5th Asian Computing Science Conference, ASTAN 99
Proceedings: P.S. Thiagarajan and R. Yap (eds.)
Springer Lecture Notes in Computer Science 1742 (1999), 227-238.

Faster Model Checking for Open Systems

Madhavan Mukund!, K. Narayan Kumar!, and
Scott A. Smolka?

! Chennai Mathematical Institute, 92 G.N. Chetty Road, Chennai 600 017, India.
E-mail: {madhavan,kumar}@smi.ernet.in
2 Department of Computer Science, State University of New York at Stony Brook,
NY 11794-4400, USA. E-mail: sas@cs.sunysb.edu.

Abstract. We investigate ORgX, a temporal logic for specifying open
systems. Path properties in ORgX are expressed using w-regular expres-
sions, while similar logics for open systems, such as ATL* of Alur et al.,
use LTL for this purpose. Our results indicate that this distinction is an
important one. In particular, we show that OrRgX has a more efficient
model-checking procedure than ATL", even though it is strictly more
expressive. To this end, we present a single-exponential model-checking
algorithm for ORgX; the model-checking problem for ATL" in contrast
is provably double-exponential.

1 Introduction

Reactive systems are computing systems where the computation consists of an
ongoing interaction between components. This is in contrast to functional sys-
tems whose main aim is to compute sets of output values from sets of input
values. Typical examples of reactive systems include schedulers, resource alloca-
tors, and process controllers.

Pnueli [Pnu76] proposed the use of linear-time temporal logic (LTL) to spec-
ify properties of reactive systems. A system satisfies an LTL specification if
all computations of the system are models of the formula. Later, branching-
time temporal logics such as CTL and CTL* [CE81,EH86] were developed,
which permit explicit quantification over computations of a system. For both
linear-time and branching-time logics, the model checking problem—verifying
whether a given system satisfies a correctness property specified as a tempo-
ral logic formula—has been well studied. Model checkers such as SPIN for LTL
[Hol97] and SMV for CTL [McM93] are gaining acceptance as debugging tools
for industrial design of reactive systems.

Alur et al. [AHK97] have argued that linear-time and branching-time tempo-
ral logics may not accurately capture the spirit of reactive systems. These logics
treat the entire system as a closed unit. When specifying properties of reactive
systems, however, it is more natural to describe how different parts of the system
behave when placed in contezts. In other words, one needs to specify properties
of open systems that interact with environments that cannot be controlled.

A fruitful way of modelling open systems is to regard the interaction between
the system and its environment as a game. The system’s goal is to move in such a
way that no matter what the environment does, the resulting computation satis-
fies some desired property. In this formulation, the verification problem reduces
to checking whether the system has a winning strategy for such a game.

The alternating temporal logic ATL* proposed in [AHK97] reflects the game-
theoretic formulation of open systems. In ATL*, the property to be satisfied in
each run of the system is described using an LTL formula, and LTL formulas
may be nested within game quantifiers. The quantifiers describe the existence
of winning strategies for the system. Moreover, a restricted version of ATL*
called ATL has an efficient model-checking algorithm. However, the model-
checking problem for the considerably more expressive logic ATL* is shown
to be 2EXPTIME-complete which compares unfavourably with the PSPACE-
completeness of CTL*.

In this paper, we propose a logic for open systems called ORgX, which is inter-
preted over Y-labelled transition systems and uses w-regular expressions rather
than LTL formulas to specify properties along individual runs. As in ATL*,
w-regular expressions may be nested within game quantifiers. Since w-regular
expressions are more expressive than temporal logics for specifying properties of
infinite sequences, our logic is more expressive than ATL*. Moreover, it turns
out that ORgX has an exponential-time model checking algorithm, which is con-
siderably better than the complexity of ATL*.

The paper is organized as follows. Section 2 contains some basic definitions
about transition systems and games. Section 3 introduces the syntax and seman-
tics of ORgX and gives some examples of how to write temporal specifications
in the logic. Section 4 describes an automata-theoretic algorithm for ORgX’s
model-checking problem. Section 5 discusses related work and Section 6 offers
our concluding remarks.

2 Transition Systems, Games, Strategies

Transition systems A Y-labelled transition system is a tuple T'S = (X, X, —)
where X is a finite set of states, X is a finite alphabet of actions and — C
X x X x X is the transition relation. We use z,y, ... to denote states and a, b, ...
to denote actions.

