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Abstrat. We investigate Or

e

x, a temporal logi for speifying open

systems. Path properties in Or

e

x are expressed using !-regular expres-

sions, while similar logis for open systems, suh as ATL

�

of Alur et al.,

use LTL for this purpose. Our results indiate that this distintion is an

important one. In partiular, we show that Or

e

x has a more eÆient

model-heking proedure than ATL

�

, even though it is stritly more

expressive. To this end, we present a single-exponential model-heking

algorithm for Or

e

x; the model-heking problem for ATL

�

in ontrast

is provably double-exponential.

1 Introdution

Reative systems are omputing systems where the omputation onsists of an

ongoing interation between omponents. This is in ontrast to funtional sys-

tems whose main aim is to ompute sets of output values from sets of input

values. Typial examples of reative systems inlude shedulers, resoure alloa-

tors, and proess ontrollers.

Pnueli [Pnu76℄ proposed the use of linear-time temporal logi (LTL) to spe-

ify properties of reative systems. A system satis�es an LTL spei�ation if

all omputations of the system are models of the formula. Later, branhing-

time temporal logis suh as CTL and CTL

�

[CE81,EH86℄ were developed,

whih permit expliit quanti�ation over omputations of a system. For both

linear-time and branhing-time logis, the model heking problem|verifying

whether a given system satis�es a orretness property spei�ed as a tempo-

ral logi formula|has been well studied. Model hekers suh as Spin for LTL

[Hol97℄ and SMV for CTL [MM93℄ are gaining aeptane as debugging tools

for industrial design of reative systems.

Alur et al. [AHK97℄ have argued that linear-time and branhing-time tempo-

ral logis may not aurately apture the spirit of reative systems. These logis

treat the entire system as a losed unit. When speifying properties of reative

systems, however, it is more natural to desribe how di�erent parts of the system

behave when plaed in ontexts. In other words, one needs to speify properties

of open systems that interat with environments that annot be ontrolled.



A fruitful way of modelling open systems is to regard the interation between

the system and its environment as a game. The system's goal is to move in suh a

way that no matter what the environment does, the resulting omputation satis-

�es some desired property. In this formulation, the veri�ation problem redues

to heking whether the system has a winning strategy for suh a game.

The alternating temporal logi ATL

�

proposed in [AHK97℄ reets the game-

theoreti formulation of open systems. In ATL

�

, the property to be satis�ed in

eah run of the system is desribed using an LTL formula, and LTL formulas

may be nested within game quanti�ers. The quanti�ers desribe the existene

of winning strategies for the system. Moreover, a restrited version of ATL

�

alled ATL has an eÆient model-heking algorithm. However, the model-

heking problem for the onsiderably more expressive logi ATL

�

is shown

to be 2EXPTIME-omplete whih ompares unfavourably with the PSPACE-

ompleteness of CTL

�

.

In this paper, we propose a logi for open systems alledOr

e

x, whih is inter-

preted over �-labelled transition systems and uses !-regular expressions rather

than LTL formulas to speify properties along individual runs. As in ATL

�

,

!-regular expressions may be nested within game quanti�ers. Sine !-regular

expressions are more expressive than temporal logis for speifying properties of

in�nite sequenes, our logi is more expressive than ATL

�

. Moreover, it turns

out that Or

e

x has an exponential-time model heking algorithm, whih is on-

siderably better than the omplexity of ATL

�

.

The paper is organized as follows. Setion 2 ontains some basi de�nitions

about transition systems and games. Setion 3 introdues the syntax and seman-

tis of Or

e

x and gives some examples of how to write temporal spei�ations

in the logi. Setion 4 desribes an automata-theoreti algorithm for Or

e

x's

model-heking problem. Setion 5 disusses related work and Setion 6 o�ers

our onluding remarks.

2 Transition Systems, Games, Strategies

Transition systems A�-labelled transition system is a tuple TS = hX;�;�!i

where X is a �nite set of states, � is a �nite alphabet of ations and �! �

X���X is the transition relation. We use x; y; : : : to denote states and a; b; : : :

to denote ations.

An element (x; a; y) 2 �! is alled an a-transition. For S � �, the set of

S-transitions is given by �!

S

= f(x; a; y) j a 2 Sg. As usual, we write x

a

�! y to

denote that (x; a; y) 2 �!. The set of transitions enabled at a state x, denoted

enabled(x), is the set of transitions of the form x

a

�! y that originate at x. To

simplify the presentation, we assume that there are no deadloked states|that

is, for eah x 2 X , enabled(x) 6= ;.

