effects. It then sends the
arguments prepared in the update-prepare phase to all other replicas, including
itself, to perform the actual update. This phase modifies the local state of each
replica and is called the update-downstream phase. At the source replica, the
prepare and downstream phases are applied atomically. Formally, an op-based
replicated datatype is a tuple O = (S, S⊥, Q, V, P) where S, S⊥, and Q are as in
state-based replicated datatypes, V is the set of updates of the form (p, u) where
p is the side-effect free update-prepare method and u is the update-downstream
method, and P is a set of delivery preconditions that control when an update-
downstream message can be delivered at a particular replica.

We denote the kth operation at a replica r of a state-based or object-based
datatype by fkr and the state of replica r after applying the kth operation by
Skr . Note that for all replicas r, S0

r = S⊥. The notation S ◦ f is used to denote

the result of applying operation f on state S. The notation S
f−→ S′ is used to

denote that S′ = S ◦ f . The argument of the operation f is denoted arg(f).

A reachable state of a replica is obtained by a sequence of operations S0
r

f1
r−→

S1
r

f2
r−→ · · · f

k
r−→ Skr . The causal history of a reachable state Skr , denoted by H(Skr),

is the set of updates (for state-based objects) or update-downstream operations
(for op-based objects) received so far. This is defined inductively as follows:

– H(S0
r) = ∅.

– H(Skr) = H(Sk−1r) if fkr is a query operation or an update-prepare method.
– H(Skr) = H(Sk−1r)∪{fkr } if fkr is an update or update-downstream operation.
– H(Skr) = H(Sk−1r) ∪ H(S`r′) if fkr is a merge operation and arg(fkr) =

(Sk−1r , S`r′).

An update (p, u) at source replica r is said to have happened before an update
(p′, u′) at source replica r′ if ∃k : p′ = fkr′ ∧ u ∈ H(Sk−1r′). We denote this by

4

(p, u)
hb−→ (p′, u′) or simply u

hb−→ u′. Any pair of updates that are not comparable
through this relation are said to be concurrent updates. A pair of states S and S′

are said to be query-equivalent, or simply equivalent, if for all query operations
q ∈ Q, the result of applying q at S and S′ is the same. A collection of updates is
said to be commutative if at any state S ∈ S, applying any permutation of these
updates leads to equivalent states. We say that the delivery subsystem satisfies
causal delivery if for any two update operations (p, u) and (p′, u′),

(p, u)
hb−→ (p′, u′) =⇒ ∀r, k : (u′ ∈ H(Skr) =⇒ u ∈ H(Sk−1r)).

That is, whenever (p, u) has happened before (p′, u′), at all other replicas, the
downstream method u is delivered before u′.

A state-based replicated object that satisfies strong eventual consistency is
called a Convergent Replicated DataType (CvRDT). A sufficient condition for
this is that there exists a partial order ≤ on its set of states S such that: i)

(S,≤) forms a join-semilattice, ii) whenever S
u−→ S′ for an update u, S ≤ S′,

and iii) all merges compute least upper bounds [8].
Assuming termination and causal delivery of updates, a sufficient condition

for an op-based replicated datatype to satisfy strong eventual consistency is that
concurrent updates should commute and all delivery preconditions are compat-
ible with causal delivery. Such a replicated datatype is called a Commutative
Replicated DataType (CmRDT) [8].

In this paper we look at a conflict-free Set datatype that supports features
of both state-based and op-based datatypes.

3 Observed-Remove Sets

Consider a replicated set of elements over a universe U across N replicas Reps =
[0..N−1]. Clients interact with the set through a query method contains and
two update methods add and delete. The set also provides an internal method
compare that induces a partial order on the states of the replicas and a method
merge to combine the local state of a replica with the state of another replica. Let
i be the source replica for one of these methods op. Let Si and S′i be the states
at i before and after applying the operation op, respectively. The sequential
specification of the set is the natural one:

– Si ◦ contains(e) returns true iff e ∈ Si.
– Si

contains(e)−−−−−−−→ S′i iff S′i = Si.

– Si
add(e)−−−−→ S′i =⇒ S′i = Si ∪ {e}.

– Si
delete(e)−−−−−→ S′i =⇒ S′i = Si \ {e}.

