
Keeping Track of the Latest Gossip in a

Distributed System

�

Madhavan Mukund

SPIC Mathematical Institute

92 G.N. Chetty Road, Madras 600 017, India

E-mail: madhavan@smi.ernet.in

Milind Sohoni

Department of Computer Science and Engineering

Indian Institute of Technology, Bombay 400 076, India

E-mail: sohoni@cse.iitb.ernet.in

Abstract

We tackle a natural problem from distributed computing, involving time-stamps.

Let P = fp

1

; p

2

; : : : ; p

N

g be a set of computing agents or processes which synchro-

nize with each other from time to time and exchange information about themselves

and others. The gossip problem is the following: Whenever a set P � P meets,

the processes in P must decide amongst themselves which of them has the latest

information, direct or indirect, about each agent p in the system.

We propose an algorithm to solve this problem which is �nite-state and local.

Formally, this means that our algorithm can be implemented as an asynchronous

automaton.

Keywords: Distributed algorithms, synchronous communication, bounded time-

stamps, asynchronous automata

�

This paper appears in Distributed Computing, 10, 3, (1997) 117-127. A preliminary version of this

paper appeared in [22]. The �rst author was partially supported by IFCPAR Project 502-1. This work

was done while the second author was with the School of Mathematics, SPIC Science Foundation, now

known as the SPIC Mathematical Institute.

1

Introduction

The aim of this paper is to tackle a natural problem from distributed computing, involving

time-stamps. Let P = fp

1

; p

2

; : : : ; p

N

g be a set of computing agents or processes which

synchronize with each other from time to time and exchange information about themselves

and others. The gossip problem is the following: Whenever a set P � P meets, the

processes in P must decide amongst themselves which of them has the latest information,

direct or indirect, about each agent p in the system.

This is easily accomplished if the agents decide to \time-stamp" every synchronization

and pass these time-stamps along with each exchange of information. This does not

require that all their clocks be synchronized. For example, each process can use an

independent counter. When a set P � P meets, the processes in P jointly agree on a new

value for their counters which exceeds the maximum of the counter values currently held

by them. Thus, for any process p, the time-stamps assigned to synchronization events

involving p form a strictly increasing sequence (albeit with gaps between successive time-

stamps). So, the problem of deciding who has the latest information about p reduces to

that of checking for the largest time-stamp.

This scheme has the following drawback: As the computation progresses these counter

values increase without bound and most of the agents' time would be taken up in passing

on large numbers, as opposed to actual gossip.

We propose an algorithm using counters which take on values from a bounded, �nite

set. We assign an independent counter to each subset of processes which can potentially

synchronize. These counters are updated when the corresponding sets of processes meet.

The update is performed jointly by the processes which meet.

Since our set of counter values is bounded, time-stamps have to be reused and, in

general, di�erent synchronizations involving a particular set of processes will acquire the

same time-stamp during a computation. Despite this, our algorithm guarantees that

whenever a set P � P meets, the processes in P can decide correctly which of them

has the best information about any other agent p in the system. Thus, in essence, the

processes in P may be �nite state machines and yet manage to keep track of the lat-

est information about other agents. Further, the algorithm itself does not induce any

additional communications.

We formalize the gossip problem and our solution to it in terms of asynchronous

automata. These machines were �rst introduced by Zielonka and are a natural general-

ization of �nite-state automata for modelling concurrent systems [30]. An asynchronous

automaton consists of a set of �nite-state agents which synchronize to process their input.

Each letter a in the input alphabet � is assigned a subset �(a) of processes which jointly

update their state when reading a. The processes outside �(a) remain unchanged during

this move|in fact, they are oblivious to the occurrence of a.

(Calling these automata asynchronous is misleading. The automata communicate syn-

chronously. Zielonka used the term \asynchronous" to emphasize that di�erent compo-

nents of the network can proceed independently while processing the input. We continue

to use this rather inappropriate terminology for historical reasons.)

2

A preview of the algorithm

Our algorithm proceeds by having each process maintain di�erent levels of information

about the rest of the system. At the primary level, a process p records the latest in-

formation that it has heard from every other process. Thus, the primary information of

process p regarding process q corresponds to the most recent event performed by q which

p is aware of, either directly or indirectly.

The secondary information of a process consists of its knowledge about the primary

information of other processes. Thus, for processes p, q and r, p's secondary information

would refer to events of the form \the latest that p knows about what q knows about

r". Similarly, the tertiary information of a process consists of its knowledge about the

secondary information of every other process.

Events are identi�ed by labels assigned to them when they occur|the label of each

event is assigned jointly by all the processes that take part in the event. (An event

involving only one process corresponds to an internal event.) These labels are best thought

of as time-stamps. The goal of the algorithm is to correctly compare and update the

primary information of all processes which participate in each synchronization, with the

constraint that only a bounded number of labels are used to time-stamp events, regardless

of the length of the overall computation.

Let p and q be processes that synchronize. We prove that p's primary information

about r is more recent (and therefore better) than q's primary information about r if and

only if the event corresponding to r recorded in q's primary information is also present

in p's secondary information. In other words, the primary information of p and q can

be compared by just checking for equality of labels within their primary and secondary

information|we do not have to maintain any order between the labels. This feature is

crucial for designing an algorithm which uses only a bounded number of time-stamps:

reusing a label will, in general, destroy any a priori order on the set of labels.

It then follows that we can reuse time-stamps provided we maintain the following

invariant across the system: At any stage of the computation, if the same label is present

in the primary or secondary information of two di�erent processes, then the labels actually

point to the same event. In other words, two di�erent instances of the same time-stamp

should never simultaneously be present in the primary and secondary information of the

system. This invariant is di�cult to maintain because the processes which take part in

an event and assign a time-stamp to it will not, in general, have access to the primary

and secondary information of all processes across the system. So, they have no way of

knowing precisely which labels are \in use" across the system when the event occurs.

It turns out that tertiary information can be used to resolve the problem of deciding

when a time-stamp can be reused. We prove that a time-stamp previously assigned by

a process p is currently \in use"|i.e., it currently belongs to the primary or secondary

information of some other process q|only if it also belongs to the tertiary information of

p. From this, it follows that labels which are not in the tertiary information of a process

can be reused. Since the number of events in the tertiary information of each process

is bounded, processes in the system can always work with a bounded set of labels large

enough to permit each event to be assigned a fresh time-stamp which does not clash with

the set of time-stamps currently \in use" across the system.

As we remarked earlier, our algorithm can be described as an asynchronous automaton,

where each process is locally a �nite-state machine. The automaton that we construct to

3

solve the gossip problem can be e�ectively presented in space polynomial in the number

of processes in the system. This means that the automaton can be embedded in other

distributed algorithms without sacri�cing e�ciency.

In this paper, we solve the gossip problem for systems with multi-party synchroniza-

tion. Surpisingly, the problem appears no easier when restricted to systems with pairwise

synchronization. Though systems with pairwise synchronization are perhaps more repre-

sentative of \real world" systems, we have chosen to describe our solution in the general

setting because it has important applications in theoretical studies of distributed systems

based on the asynchronous automaton model [13, 14, 23].

The technique we describe for analyzing synchronizing systems is also applicable to

more general classes of distributed systems. For instance, we can adapt our algorithm for

maintaining primary, secondary and tertiary information to solve the gossip problem for

\well behaved" classes of message-passing systems [21].

The paper is organized as follows. In the next section, we introduce asynchronous

automata and formalize the gossip problem in terms of these automata. To do this, we

de�ne a natural partial order on events in the system. In Section 2 we introduce ideals

and frontiers, both of which play a crucial role in the rest of the paper. Sections 3 and

4 describe how to maintain, compare and update in a local manner the latest informa-

tion about other processes. The next section puts all these ideas together and formally

describes the \gossip automaton" which solves the problem we set out to tackle.

Section 6 briey examines extensions of the basic gossip automaton and possibilities

for optimizing the construction. We also look at applications of the gossip automaton in

logic and the theory of asynchronous automata [13, 14, 23, 27].

In the concluding Discussion, we place our results in perspective. We discuss similar-

ities and di�erences with other work on \gossiping" and bounded time-stamps [1, 2, 3, 5,

8, 9, 12].

