
Automata, Languages and Programming, 25th International Colloquium

Pro
eedings: Kim G. Larsen, Sven Skyum, Glynn Winskel (eds.)

Springer Le
ture Notes in Computer S
ien
e 1443 (1998), 188{199.

Robust Asyn
hronous Proto
ols Are Finite-State

Madhavan Mukund

1?

, K Narayan Kumar

1??

,

Jaikumar Radhakrishnan

2

, and Milind Sohoni

3

1

SPIC Mathemati
al Institute, 92 G.N. Chetty Road, Madras 600 017, India.

E-mail: fmadhavan,kumarg�smi.ernet.in

2

Computer S
ien
e Group, Tata Institute of Fundamental Resear
h, Homi Bhabha

Road, Bombay 400 005, India. E-mail: jaikumar�t
s.tifr.res.in

3

Department of Computer S
ien
e and Engineering, Indian Institute of Te
hnology,

Bombay 400 076, India. E-mail: sohoni�
se.iitb.ernet.in

Abstra
t. We 
onsider networks of �nite-state ma
hines whi
h 
ommu-

ni
ate over reliable 
hannels whi
h may reorder messages. Ea
h ma
hine

in the network also has a lo
al input tape. Sin
e 
hannels are unbounded,

the network as a whole is, in general, in�nite-state.

An asyn
hronous proto
ol is a network equipped with an a

eptan
e


ondition. Su
h a proto
ol is said to be robust if it never deadlo
ks and,

moreover, it either a

epts or reje
ts ea
h input in an unambiguous man-

ner. The behaviour of a robust proto
ol is insensitive to nondeterminism

introdu
ed by either message reordering or the relative speeds at whi
h


omponents read their lo
al inputs.

Using an automata-theoreti
 model, we show that, at a global level,

every robust asyn
hronous proto
ol has a �nite-state representation. To

prove this, we establish a variety of pumping lemmas. We also demon-

strate a distributed language whi
h does not admit a robust proto
ol.

1 Introdu
tion

We analyze message-passing systems from a language-theoreti
 point of view. In

su
h systems, 
omputing agents run proto
ols to 
olle
tively pro
ess distributed

inputs, using messages for 
oordination. These messages may undergo di�erent

relative delays and hen
e arrive out of order. Proto
ols need to be \robust" with

respe
t to the irregular behaviour of the transmission medium.

Most proto
ols assume that the transmission medium has an unlimited 
a-

pa
ity to hold messages|undelivered messages are assumed to be stored in a

transparent manner in intermediate bu�ers. Can the unlimited 
apa
ity of the

medium enhan
e the power of message passing proto
ols?

Unfortunately, the answer is no; we show that even for a benign medium

whi
h does not lose messages, a \robust" proto
ol 
annot use unbounded bu�ers

to its advantage. However, if a proto
ol need not always gra
efully halt, then

the medium 
an be exploited to a

ept a larger 
lass of \distributed languages".

?

Partly supported by IFCPAR Proje
t 1502-1.

??

Currently on leave at Department of Computer S
ien
e, State University of New

York at Stony Brook, NY 11794-4400, USA. E-mail: kumar�
s.sunysb.edu.



189

Consider then a system of pro
esses whi
h intera
t independently with the

environment and 
ommuni
ate internally via message-passing. The 
ommuni
a-

tion between the pro
esses and the programs whi
h they run impose restri
tions

on the distributed input|some intera
tions with the environment are valid and

some are not. For instan
e, 
onsider a banking network whi
h is 
onne
ted to the

external world via a set of automated teller ma
hines. The proto
ol may enfor
e

a limit on the number of withdrawals by an individual a
ross the network.

We are interested in �nite-state pro
esses, so we assume that the number of

di�erent types of messages used by the system is �nite. This is not unreasonable if

we distinguish \
ontrol" messages from \data" messages. In our model, 
hannels

may reorder or delay messages. For simpli
ity, we assume that messages are

never lost. Sin
e messages may be reordered, the state of ea
h 
hannel 
an be

represented by a �nite set of 
ounters whi
h re
ord the number of messages of

ea
h type whi
h have been sent along the 
hannel but are as yet undelivered.