An element (z,a,y) € — is called an a-transition. For S C X, the set of
S-transitions is given by —s = {(z,a,y) | a € S}. As usual, we write z — y to
denote that (z,a,y) € —. The set of transitions enabled at a state z, denoted
enabled(z), is the set of transitions of the form 2 — y that originate at 2. To
simplify the presentation, we assume that there are no deadlocked states—that
is, for each x € X, enabled(z) # 0.

A path in T'S is a sequence zg — &1 —2 --- a5 AR Ziy1 - - - Let paths(T'S)
and finite_paths(TS) denote the set of infinite and finite paths in T'S, respectively.
For a finite path p, let last(p) denote the final state of p.

Games and strategies Let S C Y. An S-strategy is a function f from
finite_paths(T'S) to the set of S-transitions —g such that for each
p € finite_paths(T'S), f(p) C enabled(last(p)). If —s N enabled(last(p)) # 0, we
require that f(p) # 0.

An infinite path p = 2o =% &1 — ---x, — --- in paths(T'S) is said to
be consistent with the S-strategy f if for each n > 1 the transition z,_; — x,
belongs to the set f(zg —% -+ = 2,,_;) whenever a, € S.

A game over T'S is a pair (II,z) where IT is a subset of paths(T'S) and x is a
state in X. We say that S has a winning strategy for the game (II,z) if there is
an S-strategy f such that every infinite path that begins at z and is consistent
with f belongs to II.

Often, we are interested in restricting our attention to fair computations. An
infinite path p € paths(T'S) is said to be weakly S-fair if there are infinitely
many states along p where no S-transition is enabled or if there are infinitely
many S-transitions in p. The path is said to be strongly S-fair if there are only
finitely many positions where an S-transition is enabled or if there are infinitely
many S-transitions in p.

We can relativize our notion of winning strategies to fair paths in the obvious
way—S has a weakly (strongly) fair winning strategy for (II,z) if there is an
S-strategy f such that every weakly (strongly) S-fair path that begins at = and
is consistent with f belongs to IT.

3 The Logic

3.1 Syntax

Fix an alphabet X' and a set of propositions Prop. We simultaneously define the
sets FPE of finite path expressions, PE of (infinite) path expressions, and & of
state formulas as follows. We use e to denote a typical element of FPE, a to
denote a typical element of PE, and ¢ to denote a typical element of ®.

ex=pedlacX|e-elete]|e
az=e-e’|at+a
pu=tt|P € Prop|—p|eVe|Esa, (SCX)|Asa, (SCX)

Observe that finite path expressions are just regular expressions whose al-
phabet may include state formulas. Similarly, path expressions are traditional
w-regular expressions [Tho90] built from finite path expressions. For state for-
mulas, we can use = and V to derive the usual Boolean connectives such as A
and =. Finally, note that the wifs of ORgX are just the state formulas.

3.2 Semantics

ORgX formulas are interpreted over X-labelled transitions systems equipped
with valuations. Let T'S = (X, X, —) be a Y-labelled transition system. A
valuation v : X — 2°7P specifies which propositions are true in each state.

We interpret finite path expressions over finite paths in 7'S, path expres-
sions over infinite paths in 7'S, and state formulas at states of T'S. If p €
finite_paths(T'S) and e € FPE, we write T'S,p |= e to denote that e is satis-
fied along p. Similarly, for p € paths(T'S) and a € PE, T'S,p |E= a denotes « is
satisfied along p. Finally, for ¢ € X and ¢ € &, TS,z | ¢ denotes that ¢ is
satisfied at the state x.

We define concatenation of paths in the usual way. Let p = 2o — --- 2% z,,

and p' = x|, NN x! be paths such that x, = z{. The path p-p’ is the

path zo — -+ =% gz, . N z,.. The concatenation of a finite path p
with an infinite path p is defined similarly.

The three forms of the satisfaction relation = are defined through simulta-
neous induction as follows.

Finite path expressions
TS, pE iff p=x¢ and T'S, zo |= .
TS,pkEa iff p=2o = 21 and a1 = a.
TS,plEei-ex iff p=p1-p2, TS,p1 Eer and TS, p2 = e
TS,pEer+eiff TS,pEe or TS,pl ey
TS,pEe* iff p=1xp or
p=p1-p2---pmandforie {1,2,...,m}, TS,p; Ee
Path expressions
TS,pEer-ey iff thereis a prefix pg - p; - pa - - - of p such that
TS,po |Eer and fori € {1,2,...}, TS,p; =e2
TS, pEa+ax i TS, pl=ay or TS, p = as

We can associate with each path expression a a set II, of infinite paths in
TS in the obvious way—II, = {p € paths(T'S) | T'S, p = a}. We let I, denote
the set paths(T'S) \ I,.

