
Proc. Structures in Concurrency Theory (STRICT), Berlin 1995,

Workshops in Computing Series, Springer-Verlag (1995) 249{263.

Keeping Track of the Latest Gossip

in Message-Passing Systems

Madhavan Mukund

�

K. Narayan Kumar

y

Milind Sohoni

z

Abstract

Consider a distributed system in which processes exchange information

by passing messages. The gossip problem is the following: Whenever a

process q receives a message from another process p, q must be able to

decide which of p and q has more recent information about r, for every

other process r in the system. With this data, q is in a position to update

its knowledge about the global state of the system.

We propose a solution where each message between processes carries

information about the current state of knowledge of the sender. This

information is uniformly bounded if we make reasonable assumptions

about the number of undelivered messages present at any time in the

system. This means that the overhead of maintaining the latest gossip is

a constant, independent of the length of the underlying computation.

Introduction

We tackle a natural problem fromdistributed computing, involving time-stamps.

Let P be a set of computing agents or processes which exchange information

by passing messages. The gossip problem is the following: Whenever a process

q receives a message from another process p, q must be able to decide which of

p and q has more recent information about r, for every other process r.

By keeping track of the latest gossip about other agents, each process can

consistently update its knowledge about the global state of the system whenever

it receives some new information from another process. Computing global

information about the system from local information is, of course, a central

issue in distributed computing. So, a solution to the gossip problem would be

useful in a wide variety of applications involving distributed systems.

The gossip problem has been investigated in [5, 9] for systems where pro-

cesses synchronize periodically and exchange information. We extend the so-

lution proposed in [5, 9] to a general message-passing model, where processes

communicate by sending messages on point-to-point channels. We assume that

communication is guaranteed|all messages in the system are eventually deliv-

ered. However, we permit inde�nite delays in transit. Also, messages need not

be received in the order in which they were sent.

In our solution to the gossip problem, processes exchange only a bounded

amount of gossip information with each message they send. At the heart of our

�

School of Mathematics, SPIC Science Foundation, 92 G.N. Chetty Road, T. Nagar,

Madras 600 017, India. E-mail: madhavan@ssf.ernet.in

y

Computer Science Group, Tata Institute of Fundamental Research, Homi Bhabha Road,

Colaba, Bombay 400 005, India. E-mail: kumar@tcs.tifr.res.in

z

Department of Computer Science and Engineering, Indian Institute of Technology, Bom-

bay 400 076, India, E-mail: sohoni@cse.iitb.ernet.in

solution is a protocol for time-stamping messages in the system using a �nite

set of labels.

Time-stamping is a well-established technique for ordering events in a dis-

tributed setting [6, 7]. Time-stamping protocols which use only a bounded set

of labels to tag events have attracted a fair amount of attention in recent years.

Protocols have been exhibited for systems in which processes communicate via

a shared memory [3, 4], as also for systems where processes synchronize peri-

odically and exchange information [1, 2, 9]. However, no such protocol seems

to exist for message-passing systems.

It is not di�cult to see that in the completely general message-passing model

described above, bounded time-stamping is not possible. In order to make the

problem tractable, we have to restrict the model by placing a bound on the

number of unacknowledged messages that can be present in the system at any

time. We believe that this restriction is a natural one and that all \reasonable"

distributed algorithms for message-passing systems would actually conform to

the paradigm we propose.

An important feature of our solution to the gossip problem is that it does not

introduce any additional messages|it just adds some additional data to each

message of the underlying computation. This additional data is guaranteed to

be uniformly bounded. So, given any distributed algorithm which conforms to

the restricted model we work with, we can enhance the algorithm to also keep

track of the latest gossip with only a constant overhead in message complexity.

The paper is organized as follows. In the next section we introduce our

model of computation and formulate the gossip problem in terms of a natural

partial order on the events in the system. Section 2 describes ideals, which cap-

ture the notion of a partial view of a distributed computation. Sections 3 and

4 describe a protocol to solve the gossip problem for �fo computations, where

messages are delivered in the order they were sent. Each process maintains

what we call primary information about the computation, using potentially

unbounded labels to distinguish messages in the system. In Section 5 we show

how to convert this protocol to one which uses bounded time-stamps, thereby

establishing a solution to the gossip problem in the �fo case. In the �nal sec-

tion, we give a quick sketch of how to extend this solution to the case where

messages are not necessarily delivered in the order in which they were sent.

1 The Model

Let P = fp

1

; p

2

; : : : ; p

N

g be a set of processes which communicate with each

other through messages. We assume that messages are never lost|that is, the

communication medium is reliable. However, there may be an arbitrary delay

between the sending of a message and its receipt. Further, messages need not

be received in the order in which they were sent.

We assume that communication is point-to-point. So, each message is ad-

dressed to a speci�c process and is not seen by any of the other processes in the

system. Thus, each transmission of a message from a process p to a process q

consists of two distinct actions; the action s

p!q

corresponds to the sending of

the message from p to q and the action r

q p

corresponds to its receipt by q.

We can regard a computation of the system as a word over the alphabet

C = C

S

[C

R

where C

S

= fs

p!q

j p; q 2 Pg is the set of send actions and

C

R

= fr

p q

j p; q 2 Pg is the set of receive actions. Each action in C is

\executed" by a single process. So, we can also partition C across processes|

for each process p, C

p

= fs

p!q

j q 2 Pg [fr

p q

j q 2 Pg is the set of p-actions

that p participates in directly.

