
Automata, Languages and Programming, 25th International Colloquium

Proeedings: Kim G. Larsen, Sven Skyum, Glynn Winskel (eds.)

Springer Leture Notes in Computer Siene 1443 (1998), 188{199.

Robust Asynhronous Protools Are Finite-State

Madhavan Mukund

1?

, K Narayan Kumar

1??

,

Jaikumar Radhakrishnan

2

, and Milind Sohoni

3

1

SPIC Mathematial Institute, 92 G.N. Chetty Road, Madras 600 017, India.

E-mail: fmadhavan,kumarg�smi.ernet.in

2

Computer Siene Group, Tata Institute of Fundamental Researh, Homi Bhabha

Road, Bombay 400 005, India. E-mail: jaikumar�ts.tifr.res.in

3

Department of Computer Siene and Engineering, Indian Institute of Tehnology,

Bombay 400 076, India. E-mail: sohoni�se.iitb.ernet.in

Abstrat. We onsider networks of �nite-state mahines whih ommu-

niate over reliable hannels whih may reorder messages. Eah mahine

in the network also has a loal input tape. Sine hannels are unbounded,

the network as a whole is, in general, in�nite-state.

An asynhronous protool is a network equipped with an aeptane

ondition. Suh a protool is said to be robust if it never deadloks and,

moreover, it either aepts or rejets eah input in an unambiguous man-

ner. The behaviour of a robust protool is insensitive to nondeterminism

introdued by either message reordering or the relative speeds at whih

omponents read their loal inputs.

Using an automata-theoreti model, we show that, at a global level,

every robust asynhronous protool has a �nite-state representation. To

prove this, we establish a variety of pumping lemmas. We also demon-

strate a distributed language whih does not admit a robust protool.

1 Introdution

We analyze message-passing systems from a language-theoreti point of view. In

suh systems, omputing agents run protools to olletively proess distributed

inputs, using messages for oordination. These messages may undergo di�erent

relative delays and hene arrive out of order. Protools need to be \robust" with

respet to the irregular behaviour of the transmission medium.

Most protools assume that the transmission medium has an unlimited a-

paity to hold messages|undelivered messages are assumed to be stored in a

transparent manner in intermediate bu�ers. Can the unlimited apaity of the

medium enhane the power of message passing protools?

Unfortunately, the answer is no; we show that even for a benign medium

whih does not lose messages, a \robust" protool annot use unbounded bu�ers

to its advantage. However, if a protool need not always graefully halt, then

the medium an be exploited to aept a larger lass of \distributed languages".

?

Partly supported by IFCPAR Projet 1502-1.

??

Currently on leave at Department of Computer Siene, State University of New

York at Stony Brook, NY 11794-4400, USA. E-mail: kumar�s.sunysb.edu.

189

Consider then a system of proesses whih interat independently with the

environment and ommuniate internally via message-passing. The ommunia-

tion between the proesses and the programs whih they run impose restritions

on the distributed input|some interations with the environment are valid and

some are not. For instane, onsider a banking network whih is onneted to the

external world via a set of automated teller mahines. The protool may enfore

a limit on the number of withdrawals by an individual aross the network.

We are interested in �nite-state proesses, so we assume that the number of

di�erent types of messages used by the system is �nite. This is not unreasonable if

we distinguish \ontrol" messages from \data" messages. In our model, hannels

may reorder or delay messages. For simpliity, we assume that messages are

never lost. Sine messages may be reordered, the state of eah hannel an be

represented by a �nite set of ounters whih reord the number of messages of

eah type whih have been sent along the hannel but are as yet undelivered.

We say that an asynhronous protool is robust if it never deadloks on any

distributed input and every distributed input is either aepted or rejeted in

a onsistent manner. In other words �nite delays, reordering of messages and

nondeterministi hoies made by the protool do not a�et the outome of a

robust protool on a given distributed input.

Our main result is that every language of distributed inputs aepted by

a robust asynhronous protool an be \represented" by a regular sequential

language. In other words, a robust asynhronous protool always has a glob-

ally �nite-state desription. This implies that robust protools essentially use

messages only for \handshaking". Sine robust protools an be modelled as

�nite-state systems, they may, in priniple, be veri�ed using automated tools [5℄.

The paper is organized as follows. In the next setion, we de�ne message-

passing networks. In Setion 3 we state some basi results about these networks,

inluding a Contration Lemma whih leads to the deidability of the emptiness

problem. Setion 4 develops a family of pumping lemmas whih are exploited

in Setion 5 to prove our main result about robust protools. We also desribe

a simple language for whih no robust protool exists. In the �nal setion, we

disuss the onnetion between our results and those in Petri net theory and

point out diretions for future work. We have had to omit detailed proofs in this

extended abstrat. Full proofs and related results an be found in [10℄.