State formulas

TS,z ftt always.
TS,z |= P € Prop iff P € v(z).
TS,z = -p ifft TS,z = .

TS,z =p1 Vs TS,z orTS,z = ps.
TS,z = Esa iff S has a winning strategy for the game (I, x).
TS,z = Asa iff S does not have a winning strategy for the game (IT_q,).

It is useful to think of Esa as asserting that S has a strategy to enforce o along
every path. Conversely, Aga asserts that S does not have a strategy to avoid «
along every path—in other words, no matter what strategy S chooses, there is
at least one path consistent with the strategy along which « holds.

In the absence of fairness constraints, the games we have described are deter-
mined and Esgp is logically equivalent to Axys¢. In other words, we can derive
one quantifier from the other. However, once we introduce fairness constraints,
the games are no longer determined, in general, and the two quantifiers need to
be introduced independently, as we have done here. However, even with fairness
constraints, Es¢ implies Ay g¢.

3.3 Examples

Let e be a finite path expression. We shall use the following abbreviations for
convenience.

— The formula Ege (respectively, Age) abbreviates the formula Egett® (re-
spectively, Asett®). Every path in I, has a finite prefix that satisfies the
property e.

— The formula Ese® (respectively, Ase®) abbreviates the formula Estte” (re-
spectively, Agtte®).

The operators E and A of logics like CTL* are just abbreviations for Ex and
Ey, respectively. Using these branching-time operators, we can specify some tra-
ditional temporal properties as follows. Let the set of actions be {a1, az, ..., an}.
In the examples, X' abbreviates the finite path expression (a1 4+ a2 + - - + a,).

— The LTL formula @l (¢ holds until ¢ holds) is captured by the path
expression (pX)* - 1. Thus, the state formula A(pX)* - ¢ asserts that @l
is true of every computation path.

— In LTL, the formula ¢¢ (¢ holds eventually) can be written as ttlp.
The corresponding path expression is (ttX)* - ¢, which we shall denote
Eventually(p).

— Let Invariant(p) denote the path expression (¢X)“. The expression
Invariant(p) asserts that the state formula ¢ is invariant along the path, cor-
responding to the LTL formula Oy. Thus, the state formula A Invariant(p)
says that along all paths ¢ always holds.

— The formula A((E(X* - @) - X)) asserts that along every path ¢ is always
attainable (Branching Liveness). This property has been used in the verifi-
cation of the Futurebus protocol [CGHT95].

We can also assert properties that are not expressible in CTL* (or ATL*).
For instance, A(Xa)* asserts that along all paths, every even position is an a.

Now, let us see how to use ORgX to describe properties of a typical open sys-
tem. Figure 1 shows a variant of the train gate controller described in [AHK97].
In this system, the atomic propositions are {in_gate, out_of_gate, waiting, admitted }.
In the figure, the labels on the states indicate the valuation. The actions can be
partitioned into two sets, train and ctr, corresponding to two components of the
system, the train and the controller. The set train is given by
{idle, request, relinquish, enter, leave} while ctr is given by {grant, reject, eject}.

Here are some properties that one might like to assert about this system.

— If the train is outside the gate and has not yet been granted permission to
enter the gate, the controller can prevent it from entering the gate:

A Invariant((out_of_gate A —madmitted) = E .-Invariant(out_of_gate))

idle

request

out_of_gate
waiting

out_of_gate

out_of_gate
admitted

in_gate

Fig.1. A train gate controller

— If the train is outside the gate, the controller cannot force it to enter the
gate:
A Invariant(out_of_gate = A .4-Invariant(—in_gate))

This property can also expressed by the dual assertion that the train can
choose to remain out of the gate.

A Invariant(out_of_gate = Ey.... Invariant(—in_gate))

— If the train is outside the gate, the train and the controller can cooperate so
that the train enters the gate:

A Invariant(out_of_gate = E Eventually(in_gate))

— If the train is in the gate, the controller can ensure that it eventually leaves
the gate.