We shall regard a word u 2 C

�

of length m as a function u : [1::m] ! C,

where [1::m] denotes the set f1; 2; : : :;mg if m � 1 and is ; if m = 0. For

u 2 C

�

and c 2 C, #

c

(u) denotes the number of occurrences of c in u. We can

extend this to subsets X � C: #

X

(u) =

P

c2X

#

c

(u).

Not every word corresponds to a valid computation|for instance, we must

insist that messages are received only after they are sent. In addition, since

messages need not be received in the order they were sent, to completely specify

a computation we need to match each receive event to the corresponding send

event. With this in mind, we de�ne computations as follows:

Computations A computation over C is a pair (u; �) where u : [1::m]! C is

a word and � : [1::m]! [1::m] is a partial function such that:

(i) The domain of �, dom(�) is fi j u(i) 2 C

R

g.

(ii) � is injective over dom(�)|for each i; j 2 dom(�), i 6= j) �(i) 6= �(j).

(iii) For each i 2 dom(�), �(i) < i.

(iv) If u(i) = r

q p

then u(�(i)) = s

p!q

.

If �(i) = j, then u(i) is a receive action whose corresponding send action is

u(j). By condition (ii), we may also refer to i unambiguously as �

�1

(j).

Example: Let P = fp; qg and let u be the string s

p!q

s

p!q

s

p!q

r

q p

r

q p

and

� be the function where �(4) = 3 and �(5) = 1. So, in this computation, the

message sent from p to q at u(1) is overtaken by the message sent at u(3).

Moreover, the message sent at u(2) has not reached q at all.

Events and causality The word u imposes a total, temporal order on the

actions observed during a computation (u; �). However, in order to analyze the

ow of information between processes, we need a more accurate description of

the cause and e�ect relationship between the di�erent actions in u.

Let (u; �) be a computation, where u : [1::m]! C. We associate with (u; �)

a set of events E

u

= f(i; u(i)) j i 2 [1::m]g.

Let e = (i; u(i)) be an event in E

u

. When there is no ambiguity, we shall

use e to denote both i and u(i). For instance, e 2 C

p

denotes that u(i) 2 C

p

|

in other words, e is a p-event. Similarly, if we say f = �(e) we mean that

f = (j; u(j)) is an event such that �(i) = j. We shall also use E

u

and u

interchangeably in expressions such as #

c

(E

u

), which denotes #

c

(u).

As we mentioned earlier, u imposes a total, temporal order on the events in

E

u

. Let e; f 2 E

u

. Then e < f provided e = (i; u(i)), f = (j; u(j)) and i < j.

As usual e � f if e < f or e = f .

Messages introduce causality across processes. For each pair (p; q) 2 P �P

such that p 6= q, de�ne /

pq

to be the ordering

e /

pq

f

4

= e 2 C

p

; f 2 C

q

and �(f) = e:

1

s

p!q

2

s

p!r

3

s

p!r

4

r

r p

5

s

r!q

6

r

q r

7

s

p!q

8

r

r p

9

r

q p

10

s

r!q

@
@

@
@R

@

@

@

@

@

@R

@

@

@

@

@

@
@R�

�

��

- - -

-

- - -

Figure 1: An example

In addition, each process p orders the events it participates in. De�ne /

pp

to be the strict ordering

e /

pp

f

4

= e < f; e 2 C

p

; f 2 C

p

and for all e < g < f; g =2 C

p

:

The set of all p-events in E

u

is totally ordered by /

�

pp

, the reexive, transitive

closure of /

pp

.

De�ne e < f if for some p; q 2 P (where p and q need not be distinct),

e /

pq

f and e v f if e = f or e < f . Let v

�

denote the transitive closure of

v. If e v

�

f then we say that e is below f . The partial order v

�

records the

information we require about causality and independence between events in E

u

.

Let e 2 E

u

be a p-event. The set of events below e is e#= ff j f v

�

eg.

These represent the only actions which are known to p when e occurs.

Latest information Consider a computation (u; �) and its associated set of

events E

u

. The v

�

-maximump-event in E

u

is denoted max

p

(E

u

)|this is the last

event in E

u

in which p has taken part. This quantity is well de�ned whenever

#

C

p

(E

u

) > 0, since all p-events in E

u

are totally ordered by v

�

. (Recall that

C

p

� C is the set of p-actions, so #

C

p

(E

u

) denotes, by convention, the number

of p-actions mentioned in the string u.)

Let p; q 2 P. If #

C

p

(E

u

) > 0, the latest information p has about q in

E

u

corresponds to the v

�

-maximum q-event in the set max

p

(E

u

)#, provided

the set of q-events below max

p

(E

u

) is not empty. We denote this event by

latest

p q

(E

u

). (If there are no q-events in max

p

(E

u

)#, then latest

p q

(E

u

) is

unde�ned.)

Example: Let P = fp; q; rg. Consider the computation (u; �), where u =

s

p!q

s

p!r

s

p!r

r

r p

s

r!q

r

q r

s

p!q

r

r p

r

q p

s

r!q

, �(4) = 2, �(6) = 5, �(8) = 3

and �(9) = 1. Figure 1 is a picture of (E

u

;v

�

). The arrows in the �gure

correspond to the basic relations /

pq

, which generate v

�

.

