
Bounded Version Vectors using Mazurkiewicz
Traces

Madhavan Mukund1,2, Gautham Shenoy R1, and S P Suresh1,2

1 Chennai Mathematical Institute, India {madhavan,gautshen,spsuresh}@cmi.ac.in
2 CNRS UMI 2000 ReLaX

Abstract. Version Vectors constitute an essential feature of distributed
systems that enables the computing elements to keep track of causality
between the events of the distributed systems. In this article, we study
a variant named Bounded Version Vectors. We define the semantics of
version vectors using the framework of Mazurkiewicz traces. We use these
semantics along with the solution for the gossip problem to come up
with a succinct bounded representation of version vectors in distributed
environments where replicas communicate via pairwise synchronization.

Keywords: Distributed systems, time-stamping, version vectors,
Mazurkiewicz traces

1 Introduction

Brewer’s CAP Theorem [GL02] states that distributed systems which are re-
quired to be highly available and partition tolerant cannot guarantee that the
replicas are strongly consistent. In such situations, systems make do with weaker
notions of consistency. A popular weaker notion of consistency is eventual con-
sistency, which allows for the states of the replicas to diverge for a finite (but
not necessarily bounded) period of time with a guarantee that the states will
eventually converge. The properties of such eventually consistent systems have
been studied in [SS05].

The replicas in an eventually consistent systems perform updates locally and
propagate the updates to other replicas. Whenever a pair of replicas a and b
participate in the exchange of their knowledge about the local states of other
replicas in the system, they require a mechanism to decide which among a and
b has the most up-to-date information about a third replica c. Version vectors
play an important role in this decision-making process.

A typical implementation of version vectors uses integer counters. The size of
the vector is equal to the number of replicas in the distributed system. Whenever
a relevant event occurs locally at a replica a, the replica increments the counter
corresponding to itself in its copy of the version vector.

In reactive systems, the replicas communicate with each other using various
mechanisms. Two prominent ones are epidemic propagation and pairwise syn-
chronization. In epidemic propagation, each replica sends its version vector to



2 Madhavan Mukund, Gautham Shenoy R, and S P Suresh

all other replicas. On receiving a copy from a remote replica, the local replica
will update its own version vector by taking a pointwise maximum of the re-
ceived version vector and its own version vector. In pairwise synchronization,
two replicas synchronize and simultaneously update both their version vectors
by taking the pointwise maximum. In this article, we concentrate on pairwise
synchronization as the communication mechanism.

It can be noted that in a reactive system, these counter values grow as the
computations grow and hence version vectors in general are unbounded. How-
ever, we observe that given two replicas a and b with their states ra and rb,
respectively, there can be only four possible relationships between them: ra is
more up to date than rb (or vice-versa), or ra and rb cannot be compared since
they have received concurrent updates or they are the same. Moreover, when
these two replicas participate in pairwise synchronization, they jointly derive
the new version vector that captures their state merger by locally comparing
their respective version vectors. The bounded number of relations they capture,
and the fact that they can be locally computed without the need for a global
view, provides the motivation to seek the existence of a finite representation for
version vectors. One such finite representation for version vectors was presented
in [AAB04]. In this article we define the semantics of version vectors within the
framework of Mazurkiewicz traces. Using these semantics we reduce the prob-
lem of comparing the integers in the version vectors to the problem of comparing
appropriate trace-events. We shall finally adapt the solution for the gossip prob-
lem presented in [MS97] to provide a more succinct bounded representation for
version vectors.

2 Version vectors

We restrict ourselves to eventually consistent distributed systems with N replicas
{0, 1, . . . , N − 1}. Having initialized themselves by executing the initialization
operation I, each of the replicas can perform one of the following operations:

– When a client requests an update operation to be performed, replica i per-
forms the update locally. This is denoted by U i. This changes the state of
i.