2 Message-passing networks

Natural numbers and tuples As usual, N denotes the set f0; 1; 2; : : :g of

natural numbers. For i; j 2 N, [i::j℄ denotes the set fi; i+1; : : : ; jg, where [i::j℄ =

; if i > j. We ompare k-tuples of natural numbers omponent-wise. For m =

hm

1

;m

2

; : : : ;m

k

i and n = hn

1

; n

2

; : : : ; n

k

i, m � n i� m

i

� n

i

for eah i 2 [1::k℄.

Message-passing automata A message-passing automaton A is a tuple

(S

a

; S

t

; �;#; �; T; s

in

) where:

{ S

a

and S

t

are disjoint, non-empty, �nite sets of ative and terminal states,

respetively. The initial state s

in

belongs to S

a

.

190

{ � is a �nite input alphabet and # is a speial end-of-tape symbol whih does

not belong to �. Let �

#

denote the set � [f#g.

{ � is a �nite set of ounters. With eah ounter C, we assoiate two symbols,

C

+

and C

�

. We write �

�

to denote the set fC

+

jC 2 �g [fC

�

jC 2 �g.

{ T � (S

a

� (�[�

�

)�S

a

)[(S

a

�f#g�S

t

)[(S

t

��

�

�S

t

) is the transition

relation.

A message-passing automaton begins reading its input in an ative state. It

remains within the set of ative states until it reads the speial end-of-tape

symbol. At this point, the automaton moves into the set of terminal states where

the only moves possible are those whih inrement or derement ounters.

Networks Amessage-passing network is a strutureN = (fA

i

g

i2[1::n℄

;A;Rej)

where:

{ For i 2 [1::n℄, A

i

= (S

i

a

; S

i

t

; �

i

;#

i

; �

i

; T

i

; s

i

in

) is a message-passing automa-

ton. As before, for i 2 [1::n℄, �

#

i

denotes the set �

i

[f#

i

g.

{ For i; j 2 [1::n℄, if i 6= j then �

i

\�

j

= ;.

{ A global state of N is an n-tuple hs

1

; s

2

; : : : ; s

n

i where s

i

2 (S

i

a

[S

i

t

) for

i 2 [1::n℄. Let Q

N

denote the set of global states of N . If q = hs

1

; s

2

; : : : ; s

n

i

is a global state, then q

i

denotes the i

th

omponent s

i

.

The initial state of N is given by q

in

= hs

1

in

; s

2

in

; : : : ; s

n

in

i. The terminal states

ofN , denoted Q

t

N

, are given by

Q

i2[1::n℄

S

i

t

. The sets A and Rej are disjoint

subsets of Q

t

N

; A is the set of aept states of N while Rej is the set of

rejet states. We do not insist that Q

t

N

= A[Rej|there may be terminal

states whih are neither aepting nor rejeting.

Counters may be shared aross the network|shared ounters represent han-

nels along whih omponents send messages to eah other. Stritly speaking, a

point-to-point hannel would onsist of a set of ounters shared by two proesses,

where one proess only inrements the ounters and the other only derements

the ounters. Our de�nition permits a more generous notion of hannels.

The assumption that loal alphabets are pairwise disjoint is not ritial|we

an always tag eah input letter with the loation where it is read.

Let �

N

denote

S

i2[1::n℄

�

#

i

and �

N

denote

S

i2[1::n℄

�

i

.

Global transitions For a network N , we an de�ne a global transition relation

T

N

as follows. For q; q

0

2 Q

N

and d 2 �

N

[�

�

N

, (q; d; q

0

) belongs to T

N

provided:

{ For some i 2 [1::n℄, d 2 �

#

i

[�

�

i

and (q

i

; d; q

0

i

) 2 T

i

.

{ For j 6= i, q

j

= q

0

j

.

Con�gurations A on�guration ofN is a pair (q; f) where q 2 Q

N

and f : � !

N reords the values stored in the ounters. If the ounters are C

1

; C

2

; : : : ; C

k

then we represent f by an element hf(C

1

); f(C

2

); : : : ; f(C

k

)i of N

k

. By abuse of

notation, the k-tuple h0; 0; : : : ; 0i is uniformly denoted 0, for all values of k.

We use � to denote on�gurations. If � = (q; f), Q(�) denotes q and F (�)

denotes f . Further, for eah ounter C, C(�) denotes the value f(C).

191

Moves The network moves from on�guration � to on�guration �

0

on d 2

�

N

[�

�

N

if (Q(�); d;Q(�

0

)) 2 T

N

and one of the following holds:

{ d 2 �

N

and F (�) = F (�

0

).

{ d = C

+

, C(�

0

) = C(�) + 1 and C

0

(�) = C

0

(�

0

) for every C

0

6= C.

