
5th Asian Computing S
ien
e Conferen
e, ASIAN '99

Pro
eedings: P.S. Thiagarajan and R. Yap (eds.)

Springer Le
ture Notes in Computer S
ien
e 1742 (1999), 227{238.

Faster Model Che
king for Open Systems

Madhavan Mukund

1

, K. Narayan Kumar

1

, and

S
ott A. Smolka

2

1

Chennai Mathemati
al Institute, 92 G.N. Chetty Road, Chennai 600 017, India.

E-mail: fmadhavan,kumarg�smi.ernet.in

2

Department of Computer S
ien
e, State University of New York at Stony Brook,

NY 11794-4400, USA. E-mail: sas�
s.sunysb.edu.

Abstra
t. We investigate Or

e

x, a temporal logi
 for spe
ifying open

systems. Path properties in Or

e

x are expressed using !-regular expres-

sions, while similar logi
s for open systems, su
h as ATL

�

of Alur et al.,

use LTL for this purpose. Our results indi
ate that this distin
tion is an

important one. In parti
ular, we show that Or

e

x has a more eÆ
ient

model-
he
king pro
edure than ATL

�

, even though it is stri
tly more

expressive. To this end, we present a single-exponential model-
he
king

algorithm for Or

e

x; the model-
he
king problem for ATL

�

in
ontrast

is provably double-exponential.

1 Introdu
tion

Rea
tive systems are
omputing systems where the
omputation
onsists of an

ongoing intera
tion between
omponents. This is in
ontrast to fun
tional sys-

tems whose main aim is to
ompute sets of output values from sets of input

values. Typi
al examples of rea
tive systems in
lude s
hedulers, resour
e allo
a-

tors, and pro
ess
ontrollers.

Pnueli [Pnu76℄ proposed the use of linear-time temporal logi
 (LTL) to spe
-

ify properties of rea
tive systems. A system satis�es an LTL spe
i�
ation if

all
omputations of the system are models of the formula. Later, bran
hing-

time temporal logi
s su
h as CTL and CTL

�

[CE81,EH86℄ were developed,

whi
h permit expli
it quanti�
ation over
omputations of a system. For both

linear-time and bran
hing-time logi
s, the model
he
king problem|verifying

whether a given system satis�es a
orre
tness property spe
i�ed as a tempo-

ral logi
 formula|has been well studied. Model
he
kers su
h as Spin for LTL

[Hol97℄ and SMV for CTL [M
M93℄ are gaining a

eptan
e as debugging tools

for industrial design of rea
tive systems.

Alur et al. [AHK97℄ have argued that linear-time and bran
hing-time tempo-

ral logi
s may not a

urately
apture the spirit of rea
tive systems. These logi
s

treat the entire system as a
losed unit. When spe
ifying properties of rea
tive

systems, however, it is more natural to des
ribe how di�erent parts of the system

behave when pla
ed in
ontexts. In other words, one needs to spe
ify properties

of open systems that intera
t with environments that
annot be
ontrolled.

A fruitful way of modelling open systems is to regard the intera
tion between

the system and its environment as a game. The system's goal is to move in su
h a

way that no matter what the environment does, the resulting
omputation satis-

�es some desired property. In this formulation, the veri�
ation problem redu
es

to
he
king whether the system has a winning strategy for su
h a game.

The alternating temporal logi
 ATL

�

proposed in [AHK97℄ re
e
ts the game-

theoreti
 formulation of open systems. In ATL

�

, the property to be satis�ed in

ea
h run of the system is des
ribed using an LTL formula, and LTL formulas

may be nested within game quanti�ers. The quanti�ers des
ribe the existen
e

of winning strategies for the system. Moreover, a restri
ted version of ATL

�

alled ATL has an eÆ
ient model-
he
king algorithm. However, the model-

he
king problem for the
onsiderably more expressive logi
 ATL

�

is shown

to be 2EXPTIME-
omplete whi
h
ompares unfavourably with the PSPACE-

ompleteness of CTL

�

.

In this paper, we propose a logi
 for open systems
alledOr

e

x, whi
h is inter-

preted over �-labelled transition systems and uses !-regular expressions rather

than LTL formulas to spe
ify properties along individual runs. As in ATL

�

,

!-regular expressions may be nested within game quanti�ers. Sin
e !-regular

expressions are more expressive than temporal logi
s for spe
ifying properties of

in�nite sequen
es, our logi
 is more expressive than ATL

�

. Moreover, it turns

out that Or

e

x has an exponential-time model
he
king algorithm, whi
h is
on-

siderably better than the
omplexity of ATL

�

.