In this computation, max

q

(E

u

) = (9; r

q p

). Though at max

q

(E

u

), process

q hears from process p, latest

q p

(E

u

) does not correpond to �(max

q

(E

u

)). In-

stead, latest

q p

(E

u

) = (2; s

p!r

)|process q hears this information indirectly,

via process r.

The gossip problem

Let p, q and r be processes such that latest

p r

(E

u

) and latest

q r

(E

u

) are both

de�ned. Since both of these are r-events, they must be ordered by /

�

rr

. So, the

latest information that p and q have about r will always be comparable.

The gossip problem is the following.

Whenever a process q receives a message from another process p,

q must be able to decide which of p and q has heard more recently

from r, for every other process r in the system.

One way to resolve this problem is as follows. As the computation pro-

gresses, each action is assigned a label by the process involved in that action.

These labels allow processes to refer to events in an unambiguousmanner. Each

process then maintains the labels corresponding to its latest information. These

labels are passed on with each communication in such a way that the process

receiving the message can consistently update its own latest information.

The labels which are assigned to events during a computation are essentially

time-stamps. A trivial solution to the time-stamping problem is for each process

to maintain a local counter and assign strictly increasing counter values to the

actions it executes. Then, two processes p and q can compare their latest

information about r by checking which of their \latest" r labels is larger.

This scheme has the following drawback: As the computation progresses,

the time-stamps assigned to events grow without bound. As a result, processes

need to send longer and longer messages to transfer the labels corresponding

to their latest information.

We seek a solution to the gossip problemwhere message lengths are bounded.

This will ensure that the overhead of maintaining gossip information remains

a constant, regardless of the length of the underlying computation.

To achieve this, we need to devise a scheme for labelling events using a

bounded set of time-stamps. This means that, eventually, the same time-stamp

will be assigned to more than one event. We need to ensure that time-stamps

are reused in such a way that the update of latest information is not a�ected.

In principle, this should be possible. Let E

u

be the events corresponding to

the computation (u; �) and let the number of processes in the system be N .

Regardless of the number of events in E

u

, at most N

2

of them are relevant for

solving the gossip problem|we only need to be able to compare the labels of

events of the form latest

p q

(E

u

) for each pair p; q 2 P. So, in e�ect, at most

N

2

of the events in E

u

constitute \current" gossip. Moreover, once an event

becomes \obsolete" its time-stamp can be safely reused|an \obsolete" event

can never become \current" at a later stage in the computation.

However, in the completely general model we have considered so far, it is

impossible to achieve our goal. Since messages can be delayed inde�nitely, a

process p may send unboundedly many messages to q without knowing whether

any or all of them have reached. Until p receives some con�rmation from q that

a particular message has reached, that message's time-stamp cannot be reused.

Thus, p will potentially need to use an unbounded number of time-stamps to

label its messages to q. (Notice that this problem arises even if messages are

delivered in the order in which they were sent|the main source of di�culty is

the fact that there is no bound on the delay in delivering a particular message.)

B-bounded computations To overcome this problem, we need to restrict

the class of computations we permit. Intuitively, we must bound the number

of unacknowledged messages between any pair of processes. More formally, we

say that (u; �) is a B-bounded computation provided the following holds:

For each event e = (i; s

p!q

) in E

u

; #

s

p!q

(e#)�#

r

q p

(e#) � B:

In other words, p can send a fresh message to q only if, as far as it knows, the

number of messages which it has already sent to q and which are yet to be

delivered is less than B. Notice that p need not get direct acknowledgments

from q. For instance, q could tell r that it has received a particular message m

from p and r, in turn, could pass on this information to p.

Even for B-bounded computations, it is not immediate that the gossip prob-

lem has a solution. Suppose process p sends process q a message m. Though

p is guaranteed to receive an acknowledgment for this message by the time it

sends its next B messages to q, it cannot na��vely reuse m's time-stamp once m

is acknowledged. In between, q may have passed on the information in m to

another process r, in which case the message m would still constitute \current"

gossip for r. So, p has to have some means of recording which of its time-stamps

are \in use" in the system at any given time.

Fifo computations Though we eventually present a solution to the gossip

problem for all B-bounded computations, it will be convenient to �rst look at

the problem in a restricted setting, where messages are delivered in the order

in which they were sent. Formally, we say that a computation (u; �) is �fo if

the following holds: For every pair of processes p and q and for any two receive

events e and f of the form r

p q

, e <

+

f implies �(e) <

+

�(f), where <

+

denotes the transitive closure of the relation <.

Though messages between processes may not overtake each other in a �fo

computation, gossip information along one route may overtake gossip informa-

tion on another route. For instance, suppose p sends a message m to q and

then sends a message m

0

to r, following which r sends a message m

00

to q which

reaches q before m does. Then, by the time m reaches q, the information that

m contains about the state of p is obsolete. So, even in a �fo computation, each

process has to have a way of resolving whether the message it has just received

has already been superseded by earlier, indirect information.

For the next four sections, we assume that every computation we deal with

is B-bounded and �fo.

2 Ideals

Let us �x a computation (u; �), where u : [1::m] ! C, and the corresponding

set of events E

u

, which we shall denote as just E from now on, for convenience.