We say that an asyn
hronous proto
ol is robust if it never deadlo
ks on any

distributed input and every distributed input is either a

epted or reje
ted in

a 
onsistent manner. In other words �nite delays, reordering of messages and

nondeterministi
 
hoi
es made by the proto
ol do not a�e
t the out
ome of a

robust proto
ol on a given distributed input.

Our main result is that every language of distributed inputs a

epted by

a robust asyn
hronous proto
ol 
an be \represented" by a regular sequential

language. In other words, a robust asyn
hronous proto
ol always has a glob-

ally �nite-state des
ription. This implies that robust proto
ols essentially use

messages only for \handshaking". Sin
e robust proto
ols 
an be modelled as

�nite-state systems, they may, in prin
iple, be veri�ed using automated tools [5℄.

The paper is organized as follows. In the next se
tion, we de�ne message-

passing networks. In Se
tion 3 we state some basi
 results about these networks,

in
luding a Contra
tion Lemma whi
h leads to the de
idability of the emptiness

problem. Se
tion 4 develops a family of pumping lemmas whi
h are exploited

in Se
tion 5 to prove our main result about robust proto
ols. We also des
ribe

a simple language for whi
h no robust proto
ol exists. In the �nal se
tion, we

dis
uss the 
onne
tion between our results and those in Petri net theory and

point out dire
tions for future work. We have had to omit detailed proofs in this

extended abstra
t. Full proofs and related results 
an be found in [10℄.

2 Message-passing networks

Natural numbers and tuples As usual, N denotes the set f0; 1; 2; : : :g of

natural numbers. For i; j 2 N, [i::j℄ denotes the set fi; i+1; : : : ; jg, where [i::j℄ =

; if i > j. We 
ompare k-tuples of natural numbers 
omponent-wise. For m =

hm

1

;m

2

; : : : ;m

k

i and n = hn

1

; n

2

; : : : ; n

k

i, m � n i� m

i

� n

i

for ea
h i 2 [1::k℄.

Message-passing automata A message-passing automaton A is a tuple

(S

a

; S

t

; �;#; �; T; s

in

) where:

{ S

a

and S

t

are disjoint, non-empty, �nite sets of a
tive and terminal states,

respe
tively. The initial state s

in

belongs to S

a

.



190

{ � is a �nite input alphabet and # is a spe
ial end-of-tape symbol whi
h does

not belong to �. Let �

#

denote the set � [ f#g.

{ � is a �nite set of 
ounters. With ea
h 
ounter C, we asso
iate two symbols,

C

+

and C

�

. We write �

�

to denote the set fC

+

jC 2 �g [ fC

�

jC 2 �g.

{ T � (S

a

� (�[�

�

)�S

a

)[ (S

a

�f#g�S

t

)[ (S

t

��

�

�S

t

) is the transition

relation.

A message-passing automaton begins reading its input in an a
tive state. It

remains within the set of a
tive states until it reads the spe
ial end-of-tape

symbol. At this point, the automaton moves into the set of terminal states where

the only moves possible are those whi
h in
rement or de
rement 
ounters.

Networks Amessage-passing network is a stru
tureN = (fA

i

g

i2[1::n℄

;A

;Rej)

where:

{ For i 2 [1::n℄, A

i

= (S

i

a

; S

i

t

; �

i

;#

i

; �

i

; T

i

; s

i

in

) is a message-passing automa-

ton. As before, for i 2 [1::n℄, �

#

i

denotes the set �

i

[ f#

i

g.

{ For i; j 2 [1::n℄, if i 6= j then �

i

\�

j

= ;.

{ A global state of N is an n-tuple hs

1

; s

2

; : : : ; s

n

i where s

i

2 (S

i

a

[ S

i

t

) for

i 2 [1::n℄. Let Q

N

denote the set of global states of N . If q = hs

1

; s

2

; : : : ; s

n

i

is a global state, then q

i

denotes the i

th


omponent s

i

.

The initial state of N is given by q

in

= hs

1

in

; s

2

in

; : : : ; s

n

in

i. The terminal states

ofN , denoted Q

t

N

, are given by

Q

i2[1::n℄

S

i

t

. The sets A

 and Rej are disjoint

subsets of Q

t

N

; A

 is the set of a

ept states of N while Rej is the set of

reje
t states. We do not insist that Q

t

N

= A

[Rej|there may be terminal

states whi
h are neither a

epting nor reje
ting.