A path in TS is a sequene x

0

a

1

�! x

1

a

2

�! � � �x

i

a

i+1

�! x

i+1

� � �. Let paths(TS)

and �nite paths(TS) denote the set of in�nite and �nite paths in TS, respetively.

For a �nite path p, let last(p) denote the �nal state of p.



Games and strategies Let S � �. An S-strategy is a funtion f from

�nite paths(TS) to the set of S-transitions �!

S

suh that for eah

p 2 �nite paths(TS), f(p) � enabled(last(p)). If �!

S

\ enabled(last(p)) 6= ;, we

require that f(p) 6= ;.

An in�nite path � = x

0

a

1

�! x

1

a

2

�! � � �x

n

a

n

�! � � � in paths(TS) is said to

be onsistent with the S-strategy f if for eah n � 1 the transition x

n�1

a

n

�! x

n

belongs to the set f(x

0

a

1

�! � � �

a

n�1

�! x

n�1

) whenever a

n

2 S.

A game over TS is a pair (�; x) where � is a subset of paths(TS) and x is a

state in X . We say that S has a winning strategy for the game (�; x) if there is

an S-strategy f suh that every in�nite path that begins at x and is onsistent

with f belongs to � .

Often, we are interested in restriting our attention to fair omputations. An

in�nite path � 2 paths(TS) is said to be weakly S-fair if there are in�nitely

many states along � where no S-transition is enabled or if there are in�nitely

many S-transitions in �. The path is said to be strongly S-fair if there are only

�nitely many positions where an S-transition is enabled or if there are in�nitely

many S-transitions in �.

We an relativize our notion of winning strategies to fair paths in the obvious

way|S has a weakly (strongly) fair winning strategy for (�; x) if there is an

S-strategy f suh that every weakly (strongly) S-fair path that begins at x and

is onsistent with f belongs to � .

3 The Logi

3.1 Syntax

Fix an alphabet � and a set of propositions Prop. We simultaneously de�ne the

sets FPE of �nite path expressions, PE of (in�nite) path expressions, and � of

state formulas as follows. We use e to denote a typial element of FPE, � to

denote a typial element of PE, and ' to denote a typial element of �.

e ::= ' 2 � j a 2 � j e � e j e+ e j e

�

� ::= e � e

!

j �+ �

' ::= tt j P 2 Prop j :' j ' _ ' j E

S

�; (S � �) j A

S

�; (S � �)

Observe that �nite path expressions are just regular expressions whose al-

phabet may inlude state formulas. Similarly, path expressions are traditional

!-regular expressions [Tho90℄ built from �nite path expressions. For state for-

mulas, we an use : and _ to derive the usual Boolean onnetives suh as ^

and ). Finally, note that the w�s of Or

e

x are just the state formulas.

3.2 Semantis

Or

e

x formulas are interpreted over �-labelled transitions systems equipped

with valuations. Let TS = hX;�;�!i be a �-labelled transition system. A

valuation v : X ! 2

Prop

spei�es whih propositions are true in eah state.



We interpret �nite path expressions over �nite paths in TS, path expres-

sions over in�nite paths in TS, and state formulas at states of TS. If p 2

�nite paths(TS) and e 2 FPE, we write TS; p j= e to denote that e is satis-

�ed along p. Similarly, for � 2 paths(TS) and � 2 PE, TS; � j= � denotes � is

satis�ed along �. Finally, for x 2 X and ' 2 �, TS; x j= ' denotes that ' is

satis�ed at the state x.

We de�ne onatenation of paths in the usual way. Let p = x

0

a

1

�! � � �

a

n

�! x

n

and p

0

= x

0

0

a

0

1

�! � � �

a

0

m

�! x

0

m

be paths suh that x

n

= x

0

0

. The path p � p

0

is the

path x

0

a

1

�! � � �

a

n

�! x

n

a

0

1

�! � � �

a

0

m

�! x

0

m

. The onatenation of a �nite path p

with an in�nite path � is de�ned similarly.

The three forms of the satisfation relation j= are de�ned through simulta-

neous indution as follows.

Finite path expressions

TS; p j= ' i� p = x

0

and TS; x

0

j= '.

TS; p j= a i� p = x

0

a

1

�! x

1

and a

1

= a.