{ d = C

�

, C(�

0

) = C(�)� 1 � 0 and C

0

(�) = C

0

(�

0

) for every C

0

6= C.

Suh a move is denoted �

(q;d;q

0

)

�! �

0

|that is, transitions are labelled by ele-

ments of T

N

. Given a sequene of transitions t

1

t

2

: : : t

m

= (q

1

; d

1

; q

2

)(q

2

; d

2

; q

3

)

: : : (q

m

; d

m

; q

m+1

), the orresponding sequene d

1

d

2

: : : d

m

over �

N

[�

�

N

is de-

noted �(t

1

t

2

: : : t

m

).

Computations and runs A omputation of N is a sequene �

0

t

1

�! �

1

t

2

�!

: : :

t

m

�! �

m

. We also write �

0

t

1

t

2

:::t

m

=) �

m

to indiate that there is a omputa-

tion labelled t

1

t

2

: : : t

m

from �

0

to �

m

. Notie that �

0

and t

1

t

2

: : : t

m

uniquely

determine all the intermediate on�gurations �

1

; �

2

; : : : ; �

m

. If the transition

sequene is not relevant, we just write �

0

=) �

m

. As usual, �

t

1

t

2

:::t

m

=) and � =)

denote that there exists �

0

suh that �

t

1

t

2

:::t

m

=) �

0

and � =) �

0

, respetively.

For K 2 N, a K-omputation of N is a omputation �

0

=) �

m

where

C(�

0

) � K for eah C 2 �

N

.

If w is a string over a set X and Y � X , we write w �

Y

to denote the

subsequene of letters from Y in w.

An input to the network N is an n-tuple w = hw

1

; w

2

; : : : ; w

n

i|eah ompo-

nent w

i

is a word over the loal alphabet �

i

. As we shall see when we de�ne the

notion of a run, eah omponent w

i

of the input w is assumed to be terminated

by the end-of-tape symbol #

i

whih is not reorded as part of the input.

A run of N over w is a 0-omputation �

0

t

1

t

2

:::t

m

=) �

m

where Q(�

0

) = q

in

,

Q(�

m

) 2 A [Rej and �(t

1

t

2

: : : t

m

)�

�

#

i

= w

i

#

i

for eah i 2 [1::n℄. The run is

said to be aepting if Q(�

m

) 2 A and rejeting if Q(�

m

) 2 Rej. The input w

is aepted by N if N has an aepting run over w.

A 0-omputation starting from the initial state whih reads the entire input is

not automatially a run|a run must end in an aept or a rejet state. As usual,

an input w is not aepted if all runs on w end in rejet states|in partiular, if

the network does not admit any runs on w, then w is not aepted by N .

Languages A tuple language over h�

1

; �

2

; : : : ; �

n

i is a subset of

Q

i2[1::n℄

�

�

i

.

The language aepted by N , denoted L(N), is the set of all inputs aepted by

N . A tuple language L is said to be message-passing reognizable if there is a

network N = fA

i

g

i2[1::n℄

with input alphabets f�

i

g

i2[1::n℄

suh that L = L(N).

We will also be interested in the onnetion between sequential languages

over �

N

and tuple languages aepted by message-passing networks. We say

that a word w over �

N

represents the tuple hw

1

; w

2

; : : : ; w

n

i if w�

�

#

i

= w

i

#

i

for eah i 2 [1::n℄. We all the word hw �

�

1

; w �

�

2

; : : : ; w �

�

n

i represented by

w the N -projetion of w. Let L

s

� �

�

N

and L �

Q

i2[1::n℄

�

�

i

. We say that L

s

represents L if the following onditions hold:

192

{ For eah word w in L

s

, the N -projetion of w belongs to L.

{ For eah tuple w = hw

1

; w

2

; : : : ; w

n

i in L, there is a word w in L

s

whih

represents w.

Example 2.1. Let �

1

= fag and �

2

= fbg. Let L

ge

denote the language

fha

`

; b

m

i j ` � mg. Figure 1 shows a network whih aepts L

ge

. The initial

state of eah omponent is marked + while the terminal states are marked by

double irles. There is one aept state, hs; si, and no rejet state.

a

A

+

+

D

+

#

1

s

+

D

�

A

�

b

s

#

2

Fig. 1.

Eah time the seond proess reads b it has to onsume a message generated

by the �rst proess after reading a. Thus, the seond proess an read at most

as many b's as the �rst proess does a's. The ounter D is used to signal that

the �rst proess's input has been read ompletely.

Robustness

In general, an asynhronous protool may proess the same distributed input

in many di�erent ways beause of variations in the order in whih omponents

read their loal inputs, reordering of messages due to delays in transmission as

well as loal nondeterminism at eah omponent. Intuitively, a protool is robust

if its behaviour is insensitive to these variations|for eah distributed input,

all possible runs lead either to aeptane or rejetion in a onsistent manner.