– Periodically, replicas participate in pairwise synchronization, where they ex-
change their states and arrive at a common state to reflect this exchange and
update of knowledge. Pairwise synchronization between i and j is denoted
by Sij .

An operation o is said to be a k-operation (for k ∈ {0, 1, . . . , N−1}) if o = Uk

or o = Sik for some i. We also say that k participates in o.
A finite sequence of operations performed by the distributed system is known

as a run. We denote a run by α = Io1o2 . . . on, where oi is either an update
operation or a synchronization operation.

The version vector of replica i at the end of a run α is a vector Vi(α) of N
integer counters. The kth entry of Vi(α), denoted by V k

i (α), represents the most



Bounded Version Vectors using Mazurkiewicz Traces 3

recent update of replica k that i is aware of, at the end of α. We say that a
version vector Vi(α) dominates Vj(α) iff ∀k ∈ [0 . . . N − 1] : V k

i (α) ≥ V k
j (α)

Whenever Vi(α) dominates Vj(α) and Vi(α) 6= Vj(α), semantically it means
that at the end of a run α, replica i is more up to date than j, which implies
that i has received all the updates that j has received.

The join operation between the kth components of Vi(α) and Vj(α) is defined
as follows:

V k
i (α) t V k

j (α) = max (V k
i (α), V k

j (α)).

The semantics of the version vectors for the various operations are presented
in Table 1.

Operation Semantics

Initialization V k
i (I) = 0

Update V k
i (α · Ua) =

{
V k
i (α) + 1 if k = i = a

V k
i (α) otherwise

Synchronization V k
i (α · Sab) =

{
V k
a (α) t V k

b (α) if i ∈ {a, b}
V k
i (α) otherwise

Table 1. Semantics of version vectors

3 Mazurkiewicz Traces and Version Vectors

Let α = Io1o2 . . . on be a run. We define Evs(α) to be {e⊥, e1, . . . , en}, the set of
events at which the operations in α occur. We define Ops(α) to be {I, o1, . . . , on},
the set of operations in α. An event ei is said to be a k-event if oi is a k-operation.
We also say that k participates in the event ei. For two k-events ei, ej ∈ Evs(α),
we say that ei ≤k ej iff i ≤ j. Note that ≤k is a total order for each k.

Definition 1 Given a run α = Io1 . . . on, its Mazurkiewicz trace (referred to as
trace henceforth), denoted t(α), is a triple (E ,≤, λ) such that:

– E = Evs(α)
– λ : E → Ops(α) such that λ(e⊥) = I and λ(ei) = oi for i ∈ {1, . . . , n}
– ≤= (

⋃
k ≤k)∗.

A triple t = (E ,≤, λ) is a trace if t = t(α) for some run α.



4 Madhavan Mukund, Gautham Shenoy R, and S P Suresh

Note that for any two events e, f in a trace and any replica k, e ≤k f ⇒ e ≤ f .
We say that el f if e < f and there is no event g such that e < g < f . If el f ,
we say that f is an immediate successor of e. Note that if elf , there is a replica
i such that both e and f are i-events.

Definition 2 For a trace t = (E ,≤, λ) and S ⊆ E, the subtrace of t induced by
S is given by t(S) = (S,≤S , λS) where:

– ≤S=≤ ∩ (S × S)
– λS(e) = λ(e) for all e ∈ S

We shall now define the semantics of version vectors over traces.

Definition 3 Let t = (E ′ ∪ {e},≤, λ) and t′ = (E ′,≤′, λ′) be two traces such
that t(E ′) = t′. The version vector of replica i in trace t, denoted by Vi(t) is
inductively defined as follows.

Case e = e⊥ : For all k, V k
i (t) = 0.

Case e is a j event, j 6= i : For all k, V k
i (t) = V k

i (t′).
Case e is a U i event : For k 6= i, V k

i (t) = V k
i (t′). V i

i (t) = V i
i (t′) + 1.

Case e is a Sij event : For all k, V k
i (t) = V k

j (t) = V k
i (t′) t V k

j (t′).