1 Preliminaries

Let P be a �nite set of processes which synchronize periodically and let the set of possible

synchronizations permitted in the system be denoted C, where C � (2

P

� f;g). So, each

element c 2 C is a non-empty subset of P. When c occurs, the processes in c share all

information about their local states and update their states in synchrony.

We model a computation of the system as a sequence of communications|that is,

a word u 2 C

�

. Let u be of length m. It is convenient to think of u as a function

u : [1::m]! C, where for natural numbers i and j, [i::j] abbreviates the set fi; i+1; : : : ; jg

if i � j and [i::j] = ; otherwise. By this convention, the empty word " is denoted by the

unique function ; ! C.

Events With u : [1::m]! C, we associate a set of events E

u

. Each event e is of the form

(i; u(i)), where i 2 [1::m]. In addition, it is convenient to include an initial event denoted

0. Thus, E

u

= f0g [f(i; u(i)) j i 2 [1::m]g.

The initial event marks an implicit synchronization of all the processes before the start

of the actual computation. So, if u is the empty word ", E

u

= f0g.

Usually, we will write E for E

u

. For p 2 P and e 2 E, we write p 2 e to denote

that p 2 u(i) when e = (i; u(i)). Thus, p 2 e implies that process p participated in the

4

�

�

�

�

�

�

b

�

�

a

�

�

�

c

�

�

a

�

�

b

�

�

b

�

�

a

- - -

- - - -

- - - -

- - - -

p

q

r

s

0

e

1

e

2

e

3

e

4

e

5

e

6

e

7

Figure 1: A typical computation of a system of synchronizing processes

synchronization e. For the initial event 0, we de�ne p 2 0 to hold for all p 2 P. If p 2 e,

then we say that e is a p-event .

Ordering relations on E The word u imposes a total order on events in E: de�ne

e < f if e 6= f and either e = 0 or e = (i; u(i)), f = (j; u(j)), and i < j. We write e � f

if e = f or e < f .

However, the temporal order < does not accurately reect the cause and e�ect rela-

tionship between events in E. Clearly, synchronizations between disjoint sets of processes

can be performed independently. In particular, if two such synchronizations occur con-

secutively in u, they could also be transposed without a�ecting the outcome of the com-

putation. To record information about causality and independence, we de�ne a partial

order v

�

on E.

To begin with, we observe that each process p orders the events in which it participates:

de�ne /

p

to be the relation

e /

p

f

4

= e < f; p 2 e \ f and for all e < g < f; p =2 g:

The set of all p-events in E is totally ordered by /

�

p

, the reexive, transitive closure of /

p

.

De�ne e < f if for some p, e /

p

f and e v f if e = f or e < f . Let v

�

denote the

transitive closure of v. If e v

�

f then we say that e is below f .

It is not di�cult to see that the causality relation v

�

accurately models the cause and

e�ect relationship between events in E. In particular, all rearrangements of the letters

in u which arise out of permuting adjacent independent synchronizations will give rise to

isomorphic structures (E;v

�

).

Example: Let P = fp; q; r; sg and C = fa; b; cg where a = fp; qg, b = fr; sg and

c = fq; r; sg. Figure 1 shows the events E corresponding to the word bacabba. The

dashed box corresponds to the \mythical" event 0, which we insert at the beginning for

convenience.

5

In the �gure, the arrows between the events denote the relations /

p

, /

q

, /

r

and /

s

. From

these, we can compute < and v

�

. Thus, for example, we have e

1

v

�

e

4

since e

1

/

r

e

3

/

q

e

4

.

Note that 0 is below every event. Also, for each p 2 P, the set of all p-events in E is

totally ordered by v

�

since /

�

p

is contained in v

�

.

The set of events below e is denoted e#. These represent the only synchronizations in

E which are \known" to the processes in e when e occurs.

Latest information Let E be the set of events of the communication sequence u :

[1::m] ! C. The v

�

-maximum p-event in E is denoted max

p

(E). max

p

(E) is the last

event in E in which p has taken part. Since p 2 0 2 E and all p-events are totally ordered

by v

�

, max

p

(E) is well-de�ned.

Let p; q 2 P. The latest information p has about q in E corresponds to the v

�

-

maximum q-event in the subset of eventsmax

p

(E)#. We denote this event by latest

p!q

(E).

Since all q-events are totally ordered by v

�

and q 2 0 v

�

max

p

(E), latest

p!q

(E) is well-

de�ned.

Example: Continuing with our example, in Figure 1, max

p

(E) = e

7

whereas max

s

(E) =

e

6

. latest

p!q

(E) = e

7

, but latest

p!s

(E) = e

3

. On the other hand, latest

s!p

(E) = e

2

.

For any processes p; p

0

; q 2 P, the events latest

p!q

(E) and latest

p

0

!q

(E) are both q-

events and are thus always comparable with respect to v

�

. Our goal is to design a

scheme whereby each process p maintains a bounded amount of information locally, so

that whenever a set c � P synchronizes, the processes in c can decide amongst themselves

which of them has heard most recently from every process in the system. More formally,

for every q 2 P, all the processes in c should be able to jointly compute which of the

events flatest

p!q

(E)g

p2c

is maximum with respect to v

�

.

We make precise the notions of bounded and local information using asynchronous

automata.

Asynchronous automata

Distributed alphabet Let P be a �nite set of processes as before. A distributed

alphabet is a pair (�; �) where � is a �nite set of actions and � : � ! (2

P

� f;g) assigns

a non-empty set of processes to each a 2 �.

State spaces With each process p, we associate a �nite set of states denoted S

p

. Each

state in S

p

is called a local state. For P � P, we use S

P

to denote the product

Q

p2P

S

p

.

An element ~s of S

P

is called a P -state. A P-state is also called a global state. Given

~s 2 S

P

, and P

0

� P , we use ~s

P

0

to denote the projection of ~s onto S

P

0

.

Asynchronous automaton An asynchronous automaton A over (�; �) is of the form

(fS

p

g

p2P

; f!

a

g

a2�

;S

0

;S

F

), where!

a

� S

�(a)

�S

�(a)

is the local transition relation for a,

and S

0

;S

F

� S

P

are sets of initial and �nal global states. Intuitively, each local transition

relation !

a

speci�es how the processes �(a) that meet on a may decide on a joint move.

Processes outside �(a) do not change their state when a occurs. Thus we de�ne the global

transition relation) � S

P

� �� S

P

by ~s

a

=) ~s

0

if ~s

�(a)

!

a

~s

0

�(a)

and ~s

P��(a)

= ~s

0

P��(a)

.

6

A is called deterministic if the global transition relation =) of A is a function from

S

P

�� to S

P

and the set of initial states S

0

is a singleton. Notice that =) is a function

i� each local transition relation!

a

, a 2 �, is a function from S

�(a)

to S

�(a)

. We shall only

deal with deterministic asynchronous automata in this paper.

Runs Given a word u : [1::m]! �, a run of A on u is a function � : [0::m]! S

P

such

that �(0) 2 S

0

and for i 2 [1::m], �(i�1)

u(i)

=) �(i). If A is deterministic, each word u

gives rise to a unique run which we denote �

u

.

The word u is accepted by A if there is a run � of A on u such that �(m) 2 S

F

. L(A),

the language recognized by A, is the set of words accepted by A. In this paper, we will

not look at asynchronous automata as language recognizers. Instead, we shall treat them

as devices for locally computing families of functions.

Locally computable functions Let Val be a set (of values). A �-indexed family of

functions is a set F

�

= ff

a

: �

�

! Valg

a2�

. So, F

�

contains a function f

a

for each letter

a 2 �.

F

�

is locally computable if we can �nd a deterministic asynchronous automaton A =

(fS

p

g

p2P

; f!

a

g

a2�

;S

0

;S

F

) and a family of local functions G

�

= fg

a

: S

�(a)

! Valg

a2�

,

such that for each word u : [1::m]! �, f

a

(u) = g

a

(~s

�(a)

), where ~s = �

u

(m) and �

u

is the

unique run of A over u.

In other words, the processes in �(a) can locally compute the value f

a

(u) for any

u 2 �

�

by applying the function g

a

to the (unique) �(a)-state reached by the automaton

after reading u.

Our problem involving the latest information of processes in P can now be formalized

in terms of asynchronous automata.