The paper is organized as follows. Se
tion 2
ontains some basi
 de�nitions

about transition systems and games. Se
tion 3 introdu
es the syntax and seman-

ti
s of Or

e

x and gives some examples of how to write temporal spe
i�
ations

in the logi
. Se
tion 4 des
ribes an automata-theoreti
 algorithm for Or

e

x's

model-
he
king problem. Se
tion 5 dis
usses related work and Se
tion 6 o�ers

our
on
luding remarks.

2 Transition Systems, Games, Strategies

Transition systems A�-labelled transition system is a tuple TS = hX;�;�!i

where X is a �nite set of states, � is a �nite alphabet of a
tions and �! �

X���X is the transition relation. We use x; y; : : : to denote states and a; b; : : :

to denote a
tions.

An element (x; a; y) 2 �! is
alled an a-transition. For S � �, the set of

S-transitions is given by �!

S

= f(x; a; y) j a 2 Sg. As usual, we write x

a

�! y to

denote that (x; a; y) 2 �!. The set of transitions enabled at a state x, denoted

enabled(x), is the set of transitions of the form x

a

�! y that originate at x. To

simplify the presentation, we assume that there are no deadlo
ked states|that

is, for ea
h x 2 X , enabled(x) 6= ;.

A path in TS is a sequen
e x

0

a

1

�! x

1

a

2

�! � � �x

i

a

i+1

�! x

i+1

� � �. Let paths(TS)

and �nite paths(TS) denote the set of in�nite and �nite paths in TS, respe
tively.

For a �nite path p, let last(p) denote the �nal state of p.

Games and strategies Let S � �. An S-strategy is a fun
tion f from

�nite paths(TS) to the set of S-transitions �!

S

su
h that for ea
h

p 2 �nite paths(TS), f(p) � enabled(last(p)). If �!

S

\ enabled(last(p)) 6= ;, we

require that f(p) 6= ;.

An in�nite path � = x

0

a

1

�! x

1

a

2

�! � � �x

n

a

n

�! � � � in paths(TS) is said to

be
onsistent with the S-strategy f if for ea
h n � 1 the transition x

n�1

a

n

�! x

n

belongs to the set f(x

0

a

1

�! � � �

a

n�1

�! x

n�1

) whenever a

n

2 S.

A game over TS is a pair (�; x) where � is a subset of paths(TS) and x is a

state in X . We say that S has a winning strategy for the game (�; x) if there is

an S-strategy f su
h that every in�nite path that begins at x and is
onsistent

with f belongs to � .

Often, we are interested in restri
ting our attention to fair
omputations. An

in�nite path � 2 paths(TS) is said to be weakly S-fair if there are in�nitely

many states along � where no S-transition is enabled or if there are in�nitely

many S-transitions in �. The path is said to be strongly S-fair if there are only

�nitely many positions where an S-transition is enabled or if there are in�nitely

many S-transitions in �.

We
an relativize our notion of winning strategies to fair paths in the obvious

way|S has a weakly (strongly) fair winning strategy for (�; x) if there is an

S-strategy f su
h that every weakly (strongly) S-fair path that begins at x and

is
onsistent with f belongs to � .

3 The Logi

3.1 Syntax

Fix an alphabet � and a set of propositions Prop. We simultaneously de�ne the

sets FPE of �nite path expressions, PE of (in�nite) path expressions, and � of

state formulas as follows. We use e to denote a typi
al element of FPE, � to

denote a typi
al element of PE, and ' to denote a typi
al element of �.

e ::= ' 2 � j a 2 � j e � e j e+ e j e

�

� ::= e � e

!

j �+ �

' ::= tt j P 2 Prop j :' j ' _ ' j E

S

�; (S � �) j A

S

�; (S � �)

Observe that �nite path expressions are just regular expressions whose al-

phabet may in
lude state formulas. Similarly, path expressions are traditional

!-regular expressions [Tho90℄ built from �nite path expressions. For state for-

mulas, we
an use : and _ to derive the usual Boolean
onne
tives su
h as ^

and). Finally, note that the w�s of Or

e

x are just the state formulas.

3.2 Semanti
s

Or

e

x formulas are interpreted over �-labelled transitions systems equipped

with valuations. Let TS = hX;�;�!i be a �-labelled transition system. A

valuation v : X ! 2

Prop

spe
i�es whi
h propositions are true in ea
h state.

We interpret �nite path expressions over �nite paths in TS, path expres-

sions over in�nite paths in TS, and state formulas at states of TS. If p 2

�nite paths(TS) and e 2 FPE, we write TS; p j= e to denote that e is satis-

�ed along p. Similarly, for � 2 paths(TS) and � 2 PE, TS; � j= � denotes � is

satis�ed along �. Finally, for x 2 X and ' 2 �, TS; x j= ' denotes that ' is

satis�ed at the state x.