In this representation, for i 6= j, ei ≤ ej implies that the event ej occurs
strictly after ei and thus the replicas participating in λ(ej) know about the
occurrence of the event ei. This transfer of this knowledge can be traced along
the path from ei to ej in the trace. We formalize this notion by defining ideals.

Definition 4 Let t = (E ,≤, λ) be a trace of the run α. A subset I ⊆ E is said
to be an ideal iff ∀ei ∈ I and ej ≤ ei, ej ∈ I.

Thus an ideal is a downward closed subset of E with respect to the partial
order ≤. The following properties of ideals follow from the definition:

Proposition 5. Let t = (E ,≤, λ) be a trace of some run α. Then the following
are true:

1. E is an ideal.
2. If ei ∈ E, the set ↓ ei = {ej |ej ≤ ei} is an ideal. (It is referred to as the

ideal generated by ei.)
3. Every ideal I is generated by its maximal elements. In other words I =⋃

ei∈sup I ↓ ei.
4. If I and J are ideals, so are I ∪ J and I ∩ J .

Our goal is to reduce the problem of comparing the integer values in the
version vectors to the problem of comparing appropriate trace events. To that
end, we define the following terminology which will be used in the remainder of
the paper.

Definition 6 Let I be an ideal and i, j and k be replicas.



Bounded Version Vectors using Mazurkiewicz Traces 5

An i-event e is the maximal event of i in I, denoted by max i(I), if f ≤ e for
all i-events f . If t = (E ,≤, λ) is a trace, then we use the notation max i(t)
to denote max i(E).

The view of i in an ideal I, denoted by ∂i(I), is ↓ max i(I), the ideal generated
by the maximal i-event in I. For a trace t = (E ,≤, λ) and event e ∈ E, we
use the notations ∂i(t) and ∂i(e) to denote ∂i(E) and ∂i(↓ e), respectively.

The latest information that i has about j in I, denoted by latest i→j(I), is defined
to be max j(∂i(I)), the maximal j-event in the view of i. If t = (E ,≤, λ) is a
trace, then we use the notation latest i→j(t) to denote latest i→j(E).

The maximal update event of i in I, denoted updatei(I), is max{e ∈ I : λ(e) =
U i}, the maximal i-event in I which is also an update event. If no such
event exists then updatei(I) = e⊥ For a trace t = (E ,≤, λ) and event e ∈ E,
we use the notations updatei(t) and updatei(e) to denote updatei(E) and
updatei(↓ e), respectively.

The latest update information that i has about k in I, denoted luk
i (I), is the max-

imal k-update event in the view of i in I. Thus luk
i (I)

def
= updatek(∂i(I)) =

updatek(latest i→k(I)). If t = (E ,≤, λ) then we use luk
i (t) to denote luk

i (E).

At this juncture, we shall prove the following lemma which we shall be al-
luding to in the rest of the paper.

Lemma 7 (Crossover point lemma). Let I ⊆ E be an ideal in a trace, and
a be a replica. For events e1 and e2 such that e1 ∈ ∂a(I), e2 ∈ I \ ∂a(I) and
e1 < e2, there exists a replica c such that e1 ≤ latesta→c(I) ≤ e2.

Proof. Let P be a path from e1 to e2 such that for any two successive events
e, f in P , el f . Let e3 be the maximal ∂a(I)-event on this path. Let e4 be the
minimal element along P such that e4 6∈ ∂a(I). Clearly e1 ≤ e3, e4 ≤ e2 and
e3le4. This means that there is a replica c such that both e3 and e4 are c-events.

Clearly e3 ≤ latesta→c(I). Since e4 6∈ ∂a(I), e4 6≤ latesta→c(I). But since e4
is a c-event, latesta→c(I) < e4. Thus e1 ≤ latesta→c(I) ≤ e2.

If e is an event in the trace t, the version vector of replica i at e, denoted by
Vi(e) = Vi(t(↓ e)).