Counters may be shared a
ross the network|shared 
ounters represent 
han-

nels along whi
h 
omponents send messages to ea
h other. Stri
tly speaking, a

point-to-point 
hannel would 
onsist of a set of 
ounters shared by two pro
esses,

where one pro
ess only in
rements the 
ounters and the other only de
rements

the 
ounters. Our de�nition permits a more generous notion of 
hannels.

The assumption that lo
al alphabets are pairwise disjoint is not 
riti
al|we


an always tag ea
h input letter with the lo
ation where it is read.

Let �

N

denote

S

i2[1::n℄

�

#

i

and �

N

denote

S

i2[1::n℄

�

i

.

Global transitions For a network N , we 
an de�ne a global transition relation

T

N

as follows. For q; q

0

2 Q

N

and d 2 �

N

[�

�

N

, (q; d; q

0

) belongs to T

N

provided:

{ For some i 2 [1::n℄, d 2 �

#

i

[ �

�

i

and (q

i

; d; q

0

i

) 2 T

i

.

{ For j 6= i, q

j

= q

0

j

.

Con�gurations A 
on�guration ofN is a pair (q; f) where q 2 Q

N

and f : � !

N re
ords the values stored in the 
ounters. If the 
ounters are C

1

; C

2

; : : : ; C

k

then we represent f by an element hf(C

1

); f(C

2

); : : : ; f(C

k

)i of N

k

. By abuse of

notation, the k-tuple h0; 0; : : : ; 0i is uniformly denoted 0, for all values of k.

We use � to denote 
on�gurations. If � = (q; f), Q(�) denotes q and F (�)

denotes f . Further, for ea
h 
ounter C, C(�) denotes the value f(C).



191

Moves The network moves from 
on�guration � to 
on�guration �

0

on d 2

�

N

[ �

�

N

if (Q(�); d;Q(�

0

)) 2 T

N

and one of the following holds:

{ d 2 �

N

and F (�) = F (�

0

).

{ d = C

+

, C(�

0

) = C(�) + 1 and C

0

(�) = C

0

(�

0

) for every C

0

6= C.

{ d = C

�

, C(�

0

) = C(�)� 1 � 0 and C

0

(�) = C

0

(�

0

) for every C

0

6= C.

Su
h a move is denoted �

(q;d;q

0

)

�! �

0

|that is, transitions are labelled by ele-

ments of T

N

. Given a sequen
e of transitions t

1

t

2

: : : t

m

= (q

1

; d

1

; q

2

)(q

2

; d

2

; q

3

)

: : : (q

m

; d

m

; q

m+1

), the 
orresponding sequen
e d

1

d

2

: : : d

m

over �

N

[ �

�

N

is de-

noted �(t

1

t

2

: : : t

m

).

Computations and runs A 
omputation of N is a sequen
e �

0

t

1

�! �

1

t

2

�!

: : :

t

m

�! �

m

. We also write �

0

t

1

t

2

:::t

m

=) �

m

to indi
ate that there is a 
omputa-

tion labelled t

1

t

2

: : : t

m

from �

0

to �

m

. Noti
e that �

0

and t

1

t

2

: : : t

m

uniquely

determine all the intermediate 
on�gurations �

1

; �

2

; : : : ; �

m

. If the transition

sequen
e is not relevant, we just write �

0

=) �

m

. As usual, �

t

1

t

2

:::t

m

=) and � =)

denote that there exists �

0

su
h that �

t

1

t

2

:::t

m

=) �

0

and � =) �

0

, respe
tively.

For K 2 N, a K-
omputation of N is a 
omputation �

0

=) �

m

where

C(�

0

) � K for ea
h C 2 �

N

.

If w is a string over a set X and Y � X , we write w �

Y

to denote the

subsequen
e of letters from Y in w.

An input to the network N is an n-tuple w = hw

1

; w

2

; : : : ; w

n

i|ea
h 
ompo-

nent w

i

is a word over the lo
al alphabet �

i

. As we shall see when we de�ne the

notion of a run, ea
h 
omponent w

i

of the input w is assumed to be terminated

by the end-of-tape symbol #

i

whi
h is not re
orded as part of the input.