The main source of di�culty in solving the gossip problem is the fact that

the processes in P need to compute global information about the computation

(u; �) while each process only has access to a local, \partial" view of u. Al-

though partial views of (u; �) correspond to subsets of E , not every subset of

E arises from such a partial view. Those subsets of E which do correspond to

partial views of (u; �) are called ideals.

Ideals A set of events I � E is called an order ideal if I is closed with respect

to v

�

|i.e., e 2 I and f v

�

e implies f 2 I as well. We shall always refer to

order ideals as just ideals.

The requirement that an ideal be closed with respect to v

�

guarantees that

the observation it represents is \consistent"|whenever an event e has been

observed, so have all the events in the computation which necessarily precede

e. Clearly the entire set E is an ideal, as is e# for any e 2 E . It is easy to see

that if I and J are ideals, so are I [J and I \ J .

Example: In Figure 1, the set I = f(1; s

p!q

); (2; s

p!r

); (4; r

r p

); (5; s

r!q

);

(6; r

q r

)g is an ideal. However, the set J = f(1; s

p!q

); (2; s

p!r

); (3; s

p!r

);

(5; s

r!q

); (6; r

q r

)g is not an ideal, since (4; r

r p

) v

�

(5; s

r!q

) but (4; r

r p

) =2

J .

We need to generalize the notion of max

p

(E), the maximum p-event in E , to

all ideals I � E .

p-views For an ideal I, the v

�

-maximum p-event in I is denoted max

p

(I),

provided #

C

p

(I) > 0. The p-view of I is the set I

p

= max

p

(I)#. So, I

p

is

the set of all events in I which p can \see". (By convention, if max

p

(I) is

unde�ned|i.e., if there is no p-event in I|the p-view I

p

is the empty set.)

Example: In Figure 1, consider the ideal I = f(1; s

p!q

); (2; s

p!r

); (4; r

r p

);

(5; s

r!q

); (6; r

q r

)g Then I

p

, the p-view of I is f(1; s

p!q

); (2; s

p!r

)g whereas

I

q

, the q-view of I, is the entire ideal I.

3 Primary information

For processes p; q 2 P, we have already de�ned latest

p q

(E), the latest in-

formation that p has about q after (u; �). We can extend this de�nition to

arbitrary ideals.

Let I � E be an ideal and p; q 2 P. Then latest

p q

(I) denotes the v

�

-

maximum q-event in I

p

, provided #

C

q

(I

p

) > 0. So, latest

p q

(I) is the latest

q-event in I that p knows about. (As usual, if there is no q-event in I

p

, the

quantity latest

p q

(I) is unde�ned.)

It is clear that latest

p q

(I) will always correspond to a send action from

C

q

. However latest

p q

(I) need not be of the form s

q!p

; the latest information

that p has about q in I may have been obtained indirectly.

To maintain and update the latest information of processes, we need to

expand the set of events that each process keeps track of. This expanded set will

be called primary information. The primary information of a process contains

not only its latest information about every other process but also information

about acknowledged and unacknowledged messages in the system.

Message acknowledgments Let I � E be an ideal and e 2 I an event of

the form s

p!q

. Then, e is said to have been acknowledged in I if �

�1

(e) exists

and, moreover, belongs to I

p

. Otherwise, e is said to be unacknowledged in I.

Notice that it is not enough for a message to have been received in I to

deem it to be acknowledged. We demand that the event corresponding to the

receipt of the message be \visible" to the sending process.

For an ideal I and a pair of processes p; q, let received

q p

(I) be the most

recent message from p which q has received in I. In other words, received

q p

is

the v

�

-maximum s

p!q

event e in I such that �

�1

(e) belongs to I. Since (u; �)

is a �fo computation, all messages corresponding to s

p!q

events below e must

have also been received by q.

Let unack

p!q

(I) be the set of unacknowledged s

p!q

events in I. By de�-

nition, this set consists of all s

p!q

events in I which lie above received

q p

(I

p

).

Since the underlying computation (u; �) is B-bounded, unack

p!q

(I) never con-

tains more than B events.

It will be convenient to de�ne the notion of primary informationwith respect

to ideals rather than processes.

Primary information Let I � E be an ideal. The primary information of

I, primary(I), consists of the following events in I:

� The set latest(I) = fmax

p

(I) j p 2 Pg.

� The collection of sets unack (I) = funack

p!q

(I) j p; q 2 Pg.

� The set received(I) = freceived

q p

(I) j p; q 2 Pg.

Observe that we can treat unack (I) to be just a set of events, though we have

de�ned it as a collection of sets. For each event e = (i; u(i)) in unack (I), the

action u(i) immediately determines the particular set unack

p!q

(I) to which e

belongs|e 2 unack

p!q

(I) i� u(i) = s

p!q

. Similarly, we can regard latest(I)

and received(I) as just sets of events. For each event e = (i; u(i)) in latest(I),

e = max

p

(I) i� u(i) 2 C

p

. In the same way, for each event (i; u(i)) in

received(I), e = received

q p

(I) i� u(i) = s

p!q

.

On the other hand, primary(I) is an indexed set of events. If e belongs to

primary(I) we also need to record which of the three components e belongs to.

However, often we shall abuse notation and treat primary(I) as just a set of

events. It is clear that primary(I) contains only a bounded number of events.