Note that in a run α, V k
i (α) denotes the integer corresponding to latest k-

update operation that replica i has received. If t = t(α) then luk
i (t) denotes

the latest k-update known to replica i. We formalise this intuition through the
following theorem.

Theorem 8. If α is a run, t = t(α), and i, k are replicas, then V k
i (α) = V k

i (t) =
V k
k (luk

i (t)).

Proof. We shall prove this result by induction on the length of the run α. Suppose
α contains only one operation, I. Then, from the semantics of version vectors,
for every i, k, V k

i (α) = V k
i (t) = 0. Also, since for every i, k, luk

i (t) = e⊥, and the
trace corresponding to ↓ e⊥ is t itself, it follows that V k

k (luk
i (t)) = 0.

Assume that for all runs whose length is smaller than n, the result holds,
and let α = α′ · omax be a run of length n with trace t = (E ,≤, λ). Let emax be a



6 Madhavan Mukund, Gautham Shenoy R, and S P Suresh

maximal event in t with λ(emax ) = omax . Define E ′ = E \ {emax} and t′ = t(E ′).
By induction hypothesis, for any i, k, V k

i (α′) = V k
i (t′) = V k

k (luk
i (t′)). There are

the following cases to consider.

i does not participate in omax : In this case V k
i (α) = V k

i (α′), V k
i (t) = V k

i (t′)
and luk

i (t) = luk
i (t′). Thus V k

i (α) = V k
i (t) = V k

k (luk
i (t)).

omax = U i and i 6= k: We argue as in the previous case.
omax = U i and k = i: From the definition and induction hypothesis, V k

i (α) =
V k
i (t) = V k

k (luk
i (t′)) + 1. Now luk

i (t) = emax and if t′′ = t(↓ emax \ {emax})
then luk

i (t′′) = luk
i (t′). Thus V k

k (luk
i (t)) = V k

k (luk
k(t)) = V k

k (luk
k(t′′)) + 1 =

V k
k (luk

i (t′)) + 1 = V k
i (t) = V k

i (α).
omax = Sij: Now V k

i (α) = max (V k
i (α′), V k

j (α′)), V k
i (t) = max (V k

i (t′), V k
j (t′)).

By induction hypothesis, this is the same as max (V k
k (luk

i (t′)), V k
k (luk

j (t′))).

Since emax is not an update event, luk
i (t) = max (luk

i (t′), luk
j (t′)). It follows

that V k
i (α) = V k

i (t) = V k
k (luk

i (t)).

Corollary 9 If α is a run with trace t and a, b, k are replicas then

– V k
a (α) < V k

b (α) iff luk
a(t) < luk

b (t).

– V k
a (α) = V k

b (α) iff luk
a(t) = luk

b (t).

Proof. V k
a (α) ≤ V k

b (α) iff V k
k (luk

a(t)) ≤ V k
k (luk

b (t)) (from theorem 8) iff luk
a(t) ≤

luk
b (t) (using the fact that luk

a(t) and luk
b (t) are both k-update events, and using

the semantics of update operations over trace events). The statements in the
corollary follows from this.

With this we have reduced the problem of comparing integer values in the
version vectors to the problem of comparing the corresponding update events in
the trace of the run. We shall explore options to provide bounded representation
for version vectors. We look at the gossip problem and its solution to achieve
this.

4 Bounding the version vectors: Using gossip

Suppose a and b are replicas with version vectors Va(t) and Vb(t) at the end
of a trace t. We have already argued (in Corollary 9) that comparing V k

a (t)
and V k

b (t) is equivalent to comparing luk
a(t) with luk

b (t). The following is an
immediate consequence of the definition of latest update information.

Proposition 10. Let t = (E ,≤, λ) be a trace and a, b, k < N . If luk
a(t) 6= luk

b (t)
then luk

a(t) < luk
b (t) iff latesta→k(t) < latestb→k(t).