TS; p j= e

1

� e

2

i� p = p

1

� p

2

, TS; p

1

j= e

1

and TS; p

2

j= e

2

TS; p j= e

1

+ e

2

i� TS; p j= e

1

or TS; p j= e

2

TS; p j= e

�

i� p = x

0

or

p = p

1

� p

2

� � � p

m

and for i 2 f1; 2; : : : ;mg, TS; p

i

j= e

Path expressions

TS; � j= e

1

� e

!

2

i� there is a pre�x p

0

� p

1

� p

2

� � � of � suh that

TS; p

0

j= e

1

and for i 2 f1; 2; : : :g, TS; p

i

j= e

2

TS; � j= �

1

+ �

2

i� TS; � j= �

1

or TS; � j= �

2

We an assoiate with eah path expression � a set �

�

of in�nite paths in

TS in the obvious way|�

�

= f� 2 paths(TS) j TS; � j= �g. We let �

:�

denote

the set paths(TS) n�

�

.

State formulas

TS; x j= tt always.

TS; x j= P 2 Prop i� P 2 v(x).

TS; x j= :' i� TS; x 6j= '.

TS; x j= '

1

_ '

2

i� TS; x j= '

1

or TS; x j= '

2

.

TS; x j= E

S

� i� S has a winning strategy for the game (�

�

; x).

TS; x j= A

S

� i� S does not have a winning strategy for the game (�

:�

; x).

It is useful to think of E

S

� as asserting that S has a strategy to enfore � along

every path. Conversely, A

S

� asserts that S does not have a strategy to avoid �

along every path|in other words, no matter what strategy S hooses, there is

at least one path onsistent with the strategy along whih � holds.

In the absene of fairness onstraints, the games we have desribed are deter-

mined and E

S

' is logially equivalent to A

�nS

'. In other words, we an derive

one quanti�er from the other. However, one we introdue fairness onstraints,

the games are no longer determined, in general, and the two quanti�ers need to

be introdued independently, as we have done here. However, even with fairness

onstraints, E

S

' implies A

�nS

'.



3.3 Examples

Let e be a �nite path expression. We shall use the following abbreviations for

onveniene.

{ The formula E

S

e (respetively, A

S

e) abbreviates the formula E

S

ett

!

(re-

spetively, A

S

ett

!

). Every path in �

ett

!

has a �nite pre�x that satis�es the

property e.

{ The formula E

S

e

!

(respetively, A

S

e

!

) abbreviates the formula E

S

tte

!

(re-

spetively, A

S

tte

!

).

The operators E and A of logis like CTL

�

are just abbreviations for E

�

and

E

;

, respetively. Using these branhing-time operators, we an speify some tra-

ditional temporal properties as follows. Let the set of ations be fa

1

; a

2

; : : : ; a

m

g.

In the examples, � abbreviates the �nite path expression (a

1

+ a

2

+ � � �+ a

m

).

{ The LTL formula 'U (' holds until  holds) is aptured by the path

expression ('�)

�

�  . Thus, the state formula A('�)

�

�  asserts that 'U 

is true of every omputation path.

{ In LTL, the formula 3' (' holds eventually) an be written as ttU'.

The orresponding path expression is (tt�)

�

� ', whih we shall denote

Eventually(').

{ Let Invariant(') denote the path expression ('�)

!

. The expression

Invariant(') asserts that the state formula ' is invariant along the path, or-

responding to the LTL formula 2'. Thus, the state formula A Invariant(')

says that along all paths ' always holds.

{ The formula A((E(�

�

� ') � �)

!

) asserts that along every path ' is always

attainable (Branhing Liveness). This property has been used in the veri�-

ation of the Futurebus protool [CGH

+

95℄.

We an also assert properties that are not expressible in CTL

�

(or ATL

�

).

For instane, A(�a)

!

asserts that along all paths, every even position is an a.

Now, let us see how to use Or

e

x to desribe properties of a typial open sys-

tem. Figure 1 shows a variant of the train gate ontroller desribed in [AHK97℄.

In this system, the atomi propositions are fin gate; out of gate;waiting; admittedg.

In the �gure, the labels on the states indiate the valuation. The ations an be

partitioned into two sets, train and tr, orresponding to two omponents of the

system, the train and the ontroller. The set train is given by

fidle; request; relinquish; enter; leaveg while tr is given by fgrant; rejet; ejetg.