Thus, in the sequential specification, two states S, S′ are query-equivalent if
for every element e ∈ U , S ◦ contains(e) returns true iff S′ ◦ contains(e). Notice
that the state of a replica gets updated not only when it acts as a source replica
for some update operation, but also when it applies updates, possibly concurrent

5

ones, propagated by other replicas, either through downstream operations or
through a merge request.

Defining a concurrent specification for sets is a challenge because add(e)
and delete(e), for the same element e, do not commute. If these updates are
concurrent, the order in which they are applied determines the final state.

An Observed-Remove Set (OR-Set) is a replicated set where the conflict
between concurrent add(e) and delete(e) operations is resolved by giving prece-
dence to the add(e) operation so that e is eventually present in all the repli-
cas [5]. An OR-Set implements the operations add, delete, adddown, deldown,
merge, and compare, where adddown and deldown are the downstream opera-
tions corresponding to the add and delete operations, respectively.

A concurrent specification for OR-sets is provided in [6]. Let S be the abstract
state of an OR-set, e ∈ U and u1 ‖ u2 ‖ · · · ‖ un be a set of concurrent update
operations. Then, the following conditions express the fact that if even a single
update adds e, e must be present after the concurrent updates.

– (∃i : ui = delete(e) ∧ ∀i : ui 6= add(e)) =⇒ e 6∈ S after u1 ‖ u2 ‖ · · · ‖ un
– (∃i : ui = add(e)) =⇒ e ∈ S after u1 ‖ u2 ‖ · · · ‖ un

As we shall see, this concurrent specification is incomplete unless we assume
causal delivery of updates.

A Naive OR-set implementation for replica r

1 E ⊆M, T ⊆M, c ∈ N: initially ∅, ∅, 0.
2
3 Boolean contains(e ∈ U):
4 return (∃m : m ∈ E ∧ data(m) = e)
5
6 add(e ∈ U):
7 add.prepare(e ∈ U):
8 Broadcast downstream((e, c, r))
9 add.downstream(m ∈ M):

10 E := (E ∪ {m}) \ T
11 if (rep(m) = r)
12 c = ts(m) + 1
13
14 delete(e ∈ U):
15 delete.prepare(e ∈ U):
16 Let M := {m ∈ E | data(m) = e}
17 Broadcast downstream(M)
18 delete.downstream(M ⊆M):
19 E := E \M
20 T := T ∪M
21
22 Boolean compare(S′, S′′ ∈ S):
23 Assume that S′ = (E′, T ′, c′)
24 Assume that S′′ = (E′′, T ′′, c′′)
25 Let bseen := (E′ ∪ T ′) ⊆ (E′′ ∪ T ′′)
26 Let bdeletes := T ′ ⊆ T ′′

27 return bseen ∧ bdeletes
28
29 merge(S′ ∈ S):
30 Assume that S′ = (E′, T ′, c′)
31 E := (E \ T ′) ∪ (E′ \ T)
32 T := T ∪ T ′

Algorithm 1: Näıve implementation

Näıve implementation Algorithm 1
is a variant of the näıve implemen-
tation of this specification given in
[5]. Let M = U × N × [0 . . . N−1].
For a triple m = (e, c, r) in M, we
say data(m) = e (the data or pay-
load), ts(m) = c (the timestamp), and
rep(m) = r (the source replica). Each
replica maintains a local set E ⊆ M.
When replica r receives an add(e) op-
eration, it tags e with a unique identi-
fier (c, r) (line 8), where this add(e) op-
eration is the cth add operation over-
all at r, and propagates (e, c, r) down-
stream to be added to E. Symmetri-
cally, deleting an element e involves
removing every triple m from E with
data(m) = e. In this case, the source
replica propagates the set M ⊆ E of
elements matching e downstream to be
deleted at all replicas (lines 16–17).

For an add operation, each replica
downstream should add the triple m
to its local copy of E. However, with

6

no constraints on the delivery of messages, a delete operation involving m may
overtake an add update for m. For example in Figure 1, replica r′′ receives
deldown({(e, c+ 1, r)}) before it receives adddown(e, c+ 1, r). Alternatively, af-
ter applying a delete, a replica may merge its state with another replica that
has not performed this delete, but has performed the corresponding add. For
instance, in Figure 1, replica r′′ merges its state with replica r when r′′ has ap-
plied deldown({(e, c+ 1, r)}) but r has not. To ensure that m is not accidentally
added back in E in such cases, each replica maintains a set T of tombstones,
containing every triple m ever deleted (lines 19–20). Before adding m to E, a
replica first checks that it is not in T (line 10).