Thus the problem of comparing distinct k-update events corresponds to com-
paring the latest k-events in the views of the appropriate a and b. This latter
problem is a special case of the gossip problem in which the number of replicas
communicating with each other is restricted to two. A finite-state local solution
to the gossip problem was provided in [MS97]. We adapt the solution to arrive
at a bounded representation for version vectors.



Bounded Version Vectors using Mazurkiewicz Traces 7

Definition 11 Let t = (E ,≤, λ) be an ideal and a be a replica.

We define the primary information of a in t, denoted by Primarya(t) to be the
set of all the latest events in the view of a in t. Formally, Primarya(t) =
{latesta→k(t) | k < N}.

We define the primary graph of a in t to be Ga(t) = (Primarya(t),≤t
a) where

≤t
a the partial order ≤ restricted to the events in Primarya(t).

Our goal is to settle the question of comparing latesta→k(t) and latestb→k(t)
using a finite amount of information that is also local to replicas a and b. If
latesta→k(t) ≤ latestb→k(t) then latesta→k(t) is in the view ∂a(t) ∩ ∂b(t). Thus,
latesta→k(t) is in the view generated by the maximal elements of ∂a(t) ∩ ∂b(t).
We show the following nice property about these maximal elements.

Lemma 12 ([MS97]). Let a and b be replicas and t = (E ,≤, λ) be a trace. If e
is a maximal event in the ideal ∂a(t)∩∂b(t) then e ∈ Primarya(t)∩Primaryb(t).

∂b(t)

∂a(t)

maxa(t)

max b(t)

e = latesta→c(t) = latestb→d(t)

Fig. 1. Figure for lemma 12. e is a maximal event in ∂a(t) ∩ ∂b(t).

Proof. If maxa(t) ∈ ∂b(t) then, ∂a(t) ∩ ∂b(t) = ∂a(t). Its sole maximal element
is maxa(t), which happens to be the same as latestb→a(t), which is a mem-
ber of Primaryb(t) by definition. Thus maxa(t) ∈ Primaryb(t). The case where
max b(t) ∈ ∂a(t) can be similarly handled.

Suppose it is the case that maxa(t) 6∈ ∂b(t) and max b(t) 6∈ ∂a(t). Then
maxa(t) ∈ ∂a(t) \ ∂b(t). Similarly max b(t) ∈ ∂b(t) \ ∂a(t). From the crossover
point lemma that there is c such that e ≤ latesta→c(t) ≤ max b(t). Since e is a



8 Madhavan Mukund, Gautham Shenoy R, and S P Suresh

maximal event in ∂a(t), it follows that e = latesta→c(t). Hence e ∈ Primarya(t).
Similarly, e = latestb→d(t) for some replica d and hence e ∈ Primaryb(t). Thus
any maximal (∂a(t) ∩ ∂b(t))-event e is in Primarya(t) ∩ Primaryb(t).

This result gives us a way to compare latesta→k(t) and latestb→k(t) using
the information present in the primary graphs Ga(t) and Gb(t). We record this
through the following corollary.

Corollary 13 ([MS97]) If e = latesta→k(t) and f = latestb→k(t) then e ≤ f
iff ∃g ∈ Primarya(t) ∩ Primaryb(t) : e ≤t

a g.

If our purpose was to decide if Va(t) dominates Vb(t) or if they are incom-
parable, then the information in Ga(t) and Gb(t) suffices since for any index k,
whenever latesta→k(t) ≤ latestb→k(t) it is the case that luk

a(t) ≤ luk
b (t). How-

ever, if we also want to verify if the version vectors of the two replicas are the
same, we have to show that for each k, luk

a(t) = luk
b (t). For this we maintain the

primary update information defined as follows.

Definition 14 For any replica a and ideal t = (E ,≤, λ), the primary update
information, denoted PrimaryUpdatea(t), is the indexed set {luk

a(t) | k ∈ [N ]}.