Given C � (2

P

� f;g), let � = fĉg

c2C

. The distribution function � is de�ned in the

obvious way|for each ĉ 2 �, �(ĉ) = c. For convenience, henceforth we shall drop the

distinction between a subset c 2 C and the corresponding letter ĉ 2 � and refer to both

as just c. Thus, we will use S

c

to denote the set of �(ĉ)-states and !

c

to denote the local

transition function for ĉ.

Let u : [1::m] ! � be a communication sequence and c � P. For each q 2 P, we

denote by best

c

(u; q) the set of processes in c which have the most recent information

about q at the end of u|i.e.,

best

c

(u; q) = fp 2 c j 8p

0

2 c: latest

p

0

!q

(E

u

) v

�

latest

p!q

(E

u

)g:

Let Val = (2

P

� f;g)

P

. So, each member of Val is a function from P to non-empty

subsets of P. Our goal is to show that the family of functions flatest-gossip

c

: �

�

!

Valg

c2�

is locally computable, where:

8u 2 �

�

: 8c 2 �: latest-gossip

c

(u) is the function fp 7! best

c

(u; p)g

p2P

:

2 Ideals and Frontiers

For the moment, let us �x a communication sequence u : [1::m]! � and the correspond-

ing set of events E.

7

The main source of di�culty in solving the gossip problem is the fact that the processes

in P need to compute global information about the communication sequence u while each

process only has access to a local, \partial" view of u. Although partial views of u

correspond to subsets of E, not every subset of E arises from such a partial view. Those

subsets of E which do correspond to partial views of u are called ideals.

Ideals A set of events I � E is called an order ideal if I is closed with respect to v

�

|

i.e., e 2 I and f v

�

e implies f 2 I as well. We shall always refer to order ideals as just

ideals.

1

The requirement that an ideal be closed with respect to v

�

guarantees that the ob-

servation it represents is \consistent"|whenever an event e has been observed, so have

all the events in the computation which necessarily precede e.

The minimumpossible partial view of a word u is the ideal f0g. This is because of our

interpretation of 0 as an event which takes place before the actual computation begins.

Since 0 lies below every event in E, 0 2 I for every non-empty ideal I. We shall assume

that every ideal we consider is non-empty.

Clearly the entire set E is an ideal, as is e# for any e 2 E. It is easy to see that if I

and J are ideals, so are I [J and I \ J .

Example: Let us look once again at Figure 1. f0; e

2

g is an ideal, but f0; e

2

; e

3

g

is not, since e

1

v

�

e

3

but e

1

=2 f0; e

2

; e

3

g. f0; e

1

; e

2

; e

3

; e

5

g is the ideal e

5

#, whereas

f0; e

1

; e

2

; e

3

; e

4

; e

5

g is an ideal which is not of the form e# for any e 2 E.

We need to generalize the notion of max

p

(E), the maximum p-event in E, to all ideals

I � E.

P -views For an ideal I, the v

�

-maximum p-event in I is denoted max

p

(I). The p-view

of I is the set Ij

p

= max

p

(I)#. So, Ij

p

is the set of all events in I which p can \see". For

P � P, the P -view of I, denoted Ij

P

, is

S

p2P

Ij

p

, which is also an ideal. In particular,

we have Ij

P

= I.

Example: In Figure 1, let I denote the ideal f0; e

1

; e

2

; e

3

; e

4

; e

5

; e

6

g. max

q

(I) = e

4

and hence Ij

q

= f0; e

1

; e

2

; e

3

; e

4

g. On the other hand, though max

r

(I) = e

6

, Ij

r

6= I;

Ij

r

= I � fe

4

g. The joint view Ij

fq;rg

= I = Ij

P

.

For an ideal I, the views Ij

p

and Ij

q

seen by two processes p; q 2 P are, in general,

incomparable. The events in I where these two views begin to diverge|the frontier of

Ij

p

\ Ij

q

|play a crucial role in our analysis.

Frontiers Let I be an ideal and p; q; r 2 P. We say that an event e is an r-sentry for

p with respect to q if e 2 Ij

p

\ Ij

q

and e /

r

f for some f 2 Ij

q

� Ij

p

. Thus e is an event

known to both p and q whose r-successor is known only to q. Notice that there need not

always be an r-sentry for p with respect to q.

The pq-frontier at I, frontier

pq

(I) is de�ned as follows:

frontier

pq

(I) = fe 2 I j 9r 2 P: e is an r-sentry for p with respect to qg

1

In the theory of partial orders, order ideals and ideals are distinct concepts. Ideals are normally

assumed to be subsets which are v

�

-closed and directed. We shall, however, deal only with order ideals

in this paper and so our terminology should cause no confusion.

8

Observe that this de�nition is asymmetric|in general, frontier

pq

(I) 6= frontier

qp

(I).

Example: As before, in Figure 1, let I denote the ideal f0; e

1

; e

2

; e

3

; e

4

; e

5

; e

6

g. Ij

q

\Ij

r

=

f0; e

1

; e

2

; e

3

g. frontier

rq

(I) = fe

2

; e

3

g|e

2

is a p-sentry for r with respect to q whereas e

3

is a q-sentry. On the other hand, frontier

qr

(I) = fe

3

g. e

3

is both an r-sentry as well as

an s-sentry for q with respect to r.

As the example demonstrates, an event e 2 frontier

pq

(I) could simultaneously be an r-

sentry for p for several di�erent processes r. However, it is not di�cult to show that for

any process r, there is at most one r-sentry for p with respect to q.

3 Primary and secondary information

For a word u and processes p; q 2 P, we have already de�ned latest

p!q

(E), the latest

information that p has about q after u. We now extend this de�nition to arbitrary ideals.

Primary information Let I be an ideal and p; q 2 P. Then latest

p!q

(I) denotes the

v

�

-maximum q-event in Ij

p

. So, latest

p!q

(I) is the latest q-event in I that p knows about.

The primary information of p after I, primary

p

(I), is the set flatest

p!q

(I)g

q2P

.

More precisely, primary

p

(I) is an indexed set of events|each event e = latest

p!q

(I)

in primary

p

(I) is represented as a triple (p; q; e). As usual, for P � P, primary

P

(I) =

S

p2P

primary

p

(I).

As we have already remarked, for all q 2 P, the set of q-events in Ij

p

is always

nonempty, since q 2 0 2 Ij

p

. Further, since all q-events are totally ordered by /

�

q

and hence

by v

�

, the maximum q-event in Ij

p

is well-de�ned. Notice that latest

p!p

(I) = max

p

(I).

To compare primary events, processes need to maintain additional information. It

turns out that it is su�cient for each process to keep track of all the other processes'

primary information.

Secondary information The secondary information of p after I, secondary

p

(I), is the

(indexed) set

S

q2P

primary

q

(latest

p!q

(I)#). In other words, this is the latest information

that p has in I about the primary information of q, for each q 2 P. Once again, for

P � P, secondary

P

(I) =

S

p2P

secondary

p

(I).

Each event in secondary

p

(I) is of the form latest

q!r

(latest

p!q

(I)#) for some q; r 2 P.

This is the latest r-event which q knows about upto the event latest

p!q

(I). We abbreviate

latest

q!r

(latest

p!q

(I)#) by latest

p!q!r

(I).

Just as we represented events in primary

p

(I) as triples of the form (p; q; e), where

p; q 2 P and e 2 I, we represent each secondary event e = latest

p!q!r

(I) in secondary

p

(I)

as a quadruple (p; q; r; e).

However, we will often ignore the fact that primary

p

(I) and secondary

p

(I) are indexed

sets of events and treat them, for convenience, as just sets of events. Thus, for an event

e 2 I, we shall write e 2 primary

p

(I) to mean that there exists a process q 2 P such

that (p; q; e) 2 primary

p

(I)|i.e., e = latest

p!q

(I). Similarly, e 2 secondary

p

(I) will

indicate that for some q; r 2 P, (p; q; r; e) 2 secondary

p

(I). We extend this to other set-

theoretic operations as well. So, for instance, if we say e 2 primary

p

(I) \ secondary

q

(I),

we mean that we can �nd p

0

; q

0

; q

00

2 P such that (p; p

0

; e) 2 primary

p

(I) and (q; q

0

; q

00

; e) 2

secondary

q

(I).