Let I � E be an ideal and p a process such that I

p

6= ;. Then, primary(I

p

)

denotes the primary information of p in I|i.e., p's primary information is just

the primary information of the p-view of I. Clearly, the \latest information"of p

after I is contained in its primary information|for every process q, latest

p q

(I)

is just max

q

(I

p

).

To compare and update primary information, processes also need to remem-

ber how their primary events are ordered by v

�

.

Primary graph Let I � E . The primary graph of I, primary-graph(I) is the

directed graph (V;E) where:

� V = primary(I) (where primary(I)) is represented as an indexed set of

events.)

� For v

1

; v

2

2 V , let e

1

and e

2

be the corresponding events from I. Then,

(v

1

; v

2

) 2 E i� e

1

v

�

e

2

.

As with primary information, the primary graph of a process p in I is just

the graph primary-graph(I

p

).

For the moment we shall ignore the issue of assigning bounded time-stamps

to events and assume that events are assigned unambiguous labels by some

mechanism. For instance, as we mentioned earlier, each process could maintain

a local counter and assign an increasing sequence of unique time-stamps to the

events that it participates in.

Our �rst goal is to exhibit a procedure by which processes update their

primary graphs without relying on the temporal order of events. Processes will

only utilise the information about causality recorded in the primary graphs. All

comparisons and updates of primary information will based purely on equality

of event labels. This feature will allow us to extend the algorithm smoothly to

the case where processes reuse labels.

4 Comparing primary information

Let E be the events corresponding to a computation (u; �). Then, each ideal I �

E corresponds to a possible partial computation of (u; �). Let us assume that at

the end of any partial computation I, each process maintains the information

primary-graph(I

p

).

In general, for an ideal I � E , each pair of processes p and q will have

incomparable information about I. The events known to both p and q lie in

the ideal I

p

\ I

q

. Events lying \above" the intersection are known to only one

of the processes.

Suppose that q receives a message from p during the computation. Then,

we have an event e

p

2 E of the form s

p!q

and a corresponding event e

q

2 E of

the form r

q p

such that �(e

q

) = e

p

.

Let e

0

q

= max

q

(e

q

�fe

q

g)|i.e., e

0

q

is the maximum q-event strictly below

e

q

. So, e

0

q

represents the state of q's knowledge before receiving this message

from p. Let I be the ideal e

p

[e

0

q

#.

For the moment, let us assume thatmax

p

(e

0

q

#) <

+

e

p

|i.e., the message sent

at e

p

has \new" information for q about the state of p. Then, e

p

#= I

p

and e

0

q

#=

I

q

. The message sent by p at e

p

contains the primary graph primary-graph(I

p

).

On the other hand, before receiving this message, q's primary graph corresponds

to primary-graph(I

q

).

Our �rst observation is that if q knows both primary-graph(I

p

) and

primary-graph(I

q

), it can determine which events in the two primary graphs

lie within I

p

\ I

q

and which lie outside this intersection.

Lemma 1 Let I � E be an ideal and p, q a pair of processes. Then, for

each maximal event e in I

p

\ I

q

, either e 2 latest(I

p

) \ unack (I

q

) or e 2

unack (I

p

) \ latest(I

q

).

Proof Let e be a maximal event in I

p

\ I

q

. Suppose it is an r-event, for some

r 2 P. The event emust have <-successors in both I

p

and I

q

. However, observe

that any event f in E can have at most two immediate <-successors|one

\internal" successor within the process and, if f is a send event, one \external"

successor corresponding to the matching receive event.

Thus, the maximal event e will have a /

rr

successor e

r

and a /

rs

successor e

s

,

corresponding to some s 2 P. Assume that e

r

2 I

q

� I

p

and e

s

2 I

p

� I

q

. Since

the r-successor of e is outside I

p

, e = max

r

(I

p

). So e belongs to latest(I

p

). On

the other hand, e is an unacknowledged s

r!s

event in I

q

. So, e 2 unack

r!s

(I

q

),

which is part of unack (I

q

).

Symmetrically, if e

r

2 I

p

� I

q

and e

s

2 I

q

� I

p

, we �nd that e belongs to

unack (I

p

) \ latest(I

q

). 2

Thus, when q receives p's primary graph, q can collect together in a set

M all the events that lie in latest(I

p

) \ unack (I

q

) and unack (I

p

) \ latest(I

q

).

By the preceding lemma, the events in M subsume the maximal events in the

intersection I

p

\ I

q

. (It is easy to see that those events in M which are not

actually maximal still lie within the intersection.)

The process q can useM to check whether a primary event e 2 primary(I

p

)[

primary(I

q

) lies inside or outside the intersection|e lies inside the intersection

i� it lies below one of the elements inM . These comparisons can be made using

the edge information in the graphs primary-graph(I

p

) and primary-graph(I

q

).

Now, it is easy for q to compare the events in latest(I

p

) with those in

latest(I

q

) to determine which of p and q have more recent information about

every other process r.

Lemma 2 Let I � E be an ideal and p; q a pair of processes. Let e = max

r

(I

p

)

and f = max

r

(I

q

) such that e 6= f . Then, e <

+

f i� f 2 I

q

� I

p

.