Thus for any replica a, the primary graph Ga(t) together with the primary
update information PrimaryUpdatea(t) is an alternative representation of the
version vector of Va(t). Our goal is to provide a bounded representation for this
object. We do so by assigning labels to the events in the primary information
and primary update information such that the labels come from a bounded set.
Since the trace t can grow infinitely, finitely many labels implies reuse of labels
at some point in time. However care must be taken to ensure that whenever
two primary events latesta→i(t) and latestb→j(t) (or two primary update events

lui
a(t) and luj

b(t)) are assigned the same label, then they are indeed the same
events. Otherwise the solution outlined above for comparing corresponding pri-
mary events would not work. Thus whenever we label a new Sab event, we need
to pick a label that is not currently in use for labelling any other primary event.
We need to make this decision by looking at the local information of a and b.
[MS97] shows that the information in the primary graphs Ga and Gb is not suf-
ficient. Similarly when we label a new Ua event, we need to pick a label that is
not currently in use for labelling any other primary update event. The informa-
tion present in PrimaryUpdatea(t) is not sufficient for this purpose. So we define
secondary information.

Definition 15 Let t = (E ,≤, λ) be a trace and a, b, k be replicas.

Define latesta→b→k(t)
def
= latestb→k(∂a(t)) and luk

a→b(t)
def
= luk

b (∂a(t)).
The secondary information for a in t, denoted Secondarya(t), is defined as

Secondarya(t) = {latesta→b→k(t), luk
a→b(t) | b, k < N}

.



Bounded Version Vectors using Mazurkiewicz Traces 9

We now show that the secondary information of a replica a contains enough
information for it to know if a certain a-event is in the primary information or
primary update information of any other replica b.

Lemma 16. Let a, b be replicas and t = (E ,≤, λ) be a trace. Then

1. latestb→a(t) ∈ Secondarya(t).
2. lua

b (t) ∈ Secondarya(t).

Proof. 1. We need to show that latestb→a(t) = latesta→d→a(t) for some d < N .
If max b(t) ∈ ∂a(t) then latestb→a(t) = latestb→a(∂a(t)) = latesta→b→a(t).
Suppose max b(t) 6∈ ∂a(t). Since latestb→a(t) is also an a-event, latestb→a(t) ∈
∂a(t). By the crossover point lemma we can find c such that latestb→a(t) ≤
latesta→c(t) ≤ max b(t). Since latestb→a(t) is the maximal a event in ∂b(t),
we have latesta→c→a(t) = latestb→a(t). Thus latestb→a(t) ∈ Secondarya(t).

2. We need to show that there is c such that lua
b (t) = lua

a→c(t). If max b(t) ∈
∂a(t), then lua

b (t) = lua
a→b(t) and we are done.

Otherwise, we can appeal to the crossover lemma to show that there is a c
such that lua

b (t) ≤ latesta→c(t) and latesta→c(t) ≤ max b(E). It then follows
that lua

b (t) ≤ lua
a→c(t) and lua

a→c(t) ≤ lua
b (t) and we are done.

Definition 17 For a replica a and a trace t, the event version vector of a in t,
denoted EVV a(t), is defined to be (Ga(t),PrimaryUpdatea(t),Secondarya(t)).

As the replicas participate in more operations, the trace t grows. We need to
show that the event version vectors of the participating replicas can be recon-
structed from their event version vectors before the operation.

Lemma 18. Let t = (E ,≤, λ) and t′ = (E ∪ {enew},≤′, λ′) be traces such that
t′(E) = t. Let λ′(enew ) = onew . If replicas a, b participate in the operation onew
then EVV a(t′) and EVV b(t

′) can be reconstructed from EVV a(t) and EVV b(t).