Here are some properties that one might like to assert about this system.

{ If the train is outside the gate and has not yet been granted permission to

enter the gate, the ontroller an prevent it from entering the gate:

A Invariant((out of gate ^ :admitted)) E

tr

Invariant(out of gate))



out of gate

in gate

request

grant

rejet

enter

relinquish

idle

idle

leave ejet

admitted

out of gate

out of gate

waiting

Fig. 1. A train gate ontroller

{ If the train is outside the gate, the ontroller annot fore it to enter the

gate:

A Invariant(out of gate) A

tr

Invariant(:in gate))

This property an also expressed by the dual assertion that the train an

hoose to remain out of the gate.

A Invariant(out of gate) E

train

Invariant(:in gate))

{ If the train is outside the gate, the train and the ontroller an ooperate so

that the train enters the gate:

A Invariant(out of gate) E Eventually(in gate))

{ If the train is in the gate, the ontroller an ensure that it eventually leaves

the gate.

A Invariant(in gate) E

tr

Eventually(out of gate))

Notie that this property is not satis�ed by the system unless fairness is

introdued|after entering the gate, the train may exeute the ation idle

forever. However, sine ejet is ontinuously enabled at this state, even weak

fairness suÆes to ensure that the ontroller an eventually fore the train

to leave the gate.

{ Atually, it is unrealisti to assume that the ontroller an ejet the train

one it is in the gate. If we eliminate the transition labelled ejet, we an

make the following assertion whih guarantees that as long as the train does

not idle ontinuously, it eventually leaves the gate.

A Invariant(in gate) (:(idle)

!

) Eventually(out of gate))

To state this property, we need to integrate assertions about ations and

states in the formula. This formula annot be onveniently expressed in

ATL

�

, where formulas an only refer to properties of states.



4 The Model-Cheking Algorithm

We now desribe an automata-theoreti model heking algorithm for Or

e

x

formulas. As we remarked earlier, path expressions an be regarded as !-regular

expressions over the in�nite alphabet onsisting of the �nite set of ations �

together with the set of all state formulas. However, if we �x a �nite set of state

formulas 	 , we an regard eah path expression whih does not refer to state

formulas outside 	 as an !-regular expression over the �nite alphabet �[	 . We

an assoiate with eah suh path expression � a language L(�) of in�nite words

over � [ 	 using the standard interpretation of !-regular expressions [Tho90℄.

Unfortunately, this na��ve translation does not aurately reet the meaning

of path expressions: L(�), the omplement of L(�), may ontain sequenes that

are models of �. For instane, if L(�) ontains a'

1

'

2

b

!

but does not ontain

a'

2

'

1

b

!

, the seond path will be present in L(�) though it models �. We require

more struture in the in�nite sequenes we assoiate with path expressions to

faithfully translate logial onnetives into automata-theoreti operations.

We begin by de�ning an alternative model for �nite path expressions and

path expressions in terms of sequenes over an extended alphabet. Let 	 be

a �nite set of state formulas. A 	 -deorated sequene over � is a sequene in

whih subsets of 	 alternate with elements of �. More preisely, a 	 -deorated

sequene over � is an element of (2

	

��)

�

(2

	

) [ (2

	

��)

!

. We use s to denote

a �nite 	 -deorated sequene and � to denote an arbitrary (�nite or in�nite)

	 -deorated sequene. A �nite 	 -deorated sequene s an be onatenated with

a 	 -deorated sequene � if the last element of s is idential to the �rst element

of �. The onatenation is obtained by deleting the last element of s.

We denote the set of �nite path expressions and path expressions that do

not refer to any state formulas outside 	 as FPE

	

and PE

	

, respetively. We

an interpret expressions from FPE

	

and PE

	

over 	 -deorated sequenes. The

satisfation relation is de�ned as follows:

s j= ' i� s = X

0

and ' 2 X

0

s j= a i� s = X

0

aX

1

s j= e

1

� e

2

i� s = s

1

� s

2

, s

1

j= e

1

and s

2

j= e

2

s j= e

1

+ e

2

i� s j= e

1

or s j= e

2

s j= e

�

i� s = X

0

or s = s

1

� s

2

� � � s

n

and for i 2 f1; 2; : : : ; ng, s

i

j= e

� j= e

1

� e

!