Further, a robust protool should never deadlok along any omputation|in

other words, every input is proessed fully and learly identi�ed as \aept" or

\rejet". This motivates following de�nition.

Robust networks Let N be a message-passing network. We say that N is

robust if the following hold:

{ For eah input w = hw

1

; w

2

; : : : ; w

n

i, N admits at least one run over w.

Moreover, if � and �

0

are two di�erent runs of N over w, either both are

aepting or both are rejeting.

{ Let w = hw

1

; w

2

; : : : ; w

n

i be any input and � : �

0

t

1

t

2

:::t

m

=) �

m

a 0-omputation

of N suh that Q(�

0

) = q

in

. If �(t

1

t

2

: : : t

m

)�

�

#

i

is a pre�x of w

i

#

i

for eah

i 2 [1::n℄, then � an be extended to a run on w.

It is easy to observe that if we interhange the aept and rejet states of a

robust network N , we obtain a robust network for the omplement of L(N).

The network in Example 2.1 is not robust|if the number of b's exeeds the

number of a's, the network hangs.

193

Example 2.2. We an make the network of Example 2.1 robust by hanging the

interation between the proesses. Rather than having the �rst proess send a

ount of the number of inputs it has read, we make the proesses read their

inputs alternately, with a handshake in-between.

As before, let �

1

= fag; �

2

= fbg and L

ge

= fha

`

; b

m

i j ` � mg. Figure 2

shows is a robust network for L

ge

. The initial states are marked + and the

terminal states of eah omponent are marked by double irles. There is one

aept state, hs; si, and one rejet state hs; ri. The terminal states hs; ti, ht; ri,

ht; si and ht; ti are neither aepting nor rejeting.

a

A

+

#

1

+ +

b

t

s

t

C

+

#

2

#

2

r

D

�

C

�

#

1

B

+

A

�

b

s

D

+

B

�

#

2

a

b

Fig. 2.

The loops enlosed by dashes represent the phase when the proesses read

their inputs alternately. This phase ends either when either proess reads its

end-of-tape symbol. If the loop ends with �rst proess reading #

1

, the seond

proess must immediately read #

2

. If the loop ends with the seond proess

reading #

2

, the �rst proess an go on to read any number of a's.

3 Analyzing Message-Passing Networks

The next two setions ontain tehnial results about message-passing networks

that we need to prove our main theorem. Many of these results have analogues

in Petri net theory [13℄|a detailed disussion is presented in the �nal setion.

The following result is basi to analyzing the behaviour of message-passing

networks. It follows from the fat that any in�nite sequene ofN -tuples of natural

numbers ontains an in�nite inreasing subsequene. We omit the proof.

Lemma 3.1. Let X be a set withM elements and hx

1

; f

1

i; hx

2

; f

2

i; : : : ; hx

m

; f

m

i

be a sequene over X �N

N

suh that eah oordinate of f

1

is bounded by K and

for i 2 [1::m�1℄, f

i

and f

i+1

di�er on at most one oordinate and this di�erene

is at most 1. There is a onstant ` whih depends only on M , N and K suh

that if m � `, then there exist i; j 2 [1::m℄ with i < j, x

i

= x

j

and f

i

� f

j

.

194

Weak pumping onstant We all the bound ` for M , N and K from the

preeding lemma the weak pumping onstant for (M;N;K), denoted �

M;N;K

.

Using the weak pumping onstant, we an identify when a run of a network

an be ontrated by eliminating a sequene of transitions. We omit the proof.

Lemma 3.2 (Contration). Let N be a message-passing network with M

global states and N ounters. For any K-omputation �

0

t

1

t

2

:::t

m

=) �

m

with m >

�

M;N;K

, there exist i and j, m��

M;N;K

� i < j � m, suh that �

0

0

t

1

:::t

i

t

j+1

:::t

m

=)

�

0

m�(j�i)

is also a K-omputation of A, with �

0

`

= �

`

for ` 2 [0::i℄ and Q(�

`

) =

Q(�

0

`�(j�i)

) for ` 2 [j::m℄.

Corollary 3.3. A message-passing network with M global states and N oun-

ters has an aepting run i� it has an aepting run whose length is bounded by

�

M;N;0

.

It is possible to provide an expliit upper bound for �

M;N;K

for all values

of M , N , and K. This fat, oupled with the preeding observation, yields the

following result.

Corollary 3.4. The emptiness problem for message-passing networks is deid-

able.

4 A Colletion of Pumping Lemmas

Change vetors For a string w and a symbol x, let #

x

(w) denote the number

of times x ours in w. Let v be a sequene of transitions. Reall that �(v)

denotes the orresponding sequene of letters. For eah ounter C, de�ne �

C

(v)

to be #

C

+(�(v)) � #

C

�(�(v)). The hange vetor assoiated with v, denoted

�v, is given by h�

C

(v)i

C2�

N

.