State S of replica r is more up-to-date than state S′ of replica r′ if r has
seen all the triples present in S′ (either through an add or a delete) and r has
deleted all the triples that r′ has deleted. This is checked by compare (lines 22–
27). Finally, the merge function of states S and S′ retains only those triples from
S.E ∪ S′.E that have not been deleted in either S or S′ (line 31). The merge
function also combines the triples that have been deleted in S and S′ (line 32).

Eliminating Tombstones [6] Since T is never purged, E ∪ T contains every
element that was ever added to the set. To avoid keeping an unbounded set of
tombstones, a solution is proposed in [6] that requires all updates to be delivered
in causal order. The solution uses a version vector [9] at each replica to keep track
of the latest add operation that it has received from every other replica.

Causal delivery imposes unnecessary restrictions on the delivery of indepen-
dent updates. For example, updates at a source replica of the form add(e) and
delete(f), for distinct elements e and f , need not be delivered downstream in
the same order to all other replicas. For the concurrent specification presented
earlier to be valid, it is sufficient to have causal delivery of updates involving the
same element e. While this is weaker than causal delivery across all updates, it
puts an additional burden on the underlying delivery subsystem to keep track
of the partial order of updates separately for each element in the universe. A
weaker delivery constraint is FIFO, which delivers updates originating at the
same source replica in the order seen by the source. However, this is no better
than out-of-order delivery since causally related operations on the same element
that originate at different sources can still be delivered out-of-order.

On the other hand, the näıve implementation works even when updates are
delivered out-of-order. However, reasoning about the state of the replicas is non-
trivial in the absence of any delivery guarantees. We illustrate the challenges
posed by out-of-order delivery before formalizing a concurrent specification for
OR-Sets that is independent of delivery guarantees.

Life without causal delivery: challenges

If we assume causal delivery of updates, then it is easy to see that all repli-
cas apply non-concurrent operations in the same order. Hence it is sufficient

7

for the specification to only talk about concurrent operations. However, with-
out causal delivery, even non-concurrent operations can exhibit counter-intuitive
behaviours. We identify a couple of them in Examples 1 and 2.

Replica r with
state S

Replica r′ with
state S′

Replica r′′ with
state S′′

S0.E = ∅
S0.T = ∅ 1

add(e)
S1.E = {(e, c, r)}
S1.T = ∅ 2

add(e)

3.adddown(e, c+ 1, r)

S2.E = {(e, c, r),
(e, c+ 1, r)}

S2.T = ∅

6.merge(S2)

S1.E = ∅
S1.T = ∅

S′1.E =
{(e, c+ 1, r)}

S′1.T = ∅
4

delete(e)

5.deldown({(e, c+ 1, r)})

S′2.E = ∅
S′2.T =
{(e, c+ 1, r)}

S1.E = ∅
S1.T = ∅

S′′1 .E = ∅ S′′1 .T =
{(e, c+ 1, r)}

S′′2 .E =
{(e, c, r)}

S′′2 .T =
{(e, c+ 1, r)}

Fig. 1. Non-transitivity of the happened-before relation.

Example 1 In the absence of causal delivery, the happened-before relation need
not be transitive. For instance, in Figure 1, if we denote the add operations at 1

and 2 as add1(e) and add2(e), respectively, then we can observe that add1(e)
hb−→

add2(e) and add2(e)
hb−→ delete(e). However, it is not the case that add1(e)

hb−→
delete(e) since the source replica of delete(e), which is r′, has not processed the
downstream of add1(e) before processing the prepare method of delete(e).

Replica r
with state S

Replica r′

with state S′

S.E = ∅
S.T = ∅ 1

add(e)

2.adddown(e, c, r)

S.E = {(e, c, r)}
S.T = ∅ 4

add(e)

5.adddown(e, c+ 1, r)

S.E = {(e, c, r),
(e, c+ 1, r)}

S.T = ∅

S.E = {(e, c, r)}
S.T =
{(e, c+ 1, r)}

S.E = ∅
S.T = ∅

S′.E = {(e, c, r)}
S′.T = ∅ 3

delete(e)

S′.E = ∅
S′.T = {(e, c, r)}

S′.E =
{(e, c+ 1, r)}

S′.T = {(e, c, r)}
6

delete(e)

7.deldown({(e, c+ 1, r)})

S′.E = ∅
S′.T = {(e, c, r),

(e, c+ 1, r)}

Fig. 2. Non-intuitive behaviour of deletes in the absence of causal delivery.