2

i� there is a pre�x s

0

� s

1

� s

2

� � � of � suh that

s

0

j= e

1

and for i 2 f1; 2; : : :g, s

i

j= e

2

� j= �

1

+ �

2

i� � j= �

1

or � j= �

2

Let TS = hX;�;�!i be a�-labelled transition system and v : X ! Prop be

a valuation over TS. For eah path � = x

0

a

1

�! x

1

: : : in TS, the orresponding

	 -deorated sequene �

�

is X

0

a

1

X

1

: : : where X

i

= f' j ' 2 	 and TS; x

i

j= 'g.

Then, for any path expression � 2 PE

	

, TS; � j= � if and only if �

�

j= �.

There is a natural onnetion between the language L(�) de�ned by � 2 PE

	

and the semantis of � in terms of 	 -deorated sequenes. To formalize this, we

need to de�ne when a 	 -deorated sequene embeds a sequene over � [ 	 .



Embedding Let w = w

0

w

1

: : : be an in�nite word over � [	 and � = �

0

�

1

: : :

be a 	 -deorated sequene. Observe that �

i

� 	 if i is even and �

i

2 � if i

is odd. We say that � embeds w if there is a monotone funtion f : N

0

! N

0

mapping positions of w into positions of � suh that:

(i) If i is in the range of f , j < i and j is odd, then j is in the range of f .

(ii) If w

i

2 � then w

i

= �

f(i)

.

(iii) If w

i

2 	 then w

i

2 �

f(i)

.

We an then establish the following onnetion between L(�) and the set of

	 -deorated sequenes that model �.

Lemma 4.1. A 	-deorated sequene � models a path expression � 2 PE

	

if

and only if � embeds at least one of the sequenes in the language L(�) over the

alphabet � [ 	 .

Let j�j denote the number of symbols in a path expression �. From the theory

of !-regular languages [Tho90℄, we know that for eah path expression � 2 PE

	

,

we an onstrut a nondeterministi B�uhi automaton A

�

over �[	 whose size

is polynomial in j�j and whose language is preisely L(�).

Using our notion of embedding, we an assoiate with eah B�uhi automaton

A over � [	 an extended language L

+

(A) of 	 -deorated sequenes as follows:

L

+

(A) = f� j 9w 2 L(A) : � embeds wg

Lemma 4.2. For any B�uhi automaton A over �[	 , we an onstrut a B�uhi

automaton A

+

over � [ 2

	

suh that A

+

reads elements from � and 2

	

alter-

nately, L

+

(A) = L(A

+

) and the number of states of A

+

is polynomial in the

number of states of A.

Proof Sketh: Let A = (Q; Æ; q

0

; F ) be a given nondeterministi B�uhi au-

tomaton over � [	 . For states p; q 2 Q and U � 	 , we write p

U

) q if there is a

sequene of transitions from p ending in q whose labels are drawn from the set

U . We write p

U

)

F

q to indiate that there is a sequene of transitions from p to

q that passes through a state from F , all of whose labels are drawn from the set

U . We write p

U

)

A

if there is an aepting run starting at p, all of whose labels

are drawn from the set U .

The automaton A

+

= (Q

+

; � [ 2

	

; Æ

+

; F

+

; q

0

) where:

Q

+

= (Q� f0; 1; 2g)[ fq

f

; p

f

g

F

+

= (Q� f2g) [ fp

f

g

Æ

+

= f((p; 0); U; (q; 1)) j p

U

) qg [ f((p; 0); U; (q; 2)) j p

U

)

F

qg[

f((p; 0); U; q

f

) j p

U

)

A

g[

f((p; 1); a; (q; 0)); ((p; 2); a; (q; 0)) j (p; a; q) 2 Æg[

f((p; 0); U; (p; 1)) j p 2 Q;U � 	g [ f(q

f

; a; p

f

) j a 2 �g[

f(p

f

; U; q

f

) j U � 	g

ut



The onstrution allows us to onvert a path expression � 2 PE

	

into an

automaton A

+

�

over � [ 2

	

whose state spae is polynomial in j�j. Notie that

the alphabet, and hene the number of transitions, of A

+

�

is exponential in j�j.

The lemma assures us that if we omplement A

+

�

, we obtain an automaton

that aepts preisely those 	 -deorated sequenes that do not model �. As

we remarked earlier, this is not true of the original automaton A

�

: L(�) may

ontain sequenes that an be embedded into 	 -deorated sequenes that model

�. In a sense, L

+

(A) an be thought of as the semanti losure of L(A).