A Invariant(in_gate = E.4-Eventually(out_of_gate))

Notice that this property is not satisfied by the system unless fairness is
introduced—after entering the gate, the train may execute the action idle
forever. However, since eject is continuously enabled at this state, even weak
fairness suffices to ensure that the controller can eventually force the train
to leave the gate.

— Actually, it is unrealistic to assume that the controller can eject the train
once it is in the gate. If we eliminate the transition labelled eject, we can
make the following assertion which guarantees that as long as the train does
not idle continuously, it eventually leaves the gate.

A Invariant(in_gate = (—(idle)” = FEventually(out_of_gate))

To state this property, we need to integrate assertions about actions and
states in the formula. This formula cannot be conveniently expressed in
ATL*, where formulas can only refer to properties of states.

4 The Model-Checking Algorithm

We now describe an automata-theoretic model checking algorithm for ORgX
formulas. As we remarked earlier, path expressions can be regarded as w-regular
expressions over the infinite alphabet consisting of the finite set of actions X
together with the set of all state formulas. However, if we fix a finite set of state
formulas ¥, we can regard each path expression which does not refer to state
formulas outside ¥ as an w-regular expression over the finite alphabet Y U¥. We
can associate with each such path expression a a language L(«) of infinite words
over X' U ¥ using the standard interpretation of w-regular expressions [Tho90].
Unfortunately, this naive translation does not accurately reflect the meaning
of path expressions: L(a), the complement of L(«a), may contain sequences that
are models of a. For instance, if L(a) contains ay;p2b* but does not contain
ap2p1 b, the second path will be present in L(«) though it models . We require
more structure in the infinite sequences we associate with path expressions to
faithfully translate logical connectives into automata-theoretic operations.

We begin by defining an alternative model for finite path expressions and
path expressions in terms of sequences over an extended alphabet. Let ¥ be
a finite set of state formulas. A ¥-decorated sequence over Y is a sequence in
which subsets of ¥ alternate with elements of X'. More precisely, a ¥-decorated
sequence over X is an element of (2% - 2)*(2¥) U (2¥ -). We use s to denote
a finite ¥-decorated sequence and o to denote an arbitrary (finite or infinite)
¥-decorated sequence. A finite ¥-decorated sequence s can be concatenated with
a W-decorated sequence o if the last element of s is identical to the first element
of o. The concatenation is obtained by deleting the last element of s.

We denote the set of finite path expressions and path expressions that do
not refer to any state formulas outside ¥ as FPEgy and PEy, respectively. We
can interpret expressions from FPFEg and PEy over ¥-decorated sequences. The
satisfaction relation is defined as follows:

skEp iff s = Xy and ¢ € X

skEa iff s = XpaX;

si=e;-ex iff s=s1-52,5 Ee and s2 = eo

sEe +e iff siEe;orskEes

s ke iff s=Xpors=s1-59-"-5p

and for i € {1,2,...,n},s; Fe
ol=ey ey iff there is a prefix sg - s1 - s2--- of o such that
so =e and forie {1,2,...},s; e
cEat+aiff o Eay oro Eas

Let TS = (X, X, —) be a X-labelled transition system and v : X — Prop be
a valuation over T'S. For each path p = 29 — ;... in T'S, the corresponding
W-decorated sequence o, is Xga1 X7 ... where X; = {¢ | ¢ € ¥ and T'S, z; |= ¢}.
Then, for any path expression o € PEg, T'S,p |= a if and only if 0, = a.

There is a natural connection between the language L(«a) defined by a € PEy
and the semantics of « in terms of ¥-decorated sequences. To formalize this, we
need to define when a ¥-decorated sequence embeds a sequence over X U W.

Embedding Let w = wowys - .. be an infinite word over Y U¥ and ¢ = g0y ...
be a ¥-decorated sequence. Observe that o; C ¥ if i is even and o; € X if ¢
is odd. We say that o embeds w if there is a monotone function f : Ny — Ny
mapping positions of w into positions of o such that:

(i) If i is in the range of f, j < i and j is odd, then j is in the range of f.
(ii) If w; € X then w; = oy(;).
(iii) If w; € ¥ then w; € Of(i)-

We can then establish the following connection between L(a) and the set of
¥-decorated sequences that model a.

Lemma 4.1. A Y-decorated sequence o models a path expression o € PEy if
and only if o embeds at least one of the sequences in the language L(a) over the
alphabet X UW.