Pumpable deomposition Let N be a message-passing network with N

ounters and let � : �

0

t

1

t

2

:::t

m

=) �

m

be a omputation of N . A deomposition

�

0

u

1

=) �

i

1

v

1

=) �

j

1

u

2

=) �

i

2

v

2

=) �

j

2

u

3

=) � � �

u

y

=) �

i

y

v

y

=) �

j

y

u

y+1

=) �

m

of � is said

to be pumpable if it satis�es the following onditions:

(i) y � N .

(ii) For eah k 2 [1::y℄, Q(�

i

k

) = Q(�

j

k

).

(iii) For eah v

k

, k 2 [1::y℄, �v

k

has at least one positive entry.

(iv) Let C be a ounter and k 2 [1::y℄ suh that �

C

(v

k

) is negative. Then, there

exists ` < k suh that �

C

(v

`

) is positive.

We refer to v

1

; v

2

; : : : ; v

y

as the pumpable bloks of the deomposition. We say

that C is a pumpable ounter if �

C

(v

k

) > 0 for some pumpable blok v

k

. The

following lemma shows that all the pumpable ounters of a pumpable deompo-

sition are simultaneously unbounded. We omit the proof. (This is similar to a

well-known result of Karp and Miller in the theory of vetor addition systems [7℄.)

195

Lemma 4.1 (Counter Pumping). Let N be a network and � aK-omputation

of N , K 2 N, with a pumpable deomposition of the form �

0

u

1

=) �

i

1

v

1

=)

�

j

1

� � �

u

y

=) �

i

y

v

y

=) �

j

y

u

y+1

=) �

m

: Then, for any I; J 2 N, with I � 1, there

exist `

1

; `

2

; : : : ; `

y

2 N and a K-omputation �

0

of N of the form �

0

0

u

1

=) �

0

i

0

1

v

`

1

1

=)

�

0

j

0

1

� � �

u

y

=) �

0

i

0

y

v

`

y

y

=) �

0

j

0

y

u

y+1

=) �

0

p

suh that �

0

satis�es the following properties:

(i) �

0

= �

0

0

.

(ii) Q(�

0

p

) = Q(�

m

).

(iii) For i 2 [1::y℄, `

i

� I.

(iv) For every ounter C, C(�

0

p

) � C(�

m

).

(v) Let �

pump

be the set of pumpable ounters in the pumpable deomposition of

�. For eah ounter C 2 �

pump

, C(�

0

p

) � J .

Having shown that all pumpable ounters of a pumpable deomposition an

be simultaneously raised to arbitrarily high values, we desribe a suÆient on-

dition for a K-omputation to admit a non-trivial pumpable deomposition.

Strong pumping onstant For eah M;N;K 2 N, we de�ne the strong

pumping onstant �

M;N;K

by indution on N as follows (reall that �

M;N;K

denotes the weak pumping onstant for (M;N;K)):

8M;K 2 N: �

M;0;K

= 1

8M;N;K 2 N: �

M;N+1;K

= �

M;N;�

M;N+1;K

+K

+ �

M;N+1;K

+K

Lemma 4.2 (Deomposition). Let N be a network with M global states and

N ounters and let K 2 N. Let � : �

0

t

1

t

2

:::t

m

=) �

m

be any K-omputation of N .

Then, there is a pumpable deomposition �

0

u

1

=) �

i

1

v

1

=) �

j

1

� � �

u

y

=) �

i

y

v

y

=)

�

j

y

u

y+1

=) �

m

of � suh that for every ounter C, if C(�

j

) > �

M;N;K

for some

j 2 [0::m℄, then C is a pumpable ounter in this deomposition.

Proof Sketh: The proof is by indution on N , the number of ounters. In the

indution, the key step is to identify a pre�x �

0

of � ontaining two on�gurations

�

r

and �

s

suh that Q(�

r

) = Q(�

s

), F (�

r

) < F (�

s

) and, moreover, no ounter

value exeeds �

M;N;K

+K within �

0

.

Having found suh a pre�x, we �x a ounter C whih inreases between �

r

and �

s

and onstrut a new network N

0

whih treats fC

+

; C

�

g as input letters.

Sine N

0

has N�1 ounters, the indution hypothesis yields a deomposition

u

2

v

2

u

3

v

3

: : : u

y

v

y

u

y+1

of the suÆx of � after �

0

. We then set u

1

to be the segment

from �

0

to �

r

and v

1

to be the segment from �

r

to �

s

and argue that the resulting

deomposition u

1

v

1

u

2

v

2

: : : u

y

v

y

u

y+1

of � satis�es the onditions of the lemma.

ut

The Deomposition Lemma plays a major role in the proof of our main result.