Example 2 In the absence of causal delivery, a delete-downstream(e) may not
remove all copies of e from the set—even copies corresponding to add(e) op-
erations that happened before. Say (e, c, r) is added at r, propagated to r′, and
subsequently deleted at r′. Suppose (e, c + 1, r) is later added at r, propagated
to r′, and subsequently deleted at r′. If the second delete is propagated from r′

to r before the first one, r removes only (e, c + 1, r) while retaining (e, c, r), as
illustrated in Figure 2.

8

To address these issues, we present a more precise formulation of the con-
current specification that captures the intent of [5] and allows us to uniformly
reason about the states of the replicas of OR-Sets independent of the order of
delivery of updates.

4 Optimized OR-Sets

Revised specification For an add(e) operation op, the set of nearest delete
operations, NearestDel(op), is defined to be the following set:

{op′ | op′ = delete(e)∧op hb−→ op′∧¬(∃op′′.op′′ = delete(e)∧op hb−→ op′′
hb−→ op′)}

If u is the downstream operation of op and u′ is the downstream operation of
op′ ∈ NearestDel(op) then we extend this notation to write u′ ∈ NearestDel(u).
Our new concurrent specification for OR-Sets is as follows.

For any reachable state S and element e, e ∈ S iff H(S) contains a
downstream operation u of an add(e) operation such that NearestDel(u)∩
H(S) = ∅.

The specification ensures that a delete operation at a replica removes only those
elements whose add operations the replica has observed. Thus, whenever a replica
encounters concurrent add and delete operations with the same argument, the
add wins, since the delete has not seen the element added by that particular
add. The specification also ensures that any two states that have the same causal
history are query-equivalent. Hence the order in which the update operations in
the causal history were applied to arrive at these two states is not relevant. Since
there are no delivery preconditions in the specification, any implementation of
this specification is a CmRDT, as all the operations commute.

The revised specification generalizes the concurrent OR-set specification from
[6]. Suppose u1 ‖ u2 ‖ · · · ‖ un is performed at a replica with state S. Let
S′ = S ◦ (u1 ‖ u2 ‖ · · · ‖ un). If one of the ui’s is add(e), it is clear that
NearestDel(ui) ∩ H(S′) = ∅. Thus, e ∈ S′. On the other hand, if at least one
of the ui’s is del(e) and none of the ui’s is an add(e), then, assuming causal
delivery, for every ui of the form delete(e), if e ∈ S, there is an add(e) operation
u ∈ H(S) such that ui ∈ NearestDel(u). Thus e 6∈ S′, as expected.

The new specification also explains Examples 1 and 2. In Example 1, the
add(e) operation at 1 does not have a nearest delete in H(S′′2), which explains
why e ∈ S′′2 . Similarly in the other example, the add(e) operation at 1 does
not have a nearest delete in the history of replica r, but it has a nearest delete
(operation 3) in the history of replica r′. This explains why e is in the final state
of r but does not belong to the final state of r′.

Generalized implementation Algorithm 2 describes our optimized imple-
mentation of OR-sets that does not require causal ordering and yet uses space

9

comparable to the solution provided in [6]. Our main observation is that tomb-
stones are only required to track delete(e) operations that overtake add(e) oper-
ations from the same replica. Since a source replica attaches a timestamp (c, r)
with each add(e) operation, all we need is a succinct way to keep track of those
timestamps that are “already known”.

For a pair of integers s ≤ `, [s, `] denotes the interval consisting of all integers
from s to `. A finite set of intervals {[s1, `1], . . . , [sn, `n]} is nonoverlapping if for
all distinct i, j ≤ n, either si > `j or sj > `i. An interval sequence is a finite set
of nonoverlapping intervals. We denote by I the set of all interval sequences.