Lemma 4.3 ([Saf88,EJ89℄). A B�uhi automaton A an be e�etively deter-

minized (omplemented) to get a deterministi Rabin automaton whose size is

exponential in the number of states of A and linear in the number of transitions

of A and whose set of aepting pairs is linear in the number of states of A. This

automaton an be onstruted in time exponential in the number of states of A

and polynomial in the number of transitions of A.

Lemma 4.4 follows from the previous two lemmas.

Lemma 4.4. From a path expression � 2 PE

	

, we an onstrut a deterministi

Rabin automaton A

R

�

(A

R

�

) that aepts exatly those 	 -deorated paths that do

(do not) model �. The number of states of A

R

�

(A

R

�

) is exponential in j�j and

the number of aepting pairs of A

R

�

(A

R

�

) is polynomial in j�j.

Theorem 4.5. Given a transition system TS, a state x in TS and an Or

e

x

formula ', the model heking problem TS; x j=

?

' an be solved in time O((mk)

k

),

where m is given by 2

O(j'j)

� jTSj and k is a polynomial in j'j.

Proof Sketh: We use the bottom-up labelling algorithm of CTL

�

and ATL

�

.

The only interesting ase is when the formula ' to be heked is of the form

E

S

� (or A

S

�). Eah S-strategy f at a state x an be represented as a tree

by unfolding TS starting at x, retaining all � n S edges in the unfolding, but

disarding all S-transitions that are not hosen by the strategy. Conversely, if

we unfold TS at x and prune S-transitions while ensuring that at least one S-

transition is retained at eah state y where enabled(y) \ �!

S

6= ;, we obtain

a representation of some S-strategy at x.

Let 	 be the set of state formulas that appear in �. We may assume that

eah state of the transition system TS is labelled with the formulas from 	 that

hold at that state. In the trees that we use to represent strategies, eah state is

labelled by the same subset of formulas as the orresponding state in TS.

The trees that represent strategies arry labels on both the states and the

edges. We an onvert these to state-labelled trees by moving the label on eah

edge to the destination state of the edge.

Given a transition system TS, we an onstrut a B�uhi tree automaton T

TS

that aepts preisely those trees labeled by � [ 2

	

that arise from strategies,

as desribed in [KV96℄. The size of T

TS

is linear in the size of TS.



An S-strategy f is a witness for TS; x j= E

S

� if and only if every in�nite

path in the tree orresponding to f models �. Equivalently, every in�nite path

in this tree, when treated as a sequene over � [ 2

	

, is aepted by the Rabin

automaton A

R

�

onstruted from A

+

�

as desribed in Lemma 4.4. Sine A

R

�

is

deterministi, we an onvert it into a Rabin tree automaton T

�

that runs A

R

�

along all paths and aepts exatly those trees in whih all in�nite paths model

�. The automaton T

�

has the same size as A

R

�

|that is, the number of states is

exponential in j�j and the number of aepting pairs is polynomial in j�j.

Finally, we onstrut the produt of T

TS

and T

�

to obtain a tree automaton

that aepts a tree if and only if it orresponds to a strategy f suh that all

in�nite paths in TS onsistent with f satisfy �. We an then use the algorithm

of Emerson and Jutla [EJ88℄ to hek whether this produt automaton aepts a

nonempty set of trees. The Emerson-Jutla algorithm solves the emptiness prob-

lem for a tree automaton with i states and j aepting pairs in time O((ij)

3j

).

From this, we an derive that the emptiness of the produt tree automaton

we have onstruted an be heked in time O((mk)

k

), where m is given by

2

O(j�j)

� jTSj while k is a polynomial in j�j.

The ase A

S

� is similar to E

S

� with one modi�ation|use the onstrution

due to Emerson and Jutla [EJ89℄ instead of Safra's onstrution to obtain a

deterministi Rabin automaton A

R

�

that aepts exatly those sequenes over

� [ 2

	

that do not model �.

In the onstrutions above, we have not taken into aount the ase when

we are interested only in (weakly or strongly) S-fair omputations. Fairness

onstraints an be handled by adding a simple Rabin ondition to the automaton

T

TS

that aepts all trees orresponding to S-strategies. This extra struture

does not materially a�et the overall omplexity of the proedure.

ut

5 Related Work

In [AHK97℄, the logi ATL

�

is interpreted over two kinds of transition systems:

synhronous strutures and asynhronous strutures. In eah ase, the notion of

agent plays a prominent role in the de�nition. In a synhronous struture, eah

state is assoiated with a unique agent. An important sublass of synhronous

strutures is the one with two agents, one representing the system and the other

the environment. Suh systems have been studied by Ramadge and Wonham

[RW89℄ in the ontext of designing ontrollers for disrete-event systems.