Let || denote the number of symbols in a path expression «. From the theory
of w-regular languages [Tho90], we know that for each path expression a € PEy,
we can construct a nondeterministic Biichi automaton A, over X U¥ whose size
is polynomial in |a| and whose language is precisely L(a).

Using our notion of embedding, we can associate with each Biichi automaton
A over ¥ UV an extended language LT (A) of ¥-decorated sequences as follows:

Lt (A) ={o|Jw € L(A) : o embeds w}

Lemma 4.2. For any Bichi automaton A over XUW, we can construct a Bichi
automaton At over ¥ U 2% such that At reads elements from X and 2% alter-
nately, LT(A) = L(A") and the number of states of A% is polynomial in the
number of states of A.

Proof Sketch: Let A = (Q,0,qo, F) be a given nondeterministic Biichi au-

tomaton over X UW. For states p,q € @Q and U C ¥, we write p L q if there is a
sequence of transitions from p ending in ¢ whose labels are drawn from the set
U. We write p g F q to indicate that there is a sequence of transitions from p to
q that passes through a state from F', all of whose labels are drawn from the set
U. We write p L 4 if there is an accepting run starting at p, all of whose labels

are drawn from the set U.
The automaton AT = (Q*, T U2¥,6T,F*,q) where:

Q+ = (Q X {07172})U{Qfapf}

FT = (@ x{2}) U {ps}

ot ((1,0),U, (¢, 1)) | p % ¢} U{((p,0),U, (¢,2)) | p S q}U
(pao)aanf) |pgA}U

(p7]‘)7a7 (q70))7 ((p7 2)70/7 (q7 0)) | (p7 a7q) e 6}U
(p,0),U,(p,1)) | p€ Q,U C¥}U{(qs,a,ps) | a € T}U

The construction allows us to convert a path expression o € PFEg into an
automaton A} over ¥ U 2% whose state space is polynomial in |«|. Notice that
the alphabet, and hence the number of transitions, of A} is exponential in |a|.

The lemma assures us that if we complement AT, we obtain an automaton
that accepts precisely those ¥-decorated sequences that do not model a. As
we remarked earlier, this is not true of the original automaton A,: L(a) may
contain sequences that can be embedded into ¥-decorated sequences that model
a. In a sense, L (A) can be thought of as the semantic closure of L(A).

Lemma 4.3 ([Saf88,EJ89]). A Biichi automaton A can be effectively deter-
minized (complemented) to get a deterministic Rabin automaton whose size is
exponential in the number of states of A and linear in the number of transitions
of A and whose set of accepting pairs is linear in the number of states of A. This
automaton can be constructed in time exponential in the number of states of A
and polynomial in the number of transitions of A.

Lemma 4.4 follows from the previous two lemmas.

Lemma 4.4. From a path expression o € PEg, we can construct a deterministic
Rabin automaton AL (ﬁf} that accepts exactly those ¥-decorated paths that do
(do not) model . The number of states of A (Xf} is exponential in |a| and
the number of accepting pairs of AR (.715) is polynomial in |a.

Theorem 4.5. Given a transition system TS, a state © in TS and an ORpX
?

formula @, the model checking problem T'S,z E ¢ can be solved in time O((mk)*),

where m is given by 20(¢)) . |T'S| and k is a polynomial in |p|.

Proof Sketch: We use the bottom-up labelling algorithm of CTL* and ATL*.
The only interesting case is when the formula ¢ to be checked is of the form
Esa (or Asa). Each S-strategy f at a state x can be represented as a tree
by unfolding T'S starting at z, retaining all X'\ S edges in the unfolding, but
discarding all S-transitions that are not chosen by the strategy. Conversely, if
we unfold T'S at and prune S-transitions while ensuring that at least one S-
transition is retained at each state y where enabled(y) N —g # 0, we obtain
a representation of some S-strategy at x.

Let ¥ be the set of state formulas that appear in a. We may assume that
each state of the transition system 7'S is labelled with the formulas from ¥ that
hold at that state. In the trees that we use to represent strategies, each state is
labelled by the same subset of formulas as the corresponding state in 7'S.

The trees that represent strategies carry labels on both the states and the
edges. We can convert these to state-labelled trees by moving the label on each
edge to the destination state of the edge.

Given a transition system 7'S, we can construct a Biichi tree automaton 7pg
that accepts precisely those trees labeled by X U 2% that arise from strategies,
as described in [KV96]. The size of Trg is linear in the size of T'S.