196

5 Robustness and Regularity

The main tehnial result of this paper is the following.

Theorem 5.1. Let N be a robust message-passing network. Then, there is a reg-

ular sequential language L

s

over �

N

whih represents the tuple language L(N).

This means that at a global level, any robust asynhronous protool an be

substituted by an equivalent �nite-state mahine. To prove this result, we need

some tehnial mahinery.

Networks with bounded ounters Let N = (fA

i

g

i2[1::n℄

;A;Rej) be a

message-passing network. ForK 2 N, de�neN [K℄ = (Q[K℄; T [K℄; Q[K℄

in

; F [K℄)

to be the �nite-state automaton over the alphabet �

N

[�

�

N

given by:

{ Q[K℄ = Q

N

� ff j f : � �! [0::K℄g, with Q[K℄

in

= (q

in

; 0).

{ F [K℄ = A� ff j f : � �! [0::K℄g.

{ If (q; d; q

0

) 2 T

N

, then ((q; f); d; (q

0

; f

0

)) 2 T [K℄ where:

� If d 2 �

N

, f

0

= f .

� If d = C

+

, f

0

(C

0

) = f(C

0

) for C

0

6= C and f

0

(C) =

�

f(C)+1 if f(C) < K

K otherwise.

� If d = C

�

, f

0

(C

0

) = f(C

0

) for C

0

6= C, f(C) � 1 and

f

0

(C) =

�

f(C)�1 if f(C) < K

K otherwise.

Eah transition t = ((q; f); d; (q

0

; f

0

)) 2 T [K℄ orresponds to a unique transition

(q; d; q

0

) 2 T

N

, whih we denote t

�1

. For any sequene t

1

t

2

: : : t

m

of transitions

in T [K℄, �(t

1

t

2

: : : t

m

) = �(t

�1

1

t

�1

2

: : : t

�1

m

). Moreover, if (q

0

; f

0

0

)

t

1

t

2

:::t

m

=) (q

m

; f

0

m

)

and (q

0

; f

0

)

t

�1

1

t

�1

2

:::t

�1

m

=) �

m

, then Q(�

m

) = q

m

.

Thus, the �nite-state automaton N [K℄ behaves like a message-passing net-

work exept that it deems any ounter whose value attains a value K to be

\full". One a ounter is delared to be full, it an be deremented as many

times as desired. The following observations are immediate.

Proposition 5.2. (i) If (q

0

; f

0

0

)

t

0

1

�! � � �

t

0

m

�! (q

n

; f

0

m

) is a omputation of N

then, (q

0

; f

0

)

t

1

�! � � �

t

m

�! (q

m

; f

m

) is a omputation of N [K℄ where

{ t

0

1

: : : t

0

m

= t

�1

1

: : : t

�1

m

.

{ 8C 2 �: 8i 2 [1::m℄: f

i

(C) =

�

f

0

i

(C) if f

0

j

(C) < K for all j � i

K otherwise.

(ii) Let (q

0

; f

0

)

t

1

�! � � �

t

m

�! (q

m

; f

m

) be a omputation of N [K℄. There is a max-

imum pre�x t

1

: : : t

`

of t

1

: : : t

m

suh that N has a omputation (q

0

; f

0

0

)

t

�1

1

�!

: : :

t

�1

`

�! (q

`

; f

0

`

) with f

0

= f

0

0

. Moreover, if ` < m, then for some ounter C,

�(t

�1

`+1

) = C

�

, f

0

`

(C) = 0 and for some j < `, f

0

j

(C) = K.

197

(iii) Let L

seq

(N) denote the set of all words over �

N

whih arise in aept-

ing runs of N|in other words, w 2 L

seq

(N) if there is an aepting run

�

0

t

1

t

2

:::t

m

=) �

m

of N suh that w = �(t

1

t

2

: : : t

m

)�

�

N

. Let L

�

N

(N [K℄) =

fw�

�

N

j w 2 L(N [K℄)g. Then, L

seq

(N) � L

�

N

(N [K℄).

We an now prove our main result.

Proof Sketh: (of Theorem 5.1)

Let N be a robust network with M global states and N ounters. By inter-

hanging the aept and rejet states, we obtain a robust network N for L(N)

with the same state-transition struture as N . Let K denote �

M;N;0

, the strong

pumping onstant for N (and N). Consider the �nite-state automaton N [K℄

generated from N by ignoring all ounter values above K.

We know that L

seq

(N) is a subset of L

�

N

(N [K℄). We laim that there is no

word w 2 L

�

N

(N [K℄) whih represents an input hw

1

; w

2

; : : : ; w

n

i from L(N).