9

Notice that each primary event latest

p!q

(I) is also a secondary event latest

p!p!q

(I)

(or, equivalently, latest

p!q!q

(I)). So, following our convention that primary

p

(I) and

secondary

p

(I) be treated as sets of events, we write primary

p

(I) � secondary

p

(I).

Comparing primary information

Our goal is to compare and update the primary information of processes whenever they

meet. For this, we need the following observation regarding the signi�cance of events

lying on frontiers.

Lemma 1 Let I be an ideal, p; q 2 P and e 2 frontier

pq

(I) an r-sentry for p with

respect to q. Then e = latest

p!r

(I). Also, for some r

0

2 P, e = latest

q!r

0

!r

(I). So,

e 2 primary

p

(I) \ secondary

q

(I).

Proof Since e is an r-sentry, for some f 2 Ij

q

� Ij

p

, e /

r

f . Suppose that latest

p!r

(I) =

e

0

6= e. Since all r-events are totally ordered by /

�

r

, we must have e /

+

r

e

0

(where /

+

r

is

the transitive closure of the irreexive relation /

r

). However, e /

r

f as well, so we have

e /

r

f /

�

r

e

0

. Since e

0

2 Ij

p

, this means that f 2 Ij

p

as well, which is a contradiction.

Next, we must show that e = latest

q!r

0

!r

(I) for some r

0

2 P. We know that there is

a path e < f

1

< � � � < max

p

(I), since e 2 Ij

p

. This path starts inside Ij

p

\ Ij

q

.

If this path never leaves Ij

p

\Ij

q

thenmax

p

(I) 2 Ij

q

. Sincemax

p

(I) is thev

�

-maximum

p-event in I, it must be the v

�

-maximum p-event in Ij

q

. So, e = latest

q!p!r

(I) and we

are done.

If this path does leave Ij

p

\ Ij

q

, we can �nd an event e

0

along the path such that

e v

�

e

0

/

r

0

f

0

v

�

max

p

(I), where e

0

2 Ij

p

\ Ij

q

, f

0

2 Ij

p

� Ij

q

and r

0

2 e

0

\ f

0

. In other

words, e

0

is an r

0

-sentry for q with respect to p. We know by our earlier argument that

e

0

= latest

q!r

0

(I). It must be the case that e = latest

r

0

!r

(e

0

#). For, if latest

r

0

!r

(e

0

#) =

e

00

6= e, then e /

+

r

e

00

v

�

e

0

v

�

max

p

(I). Since e

00

2 Ij

p

and e /

+

r

e

00

, e 6= latest

p!r

(I), which

is a contradiction. So, e = latest

r

0

!r

(e

0

#) = latest

q!r

0

!r

(I) and we are done. 2

Our observation about frontier events immediately gives us a way to compare primary

information using both primary and secondary information.

Lemma 2 Let I be an ideal and p; q; r 2 P. Let e = latest

p!r

(I) and f = latest

q!r

(I).

Then e v

�

f i� e 2 secondary

q

(I).

Proof

(() Suppose e 2 secondary

q

(I). Then r 2 e 2 Ij

q

and so e v

�

f 2 Ij

q

by the de�nition

of latest

q!r

(I).

()) If e = f , e 2 primary

q

(I) � secondary

q

(I), and there is nothing to prove. If e 6= f ,

then there exists an event e

0

such that e /

r

e

0

/

�

r

f and so e 2 Ij

p

\ Ij

q

. We know that

e

0

2 Ij

q

� Ij

p

, so e is an r-sentry in frontier

pq

(I). But then, by our previous lemma,

e 2 primary

p

(I) \ secondary

q

(I) and we are done. 2

Suppose p and q synchronize at an action a after u. At this point they \share" their

primary and secondary information. For r =2 fp; qg, if the event latest

p!r

(E

u

) is also

10

present in q's set of secondary events secondary

q

(E

u

), both p and q know that q's latest

r-event latest

q!r

(E

u

) is at least as recent as latest

p!r

(E

u

). So, after the synchronization,

latest

q!r

(E

ua

) is the same as latest

q!r

(E

u

), whereas p inherits this information from q|

i.e., latest

p!r

(E

ua

) = latest

q!r

(E

u

). In this way, for each r 2 P, p and q locally update

their primary information about r in E

ua

. Clearly latest

p!q

(E

ua

) = latest

q!p

(E

ua

) = e

a

,

where e

a

is the new event|i.e., E

ua

� E

u

= fe

a

g.

This procedure generalizes to any arbitrary set P � P which synchronizes after u.

The processes in P share their primary and secondary information and compare this

information pairwise. Using Lemma 2, for each q 2 P�P they decide who has the \latest

information" about q. Each process then comes away with the best primary information

from P .

Once we have compared primary information, updating secondary information is

straightforward. Clearly, if latest

q!r

(I) is better than latest

p!r

(I), then every secondary

event latest

q!r!r

0

(I) must also be better than the corresponding event latest

p!r!r

0

(I).

So, secondary information can be locally updated too. In other words, to consistently

update primary and secondary information, it su�ces to correctly compare primary in-

formation, which is achieved by Lemma 2.

After a synchronization involving P � P, notice that all processes in P will come

away with the same set of primary and secondary events.

From the preceding argument, it is clear that the new event belongs to the primary

(and hence secondary) information of the processes which synchronize at that event.

Further, the update procedure reveals that if an event disappears from the secondary

information of all the processes, it will never reappear as secondary information at some

later stage. This is captured formally in the following proposition.

Proposition 3 Let u;w 2 �

�

such that w = ua for some a 2 �. Let e

a

denote the new

event in w|i.e., E

w

� E

u

= fe

a

g. Then:

� e

a

2 primary

P

(E

w

).

� primary

P

(E

w

) � fe

a

g [primary

P

(E

u

).

� secondary

P

(E

w

) � fe

a

g [secondary

P

(E

u

).

4 Locally updating primary/secondary information

To make Lemma 2 e�ective, we must make the assertions \locally checkable"|e.g., if

e = latest

p!r

(I), processes p and q must be able to decide if e 2 secondary

q

(I).

Recall that e is represented in primary

p

(I) as a triple of the form (p; r; e). So, to

check if e 2 secondary

q

(I), q has to look for a quadruple of the form (q; r

0

; r

00

; e) 2

secondary

q

(I), where r

0

; r

00

2 P. This can be checked locally provided events in E

u

are

labelled unambiguously while u is being read.

Clearly, labelling each event e as a pair (i; u(i)) is impossible since, in general, there is

no agent which can consistently supply all processes with the \correct" value of i. Instead,

we may na��vely assume that events in E

u

are locally assigned distinct labels|in e�ect,

at each action a, the processes in a together assign a (sequential) time-stamp to the new

11

�

�

�

�

�

�

c

�

�

b

�

�

a

�

�

d

�

�

e

�

�

c

�

�

c

- -

- - -

- - - -

- - - - -

p

q

r

s

0

e

1

e

2

e

3

e

4

e

5

e

6

e

7

Figure 2: At e

7

, e

1

2 secondary

p

(e

7

#), but r and s cannot \see" e

1

in secondary

fr;sg

(e

7

#).

occurrence of a.

2

In this manner, the processes in P can easily assign consistent local

time-stamps for each action which will let them compute the relations /

�

p

between events.

The problem with this approach is that we will need an unbounded set of time-stamps,

since u could get arbitrarily large. Instead we would like a scheme which uses only a �nite

set of labels to distinguish events. This means that several di�erent occurrences of the

same action will eventually get the same label. Since the update of primary and secondary

information relies on comparing labels, we must ensure that this reuse of labels does not

lead to any confusion.

However, from Lemma 2, we know that to compare primary information, we only

need to look at the events which are currently in the primary and secondary sets of each

process. So, it is su�cient if the labels assigned to these sets are consistent across the

system|i.e., if the same label appears in the current primary or secondary information

of di�erent processes, the corresponding event is actually the same.

Notice that we do not need to maintain a global temporal order on labels across the

system. Lemma 2 assures us that to compare events of interest to us, it su�ces to check

for equality of labels assigned to the events.

Suppose we have such a labelling on u and we want to extend this to a consistent

labelling on w = ua|i.e., we need to assign a label to the new a-event. By Proposition 3,

it su�ces to use a label which is distinct from the labels of all the a-events currently in

the secondary information of E

u

. Since the cardinality of secondary

P

(E

u

) is bounded, such

a new label must exist. The catch is to detect which labels are currently in use and which

are not.