We de�ne
on
atenation of paths in the usual way. Let p = x

0

a

1

�! � � �

a

n

�! x

n

and p

0

= x

0

0

a

0

1

�! � � �

a

0

m

�! x

0

m

be paths su
h that x

n

= x

0

0

. The path p � p

0

is the

path x

0

a

1

�! � � �

a

n

�! x

n

a

0

1

�! � � �

a

0

m

�! x

0

m

. The
on
atenation of a �nite path p

with an in�nite path � is de�ned similarly.

The three forms of the satisfa
tion relation j= are de�ned through simulta-

neous indu
tion as follows.

Finite path expressions

TS; p j= ' i� p = x

0

and TS; x

0

j= '.

TS; p j= a i� p = x

0

a

1

�! x

1

and a

1

= a.

TS; p j= e

1

� e

2

i� p = p

1

� p

2

, TS; p

1

j= e

1

and TS; p

2

j= e

2

TS; p j= e

1

+ e

2

i� TS; p j= e

1

or TS; p j= e

2

TS; p j= e

�

i� p = x

0

or

p = p

1

� p

2

� � � p

m

and for i 2 f1; 2; : : : ;mg, TS; p

i

j= e

Path expressions

TS; � j= e

1

� e

!

2

i� there is a pre�x p

0

� p

1

� p

2

� � � of � su
h that

TS; p

0

j= e

1

and for i 2 f1; 2; : : :g, TS; p

i

j= e

2

TS; � j= �

1

+ �

2

i� TS; � j= �

1

or TS; � j= �

2

We
an asso
iate with ea
h path expression � a set �

�

of in�nite paths in

TS in the obvious way|�

�

= f� 2 paths(TS) j TS; � j= �g. We let �

:�

denote

the set paths(TS) n�

�

.

State formulas

TS; x j= tt always.

TS; x j= P 2 Prop i� P 2 v(x).

TS; x j= :' i� TS; x 6j= '.

TS; x j= '

1

_ '

2

i� TS; x j= '

1

or TS; x j= '

2

.

TS; x j= E

S

� i� S has a winning strategy for the game (�

�

; x).

TS; x j= A

S

� i� S does not have a winning strategy for the game (�

:�

; x).

It is useful to think of E

S

� as asserting that S has a strategy to enfor
e � along

every path. Conversely, A

S

� asserts that S does not have a strategy to avoid �

along every path|in other words, no matter what strategy S
hooses, there is

at least one path
onsistent with the strategy along whi
h � holds.

In the absen
e of fairness
onstraints, the games we have des
ribed are deter-

mined and E

S

' is logi
ally equivalent to A

�nS

'. In other words, we
an derive

one quanti�er from the other. However, on
e we introdu
e fairness
onstraints,

the games are no longer determined, in general, and the two quanti�ers need to

be introdu
ed independently, as we have done here. However, even with fairness

onstraints, E

S

' implies A

�nS

'.

3.3 Examples

Let e be a �nite path expression. We shall use the following abbreviations for

onvenien
e.

{ The formula E

S

e (respe
tively, A

S

e) abbreviates the formula E

S

ett

!

(re-

spe
tively, A

S

ett

!

). Every path in �

ett

!

has a �nite pre�x that satis�es the

property e.

{ The formula E

S

e

!

(respe
tively, A

S

e

!

) abbreviates the formula E

S

tte

!

(re-

spe
tively, A

S

tte

!

).

The operators E and A of logi
s like CTL

�

are just abbreviations for E

�

and

E

;

, respe
tively. Using these bran
hing-time operators, we
an spe
ify some tra-

ditional temporal properties as follows. Let the set of a
tions be fa

1

; a

2

; : : : ; a

m

g.

In the examples, � abbreviates the �nite path expression (a

1

+ a

2

+ � � �+ a

m

).

{ The LTL formula 'U (' holds until holds) is
aptured by the path

expression ('�)

�

� . Thus, the state formula A('�)

�

� asserts that 'U

is true of every
omputation path.

{ In LTL, the formula 3' (' holds eventually)
an be written as ttU'.

The
orresponding path expression is (tt�)

�

� ', whi
h we shall denote

Eventually(').

{ Let Invariant(') denote the path expression ('�)

!

. The expression

Invariant(') asserts that the state formula ' is invariant along the path,
or-

responding to the LTL formula 2'. Thus, the state formula A Invariant(')

says that along all paths ' always holds.