The basic operations on interval sequences are given below. The function
pack(X) collapses a set of numbers X into an interval sequence. The function
unpack(A) expands an interval sequence to the corresponding set of integers.
Fundamental set operations can be performed on interval sequences by first
unpacking and then packing. For X ⊆ N, A,B ∈ I, and n ∈ N:

– pack(X) = {[i, j] | {i, i+ 1, . . . , j} ⊆ X, i− 1 6∈ X, j + 1 6∈ X}.
– unpack(A) = {n | ∃[n1, n2] ∈ A ∧ n1 ≤ n ≤ n2}.
– n ∈ A iff n ∈ unpack(A).
– add(A,X) = pack(unpack(A) ∪X).
– delete(A,X) = pack(unpack(A) \X).
– max(A) = max(unpack(A)).
– A ∪B = pack(unpack(A) ∪ unpack(B)).
– A ∩B = pack(unpack(A) ∩ unpack(B)).
– A ⊆ B iff unpack(A) ⊆ unpack(B).

As in the algorithm of [6], when replica r receives an add(e) operation, it
tags e with a unique identifier (c, r) and propagates (e, c, r) downstream to be
added to E. In addition, each replica r maintains the set of all timestamps c
received from every other replica r′ as an interval sequence V [r′]. The vector V of
interval sequences is called an Interval Version Vector. Since all the downstream
operations with source replica r are applied at r in causal order, V [r] contains a
single interval [1, cr] where cr is the index of the latest add operation received by
r from a client. Notice that if delete(e) at a source replica r′ is a nearest delete
for an add(e) operation, then the unique identifier (ts(m), rep(m)) of the triple
m generated by the add operation will be included in the interval version vector
propagated downstream by the delete operation. When this vector arrives at a
replica r downstream, r updates the interval sequence V [rep(m)] to record the
missing add operation (lines 25–26) so that, when m eventually arrives to be
added through the add-downstream operation, it can be ignored (lines 10–12).

Thus, we avoid maintaining tombstones altogether. The price we pay is main-
taining a collection of interval sequences, but these interval sequences will even-
tually get merged once the replica receives all the pending updates, collapsing
the representation to contain at most one interval per replica.

In [6], the authors suggest a solution in the absence of causal delivery us-
ing version vectors with exceptions (VVwE), proposed in [10]. A VVwE is an
array each of whose entries is a pair consisting of a timestamp and an ex-
ception set, and is used to handle out-of-order message delivery. For instance,

10

Optimized OR-set implementation for the replica r

1 E ⊆M, V : Reps→ I, c ∈ N: initially ∅, [∅, . . . , ∅], 0
2
3 Boolean contains(e ∈ U):
4 return (∃m : m ∈ E ∧ data(m) = e)
5
6 add(e ∈ U):
7 add.prepare(e ∈ U):
8 Broadcast downstream((e, c, r))
9 add.downstream(m ∈ M):

10 if (ts(m) 6∈ V [rep(m)])
11 E := E ∪ {m}
12 V [rep(m)] :=

add(V [rep(m)], {ts(m)})
13 if (rep(m) = r)
14 c = ts(m) + 1
15
16 delete(e ∈ U):
17 delete.prepare(e ∈ U):
18 Let V ′ : Reps→ I = [0, . . . , 0]
19 for m ∈ E with data(m) = e
20 add(V ′[rep(m)], {ts(m)})
21 Broadcast downstream(V ′)
22 delete.downstream(V ′ : Reps→ I):
23 Let M = {m ∈ E |

ts(m) ∈ V ′[rep(m)]}
24 E := E \M
25 for i ∈ Reps
26 V [i] := V [i] ∪ V ′[i]
27

28 Boolean compare(S′, S′′ ∈ S):
29 Assume that S′ = (E′, V ′)
30 Assume that S′′ = (E′′, V ′′)
31 bseen := ∀i(V ′[i] ⊆ V ′′[i])
32 bdeletes := ∀m ∈ E′′ \ E′

(ts(m) 6∈ V ′[rep(m)])
33 // If m is deleted from E′ then
34 // it is also deleted in E′′.
35 // So anything in E′′ \ E′

36 // is not even visible in S′.
37 return bseen ∧ bdeletes
38
39 merge(S′ ∈ S):
40 Assume that S′ = (E′, V ′)
41 E := {m ∈ E ∪ E′ |

m ∈ E ∩ E′∨
ts(m) 6∈ V [rep(m)] ∩ V ′[rep(m)]}

42 // You retain m if it is either
43 // in the intersection, or if it is fresh
44 // (so one of the states has not seen it).
45 ∀i.(V [i] := V [i] ∪ V ′[i])

Algorithm 2: An optimized OR-Set implementation

if replica r sees operations of r′ with timestamps 1, 2, and 10, then it will
store (10, {3, 4, 5, 6, 7, 8, 9}), signifying that 10 is the latest timestamp of an
r′-operation seen by r, and that {3, 4, . . . , 9} is the set of operations that are
yet to be seen. The same set of timestamps would be represented by the interval
sequence {[1, 2], [10, 10]}. In general, it is easy to see that interval sequences are a
more succinct way of representing timestamps in systems that allow out-of-order
delivery.