Proof ()) Suppose that e <

+

f . If f belongs to I

p

then e 6= max

r

(I

p

), which

is a contradiction. On the other hand, f clearly belongs to I

q

, so f 2 I

q

� I

p

.

(() Suppose that f 2 I

q

� I

p

. If f <

+

e, then f 2 I

p

since I

p

is an ideal.

This is a contradiction. So it is not the case that f <

+

e. Since f 6= e and all

r-events are totally ordered by v

�

, we must have e <

+

f . 2

Once q has compared all events of the form max

r

(I

p

) and max

r

(I

q

), it can

easily update its sets unack

r!s

(I

q

), where r 6= q. The process which has better

information about r also has better information about unacknowledged events

of the form s

r!s

in I. In other words, q inherits the sets unack

r!s

(I

p

) for every

process r such that max

r

(I

p

) is more recent than max

r

(I

q

). On the other hand,

if max

r

(I

p

) is older than max

r

(I

q

), then q ignores p's sets unack

r!s

(I

p

) since

it already has better information about these events.

At this stage, using the data in primary-graph(I

p

) and primary-graph(I

q

),

q has updated all of primary(e

q

#) except for the sets funack

q!r

(e

q

#)g

r2P

and

received(e

q

#). (Recall that e

q

was the event where q received p's message sent

at e

p

.)

We �rst describe how to construct received(e

q

#). Clearly received

q p

(e

q

#)

= e

p

. To �ll in the rest of received(e

q

#), we need the following observation,

which we state without proof.

Proposition 3 For every pair of processes (r; s) such that (r; s) 6= (p; q),

received

s r

(e

q

#) =

�

received

s r

(I

p

) if max

s

(I

q

) <

+

max

s

(I

p

)

received

s r

(I

q

) otherwise

So, once q has compared the events in latest(I

p

) and latest(I

q

), it can decide

which of the events in received(e

q

#) are inherited from received(I

p

) and which

are retained from received(I

q

).

Process q can now use the information in received(e

q

#) to update the sets

funack

q!r

(I

q

)g

r2P

by purging acknowledged events from these lists. Formally,

for every process r, unack

q!r

(e

q

#) consists of all the events in unack

q!r

(I

q

)

which lie above received

r q

(e

q

#). This update can be made with the edge

information in primary-graph(I

q

).

Having constructed the sets latest(e

q

#), unack (e

q

#) and received(e

q

#), we

need to extend this set to the graph primary-graph(e

q

#).

Let f

1

; f

2

2 primary(e

q

#). If both f

1

and f

2

came from primary(I

p

), then

we add an edge from f

1

to f

2

in primary-graph(e

q

#) i� a corresponding edge

existed in primary-graph(I

p

). A symmetric situation applies if both f

1

and f

2

were contributed by primary(I

q

).

So, the only interesting case is when f

1

and f

2

originally came from di�erent

processes. Without loss of generality, suppose that f

1

came from primary(I

p

)

and f

2

from primary(I

q

). Then, from the method which we used to compare

events, we know that f

1

must have been in I

p

� I

q

and f

2

must have been in

I

q

� I

p

. So, it is clear that f

1

and f

2

are unordered in E and there is therefore

no edge between them in primary-graph(e

q

#).

So far, we have shown how to construct primary-graph(e

q

#) assuming that

max

p

(e

0

q

#) <

+

e

p

. If q already has better information about p|i.e., e

p

v

�

max

p

(e

0

q

#)|it is easy to see that e

p

must in fact lie strictly below max

p

(e

0

q

#),

since q's knowledge of e

p

must have come from a message sent by p after e

p

to

some other process r. In this case, q can no longer use Lemma 1 to compute

the maximal elements in the intersection e

p

\e

0

q

since the p-view of the ideal

I = e

p

[e

0

q

is not e

p

but max

p

(e

0

q

#)#.

However, it is easy to see that if e

p

<

+

max

p

(e

0

q

#) then e

p

#� e

0

q

#. So, for

every other process r, max

r

(e

p

#) v

�

max

r

(e

0

q

#). It then follows that the only

update that q has to make to primary-graph(e

0

q

#) is to set received

q p

(e

q

#) to

e

p

. The rest of primary-graph(e

q

#) is inherited from primary-graph(e

0

q

#).

All we need is a means for q to detect whether e

p

is a \new" message. Based

on this, q can decide whether to ignore the information in primary-graph(e

p

#).

This is not very di�cult because of the following observation.

Proposition 4 Let e

p

be a s

p!q

event such that �

�1

(e

p

) = e

q

and let e

0

q

=

max

q

(e

q

�fe

q

g). Then e

p

v

�

max

p

(e

0

q

#) i� e

p

2 unack

p!q

(e

0

q

#):

In other words, to check if the message is old, all q has to do is to see if e

p

is already in its set unack (e

0

q

#). This leads to the following general statement

which summarizes the results of this section.

Lemma 5 Let e

p

be a s

p!q

event in E such that �

�1

(e

p

) = e

q

. Let e

0

q

=

max

q

(e

q

�fe

q

g). Then, q can construct primary-graph(e

q

#) from the graphs

primary-graph(e

p

#) and primary-graph(e

0

q

#).

5 Bounded time-stamps

To make the protocol described in the previous section e�ective, we have to

bound the amount of information recorded in the primary graph of each process

by limiting the size of the labels used to identify events.