An S-strategy f is a witness for T'S,z |= Ega if and only if every infinite
path in the tree corresponding to f models a. Equivalently, every infinite path
in this tree, when treated as a sequence over X U 2Y, is accepted by the Rabin
automaton Af constructed from A7 as described in Lemma 4.4. Since AX is
deterministic, we can convert it into a Rabin tree automaton 7, that runs AZX
along all paths and accepts exactly those trees in which all infinite paths model
a. The automaton 7, has the same size as Af—that is, the number of states is
exponential in |a| and the number of accepting pairs is polynomial in |a].

Finally, we construct the product of 7s and 7, to obtain a tree automaton
that accepts a tree if and only if it corresponds to a strategy f such that all
infinite paths in T'S consistent with f satisfy a. We can then use the algorithm
of Emerson and Jutla [EJ88] to check whether this product automaton accepts a
nonempty set of trees. The Emerson-Jutla algorithm solves the emptiness prob-
lem for a tree automaton with i states and j accepting pairs in time O((ij)37).
From this, we can derive that the emptiness of the product tree automaton
we have constructed can be checked in time O((mk)*), where m is given by
20(lal) . |T'S| while k is a polynomial in |«].

The case Asa is similar to Esa with one modification—use the construction
due to Emerson and Jutla [EJ89] instead of Safra’s construction to obtain a

deterministic Rabin automaton Zf that accepts exactly those sequences over
X U 2% that do not model a.

In the constructions above, we have not taken into account the case when
we are interested only in (weakly or strongly) S-fair computations. Fairness
constraints can be handled by adding a simple Rabin condition to the automaton
Trs that accepts all trees corresponding to S-strategies. This extra structure
does not materially affect the overall complexity of the procedure.

a

5 Related Work

In [AHKO7], the logic ATL* is interpreted over two kinds of transition systems:
synchronous structures and asynchronous structures. In each case, the notion of
agent plays a prominent role in the definition. In a synchronous structure, each
state is associated with a unique agent. An important subclass of synchronous
structures is the one with two agents, one representing the system and the other
the environment. Such systems have been studied by Ramadge and Wonham
[RW89] in the context of designing controllers for discrete-event systems.

In an asynchronous structure, each transition is associated with an agent.
A synchronous structure can be thought of as a special kind of asynchronous
structure where all transitions out of a state are associated with a single agent.
Our Y-labelled transition systems correspond to asynchronous structures, where
the set of agents corresponds to the alphabet Y.

The notion of strategy described in [AHK97] is slightly different from the one
we use here. In their framework, each agent has a strategy and an S-strategy
at a state allows any move permitted by all the individual strategies of the

agents in S. Our definition of global strategy is more generous. We believe that
decompositions of strategies where each agent has a view of the global state
do not arise naturally and have therefore chosen not to incorporate this into
our logic. Nevertheless, we can easily simulate the framework of [AHK97] in our
setup without changing in the complexity of the construction.

In the Introduction, we mentioned that ORgX subsumes ATL* in expressive
power since w-regular expressions are more powerful than LTL. We also note
that in the context of open systems, it is natural to refer to properties of both
states and actions in a transition system. If we use LTL to express properties of
paths, as is the case with ATL*, we have to encode actions in the states of the
system since LTL can only talk about properties of states. On the other hand
ORgX provides a seamless way of interleaving assertions about actions and states
along a path. This makes for more natural models of open systems—for instance,
compare our example of the train gate controller with explicit action labels with
the version in [AHK97] where the action labels are encoded as propositions.

There has been earlier work on game logics that mention actions. In [Par83],
Parikh defines a propositional logic of games that extends propositional dynamic
logics [Har84]. The logic studied in [Par83] is shown to be decidable. A complete
axiomatization is provided, but the model-checking problem is not studied.

6 Conclusions

As Theorem 4.5 indicates, the model-checking complexity of ORgX is at least
one exponential better than that of ATL*, though ORgX subsumes ATL* in
expressive power. If we restrict the quantifiers of ORgX to the normal branching-
time interpretation A and E, we obtain a system called BRgX that corresponds
to the branching-time logic ECTL*. The model-checking algorithm for BRgX is
exponential, which is comparable to the complexity of model-checking CTL*.