5 k-causal delivery, add-coalescing and space complexity

Let Sr denote the state of a replica r ∈ [0 . . . N−1]. Let n` be the number of
adddown operations whose source is `. The space required to store Sr in the

näıve implementation is bounded by O(nt log (nt)), where nt =
∑N−1

`=0
n`.

Let np denote the number all adddown operations u ∈ H(Sr) such that
NearestDel(u) ∩ H(Sr) = ∅. Clearly np ≤ nt. Let nm = max(n0, . . . , nN−1) and
let nint denote the maximum number of intervals across any index r′ in Vr[r

′].
In our optimized implementation, the space required to store Sr.V is bounded
by Nnint log(nt) and the space required to store Sr.E is bounded by np log(nt).
The space required to store Sr is thus bounded by O((np + Nnint) log(nt)). In
the worst case, nint is bounded by nm/2, which happens when r sees only the

11

alternate elements generated by any replica. Thus the worst case complexity is
O((np + Nnm) log(nt)). Note that the factor that is responsible for increasing
the space complexity is the number of intervals nint. We propose a reasonable
way of bounding this value below.

Let (p, u) be an update operation whose source is replica r. For a given k ≥ 1,
we say that the delivery of updates satisfies k-causal delivery iff

∀r, r′ : (p = f jr ∧ u = f j
′

r′) =⇒ ∀u′ ∈ H(Sj−kr), u′ ∈ H(Sj
′−1
r′).

Intuitively it means that when a replica r′ sees the jth add operation orig-
inating at replica r, it should have already seen all the operations from r with
index smaller than j−k. Note that when k = 1, k-causal delivery is the same as
causal delivery. Thus k-causal delivery ensures that the out of order delivery of
updates is restricted to a bounded suffix of the sequence of operations submitted
to the replicated datatype.

In particular, if the latest add-downstream operation u received by a replica
r from a replica r′ corresponds to the cth add operation at r′, then k-causal
delivery ensures that r would have received all the add-downstream operations
from r′ whose index is less than or equal to (c−k). Thus, the number of intervals
in Sr.V [r′] is bounded by k and hence nint is bounded by O(k).

With k-causal delivery, we can also coalesce the adds of the same elements
that originate from the same replica. This is discussed in detail in the full version
of the paper [11]. The key idea is that whenever a replica r sees a triple (e, c, r′) ,
it can evict all the triples of the form (e, c′, r′) with c′ ≤ c−k. Thus each replica
keeps at most k triples corresponding to each visible element originating from a
replica. If there are na visible elements, then np is bounded by O(naNk). With
add-coalescing and k-causal delivery, the total space complexity at a replica is
is O((na + 1)Nk log(nt)). Furthermore, the message complexity of a deldown
operation with this optimization would be bounded by O(Nk log(nt)). If we
assume causal delivery of updates (k = 1), the space complexity is bounded by
O((na + 1)N log(nt)) and the message complexity of deldown is O(N log(nt))
which matches the complexity measures in [6]. If the delivery guarantee is FIFO
delivery, then with add-coalescing, np can be bounded by O(naNK). However,
there is no natural way of bounding the number of intervals nint with FIFO
order, and hence the space complexity with FIFO ordering would be O((nak +
nint)N log(nt)) as discussed in [11].

6 Correctness of the Optimized Implementation

In this section we list down the main lemmas and theorems, with proof sketches,
to show the correctness of our optimized solution. The complete proofs can be
found in [11]. Our aim is show that the solution satisfies the specification of OR-
Sets and is a CvRDT as well as a CmRDT. For a detailed proof of the equivalence
between the näıve implementation and our optimized implementation, the reader
is encouraged to refer to [11].

12

Recall that U is the universe from which elements are added to the OR-Set
and Reps = [0 . . . N−1] is the set of replicas. We let M = U × N× Reps denote
the set of labelled elements. We use r to denote replicas, e to denote elements of
U , and m to denote elements ofM, with superscripts and subscripts as needed.
For m = (e, c, r) ∈M, we set data(m) = e (the data or payload), ts(m) = c (the
timestamp), and rep(m) = r (the source replica).