Proof. We prove by induction on the size of t′. The base case is when t′ =
({e⊥},≤′, λ′), in which case we have latesta→b(t

′) = latesta→b→k(t′) = lub
a(t′) =

luk
a→b(t

′) = e⊥ for any replicas a, b, k. And we have e⊥ ≤t′

a e⊥.
Suppose the result holds for all traces of size smaller than n. Suppose t′ is of

size n. We have the following two cases to consider.

onew = Ua : From the definitions, for all i 6= a and any k, latesta→i(t
′) =

latesta→i(t) and hence latesta→i→k(t′) = latesta→i→k(t), lui
a(t′) = lui

a(t)
and luk

a→i(t
′) = luk

a→i(t). Now latesta→a(t′) = latesta→a→a(t′) = lua
a(t′) =

lua
a→a(t′) = enew . For any two events e, f ∈ Primarya(t′), e ≤t′

a f iff e ≤t
a f

or f = enew . Thus we have reconstructed Ga(t′), PrimaryUpdatea(t′) and
Secondarya(t′) thereby reconstructing EVV a(t′).

onew = Sab : Let i, j ∈ {a, b}. From Corollary 13, for any replica k 6∈ {a, b}, it is
possible to decide whether latesta→k(t) ≤ latestb→k(t) from the information
in Ga(t) and Gb(t). Define wk as follows:

wk =

{
b if latesta→k(t) ≤ latestb→k(t)

a otherwise



10 Madhavan Mukund, Gautham Shenoy R, and S P Suresh

Now by definition, latest i→k(t′) = latestwk→k(t) and latest i→j(t
′) = enew .

Similarly luk
i (t′) = luk

wk
(t) and luj

i (t
′) = luj

j(t). Further, for any replica p,
latest i→k→p(t′) = latestwk→k→p(t) and latest i→j→p(t′) = latestj→p(t′). Sim-
ilarly, lup

i→k(t′) = lup
wk→k(t) and lup

i→j(t
′) = lup

j (t′). If e ∈ Primary i(t
′)

then e ≤t′

i enew . If e, f ∈ Primary i(t
′) ∩ Primaryj(t) with e ≤t

j f , then

it is the case that e ≤t′

i f . If e, f ∈ Primary i(t
′) but for i 6= j, e ∈

Primary i(t) \ Primaryj(t) and f ∈ Primaryj(t) \ Primary i(t), then e and
f are incomparable in t, and hence are incomparable in t′. With this, we
have reconstructed Ga(t′), Gb(t′), PrimaryUpdatea(t′), PrimaryUpdateb(t

′),
Secondarya(t′) and Secondaryb(t

′), thereby reconstructing EVV a(t′) and
EVV b(t

′).

Labelling

Let {Lij | i ≤ j < N} be a collection of mutually disjoint sets of labels, such
that each Lij is of size 2N + 1. Let l0 be a label not occurring in any of the
Lijs. Let L =

⋃
i≤j<N Lij ∪ {l0}. For a trace t = (E ,≤, λ), denote by V(t) the

set of all events that appear in EVV i(t) for any i < N . We say that a labelling
function ρ : V(t)→ L is legal if the following conditions are satisfied:

– ρ(e⊥) = l0.
– If e ∈ V(t) is a Ua event then ρ(e) ∈ Laa.
– If e ∈ V(t) is a Sab event then ρ(e) ∈ Lab.
– For any replicas a, b, i, j, if e = latesta→i(t) (resp lui

a(t)) and f = latestb→j(t)

(resp luj
b(t)) and ρ(e) = ρ(f) then e = f .

The following lemma shows how a legal labelling function for any trace can
be extended to be a legal labelling function of its extension.

Lemma 19. Let t = (E ,≤, λ) and t′ = (E ∪{enew},≤′, λ′) be traces with t′(E) =
t and λ′(enew ) = onew . Let a, b be replicas which participate in onew . Let ρ be
a valid labelling function over V(t). Then, using the information available in
EVV a(t) and EVV b(t), one can construct a valid labelling function ρ′ over V(t′)
such that for any e ∈ V(t) ∩ V(t′), ρ′(e) = ρ(e).