Unfortunately, the processes in a cannot directly see all the a-events which belong to

the secondary information of the entire system. An a-event emay be part of the secondary

information of processes outside a|i.e., e 2 secondary

P�a

(E

u

)� secondary

a

(E

u

).

Example: Let P = fp; q; r; sg and � = fa; b; c; d; eg where a = fp; qg, b = fq; rg,

2

Recall that for each action â 2 �, �(â) = a, and we use a to denote both the action and the subset

of processes which synchronize at that action (see page 7).

12

c = fr; sg, d = fp; sg and e = fq; sg. Figure 2 shows the events E corresponding to the

word cbadecc.

At the end of this word, e

1

= latest

p!q!s

(E). However, e

1

=2 secondary

s

(E);

secondary

s

(E) = f (s; p; p; e

4

); (s; p; q; e

3

); (s; p; r; e

2

); (s; p; s; e

4

);

(s; q; p; e

4

); (s; q; q; e

5

); (s; q; r; e

2

); (s; q; s; e

5

);

(s; r; p; e

4

); (s; r; q; e

5

); (s; r; r; e

7

); (s; r; s; e

7

);

(s; s; p; e

4

); (s; s; q; e

5

); (s; s; r; e

7

); (s; s; s; e

7

) g:

Since max

r

(E) = max

s

(E), secondary

r

(E) = secondary

s

(E) when viewed as sets of

events. So, e

1

=2 secondary

r

(E) either. Thus, e

1

is a c-event which belongs to

secondary

P

(E) � secondary

c

(E).

To enable the processes in a to know about all a-events in secondary

P

(E

u

), we need to

maintain tertiary information.

Tertiary information The tertiary information of p after I, tertiary

p

(I), is the (in-

dexed) set

S

q2P

secondary

q

(latest

p!q

(I)#). In other words, this is the latest information

that p has in I about the secondary information of q, for all q 2 P. As before, for P � P,

tertiary

P

(I) =

S

p2P

tertiary

p

(I).

Each event in tertiary

p

(I) is of the form latest

q!r!s

(latest

p!q

(I)#) for some q; r; s 2 P.

We abbreviate latest

q!r!s

(latest

p!q

(I)#) by latest

p!q!r!s

(I). We represent each event

e = latest

p!q!r!s

(I) as a quintuple (p; q; r; s; e) in tertiary

p

(I). However, for convenience

we will work with tertiary

p

(I) as though it were simply a set of events, rather than an

indexed set, just as we have been doing with primary and secondary information.

Just as primary

p

(I) � secondary

p

(I), clearly secondary

p

(I) � tertiary

p

(I) since each

secondary event latest

p!q!r

(I) is also a tertiary event latest

p!p!q!r

(I) (or, equivalently,

latest

p!q!q!r

(I) and so on).

Lemma 4 Let I be an ideal and p 2 P. If e 2 secondary

p

(I) then for every q 2 e,

e 2 tertiary

q

(I).

Proof Let e 2 secondary

p

(I) and q 2 e. Concretely, let e = latest

p!p

0

!p

00

(I) for some

p

0

; p

00

2 P. We know that e 2 Ij

p

\ Ij

q

and there is a path e < f

1

< � � � < max

p

(I) leading

from e to max

p

(I) which passes through e

0

= latest

p!p

0

(I).

Suppose this path never leaves Ij

p

\ Ij

q

. Then max

p

(I) 2 Ij

q

and so max

p

(I) =

latest

q!p

(I). This means that e 2 secondary

p

(latest

q!p

(I)#) � tertiary

q

(I) and we are

done.

Otherwise, the path from e to max

p

(I) does leave Ij

p

\ Ij

q

at some stage.

If e

0

=2 Ij

p

\ Ij

q

then for some f; f

0

2 E and some r 2 P we have f 2 Ij

p

\ Ij

q

,

f

0

2 Ij

p

� Ij

q

and e v

�

f /

r

f

0

v

�

e

0

. This means that f 2 frontier

qp

(I) is an r-sentry

and by our earlier argument we know that f = latest

q!r

(I). So e = latest

q!r!p

00

(I) =

latest

q!q!r!p

00

(I) 2 tertiary

q

(I).

On the other hand, if e

0

2 Ij

p

\ Ij

q

we can �nd an r-sentry f 2 frontier

qp

(I) on the

path from e

0

to max

p

(I), for some r 2 P. We once again get f = latest

q!r

(I) and so

e = latest

q!r!p

0

!p

00

(I) 2 tertiary

q

(I).

2

We shall use this lemma in the following form.

13

Corollary 5 Let I be an ideal, p 2 P and e a p-event in I. If e =2 tertiary

p

(I) then

e =2 primary

P

(I) [secondary

P

(I).

So, a process p can keep track of which of its labels are \in use" in the system by

maintaining tertiary information. Each p-event e initially belongs to primary

e

(I), and

hence to secondary

e

(I) and tertiary

e

(I) as well. (Recall that for an event e, we also use e

to denote the subset of P which meets at e). As the computation progresses, e gradually

\recedes" into the background and disappears from the primary and secondary sets of the

system. Eventually, when e disappears from tertiary

p

(I), p can be sure that e no longer

belongs to primary

P

(I) [secondary

P

(I).

Since tertiary

p

(I) is a bounded set, p knows that only �nitely many of its labels are

in use at any given time. So, by using a su�ciently large �nite set of labels, each new

event can always be assigned an unambiguous label by the processes which take part in

the event.

5 The \gossip" automaton

Using our analysis of primary, secondary and tertiary information of processes, we can

now design a deterministic asynchronous automaton to keep track of the \latest gossip"|

i.e., to consistently update primary information whenever a set of processes synchronizes.

The processes in the automaton maintain this information in terms of time-stamps: when

an event e occurs, it is assigned a time-stamp � (e) by the processes which take part in e.

For p 2 P, a local state of p is de�ned by three associative arrays prim

p

, sec

p

and ter

p

,

indexed by P, P �P and P �P �P respectively. Each entry in these arrays is a pair of

the form hP; `i, where P is a subset of P and ` is a label drawn from a �nite set L|it is

su�cient for L to have N

3

+1 entries, where N is the number of processes in P.

After reading a word u, each entry hP; `i in the arrays prim

p

, sec

p

and ter

p

corresponds

to the time-stamp � (e) of some event e 2 E

u

. We shall show that for all q; r; s 2 P, the

values stored in prim

p

(q), sec

p

(q; r) and ter

p

(q; r; s) are, in fact, the time-stamps of the

events latest

p!q

(E

u

), latest

p!q!r

(E

u

) and latest

p!q!r!s

(E

u

), respectively.

The initial state is the global state in which, for each process p, all entries in prim

p

,

sec

p

and ter

p

are set to hP; `

0

i, where `

0

is an arbitrary but �xed label from L. In other

words, the processes jointly assign the time-stamp � (0) = hP; `

0

i to the initial event 0.

The local transition functions !

a

modify the local states for processes in a as follows.

(i) When an a-event e

a

occurs, the processes in a �rst choose a time-stamp � (e

a

) = ha; `i

such that for some p 2 a, ha; `i does not appear in ter

p

(Recall that L has N

3

+1 labels. Since there are at most N

3

labels in ter

p

for each

p, we will always be able to �nd an unused label in L to assign to e

a

. In general,

we have to choose ha; `i in a canonical way. One possibility is to linearly order the

sets P and L. Let p

a

be the smallest process in a with respect to the ordering on

P. To �x the time-stamp ha; `i assigned to e

a

, choose ` such that it is the smallest

label with respect to the ordering on L which does not appear in ter

p

a

.)

(ii) Let a = fp

1

; p

2

; : : : ; p

k

g. Corresponding to each process r =2 a, �x a process �

r

2 a

as follows.

14

�

r

:= p

1

;

for each i in f2; 3; : : : ; kg do

if the value stored in prim

�

r

(r) appears in sec

p

i

then �

r

:= p

i

;

od

(iii) For each p 2 a, update prim

p

, sec

p

and ter

p

in phases.

� First, update fprim

p

g

p2a

as follows.

For each q 2 a, prim

p

(q) := ha; `i.