Why does going from CTL* to ATL* add an exponential to the complexity of
model-checking, unlike the transition from BRgX to ORgX? The construction in
[VW86] can be used to build nondeterministic Biichi automata for LTL formulas
«a and —a with exponential blow-up. Thus the complexity of model-checking
CTL* stays exponential. When we translate BRgX path formulas into automata
we only incur a polynomial blowup in size, but we may have to complement the
automaton for a to get an automaton for —a. Complementation is, in general,
exponential and, consequently, model-checking for BRgX is also exponential.

When going from CTL* to ATL*, we need to determinize the Biichi automa-
ton constructed from the LTL formula « so that we can interpret the automaton
over trees. This blows up the automaton by another exponential, resulting in
a model-checking algorithm that is doubly exponential in the size of the input
formula. In ORgX the automaton we construct for path formulas is already
determinized, so we avoid the second exponential blow-up.

Finally, we note that if we restrict our syntax to only permit the existential
path quantifier Fa, we can model-check BRgX in polynomial time — essentially,
it suffices to construct a nondeterministic automaton for . On the other hand,

the model-checking problem for ORgX remains exponential even with this re-
striction because we have to determinize the automaton for . Since w-regular
languages are closed under complementation, we can reduce any formula in BRgXx
or ORgX to one with just existential path quantifiers. However, in the process, we
have to complement w-regular expressions. Since this is, in general, an exponen-
tial operation, the cost of this translation is exponential (perhaps nonelementary,
since nested negations introduce nested exponentials). Thus, the full language
that we have presented here permits more succinct specifications and more effi-
cient verification than the reduced language with just existential quantifiers.

References

[AHK97] R. Alur, T.A. Henzinger, and O. Kupferman. Alternating-time temporal
logic. In Proceedings of the 38th IEEE Symposium on the Foundations of
Computer Science. IEEE Press, 1997.

[CES81] E. M. Clarke and E. A. Emerson. Design and synthesis of synchronization
skeletons using branching-time temporal logic. In D. Kozen, editor, Proceed-
ings of the Workshop on Logic of Programs, Yorktown Heights, volume 131
of Lecture Notes in Computer Science, pages 52—71. Springer-Verlag, 1981.

[CGH"95] E. M. Clarke, O. Grumberg, H. Hiraishi, S. Jha, D. E. Long, K. L. McMillan,
and L. A. Ness. Verification of the Future+ cache coherence protocol. Formal
Methods in System Design, 6:217-232, 1995.

[EH86] E. A. Emerson and J. Y. Halpern. ‘Sometime’ and ‘not never’ revisited: On
branching versus linear time temporal logic. Journal of the ACM, 33(1):151—
178, 1986.

[EJ8S] E.A Emerson and C. Jutla. The complexity of tree automata and logics of
programs. In Proceedings of the IEEE FOCS, 1988.

[EJ89] E.A.Emerson and C. Jutla. On simultaneously determinising and comple-
menting w-automata. In Proceedings of the IEEE FOCS, 1989.

[Har84] David Harel. Dynamic logic. In Handbook of Philosophical Logic, Volume
1I. Reidel, 1984.

[Hol97] G. J. Holzmann. The model checker SPIN. IEEE Trans. on Software Engi-
neering, 23(5):279-295, 1997.

[KV96] Orna Kupferman and Moshe Vardi. Module checking. In Proceedings of
CAV’96, LNCS 1102. Springer-Verlag, 1996.

[McM93] K. L. McMillan. Symbolic Model Checking. Kluwer Academic, 1993.

[Par83] R. Parikh. Propositional game logic. In Proceedings of 24th IEEE FOCS,
pages 195-200, 1983.

[Pnu76] A. Pnueli. The temporal logic of programs. In Proceedings of the IEEE
Symposium on the Foundations of Computing Science. IEEE Press, 1976.

[RW89] P.J.G. Ramadge and W.M. Wonham. The control of discrete-event systems.
IEEE Trans. on Control Theory, 77:81-98, 1989.

[Saf88] S. Safra. On complexity of w-automata. In In the Proceedings of the 29th
FOCS, 1988.

[Tho90] W. Thomas. Automata on infinite objects. In Handbook of Theoretical
Computer Science, Volume B. Elsevier Science Publishers, 1990.

[VW86] M. Vardi and P. Wolper. An automata-theoretic approach to automatic pro-
gram verification. In Symposium on Logic in Computer Science (LICS ’86),
pages 332-344, Cambridge, Massachusetts, June 1986. Computer Society
Press.