A set of labelled elements M ⊆ M is said to be valid if it does not contain
distinct items from the same replica with the same timestamp. Formally,

∀m,m′ ∈M : (ts(m) = ts(m′) ∧ rep(m) = rep(m′)) =⇒ m = m′

A downstream operation u is said to be an e-add-downstream operation
(respectively, e-delete-downstream operation) if it is a downstream operation of
an add(e) (respectively, delete(e)) operation. If O is a collection of commutative
update operations then for any state S, S ◦ O denotes the state obtained by
applying these operations to S in any order.

We say that two states S and S′ are equivalent and write S ≡ S′ iff S.E =
S′.E and S.V = S′.V . It is easy to see that if S and S′ are equivalent then they
are also query-equivalent.

Lemma 1. Let S be some reachable state of the OR-Set, O = {u1, u2, . . . un}
be a set of downstream operations and π1 and π2 are any two permutations of
[1 · · ·n]. If S1 = S ◦ uπ1(1) ◦ uπ1(2) . . . uπ1(n) and S2 = S ◦ uπ2(1) ◦ uπ2(3) . . . uπ2(n)

then S1 = S2.

Proof Sketch: If u is any downstream update and S is any state it can be easily
shown that S ◦u = S ◦merge(S⊥ ◦u) Now for any three states S1, S2, S3, it can
be seen that (S1◦merge(S2))◦merge(S3) = (S1◦merge(S3))◦merge(S2), thereby
proving commutativity of merges. Using these two results, it follows that any
collection of update operations commute. ut
Using the lemma above, one can conclude the following, by induction over |H(S)|.

Lemma 2. Let S be any reachable state, with H(S) = {u1, u2, . . . un}. Then
S = S⊥ ◦ H(S).

Lemma 3. Let S be any state and u be an e-add downstream operation such that
u 6∈ H(S) and arg(u) = m, and let S′ = S◦u. Then m ∈ S′.E iff NearestDel(u)∩
H(S) = ∅.

Proof Sketch: If NearestDel(u) ∩ H(S) = ∅ then ts(m) 6∈ S.V [rep(m)] and,
from the code of adddown, it follows that m ∈ S′.E. Conversely suppose u′ ∈
NearestDel(u)∩H(S). Since downstream operations commute (and prepare and
query operations do not change state), we can assume that there is a state S′′

such that S = S′′ ◦ u′. One can then show (by examining the code for the add
and delete methods) that S′′ ◦ u′ ◦ u = S′′ ◦ u′. Thus S = S′. Since u 6∈ H(S),
we have that m 6∈ S.E. Hence m 6∈ S′.E ut

Theorem 1. The optimized OR-set implementation satisfies the specification of
OR-Sets.

13

Proof Sketch: Given a state S and an element e, let Oadd be the set of all e-
add-downstream operations u in H(S) such that NearestDel(u) ∩ H(S) = ∅. If
Oothers = H(S) \ Oadd then, S = S⊥ ◦ Oothers ◦ Oadd (since the downstream
operations commute). Using Lemma 3 we can show that e 6∈ S⊥ ◦Oothers . Again
from Lemma 3, e ∈ S iff Oadd is non-empty iff there exists an e-add-downstream
operation u such that NearestDel(u) ∩H(S) = ∅. ut

Given a reachable state S we define the set of timestamps of all the elements
added and deleted, Seen(S), as {(c, r) | c ∈ S.V [r]}, and the set of timestamps
of elements deleted in S,Deletes(S), as Seen(S) \ {(ts(m), rep(m)) | m ∈ S.E}.
For states S, S′ we say S ≤compare S

′ to mean that compare(S, S′) returns true.

Lemma 4. For states S1,S2 and S3 ,

1. S1 ≤compare S2 iff Seen(S1) ⊆ Seen(S2) and Deletes(S1) ⊆ Deletes(S2).
Therefore ≤compare defines a partial order on S.

2. S3 = S1 ◦merge(S2) iff Seen(S3) = Seen(S1) ∪ Seen(S2) and Deletes(S3) =
Deletes(S1)∪Deletes(S2) iff S3 is the least upper bound of S1 and S2 in the
partial order defined by ≤compare .