For each r 2 P � a , prim

p

(r) := prim

�

r

(r).

� Next, update fsec

p

g

p2a

as follows.

For each q; r 2 P such that q 2 a, sec

p

(q; r) := prim

q

(r).

For each q; r 2 P such that q =2 a, sec

p

(q; r) := sec

�

q

(q; r).

� Finally, update fter

p

g

p2a

as follows.

For each q; r; s 2 P such that q 2 a, ter

p

(q; r; s) := sec

q

(r; s).

For each q; r; s 2 P such that q =2 a, ter

p

(q; r; s) := ter

�

q

(q; r; s).

We now verify that the arrays maintained by each process p in the gossip automaton

always record the time-stamps of the primary, secondary and tertiary information of p.

Proposition 6 Let u 2 �

�

. For all processes p 2 P, the values stored in prim

p

, sec

p

and

ter

p

after reading u satisfy the following properties.

� For all q 2 P, prim

p

(q) = � (latest

p!q

(E

u

)).

� For all q; r 2 P, sec

p

(q; r) = � (latest

p!q!r

(E

u

)).

� For all q; r; s 2 P, ter

p

(q; r; s) = � (latest

p!q!r!s

(E

u

)).

Moreover, for all processes p; q 2 P and events e 2 primary

p

(E

u

) [secondary

p

(E

u

) and

f 2 primary

q

(E

u

) [secondary

q

(E

u

), if � (e) = � (f) then e = f .

Proof The proof is by induction on n, the length of u.

(n = 0)

The base case is when u is the empty string. We know that for each p 2 P, all

entries in prim

p

, sec

p

and ter

p

are initially set to hP; `

0

i, where hP; `

0

i is the time-stamp

assigned to the initial event 0. Clearly, these values satisfy all the conditions speci�ed in

the statement of the proposition.

(n > 0)

Suppose u = wa. The time-stamp ha; `i assigned to the new a-event e

a

in step (i) of

the transition does not appear in ter

p

for some p 2 a. By the induction hypothesis, the

values stored in ter

p

after reading w are the time-stamps of the corresponding events in

tertiary

p

(E

w

). Lemma 4 then guarantees that no event in primary

P

(E

w

)[secondary

P

(E

w

)

is time-stamped ha; `i|if there were such an event, it would be in the tertiary information

tertiary

q

(E

w

) of every process q 2 a as a result of which, by the induction hypothesis, the

label ha; `i would be in ter

q

after reading w for every q 2 a.

By the induction hypothesis, we also know that no two distinct events in primary

P

(E

w

)

[secondary

P

(E

w

) are assigned the same time-stamp. Since primary

P

(E

u

) � fe

a

g[

primary

P

(E

w

) and secondary

P

(E

u

) � fe

a

g [secondary

P

(E

w

) (Proposition 3), it follows

15

that the time-stamps assigned to primary

P

(E

u

) [secondary

P

(E

u

) are also distinct. In

other words, for all processes p; q 2 P and events e 2 primary

p

(E

u

) [secondary

p

(E

u

) and

f 2 primary

q

(E

u

) [secondary

q

(E

u

), if � (e) = � (f) then e = f .

We now have to verify that the updated values in prim

p

, sec

p

and ter

p

for each p 2 a

are the time-stamps of the corresponding events in the primary, secondary and tertiary

information of p after u.

By the induction hypothesis, for each p 2 a, the values in prim

p

and sec

p

after read-

ing w are the time-stamps assigned to the corresponding events in primary

p

(E

w

) and

secondary

p

(E

w

) respectively. By the induction hypothesis, we also know that for all

p; q; r; s; s

0

2 P, if the value stored in prim

p

(r) after reading w is the same as the value

stored in sec

q

(s; s

0

) after reading w then, in fact, the event latest

p!r

(E

w

) is the same as

the event latest

q!s!s

0

(E

w

).

It then follows that for r =2 a, the process �

r

2 a identi�ed in step (ii) of the tran-

sition is one of the processes in a which has the best primary information about r after

w|by Lemma 2, for p; q 2 a and r =2 a, latest

p!r

(E

w

) v

�

latest

q!r

(E

w

) i� the event

latest

p!r

(E

w

) appears in secondary

q

(E

w

), which is equivalent to checking that the time-

stamp � (latest

p!r

(E

w

)) stored in prim

p

(r) appears in sec

q

.

From this, it is easy to see that for all p 2 a, the updates made to prim

p

, sec

p

and

ter

p

in step (iii) ensure that for all q; r; s 2 P, prim

p

(q) = � (latest

p!q

(E

u

)), sec

p

(q; r) =

� (latest

p!q!r

(E

u

)) and ter

p

(q; r; s) = � (latest

p!q!r!s

(E

u

)). 2

The gossip automaton does not have any �nal states, since we do not need to accept

any language. Instead, we de�ne for each a 2 � a function g

a

: V

a

! (2

P

� f;g)

P

which

checks the arrays prim

p

and sec

p

of each process p in a and computes for each q 2 P, the

set of processes in a which have the most recent information about q.

(A small technical point: g

a

must be de�ned for all states in V

a

. However, not all

combinations of local states may be \meaningful". We can easily assemble local states to

form an a-state for which the inductive assertions do not hold, as a result of which our

procedure for comparing primary information breaks down. However, since such a-states

are unreachable, we can ignore this problem and simply assign a default value to g

a

in

these cases|for instance, the default value could be the function fp 7! ag

p2P

.)

This immediately yields the result we set out to establish.

Theorem 7 Let (�; �) be the distributed alphabet corresponding to C � (2

P

� f;g). The

family of functions flatest-gossip

c

: �

�

! (2

P

� f;g)

P

g

c2�

is locally computable.

The size of the gossip automaton

Lemma 8 In the gossip automaton, the local state of each process p 2 P can be described

using O(N

3

logN) bits, where N = jPj.

Proof A local state for p consists of the arrays prim

p

, sec

p

and ter

p

. We estimate how

many bits are required to store this.

Recall that for any ideal I, each event in primary

p

(I) is also present in secondary

p

(I).

Similarly, each event in secondary

p

(I) is also present in tertiary

p

(I). So it su�ces to store

just the labels of tertiary events in the array ter

p

. By �xing an ordering of P � P � P,

these events can be stored as a list with N

3

entries.

16

Each new event e was assigned a label of the form hP; `i, where P was the set of

processes that participated in e and ` 2 L.

We have already seen that it su�ces to have O(N

3

) labels in L. As a result, each

label ` 2 L can be written down using O(logN) bits.

To write down P � P, we need, in general, N bits. This component of the label is

required to guarantee that all secondary events in the system have distinct labels, since

the set L is common across all processes. However, we do not really need to use all of P

in the label for e to ensure this property. If we �x a linear order on P, it su�ces to label e

by hp

e

; `i where, among the processes participating in e, p

e

is the smallest with respect to

the ordering on P. It is easy to verify that Proposition 6 continues to hold with respect

to these modi�ed labels.

Thus, we can modify our automaton so that the processes label each event by a pair

hp; `i, where p 2 P and ` 2 L. This pair can be written down using O(logN) bits. Overall

there are N

3

such pairs in the array of tertiary events, so the whole state can be described

using O(N

3

logN) bits. 2

The preceding lemma implies that the number of local states of a process could be expo-

nential in N , the number of processes in the system. In general, this would mean that

we require an exponential amount of space to specify the entire automaton (though each

state can be described using a polynomial number of bits) since the transition table of

the automaton would have an exponential number of entries.

However, in this case, we do not need to exhaustively enumerate the entire state space

and transition table to completely describe the automaton. Since the states are structured

entities and the transition function is presented as an algorithm which manipulates the

data in these structured states, the gossip automaton can in fact be e�ectively presented

in space polynomial in N . This ability to build the gossip automaton e�ciently \on the

y" is crucial for embedding it in other distributed algorithms.

6 Extensions and Applications

Beyond tertiary information

The gossip automaton consistently labels all primary and secondary events. In other

words, at any point, distinct primary and secondary events have distinct time-stamps.

By Lemma 2, this is su�cient to correctly compare and update primary information.

However, we may want to keep track of events which are older than secondary events.

We can generalize the de�nition of secondary and tertiary information and inductively

de�ne the k-ary information of a process p with respect to an ideal I, for any natural

number k.