{ The formula A((E(�

�

� ') � �)

!

) asserts that along every path ' is always

attainable (Bran
hing Liveness). This property has been used in the veri�-

ation of the Futurebus proto
ol [CGH

+

95℄.

We
an also assert properties that are not expressible in CTL

�

(or ATL

�

).

For instan
e, A(�a)

!

asserts that along all paths, every even position is an a.

Now, let us see how to use Or

e

x to des
ribe properties of a typi
al open sys-

tem. Figure 1 shows a variant of the train gate
ontroller des
ribed in [AHK97℄.

In this system, the atomi
 propositions are fin gate; out of gate;waiting; admittedg.

In the �gure, the labels on the states indi
ate the valuation. The a
tions
an be

partitioned into two sets, train and
tr,
orresponding to two
omponents of the

system, the train and the
ontroller. The set train is given by

fidle; request; relinquish; enter; leaveg while
tr is given by fgrant; reje
t; eje
tg.

Here are some properties that one might like to assert about this system.

{ If the train is outside the gate and has not yet been granted permission to

enter the gate, the
ontroller
an prevent it from entering the gate:

A Invariant((out of gate ^ :admitted)) E

tr

Invariant(out of gate))

out of gate

in gate

request

grant

reje
t

enter

relinquish

idle

idle

leave eje
t

admitted

out of gate

out of gate

waiting

Fig. 1. A train gate
ontroller

{ If the train is outside the gate, the
ontroller
annot for
e it to enter the

gate:

A Invariant(out of gate) A

tr

Invariant(:in gate))

This property
an also expressed by the dual assertion that the train
an

hoose to remain out of the gate.

A Invariant(out of gate) E

train

Invariant(:in gate))

{ If the train is outside the gate, the train and the
ontroller
an
ooperate so

that the train enters the gate:

A Invariant(out of gate) E Eventually(in gate))

{ If the train is in the gate, the
ontroller
an ensure that it eventually leaves

the gate.

A Invariant(in gate) E

tr

Eventually(out of gate))

Noti
e that this property is not satis�ed by the system unless fairness is

introdu
ed|after entering the gate, the train may exe
ute the a
tion idle

forever. However, sin
e eje
t is
ontinuously enabled at this state, even weak

fairness suÆ
es to ensure that the
ontroller
an eventually for
e the train

to leave the gate.

{ A
tually, it is unrealisti
 to assume that the
ontroller
an eje
t the train

on
e it is in the gate. If we eliminate the transition labelled eje
t, we
an

make the following assertion whi
h guarantees that as long as the train does

not idle
ontinuously, it eventually leaves the gate.

A Invariant(in gate) (:(idle)

!

) Eventually(out of gate))

To state this property, we need to integrate assertions about a
tions and

states in the formula. This formula
annot be
onveniently expressed in

ATL

�

, where formulas
an only refer to properties of states.

4 The Model-Che
king Algorithm

We now des
ribe an automata-theoreti
 model
he
king algorithm for Or

e

x

formulas. As we remarked earlier, path expressions
an be regarded as !-regular

expressions over the in�nite alphabet
onsisting of the �nite set of a
tions �

together with the set of all state formulas. However, if we �x a �nite set of state

formulas 	 , we
an regard ea
h path expression whi
h does not refer to state

formulas outside 	 as an !-regular expression over the �nite alphabet �[. We

an asso
iate with ea
h su
h path expression � a language L(�) of in�nite words

over � [using the standard interpretation of !-regular expressions [Tho90℄.

Unfortunately, this na��ve translation does not a

urately re
e
t the meaning

of path expressions: L(�), the
omplement of L(�), may
ontain sequen
es that

are models of �. For instan
e, if L(�)
ontains a'

1

'

2

b

!

but does not
ontain

a'

2

'

1

b

!

, the se
ond path will be present in L(�) though it models �. We require

more stru
ture in the in�nite sequen
es we asso
iate with path expressions to

faithfully translate logi
al
onne
tives into automata-theoreti
 operations.

We begin by de�ning an alternative model for �nite path expressions and

path expressions in terms of sequen
es over an extended alphabet. Let 	 be

a �nite set of state formulas. A 	 -de
orated sequen
e over � is a sequen
e in

whi
h subsets of 	 alternate with elements of �. More pre
isely, a 	 -de
orated

sequen
e over � is an element of (2

	

��)

�

(2

	

) [(2

	

��)

!

. We use s to denote

a �nite 	 -de
orated sequen
e and � to denote an arbitrary (�nite or in�nite)

	 -de
orated sequen
e. A �nite 	 -de
orated sequen
e s
an be
on
atenated with

a 	 -de
orated sequen
e � if the last element of s is identi
al to the �rst element

of �. The
on
atenation is obtained by deleting the last element of s.