Notice that the procedure for updating primary graphs only checks the

labels of events which actually lie in the primary graphs of the sending and

receiving processes. Call an event e \current" in I if e belongs to primary(I

p

)

for some process p.

Let N be the number of processes in the system. Since the underlying

computation is B-bounded, we know that there are at most N + (B+1)N

2

distinct events in primary(I

p

) for process p|there are at most N events in

latest(I

p

), at most B events in each of the sets unack

q!r

(I

p

) and at most N

2

events overall in received(I

p

). So, at any given time, the number of events

across the system which are current is bounded by N (N + (B+1)N

2

).

From the way primary information is de�ned, it is clear that all current

events are actually send events. Each send event s

p!q

begins by being current|

the moment the message is sent, the event is added to the list of unacknowledged

messages from p to q. Eventually, q acknowledges this message and p gets rid of

it from its unacknowledged list. Meanwhile, as the computation progresses, this

event may get added to the primary information of other processes. However,

gradually it recedes into the past, until it drops out of the primary information

of all processes. At this time, the label assigned to this event can be reused|

the old event with the same label can never become current again.

Processes can keep track of which events in the system are current by main-

taining one additional level of data, called secondary information.

Secondary information Let I be an ideal. The secondary information of I

is the collection of (indexed) sets primary(e#) for each event e in primary(I).

This collection of sets is denoted secondary(I).

The following lemma says that the only p-events which can be current in

the system are those which occur in p's secondary information.

Lemma 6 Let I � E be an ideal and e a p-event which belongs to primary(I

q

)

for some process q. Then, e 2 secondary(I

p

).

A proof of this lemma can be found in the full paper [8]. We will use the

preceding result in the following form.

Corollary 7 Let e be a p-event such that e =2 secondary(I

p

). Then e =2

primary(I

q

) for any q 2 P.

Our update procedure does not rely on the temporal order of events. So long

as all processes which refer to the same label in their primary information are

actually talking about the same event, reusing labels should cause no confusion.

Therefore, if p knows that no p-event labelled ` is currently part of the primary

information of any process in the system, it can safely use ` to time-stamp the

next message which it sends.

Secondary information can be updated in a straightforward manner when

we update primary information|if q inherits an event e from p's primary in-

formation, it also inherits the secondary information primary(e#) associated

with e. Notice that it su�ces to maintain secondary information as an indexed

set|we do not need to maintain secondary graphs as we do primary graphs.

This at once gives us a protocol which solves the gossip problem for B-

bounded �fo computations.

The gossip protocol

Let L be a �nite set of labels of such that jLj > (N

2

+(B+1)N

3

). All processes

use the set L to time-stamp messages. Each process p maintains its primary

graph primary-graph

p

= (V

p

; E

p

), where V

p

consists of the (indexed) sets of

labels latest

p

, unack

p

and received

p

.

A typical element of latest

p

is a pair of the form (`; q)|this will mean that

the maximum q-event known to p is time-stamped `. Similarly, elements of

unack

p

and received

p

are triples. An entry (`; q; r) in unack

p

signi�es that,

as far as p knows, the s

q!r

event labelled ` has not been acknowledged. In

the same vein, a typical entry (`; q; r) in received

p

denotes that, as far as p

knows, the most recent message from q to r which has actually been delivered

is time-stamped `.

Finally, the process p maintains its secondary information secondary

p

as an

indexed set of labels. If �e is a tuple from latest

p

[unack

p

[received

p

, then an

event in latest(�e#) will be represented as (`

0

; r; �e), indicating that the maximum

r-event in �e # is time-stamped `

0

. In a similar manner, an entry (`

0

; r; s; �e)

in unack (�e #) signi�es that there is a s

r!s

event time-stamped `

0

which is

unacknowledged within �e#. And, �nally, an entry (`

0

; r; s; �e) in received(�e#)

means that the most recent message from r to s which has been delivered

within e# is timestamped `

0

.

Initially, for each p, latest

p

, unack

p

, received

p

and secondary

p

are empty.

Sending a message When p sends a message to q it does the following:

� Choose a label ` from L which does not appear as the �rst component of

any tuple in latest

p

[unack

p

[received

p

[secondary

p

.

� Remove the old event (`

0

; p) from latest

p

, if it exists. Also remove all

associated events from secondary

p

|i.e., tuples of the form (`

00

; p

0

; `

0

; p)

and (`

00

; p

0

; p

00

; `

0

; p).

� Add (`; p; q) to unack

p

and (`; p) to latest

p

. Add an edge in E

p

from each

tuple in latest

p

[unack

p

[received

p

to the new tuples (`; p; q) 2 unack

p

and (`; p) 2 latest

p

.

� For each pair (`

0

; p

0

) in latest

p

, add (`

0

; p

0

; `; p) to secondary

p

. Simi-

larly, for each triple (`

0

; p

0

; p

00

) in unack

p

[received

p

, add (`

0

; p

0

; p

00

; `; p)

to secondary

p

.

� Send primary-graph

p

and secondary

p

to q.

Receiving a message On receiving a message from p, q does the following:

� Extract the label ` of the new message.

� Replace the current triple (`

0

; p; q) in received

q

, if it exists, by (`; p; q).