The case k = 1 corresponds to primary information. For k > 1, the k-ary information

of p after I, k-ary

p

(I), is the (indexed) set

S

q2P

(k�1)-ary

p

(latest

p!q

(I) #). In other

words, this is the latest information that p has in I about the (k�1)-ary information of

q, for all q 2 P.

It is not di�cult to see that the argument in Lemma 4 can be extended to yield the

following result, proved formally in [15].

Lemma 9 Let I be an ideal and p 2 P. If e 2 k-ary

p

(I) then for every q 2 e, e 2

(k+1)-ary

q

(I).

17

Together with Lemma 2, this implies that the gossip automaton can be modi�ed to

maintain consistent time-stamps for all events upto depth k, for any natural number k.

Optimizing the automaton

If we are only concerned with comparing and updating primary information, the gossip

automaton can be made more concise. To achieve this, each process maintains its primary

information as a directed graph which reects the underlying v

�

-order between primary

events, rather than storing the information as a simple array of labels as we have described

here. It turns out that processes can compare and update these primary graphs without

recourse to secondary information. Secondary information is then required only to ensure

that new events get unused labels. Tertiary information is dispensed with altogether.

This leads to the following result (details can be found in [15]).

Lemma 10 The gossip automaton can be modi�ed so that the local state of each process

p 2 P is describable using O(N

2

logN) bits, where N = jPj.

It is important to note that this optimized automaton consistently labels only primary

events. Secondary events could get inconsistent labels. This becomes relevant when we

come to applications of the gossip automaton.

Further optimizations are possible if the structure of the alphabet (�; �) is such that

synchronizations are \well-behaved". One example is when the processes are located on

the vertices of an d-dimensional hypercube (i.e., jPj = 2

d

), with synchronizations taking

place along faces of the hypercube. Once again, details can be found in [15].

Applications

Building the gossip automaton is a basic step in tackling many problems in the theory of

asynchronous automata.

Asynchronous automata play an important role in the theory of distributed systems

because of their close connection to trace theory. Trace theory, initiated by Mazurkiewicz

[19], is a language-theoretic approach to the study of concurrent systems. Traditionally,

formal language theory models computations of sequential systems as strings over an

abstract alphabet. Instead, trace theory describes computations of concurrent systems in

terms of equivalence classes of strings, called traces. All strings in a trace are equivalent

upto permutation of adjacent letters which belong to an underlying independence relation

on the alphabet. Thus, the di�erent elements of a trace correspond to di�erent sequential

observations of the same concurrent computation.

A deep theorem of Zielonka [30] shows that asynchronous automata are a natural

distributed machine model for recognizing trace languages. Zielonka's original proof of the

connection between these automata and recognizable trace languages is widely accepted

to be di�cult to assimilate. In [23], we show that the gossip automaton can be used

to provide a more structured proof of Zielonka's theorem. Overall, the construction we

present is quite similar to the one described in Zielonka's original paper. However, we

feel that by separating out clearly the role played by the gossip automaton, our proof is

much easier to digest. (Other new proofs of Zielonka's theorem exist [2], but these are

based on asynchronous cellular automata [31], a slightly di�erent|and, in our opinion,

less intuitive|machine model.)

18

In [13], a determinization construction is presented for asynchronous automata using

a generalization of the classical subset construction for �nite automata. This construction

allows us to keep track of the global states which are currently valid at any stage of a

computation by a non-deterministic asynchronous automaton.

The key problem to be tackled in the determinization construction is to estimate the

amount of information that can be safely \forgotten" by the subset automaton without

sacri�cing global consistency. It turns out that it is su�cient for each process to maintain

\histories" upto the level of secondary events. This is accomplished by using the gossip

automaton presented here to assign consistent time-stamps to all secondary events. No-

tice that the optimized gossip automaton of [15] cannot be used in the determinization

construction since it only guarantees consistent time-stamps upto primary events.

In the past few years, there has been a lot of interest in extending asynchronous au-

tomata to process in�nite inputs. Analogous to B�uchi automata on in�nite strings, Gastin

and Petit [7] have de�ned B�uchi asynchronous automata which operate on in�nite traces.

Although it has been known for a while that these automata are closed under comple-

mentation for algebraic reasons, the only direct complementation construction provided

so far has been for B�uchi asychronous cellular automata [24]. Safra's determinization

construction for B�uchi automata [26] has recently been extended to B�uchi asynchronous

automata [14]. This provides a natural procedure for complementing these automata.

Once again, the gossip automaton plays a crucial role in the construction.

Automata on in�nite strings have always been closely linked to logic [28]. This con-

nection holds for B�uchi asynchronous automata as well. Recently, Thiagarajan [27] has

developed an extension of propositional linear-time temporal logic which is interpreted

over in�nite traces rather than in�nite linear sequences. This logic appears to be quite

expressive, while remaining decidable (unlike several other partial-order logics studied in

the literature [18]). The decision procedure for this logic is automata-theoretic, in the

style of Vardi and Wolper [29], except that it makes use of B�uchi asychronous automata

rather than conventional B�uchi automata. The gossip automaton plays a crucial role in

this construction as well. In fact, this was the original motivation for constructing the

gossip automaton.

Asynchronous communication

In this paper, we have only dealt with synchronous communication. Synchronous com-

munication achieves co�ordination among independent agents by periodically permitting

subsets of agents to pool information together to make a decision.

Another standard way for agents to exchange information is through message-passing.

This mode of exchanging information is usually referred to as asynchronous communica-

tion, since there may be an arbitrary delay between the time when a message is sent and

the time when it is received.

Synchronous communication is easier to handle, both from a theoretical standpoint as

well as from the point of view of programming. It is no coincidence that languages like

CCS [20] and CSP [11] which have been developed for specifying communicating systems

assume synchronous communication as the basic means of exchanging information.

However, when agents are widely separated in space, asynchronous communication is

generally the only practical way of achieving co�ordination. So, there is a considerable body

of literature devoted to distributed algorithms and protocols for asynchronous systems

19

[16].

We have extended our approach to deal with message-passing systems where the com-

munication medium is reliable, subject to certain restrictions on the number of unacknowl-

edged messages that can be present in the system at any given time [21]. This shows that

our analysis based on primary, secondary and tertiary information is applicable to a much

wider range of distributed systems than the purely synchronous systems discussed in this

paper.

7 Discussion

We now discuss the connections between our results and other work in related areas.

Studies of \gossiping" in networks have traditionally focussed on e�ciently dissem-

inating a �xed piece of information (or gossip) from one node to all other nodes in a

network [9]. The main aim is to �nd an optimal sequence of communications to distribute

data for a given network topology.

Israeli and Li [12] introduced the notion of \bounded time-stamps" and argued that

these were fundamental in solving many problems in distributed systems|notably that

of creating what are called \atomic registers"[17]. Their results have been extended and

considerably simpli�ed by a number of others [3, 5, 6, 8]. However, this line of work is

based on a shared memory model, which is quite di�erent in spirit from the asynchronous

automaton model. Though it may be possible to formally translate their results to our

framework, we feel that the intuition underlying their time-stamping algorithms is quite

di�erent from ours. In general, solutions to time-stamping problems seem to depend

heavily on the underlying model of a distributed system that is used and it is di�cult to

compare such algorithms across models.

More closely connected to our work are the bounded time-stamping algorithms imple-

mented using asynchronous cellular automata in the study of recognizable trace languages

[1, 2]. The synchronization mechanismof asynchronous cellular automata is quite di�erent

from that of asynchronous automata. Asynchronous cellular automata correspond more

closely to shared memory systems than to systems that communicate by direct inter-

process communication. Thus, though the overall goal of the constructions in [1, 2] is

closely related to the gossip problem which we have studied here, the two time-stamping

algorithms appear to be incomparable since they are based on fundamentally di�erent

assumptions about how processes interact.

Our de�nition of locally computable functions is closely linked to the notion of asyn-

chronous mappings which is fundamental to the constructions used in [2]. It would be

interesting to formally characterize the class of locally computable functions and develop

a methodology for automatically synthesizing an asynchronous automaton to compute a

given locally computable function, as is done for asynchronous mappings in [2].