We denote the set of �nite path expressions and path expressions that do

not refer to any state formulas outside 	 as FPE

	

and PE

	

, respe
tively. We

an interpret expressions from FPE

	

and PE

	

over 	 -de
orated sequen
es. The

satisfa
tion relation is de�ned as follows:

s j= ' i� s = X

0

and ' 2 X

0

s j= a i� s = X

0

aX

1

s j= e

1

� e

2

i� s = s

1

� s

2

, s

1

j= e

1

and s

2

j= e

2

s j= e

1

+ e

2

i� s j= e

1

or s j= e

2

s j= e

�

i� s = X

0

or s = s

1

� s

2

� � � s

n

and for i 2 f1; 2; : : : ; ng, s

i

j= e

� j= e

1

� e

!

2

i� there is a pre�x s

0

� s

1

� s

2

� � � of � su
h that

s

0

j= e

1

and for i 2 f1; 2; : : :g, s

i

j= e

2

� j= �

1

+ �

2

i� � j= �

1

or � j= �

2

Let TS = hX;�;�!i be a�-labelled transition system and v : X ! Prop be

a valuation over TS. For ea
h path � = x

0

a

1

�! x

1

: : : in TS, the
orresponding

	 -de
orated sequen
e �

�

is X

0

a

1

X

1

: : : where X

i

= f' j ' 2 	 and TS; x

i

j= 'g.

Then, for any path expression � 2 PE

	

, TS; � j= � if and only if �

�

j= �.

There is a natural
onne
tion between the language L(�) de�ned by � 2 PE

	

and the semanti
s of � in terms of 	 -de
orated sequen
es. To formalize this, we

need to de�ne when a 	 -de
orated sequen
e embeds a sequen
e over � [.

Embedding Let w = w

0

w

1

: : : be an in�nite word over � [and � = �

0

�

1

: : :

be a 	 -de
orated sequen
e. Observe that �

i

� 	 if i is even and �

i

2 � if i

is odd. We say that � embeds w if there is a monotone fun
tion f : N

0

! N

0

mapping positions of w into positions of � su
h that:

(i) If i is in the range of f , j < i and j is odd, then j is in the range of f .

(ii) If w

i

2 � then w

i

= �

f(i)

.

(iii) If w

i

2 	 then w

i

2 �

f(i)

.

We
an then establish the following
onne
tion between L(�) and the set of

	 -de
orated sequen
es that model �.

Lemma 4.1. A 	-de
orated sequen
e � models a path expression � 2 PE

	

if

and only if � embeds at least one of the sequen
es in the language L(�) over the

alphabet � [.

Let j�j denote the number of symbols in a path expression �. From the theory

of !-regular languages [Tho90℄, we know that for ea
h path expression � 2 PE

	

,

we
an
onstru
t a nondeterministi
 B�u
hi automaton A

�

over �[whose size

is polynomial in j�j and whose language is pre
isely L(�).

Using our notion of embedding, we
an asso
iate with ea
h B�u
hi automaton

A over � [an extended language L

+

(A) of 	 -de
orated sequen
es as follows:

L

+

(A) = f� j 9w 2 L(A) : � embeds wg

Lemma 4.2. For any B�u
hi automaton A over �[, we
an
onstru
t a B�u
hi

automaton A

+

over � [2

	

su
h that A

+

reads elements from � and 2

	

alter-

nately, L

+

(A) = L(A

+

) and the number of states of A

+

is polynomial in the

number of states of A.

Proof Sket
h: Let A = (Q; Æ; q

0

; F) be a given nondeterministi
 B�u
hi au-

tomaton over � [. For states p; q 2 Q and U � 	 , we write p

U

) q if there is a

sequen
e of transitions from p ending in q whose labels are drawn from the set

U . We write p

U

)

F

q to indi
ate that there is a sequen
e of transitions from p to

q that passes through a state from F , all of whose labels are drawn from the set

U . We write p

U

)

A

if there is an a

epting run starting at p, all of whose labels

are drawn from the set U .