Assuming the laim, it follows that for every word w in L

�

N

(N [K℄), the

N -projetion hw �

�

1

; w �

�

2

; : : : ; w �

�

n

i belongs to L(N). On the other hand,

sine L

seq

(N) is a subset of L

�

N

(N [K℄), every tuple hw

1

; w

2

; : : : ; w

n

i in L(N)

is represented by some word in L

�

N

(N [K℄). Thus, L

�

N

(N [K℄) represents the

language L(N). Sine N [K℄ is a �nite-state automaton, the result follows.

To omplete the proof, we must verify the laim. Suppose that there is a word

w in L

�

N

(N [K℄) whih represents a tuple hw

1

; w

2

; : : : ; w

n

i in L(N). There must

be a run � : �

0

t

1

t

2

:::t

m

=) �

m

of N [K℄ on w whih leads to a �nal state (q; f), where

q is an aept state of N and hene a rejet state of N .

Sine N has the same struture as N , by Proposition 5.2 it is possible to

mimi � in N . However, sine hw

1

; w

2

; : : : ; w

n

i 2 L(N) and N is robust, it is

not possible to mimi all of � in N|otherwise, N would admit both aepting

and rejeting runs on hw

1

; w

2

; : : : ; w

n

i. So, N must get \stuk" after some pre�x

�

1

: �

0

t

1

t

2

:::t

`

=) �

`

of �|for some ounter C, t

`+1

is a C

�

move with C(�

`

) = 0.

We all the residual omputation �

2

: �

`

t

`+1

t

`+2

:::t

m

=) �

m

the stuk suÆx of �.

Without loss of generality, assume that � has a stuk suÆx of minimum length

among all aepting runs over words in L

�

N

(N [K℄) representing tuples in L(N).

Let u be the pre�x of w whih has been read in �

1

and v be the suÆx of

w whih is yet to be read. Let hu

1

; u

2

; : : : ; u

n

i and hv

1

; v

2

; : : : ; v

n

i be the N -

projetions of u and v, respetively. Clearly, u

i

is a pre�x of w

i

#

i

for eah

i 2 [1::n℄. Sine N is robust, there must be an extension of �

1

to a run over

hw

1

; w

2

; : : : ; w

n

i|this run must be aepting sine hw

1

; w

2

; : : : ; w

n

i 2 L(N).

Sine N [K℄ an derement C after �

1

while N annot, C must have attained

the value K along �

1

. By Lemmas 4.1 and 4.2, we an transform �

1

into a

omputation �

0

1

of N whih reahes a on�guration �

�

0

1

with Q(�

�

0

1

) = Q(�

`

),

C(�

�

0

1

) > 0 and F (�

�

0

1

) � F (�

`

).

Let hu

0

1

; u

0

2

; : : : ; u

0

n

i be the input read along �

0

1

. Sine �

1

ould be extended to

an aepting run of N over hu

1

v

1

; : : : ; u

n

v

n

i, �

0

1

an be extended to an aepting

run of N over hu

0

1

v

1

; : : : ; u

0

n

v

n

i. On the other hand, we an extend �

0

1

in N [K℄

to a suessful run over u

0

v, where u

0

is the sequentialization of hu

1

; u

2

; : : : ; u

n

i

along �

0

1

. This means that u

0

v 2 L

�

N

(N [K℄) represents a tuple in L(N).

198

Sine the ounter C has a non-zero value after �

0

1

, we an extend �

0

1

in N

to exeute some portion of the stuk suÆx �

2

of �. If this extension of �

0

1

gets

stuk, we have found a run whih has a shorter stuk suÆx than �, ontraditing

our assumption that � had a stuk suÆx of minimum length.

On the other hand, if we an extend �

0

1

to mimi the rest of �, we �nd

that N has an aepting run on hu

0

1

v

1

; : : : ; u

0

n

v

n

i as well as a rejeting run on

hu

0

1

v

1

; : : : ; u

0

n

v

n

i. This ontradits the robustness of N .

Thus it must be the ase that there is no word w whih is aepted by N [K℄

but whih represents a tuple in L(N).

ut

Example 5.3. Consider a network with two proesses where �

1

= fa; g and

�

2

= fb; dg. Let L = fha

i

k

; b

j

d

`

i j i � ` and j � kg. We an modify the

network in Example 2.1 to aept L|we use two ounters A and B to store the

number of a's and b's read, respetively. We then derement B eah time is

read and A eah time d is read to verify if the input is in L.

However, there is no robust protool for L. If L has a robust protool, there

must be a regular language L

s

whih represents L. Let A be a �nite-state au-

tomaton for L

s

with n states. Choose a string w 2 L

s

whih has at least n

ourrenes eah of and d. It is easy to see that either all d's in w our after

all a's or all 's in w our after all b's. We an then pump a suÆx of w so that

either the number of d's exeeds the number of a's or the number of 's exeeds

the number of b's, thereby generating a word u 2 L

s

with hu�

�

1

; u�

�

2

i =2 L.