Though our algorithm can be implemented as an asynchronous automaton, it correctly

computes the latest gossip function locally for any input word. In other words, the set

of communication sequences generated by the underlying system need not be regular.

Our algorithm will also work on sequences generated, for instance, by N communicating

Turing machines. Thus, any distributed algorithm which needs to keep track of the ow of

information between processes can incorporate the gossip automaton as a \background"

routine. Moreover, since the gossip automaton can be constructed e�ciently \on the

20

y", embedding it in another algorithm does not involve a very signi�cant computational

overhead.

Since our algorithm does not add any extra messages to the underlying computation,

it is automatically resilient to failures|even if some processes stop functioning, our algo-

rithm will continue to update primary information correctly for those parts of the system

which are still active in the underlying computation. This in-built fault-tolerance is also

present in the shared memory time-stamping protocols of [1, 2, 3, 5, 8, 12] and others.

In an asynchronous automaton, each move is simultaneously performed by all par-

ticipating processes. This strong atomicity assumption is not crucial for our algorithm.

Notice that the label of an event is uniquely �xed by the primary, secondary and tertiary

information of the participating processes. Thus, we could implement each multi-way syn-

chronization as a series of synchronous communications where processes exchange their

local information pairwise and then proceed independently. The deterministic nature of

our algorithm guarantees that each process which participates in an event will locally

choose the same time-stamp for the new event, since all processes taking part in the

event base their choice of time-stamp on identical shared information. Similarly, once

each process has collected the primary, secondary and tertiary information of every other

participating process, it can update its local information unambiguously. Moreover, it

can also compute the updated information of every other process which took part in the

event.

The construction of the gossip automaton establishes a non-obvious property for all

systems with synchronous communication. Suppose an agent p

1

has a private variable

X which no other agent can modify, and agents fp

2

; p

3

; : : : ; p

N

g keep track of the latest

value of X that they have heard of from p

1

(either directly or indirectly). Then, along any

run of the system, bounded time-stamps su�ce for determining which of fp

2

; p

3

; : : : ; p

N

g

have the most recent value of X. This is important, for example, for crash recovery. If the

system crashes and p

1

fails to come alive after the crash, the other agents can get together

and synthesize an optimal \last-known" state of p

1

by comparing their information about

p

1

.

There are obvious parallels between the notion of primary, secondary and tertiary

information we use in this paper and the concept of levels of knowledge about events in a

distributed system [10, 25]. It would be interesting to formally work out how our approach

�ts in with knowledge-theoretic techniques for analyzing distributed systems. As far as we

are aware, none of the work in knowledge theory has addressed the synchronizing model

that we consider here, so establishing a precise connection between the two approaches is

not straightforward.

Acknowledgments P.S. Thiagarajan suggested the gossip problem. We have bene-

�ted greatly from discussions with him. The reformulation of the gossip automaton in

terms of ideals and frontiers emerged during work with Nils Klarlund on determinizing

asynchronous automata. His suggestions have been a great help in cleaning up the pre-

sentation. We also thank Robert de Simone for pointing out some subtle technical errors.

Finally, we thank the referees for several useful comments.

21

References

[1] R. Cori, Y. Metivier: Approximations of a trace, asynchronous automata and the

ordering of events in a distributed system, Proc. ICALP '88, LNCS 317 (1988) 147{161.

[2] R. Cori, Y. Metivier, W. Zielonka: Asynchronous mappings and asynchronous cel-

lular automata, Inform. and Comput., 106 (1993) 159{202.

[3] R. Cori, E. Sopena: Some combinatorial aspects of time-stamp systems, Europ. J.

Combinatorics, 14 (1993) 95{102.

[4] V. Diekert: Combinatorics on traces, LNCS 454 (1990).

[5] D. Dolev, N. Shavit: Bounded concurrent time-stamps are constructible, Proc. 21st

ACM STOC (1989) 454{466.

[6] C. Dwork, O. Waarts: Simple and e�cient bounded concurrent timestamping or

bounded concurrent time-stamps are comprehensible, Proc. 24th ACM STOC (1992) 655{

666.

[7] P. Gastin, A. Petit: Asynchronous cellular automata for in�nite traces, Proc. ICALP

'92, LNCS 623 (1992) 583{594.

[8] R. Gawlick, N. Lynch, N. Shavit: Concurrent time stamping made simple, Proc.

ISTCS '92, LNCS 601 (1992) 171{183.

[9] S.M. Hedetniemi, S.T. Hedetniemi, A.L. Liestman: A survey of gossiping and broad-

casting in communication networks, Networks, 18 (1988) 319{349.

[10] J. Halpern, Y. Moses: Knowledge and common knowledge in a distributed environment,

J. Assoc. Comput. Mach., 37 (1990) 549{578.

[11] C.A.R. Hoare: Communicating Sequential Processes, Prentice-Hall, London (1984).

[12] A. Israeli, M. Li: Bounded time-stamps, Proc. 28th IEEE FOCS (1987) 371{382.

[13] N. Klarlund, M. Mukund, M. Sohoni: Determinizing asynchronous automata, Proc.

ICALP 1994, LNCS 820 (1994) 130{141.

[14] N. Klarlund, M. Mukund, M. Sohoni: Determinizing B�uchi asynchronous automata,

Proc. FST&TCS 1995, LNCS 1026 (1995) 456{470.

[15] R. Krishnan, S. Venkatesh: Optimizing the gossip automaton, Report TCS-94-3,

School of Mathematics, SPIC Science Foundation, Madras, India (1994).

[16] L. Lamport, N. Lynch: Distributed Computing: Models and Methods, in: J. van

Leeuwen (ed.), Handbook of Theoretical Computer Science: Volume B, North-Holland,

Amsterdam (1990) 1157{1200.

[17] M. Li, P. Vitanyi: How to share concurrent asynchronous wait free variables, Proc.

ICALP '89, LNCS 372 (1989) 488{507.

[18] K. Lodaya, R. Parikh, R. Ramanujam, P.S. Thiagarajan: A logical study of dis-

tributed transition systems, Inform. and Comput., 119 (1995) 91{118.

22

[19] A. Mazurkiewicz: Basic notions of trace theory, in: J.W. de Bakker, W.-P. de Roever,

G. Rozenberg (eds.), Linear time, branching time and partial order in logics and models

for concurrency, LNCS 354 (1989) 285{363.

[20] R. Milner: Communication and Concurrency, Prentice-Hall, London (1989).

[21] M. Mukund, K. Narayan Kumar, M. Sohoni: Keeping track of the latest gossip in

message-passing systems, Proc. Structures in Concurrency Theory (STRICT), Berlin 1995,

Workshops in Computing Series, Springer-Verlag (1995) 249{263.

[22] M. Mukund, M. Sohoni: Keeping track of the latest gossip: Bounded time-stamps

su�ce, Proc. FST&TCS '93, LNCS 761 (1993) 388{399.

[23] M. Mukund, M. Sohoni: Gossiping, asynchronous automata and Zielonka's theorem,

Report TCS-94-2, School of Mathematics, SPIC Science Foundation, Madras, India (1994).

[24] A. Muscholl: On the complementation of B�uchi asynchronous cellular automata, Proc.

ICALP 1994, LNCS 820 (1994) 142{153.

[25] R. Parikh, R. Ramanujam: Distributed processes and the logic of knowledge, Proc.

Logics of Programs '85, LNCS 193 (1985) 256{268.

[26] S. Safra: On the complexity of !-automata, Proc. 29th IEEE FOCS (1988) 319{327.

[27] P.S. Thiagarajan: TrPTL: A trace based extension of linear time temporal logic, Proc.

9th IEEE LICS (1994) 438{447.

[28] W. Thomas: Automata on in�nite objects, in J. van Leeuwen (ed.), Handbook of Theo-

retical Computer Science, Volume B, North-Holland, Amsterdam (1990) 133{191.

[29] M. Vardi, P. Wolper: An automata theoretic approach to automatic program veri�ca-

tion, Proc. 1st IEEE LICS (1986) 332{345.

[30] W. Zielonka: Notes on �nite asynchronous automata,R.A.I.R.O.|Inform. Th�eor. Appl.,

21 (1987) 99{135.

[31] W. Zielonka: Safe executions of recognizable trace languages, Proc. Logical Foundations

of Computer Science, LNCS 363 (1989) 278{289.

23