The automaton A

+

= (Q

+

; � [2

	

; Æ

+

; F

+

; q

0

) where:

Q

+

= (Q� f0; 1; 2g)[fq

f

; p

f

g

F

+

= (Q� f2g) [fp

f

g

Æ

+

= f((p; 0); U; (q; 1)) j p

U

) qg [f((p; 0); U; (q; 2)) j p

U

)

F

qg[

f((p; 0); U; q

f

) j p

U

)

A

g[

f((p; 1); a; (q; 0)); ((p; 2); a; (q; 0)) j (p; a; q) 2 Æg[

f((p; 0); U; (p; 1)) j p 2 Q;U � 	g [f(q

f

; a; p

f

) j a 2 �g[

f(p

f

; U; q

f

) j U � 	g

ut

The
onstru
tion allows us to
onvert a path expression � 2 PE

	

into an

automaton A

+

�

over � [2

	

whose state spa
e is polynomial in j�j. Noti
e that

the alphabet, and hen
e the number of transitions, of A

+

�

is exponential in j�j.

The lemma assures us that if we
omplement A

+

�

, we obtain an automaton

that a

epts pre
isely those 	 -de
orated sequen
es that do not model �. As

we remarked earlier, this is not true of the original automaton A

�

: L(�) may

ontain sequen
es that
an be embedded into 	 -de
orated sequen
es that model

�. In a sense, L

+

(A)
an be thought of as the semanti

losure of L(A).

Lemma 4.3 ([Saf88,EJ89℄). A B�u
hi automaton A
an be e�e
tively deter-

minized (
omplemented) to get a deterministi
 Rabin automaton whose size is

exponential in the number of states of A and linear in the number of transitions

of A and whose set of a

epting pairs is linear in the number of states of A. This

automaton
an be
onstru
ted in time exponential in the number of states of A

and polynomial in the number of transitions of A.

Lemma 4.4 follows from the previous two lemmas.

Lemma 4.4. From a path expression � 2 PE

	

, we
an
onstru
t a deterministi

Rabin automaton A

R

�

(A

R

�

) that a

epts exa
tly those 	 -de
orated paths that do

(do not) model �. The number of states of A

R

�

(A

R

�

) is exponential in j�j and

the number of a

epting pairs of A

R

�

(A

R

�

) is polynomial in j�j.

Theorem 4.5. Given a transition system TS, a state x in TS and an Or

e

x

formula ', the model
he
king problem TS; x j=

?

'
an be solved in time O((mk)

k

),

where m is given by 2

O(j'j)

� jTSj and k is a polynomial in j'j.

Proof Sket
h: We use the bottom-up labelling algorithm of CTL

�

and ATL

�

.

The only interesting
ase is when the formula ' to be
he
ked is of the form

E

S

� (or A

S

�). Ea
h S-strategy f at a state x
an be represented as a tree

by unfolding TS starting at x, retaining all � n S edges in the unfolding, but

dis
arding all S-transitions that are not
hosen by the strategy. Conversely, if

we unfold TS at x and prune S-transitions while ensuring that at least one S-

transition is retained at ea
h state y where enabled(y) \ �!

S

6= ;, we obtain

a representation of some S-strategy at x.

Let 	 be the set of state formulas that appear in �. We may assume that

ea
h state of the transition system TS is labelled with the formulas from 	 that

hold at that state. In the trees that we use to represent strategies, ea
h state is

labelled by the same subset of formulas as the
orresponding state in TS.

The trees that represent strategies
arry labels on both the states and the

edges. We
an
onvert these to state-labelled trees by moving the label on ea
h

edge to the destination state of the edge.

Given a transition system TS, we
an
onstru
t a B�u
hi tree automaton T

TS

that a

epts pre
isely those trees labeled by � [2

	

that arise from strategies,

as des
ribed in [KV96℄. The size of T

TS

is linear in the size of TS.

An S-strategy f is a witness for TS; x j= E

S

� if and only if every in�nite

path in the tree
orresponding to f models �. Equivalently, every in�nite path

in this tree, when treated as a sequen
e over � [2

	

, is a

epted by the Rabin

automaton A

R

�

onstru
ted from A

+

�

as des
ribed in Lemma 4.4. Sin
e A

R

�

is

deterministi
, we
an
onvert it into a Rabin tree automaton T

�

that runs A

R

�

along all paths and a

epts exa
tly those trees in whi
h all in�nite paths model

�. The automaton T

�

has the same size as A

R

�

|that is, the number of states is

exponential in j�j and the number of a

epting pairs is polynomial in j�j.

Finally, we
onstru
t the produ
t of T

TS

and T

�

to obtain a tree automaton

that a

epts a tree if and only if it
orresponds to a strategy f su
h that all

in�nite paths in TS
onsistent with f satisfy �. We
an then use the algorithm

of Emerson and Jutla [EJ88℄ to
he
k whether this produ
t automaton a

epts a

nonempty set of trees. The Emerson-Jutla algorithm solves the emptiness prob-

lem for a tree automaton with i states and j a

epting pairs in time O((ij)

3j

).