� If (`; p; q) does not already belong to unack

q

then update primary-graph

q

and secondary

q

by comparing primary-graph

p

and secondary

p

in the mes-

sage with primary-graph

q

and secondary

q

currently maintained by q.

So, on sending a message, p chooses a label ` which is not currently in

use in the system and uses ` to time-stamp the message. It then replaces the

latest p label in latest

p

by ` and also adds ` to the list of unacknowledged s

p!q

events. Finally, it places the new event at the \top" of its primary graph and

sets the secondary information with respect to the new event to be its overall

primary information. It then sends its new data structures primary-graph

p

and

secondary

p

to q.

When q receives the message labelled `, it �rst records in received

q

that the

most recently received message from p is labelled `. (Extracting the label of

the message can be done by looking, for instance, for the E

�

p

-maximal event in

primary-graph

p

). It then checks whether the message is new. If so, it updates

its primary graph and secondary information following the results in Lemmas 1

and 2 and Proposition 3.

Message complexity

Lemma 8 Let N be the number of processes in the system. For each process p,

the information in primary-graph

p

and secondary

p

requires at most O(N

4

logN)

bits to write down.

Proof We know that jLj is O(N

3

). So each label in L can be written down

using O(logN) bits. Similarly, each process name can be written down us-

ing O(logN) bits. So each tuple in the sets latest

p

, unack

p

, received

p

and

secondary

p

requires only O(logN) bits to write down.

There are O(N

2

) entries in primary

p

. So, the edge relation E

p

of primary-

graph

p

can be represented in terms of an adjacency matrix, using O(N

4

) bits.

So, all of primary-graph

p

can be written down in O(N

4

) bits.

The real bottleneck turns out to be secondary

p

. There are O(N

2

) elements

in primary

p

. For each of these elements �e, we have to maintain primary(�e#),

which requires O(N

2

logN) bits. So, overall secondary

p

requires O(N

4

logN)

bits to write down.

2

Putting together all the results we have proved so far, we can state the following

theorem

Theorem 9 The protocol we have described solves the gossip problem for �fo,

B-bounded computations with only a bounded amount of additional information

being added to each message of the underlying computation.

6 Non-�fo computations

We briey describe how to extend our protocol to deal with B-bounded com-

putations which are not �fo. We do not go into all the formal details here due

to a lack of space. Details are available in the full paper [8].

The essential di�erence is in the procedure for collecting acknowledgements.

In a non-�fo computation, messages may be received out of order. So, we cannot

infer from the fact that e = received

q p

(I) that all messages sent by p to q

before e have actually reached q. In general, we have to explicitly acknowledge

each message label to the sending process. This can be done by recording for

each pair of processes p; q, the set received-set

q p

(I) consisting of all events e

of the form s

p!q

such that �

�1

(e) belongs to I.

So, we extend the information maintained by each process p to include

the sets received-set

r q

(I

p

) for each pair of processes q; r. These sets can be

updated using an extension of Proposition 3. The problem is, of course, that

these sets grow without bound as the computation proceeds.

However, it can be shown that once e is added to received-set

q p

(I

q

) by q,

it will become known to p (i.e., it will appear in received-set

q p

(I

0

p

) for I

0

� I)

within a bounded number of communications in the system. This follows from

the assumption that the underlying computation is B-bounded. Once e appears

in received-set

q p

(I

0

p

), it has been acknowledged and can be removed from q's

list of received messages.

As a result, it turns out that each process p needs to retain only the B-most

recent events in received-set

r q

(I

p

), where \most recent" refers to the order in

which the messages were received by r and not the order in which they were sent

by q. So, acknowledgments can still be propogated using a bounded amount of

information, even when messages arrive out of order and our protocol can be

extended to solve the gossip problem for arbitrary B-bounded computations.

References

[1] R. Cori, Y. Metivier: Approximations of a trace, asynchronous automata

and the ordering of events in a distributed system, Proc. ICALP '88, LNCS 317

(1988) 147{161.

[2] R. Cori, Y. Metivier, W. Zielonka: Asynchronous mappings and asyn-

chronous cellular automata, Inform. and Comput., 106 (1993) 159{202.

[3] D. Dolev, N. Shavit: Bounded concurrent time-stamps are constructible, Proc.

ACM STOC (1989) 454{466.

[4] A. Israeli, M. Li: Bounded time-stamps, Proc. 28th IEEE FOCS (1987) 371{

382.

[5] R. Krishnan, S. Venkatesh: Optimizing the gossip automaton, Report TCS-

94-3, School of Mathematics, SPIC Science Foundation, Madras, India (1994).

[6] L. Lamport: Time, clocks and the ordering of events in a distributed system,

Comm. ACM 17(8) (1978) 558{565.

[7] L. Lamport, N. Lynch: Distributed Computing: Models and Methods, in:

J. van Leeuwen (ed.), Handbook of Theoretical Computer Science: Volume B,

North-Holland, Amsterdam (1990) 1157{1200.

[8] M. Mukund, K. Narayan Kumar, M. Sohoni: Keeping track of the latest

gossip in message-passing systems, Report TCS-95-3, School of Mathematics,

SPIC Science Foundation, Madras, India (1995).

[9] M. Mukund, M. Sohoni: Keeping track of the latest gossip: Bounded time-

stamps su�ce, Proc. FST&TCS '93, LNCS 761 (1993) 388{399.