Proof. We argue by induction on the size of t′. The base case is trivial when t′

just consists of one event e⊥ which is labelled by the unique label l0.
Suppose the result holds for all traces of size smaller than n, and let t′ be of

size n. We have to consider the following two cases:

onew = Ua : From lemma 16, for any replica i, the a-update event lua
i (t) ∈

Secondarya(t). Since there can be at most N such events and the set Laa

contains 2N + 1 labels, we can always pick a label from Laa for enew which
is different from any of ρ(lua

i (t)). Set ρ′(enew ) to be this new label and for
every other e ∈ V(t)∩V(t′), set ρ′(e) = ρ(e). Since ρ is a legal labelling over
V(t), ρ′ is a legal labelling over V(t′).



Bounded Version Vectors using Mazurkiewicz Traces 11

onew = Sab : From lemma 16, for any replicas i, j ∈ {a, b}, if latest i→j(t) is an
Sab event, then latest i→j(t) ∈ Secondarya(t)∩Secondaryb(t). Since there can
be at most 2N such events and since the size of Lab is 2N +1, we can always
pick a label from Lab which is not assigned to any of these latest i→j(t) events.
Set ρ′(emax ) to that label. For every other e ∈ V(t)∩ V(t′), set ρ′(e) = ρ(e).
Since ρ is a legal labelling over t, ρ′ is a legal labelling over t′.

Thus instead of storing the events of the traces in our event version vectors, if
we store the corresponding labels which come from a finite set, we get a bounded
representation for version vectors. Lemma 19 shows how to label new events such
that the latest and the latest-update events are unambiguously identifiable. We
now discuss the complexity of our solution.

Complexity of our Solution

For any replica i, the size of EVV i(t) is bounded by O(N2) since Secondary i(t)
has at most N2 events. We label the events from a finite collection of labels,
where the size of each collection is bounded by 2N + 1. Since there are at most
N2 such collections, the total number of labels in use is at most 2.N3. Thus we
can store each label using O(logN) space. Since each replica stores at most N2

labels, the space used by one replica is O(N2 logN). Since there are N replicas,
the overall space complexity is O(N3 logN). This which compares favourably to
the O(N4 logN) space consumed by the solution proposed in [AAB04].

5 Conclusion and Summary

In this work, we have have defined the semantics of version vectors in the frame-
work of Mazurkiewicz traces. We adapted the solution to the gossip problem
as presented in [MS97] to arrive at a more succinct bounded representation for
version vectors.

The bounded representation of a version vector presented in our work re-
quires O(N3 logN) space. It is not yet known whether this can be improved.
Exploring that question is left for future work. Another interesting question to
explore is whether version vectors have a bounded representation when the repli-
cas communicate using message passing instead of pairwise synchronization. It
is worth studying whether results on the gossip problem for message passing sys-
tems, studied in [MNS03], can be applied to this problem. We hope to investigate
these issues in future work.

References

[AAB04] José Bacelar Almeida, Paulo Sérgio Almeida, and Carlos Baquero. Bounded
version vectors. In DISC, pages 102–116, 2004.

[GL02] Seth Gilbert and Nancy A. Lynch. Brewer’s conjecture and the feasibil-
ity of consistent, available, partition-tolerant web services. SIGACT News,
33(2):51–59, 2002.



12 Madhavan Mukund, Gautham Shenoy R, and S P Suresh

[MNS03] Madhavan Mukund, K. Narayan Kumar, and Milind A. Sohoni. Bounded
time-stamping in message-passing systems. Theoretical Computer Science,
290(1):221–239, 2003.

[MS97] Madhavan Mukund and Milind A. Sohoni. Keeping track of the latest gossip
in a distributed system. Distributed Computing, 10(3):137–148, 1997.

[SS05] Yasushi Saito and Marc Shapiro. Optimistic replication. ACM Computing
Surveys, 37(1):42–81, 2005.