From this, we
an derive that the emptiness of the produ
t tree automaton

we have
onstru
ted
an be
he
ked in time O((mk)

k

), where m is given by

2

O(j�j)

� jTSj while k is a polynomial in j�j.

The
ase A

S

� is similar to E

S

� with one modi�
ation|use the
onstru
tion

due to Emerson and Jutla [EJ89℄ instead of Safra's
onstru
tion to obtain a

deterministi
 Rabin automaton A

R

�

that a

epts exa
tly those sequen
es over

� [2

	

that do not model �.

In the
onstru
tions above, we have not taken into a

ount the
ase when

we are interested only in (weakly or strongly) S-fair
omputations. Fairness

onstraints
an be handled by adding a simple Rabin
ondition to the automaton

T

TS

that a

epts all trees
orresponding to S-strategies. This extra stru
ture

does not materially a�e
t the overall
omplexity of the pro
edure.

ut

5 Related Work

In [AHK97℄, the logi
 ATL

�

is interpreted over two kinds of transition systems:

syn
hronous stru
tures and asyn
hronous stru
tures. In ea
h
ase, the notion of

agent plays a prominent role in the de�nition. In a syn
hronous stru
ture, ea
h

state is asso
iated with a unique agent. An important sub
lass of syn
hronous

stru
tures is the one with two agents, one representing the system and the other

the environment. Su
h systems have been studied by Ramadge and Wonham

[RW89℄ in the
ontext of designing
ontrollers for dis
rete-event systems.

In an asyn
hronous stru
ture, ea
h transition is asso
iated with an agent.

A syn
hronous stru
ture
an be thought of as a spe
ial kind of asyn
hronous

stru
ture where all transitions out of a state are asso
iated with a single agent.

Our �-labelled transition systems
orrespond to asyn
hronous stru
tures, where

the set of agents
orresponds to the alphabet �.

The notion of strategy des
ribed in [AHK97℄ is slightly di�erent from the one

we use here. In their framework, ea
h agent has a strategy and an S-strategy

at a state allows any move permitted by all the individual strategies of the

agents in S. Our de�nition of global strategy is more generous. We believe that

de
ompositions of strategies where ea
h agent has a view of the global state

do not arise naturally and have therefore
hosen not to in
orporate this into

our logi
. Nevertheless, we
an easily simulate the framework of [AHK97℄ in our

setup without
hanging in the
omplexity of the
onstru
tion.

In the Introdu
tion, we mentioned that Or

e

x subsumes ATL

�

in expressive

power sin
e !-regular expressions are more powerful than LTL. We also note

that in the
ontext of open systems, it is natural to refer to properties of both

states and a
tions in a transition system. If we use LTL to express properties of

paths, as is the
ase with ATL

�

, we have to en
ode a
tions in the states of the

system sin
e LTL
an only talk about properties of states. On the other hand

Or

e

x provides a seamless way of interleaving assertions about a
tions and states

along a path. This makes for more natural models of open systems|for instan
e,

ompare our example of the train gate
ontroller with expli
it a
tion labels with

the version in [AHK97℄ where the a
tion labels are en
oded as propositions.

There has been earlier work on game logi
s that mention a
tions. In [Par83℄,

Parikh de�nes a propositional logi
 of games that extends propositional dynami

logi
s [Har84℄. The logi
 studied in [Par83℄ is shown to be de
idable. A
omplete

axiomatization is provided, but the model-
he
king problem is not studied.

6 Con
lusions

As Theorem 4.5 indi
ates, the model-
he
king
omplexity of Or

e

x is at least

one exponential better than that of ATL

�

, though Or

e

x subsumes ATL

�

in

expressive power. If we restri
t the quanti�ers of Or

e

x to the normal bran
hing-

time interpretation A and E, we obtain a system
alled Br

e

x that
orresponds

to the bran
hing-time logi
 ECTL

�

. The model-
he
king algorithm for Br

e

x is

exponential, whi
h is
omparable to the
omplexity of model-
he
king CTL

�

.

Why does going from CTL

�

to ATL

�

add an exponential to the
omplexity of

model-
he
king, unlike the transition from Br

e

x to Or

e

x? The
onstru
tion in

[VW86℄
an be used to build nondeterministi
 B�u
hi automata for LTL formulas

� and :� with exponential blow-up. Thus the
omplexity of model-
he
king

CTL

�

stays exponential. When we translate Br

e

x path formulas into automata

we only in
ur a polynomial blowup in size, but we may have to
omplement the

automaton for � to get an automaton for :�. Complementation is, in general,

exponential and,
onsequently, model-
he
king for Br

e

x is also exponential.