In an asynhronous struture, eah transition is assoiated with an agent.

A synhronous struture an be thought of as a speial kind of asynhronous

struture where all transitions out of a state are assoiated with a single agent.

Our �-labelled transition systems orrespond to asynhronous strutures, where

the set of agents orresponds to the alphabet �.

The notion of strategy desribed in [AHK97℄ is slightly di�erent from the one

we use here. In their framework, eah agent has a strategy and an S-strategy

at a state allows any move permitted by all the individual strategies of the



agents in S. Our de�nition of global strategy is more generous. We believe that

deompositions of strategies where eah agent has a view of the global state

do not arise naturally and have therefore hosen not to inorporate this into

our logi. Nevertheless, we an easily simulate the framework of [AHK97℄ in our

setup without hanging in the omplexity of the onstrution.

In the Introdution, we mentioned that Or

e

x subsumes ATL

�

in expressive

power sine !-regular expressions are more powerful than LTL. We also note

that in the ontext of open systems, it is natural to refer to properties of both

states and ations in a transition system. If we use LTL to express properties of

paths, as is the ase with ATL

�

, we have to enode ations in the states of the

system sine LTL an only talk about properties of states. On the other hand

Or

e

x provides a seamless way of interleaving assertions about ations and states

along a path. This makes for more natural models of open systems|for instane,

ompare our example of the train gate ontroller with expliit ation labels with

the version in [AHK97℄ where the ation labels are enoded as propositions.

There has been earlier work on game logis that mention ations. In [Par83℄,

Parikh de�nes a propositional logi of games that extends propositional dynami

logis [Har84℄. The logi studied in [Par83℄ is shown to be deidable. A omplete

axiomatization is provided, but the model-heking problem is not studied.

6 Conlusions

As Theorem 4.5 indiates, the model-heking omplexity of Or

e

x is at least

one exponential better than that of ATL

�

, though Or

e

x subsumes ATL

�

in

expressive power. If we restrit the quanti�ers of Or

e

x to the normal branhing-

time interpretation A and E, we obtain a system alled Br

e

x that orresponds

to the branhing-time logi ECTL

�

. The model-heking algorithm for Br

e

x is

exponential, whih is omparable to the omplexity of model-heking CTL

�

.

Why does going from CTL

�

to ATL

�

add an exponential to the omplexity of

model-heking, unlike the transition from Br

e

x to Or

e

x? The onstrution in

[VW86℄ an be used to build nondeterministi B�uhi automata for LTL formulas

� and :� with exponential blow-up. Thus the omplexity of model-heking

CTL

�

stays exponential. When we translate Br

e

x path formulas into automata

we only inur a polynomial blowup in size, but we may have to omplement the

automaton for � to get an automaton for :�. Complementation is, in general,

exponential and, onsequently, model-heking for Br

e

x is also exponential.

When going from CTL

�

to ATL

�

, we need to determinize the B�uhi automa-

ton onstruted from the LTL formula � so that we an interpret the automaton

over trees. This blows up the automaton by another exponential, resulting in

a model-heking algorithm that is doubly exponential in the size of the input

formula. In Or

e

x the automaton we onstrut for path formulas is already

determinized, so we avoid the seond exponential blow-up.

Finally, we note that if we restrit our syntax to only permit the existential

path quanti�er E�, we an model-hek Br

e

x in polynomial time | essentially,

it suÆes to onstrut a nondeterministi automaton for �. On the other hand,



the model-heking problem for Or

e

x remains exponential even with this re-

strition beause we have to determinize the automaton for �. Sine !-regular

languages are losed under omplementation, we an redue any formula in Br

e

x

orOr

e

x to one with just existential path quanti�ers. However, in the proess, we

have to omplement !-regular expressions. Sine this is, in general, an exponen-

tial operation, the ost of this translation is exponential (perhaps nonelementary,

sine nested negations introdue nested exponentials). Thus, the full language

that we have presented here permits more suint spei�ations and more eÆ-

ient veri�ation than the redued language with just existential quanti�ers.
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