Proof Sketch:

1. Follows from the definitions of Seen, Deletes and the code of compare in the
optimized solution.

2. The first equivalence follows from the code of merge, and the definitions of
Seen, Deletes. The second equivalence follows from the first part, and the
fact that A ∪ B is the least upper bound of sets A and B over the partial
order defined by ⊆.

ut
From Lemma 1 and Lemma 4, we have the following.

Theorem 2. The optimized OR-Set implementation is a CmRDT and CvRDT.

7 Conclusion and Future work

In this paper, we have presented an optimized OR-Set implementation that does
not depend on the order in which updates are delivered. The worst-case space
complexity is comparable to the näıve implementation [5] and the best-case
complexity is the same as that of the solution proposed in [6].

The solution in [6] requires causal ordering over all updates. As we have ar-
gued, this is an unreasonably strong requirement. On the other hand, there seems
to be no simple relaxation of causal ordering that retains the structure required
by the simpler algorithm of [6]. Our new generalized algorithm can accommodate
any specific ordering constraint that is guaranteed by the delivery subsystem.
Moreover, our solution has led us to identify k-causal ordering as a natural gener-
alization of causal ordering, where the parameter k directly captures the impact
of out-of-order delivery on the space requirement for bookkeeping.

14

Our optimized algorithm uses interval version vectors to keep track of the
elements that have already been seen. It is known that regular version vectors
have a bounded representation when the replicas communicate using pairwise
synchronization [9]. An alternative proof of this in [12] is based on the solution
to the gossip problem for synchronous communication [13], which has also been
generalized to message-passing systems [14]. It would be interesting to see if
these ideas can be used to maintain interval version vectors using a bounded
representation. This is not obvious because intervals rely on the linear order
between timestamps and reusing timestamps typically disrupts this linear order.

Another direction to be explored is to characterize the class of datatypes with
noncommutative operations for which a CRDT implementation can be obtained
using interval version vectors.

References

1. Gilbert, S., Lynch, N.A.: Brewer’s conjecture and the feasibility of consistent,
available, partition-tolerant web services. SIGACT News 33(2) (2002) 51–59

2. Shapiro, M., Kemme, B.: Eventual consistency. In: Encyclopedia of Database
Systems. (2009) 1071–1072

3. Saito, Y., Shapiro, M.: Optimistic replication. ACM Comput. Surv. 37(1) (2005)
42–81

4. Vogels, W.: Eventually consistent. ACM Queue 6(6) (2008) 14–19
5. Shapiro, M., Preguiça, N., Baquero, C., Zawirski, M.: A comprehensive study

of Convergent and Commutative Replicated Data Types. Rapport de recherche
RR-7506, INRIA (January 2011) http://hal.inria.fr/inria-00555588/PDF/

techreport.pdf.
6. Bieniusa, A., Zawirski, M., Preguiça, N.M., Shapiro, M., Baquero, C., Balegas,

V., Duarte, S.: An optimized conflict-free replicated set. CoRR abs/1210.3368
(2012)

7. Fischer, M.J., Lynch, N.A., Paterson, M.: Impossibility of distributed consensus
with one faulty process. J. ACM 32(2) (1985) 374–382

8. Shapiro, M., Preguiça, N.M., Baquero, C., Zawirski, M.: Conflict-free replicated
data types. In: SSS. (2011) 386–400

9. Almeida, J.B., Almeida, P.S., Baquero, C.: Bounded version vectors. In: DISC.
(2004) 102–116

10. Malkhi, D., Terry, D.B.: Concise version vectors in WinFS. Distributed Computing
20(3) (2007) 209–219

11. Mukund, M., Shenoy R, G., Suresh, S.P.: Optimized or-sets without ordering
constraints. Technical report, Chennai Mathematical Institute (2013) http://

www.cmi.ac.in/~madhavan/papers/pdf/mss-tr-2013.pdf.
12. Mukund, M., Shenoy R, G., Suresh, S.P.: On bounded version vectors. Technical re-

port, Chennai Mathematical Institute (2012) http://www.cmi.ac.in/~gautshen/
pubs/BVV/on_bounded_version_vectors.pdf.

13. Mukund, M., Sohoni, M.A.: Keeping track of the latest gossip in a distributed
system. Distributed Computing 10(3) (1997) 137–148

14. Mukund, M., Narayan Kumar, K., Sohoni, M.A.: Bounded time-stamping in
message-passing systems. Theor. Comput. Sci. 290(1) (2003) 221–239

15