When going from CTL

�

to ATL

�

, we need to determinize the B�u
hi automa-

ton
onstru
ted from the LTL formula � so that we
an interpret the automaton

over trees. This blows up the automaton by another exponential, resulting in

a model-
he
king algorithm that is doubly exponential in the size of the input

formula. In Or

e

x the automaton we
onstru
t for path formulas is already

determinized, so we avoid the se
ond exponential blow-up.

Finally, we note that if we restri
t our syntax to only permit the existential

path quanti�er E�, we
an model-
he
k Br

e

x in polynomial time | essentially,

it suÆ
es to
onstru
t a nondeterministi
 automaton for �. On the other hand,

the model-
he
king problem for Or

e

x remains exponential even with this re-

stri
tion be
ause we have to determinize the automaton for �. Sin
e !-regular

languages are
losed under
omplementation, we
an redu
e any formula in Br

e

x

orOr

e

x to one with just existential path quanti�ers. However, in the pro
ess, we

have to
omplement !-regular expressions. Sin
e this is, in general, an exponen-

tial operation, the
ost of this translation is exponential (perhaps nonelementary,

sin
e nested negations introdu
e nested exponentials). Thus, the full language

that we have presented here permits more su

in
t spe
i�
ations and more eÆ-

ient veri�
ation than the redu
ed language with just existential quanti�ers.

Referen
es

[AHK97℄ R. Alur, T.A. Henzinger, and O. Kupferman. Alternating-time temporal

logi
. In Pro
eedings of the 38th IEEE Symposium on the Foundations of

Computer S
ien
e. IEEE Press, 1997.

[CE81℄ E. M. Clarke and E. A. Emerson. Design and synthesis of syn
hronization

skeletons using bran
hing-time temporal logi
. In D. Kozen, editor, Pro
eed-

ings of the Workshop on Logi
 of Programs, Yorktown Heights, volume 131

of Le
ture Notes in Computer S
ien
e, pages 52{71. Springer-Verlag, 1981.

[CGH

+

95℄ E. M. Clarke, O. Grumberg, H. Hiraishi, S. Jha, D. E. Long, K. L. M
Millan,

and L. A. Ness. Veri�
ation of the Future+
a
he
oheren
e proto
ol. Formal

Methods in System Design, 6:217{232, 1995.

[EH86℄ E. A. Emerson and J. Y. Halpern. `Sometime' and `not never' revisited: On

bran
hing versus linear time temporal logi
. Journal of the ACM, 33(1):151{

178, 1986.

[EJ88℄ E.A.Emerson and C. Jutla. The
omplexity of tree automata and logi
s of

programs. In Pro
eedings of the IEEE FOCS, 1988.

[EJ89℄ E.A.Emerson and C. Jutla. On simultaneously determinising and
omple-

menting !-automata. In Pro
eedings of the IEEE FOCS, 1989.

[Har84℄ David Harel. Dynami
 logi
. In Handbook of Philosophi
al Logi
, Volume

II. Reidel, 1984.

[Hol97℄ G. J. Holzmann. The model
he
ker SPIN. IEEE Trans. on Software Engi-

neering, 23(5):279{295, 1997.

[KV96℄ Orna Kupferman and Moshe Vardi. Module
he
king. In Pro
eedings of

CAV'96, LNCS 1102. Springer-Verlag, 1996.

[M
M93℄ K. L. M
Millan. Symboli
 Model Che
king. Kluwer A
ademi
, 1993.

[Par83℄ R. Parikh. Propositional game logi
. In Pro
eedings of 24th IEEE FOCS,

pages 195{200, 1983.

[Pnu76℄ A. Pnueli. The temporal logi
 of programs. In Pro
eedings of the IEEE

Symposium on the Foundations of Computing S
ien
e. IEEE Press, 1976.

[RW89℄ P.J.G. Ramadge and W.M. Wonham. The
ontrol of dis
rete-event systems.

IEEE Trans. on Control Theory, 77:81{98, 1989.

[Saf88℄ S. Safra. On
omplexity of !-automata. In In the Pro
eedings of the 29th

FOCS, 1988.

[Tho90℄ W. Thomas. Automata on in�nite obje
ts. In Handbook of Theoreti
al

Computer S
ien
e, Volume B. Elsevier S
ien
e Publishers, 1990.

[VW86℄ M. Vardi and P. Wolper. An automata-theoreti
 approa
h to automati
 pro-

gram veri�
ation. In Symposium on Logi
 in Computer S
ien
e (LICS '86),

pages 332{344, Cambridge, Massa
husetts, June 1986. Computer So
iety

Press.