6 Disussion

Other models for asynhronous ommmuniation Many earlier attempts

to model asynhronous systems fous on the in�nite-state ase|for instane, the

port automaton model of Panangaden and Stark [12℄ and the I/O automaton

model of Lynh and Tuttle [8℄. Also, earlier work has looked at issues far removed

from those whih are traditionally onsidered in the study of �nite-state systems.

Reently, Abdulla and Jonsson have studied deision problems for distributed

systems with asynhronous ommuniation [1℄. However, they model hannels as

unbounded, �fo bu�ers, a framework in whih most interesting questions beome

undeidable. The results of [1℄ show that the �fo model beomes tratable if

messages may be lost in transit: questions suh as reahability of on�gurations

beome deidable. While their results are, in general, inomparable to ours, we

remark that their positive results hold for our model as well.

Petri net languages Our model is losely related to Petri nets [3, 6℄. We an

go bak and forth between labelled Petri nets and message-passing networks

while maintaining a bijetion between the �ring sequenes of a net N and the

omputations of the orresponding network N .

There are several ways to assoiate a language with a Petri net [4, 6, 13℄. The

�rst is to examine all �ring sequenes of the net. The seond is to look at �ring

sequenes whih lead to a set of �nal markings. A third possibility is to identify

199

�ring sequenes whih reah markings whih dominate some �nal marking. The

third lass orresponds to message-passing reognizable languages.

A number of positive results have been established for the �rst lass of

languages|for instane, regularity is deidable [2, 14℄. On the other hand, a num-

ber of negative results have been established for the seond lass of languages|

for instane, it is undeidable whether suh a language ontains all strings [14℄.

However, none of these results, positive or negative, arry over to the third

lass|ours is one of the few tangible results for this lass of Petri net languages.

Diretions for future work A hallenging problem is to synthesize a dis-

tributed protool from a desription in terms of global states. In systems with

synhronous ommuniation, this is possible using an algorithm whereby eah

proess maintains the latest information about the rest of the system [11, 15℄.

This algorithm has been extended to message-passing systems and ould help in

solving the synthesis problem [9℄. Another important question is to be able to

deide whether a given protool is robust. We believe the problem is deidable.

Referenes

1. P.A. Abdulla and B. Jonsson: Verifying programs with unreliable hannels, in Pro.

8th IEEE Symp. Logi in Computer Siene, Montreal, Canada (1993).

2. A. Ginzburg and M. Yoeli: Vetor addition systems and regular languages, J.

Comput. System. Si. 20 (1980) 277{284

3. S.A. Greibah: Remarks on blind and partially blind one-way multiounter ma-

hines, Theoret. Comput. Si 7 (1978) 311{324.

4. M. Hak: Petri Net Languages, C.S.G. Memo 124, Projet MAC, MIT (1975).

5. G.J. Holzmann: Design and validation of omputer protools, Prentie Hall (1991).

6. M. Jantzen: Language theory of Petri nets, in W. Brauer, W. Reisig, G. Rozenberg

(eds.), Advanes in Petri Nets, 1986, Vol 1, Springer LNCS 254 (1986) 397{412.

7. R.M. Karp and R.E. Miller: Parallel program shemata, J. Comput. System Si.,

3 (4) (1969) 167{195.

8. N.A. Lynh and M. Tuttle: Hierarhial orretness proofs for distributed algo-

rithms, MIT/LCS/TR-387, Laboratory for Computer Siene, MIT (1987).

9. M. Mukund, K. Narayan Kumar and M. Sohoni: Keeping trak of the latest gossip

in message-passing systems, Pro. Strutures in Conurreny Theory (STRICT),

Berlin 1995, Workshops in Computing Series, Springer-Verlag (1995) 249{263.

10. M. Mukund, K. Narayan Kumar, J. Radhakrishnan and M. Sohoni: Counter au-

tomata and asynhronous ommuniation, Report TCS-97-4, SPIC Mathematial

Institute, Madras, India (1997).

11. M. Mukund and M. Sohoni: Gossiping, asynhronous automata and Zielonka's the-

orem, Report TCS-94-2, Shool of Mathematis, SPIC Siene Foundation, Madras,

India (1994).

12. P. Panangaden and E.W. Stark: Computations, residuals, and the power of inde-

terminay, Pro. ICALP '88, Springer LNCS 317 (1988) 439{454.

13. J.L. Peterson: Petri net theory and the modelling of systems, Prentie Hall (1981).

14. R. Valk and G. Vidal-Naquet: Petri nets and regular languages, J. Comput. System.

Si. 23 (3) (1981) 299{325.

15. W. Zielonka: Notes on �nite asynhronous automata, R.A.I.R.O.|Inf. Th�eor. et

Appl., 21 (1987) 99{135.