A run of N over w is a 0-
omputation �

0

t

1

t

2

:::t

m

=) �

m

where Q(�

0

) = q

in

,

Q(�

m

) 2 A

 [ Rej and �(t

1

t

2

: : : t

m

)�

�

#

i

= w

i

#

i

for ea
h i 2 [1::n℄. The run is

said to be a

epting if Q(�

m

) 2 A

 and reje
ting if Q(�

m

) 2 Rej. The input w

is a

epted by N if N has an a

epting run over w.

A 0-
omputation starting from the initial state whi
h reads the entire input is

not automati
ally a run|a run must end in an a

ept or a reje
t state. As usual,

an input w is not a

epted if all runs on w end in reje
t states|in parti
ular, if

the network does not admit any runs on w, then w is not a

epted by N .

Languages A tuple language over h�

1

; �

2

; : : : ; �

n

i is a subset of

Q

i2[1::n℄

�

�

i

.

The language a

epted by N , denoted L(N ), is the set of all inputs a

epted by

N . A tuple language L is said to be message-passing re
ognizable if there is a

network N = fA

i

g

i2[1::n℄

with input alphabets f�

i

g

i2[1::n℄

su
h that L = L(N ).

We will also be interested in the 
onne
tion between sequential languages

over �

N

and tuple languages a

epted by message-passing networks. We say

that a word w over �

N

represents the tuple hw

1

; w

2

; : : : ; w

n

i if w�

�

#

i

= w

i

#

i

for ea
h i 2 [1::n℄. We 
all the word hw �

�

1

; w �

�

2

; : : : ; w �

�

n

i represented by

w the N -proje
tion of w. Let L

s

� �

�

N

and L �

Q

i2[1::n℄

�

�

i

. We say that L

s

represents L if the following 
onditions hold:



192

{ For ea
h word w in L

s

, the N -proje
tion of w belongs to L.

{ For ea
h tuple w = hw

1

; w

2

; : : : ; w

n

i in L, there is a word w in L

s

whi
h

represents w.

Example 2.1. Let �

1

= fag and �

2

= fbg. Let L

ge

denote the language

fha

`

; b

m

i j ` � mg. Figure 1 shows a network whi
h a

epts L

ge

. The initial

state of ea
h 
omponent is marked + while the terminal states are marked by

double 
ir
les. There is one a

ept state, hs; si, and no reje
t state.

a

A

+

+

D

+

#

1

s

+

D

�

A

�

b

s

#

2

Fig. 1.

Ea
h time the se
ond pro
ess reads b it has to 
onsume a message generated

by the �rst pro
ess after reading a. Thus, the se
ond pro
ess 
an read at most

as many b's as the �rst pro
ess does a's. The 
ounter D is used to signal that

the �rst pro
ess's input has been read 
ompletely.

Robustness

In general, an asyn
hronous proto
ol may pro
ess the same distributed input

in many di�erent ways be
ause of variations in the order in whi
h 
omponents

read their lo
al inputs, reordering of messages due to delays in transmission as

well as lo
al nondeterminism at ea
h 
omponent. Intuitively, a proto
ol is robust

if its behaviour is insensitive to these variations|for ea
h distributed input,

all possible runs lead either to a

eptan
e or reje
tion in a 
onsistent manner.

Further, a robust proto
ol should never deadlo
k along any 
omputation|in

other words, every input is pro
essed fully and 
learly identi�ed as \a

ept" or

\reje
t". This motivates following de�nition.

Robust networks Let N be a message-passing network. We say that N is

robust if the following hold:

{ For ea
h input w = hw

1

; w

2

; : : : ; w

n

i, N admits at least one run over w.

Moreover, if � and �

0

are two di�erent runs of N over w, either both are

a

epting or both are reje
ting.

{ Let w = hw

1

; w

2

; : : : ; w

n

i be any input and � : �

0

t

1

t

2

:::t

m

=) �

m

a 0-
omputation

of N su
h that Q(�

0

) = q

in

. If �(t

1

t

2

: : : t

m

)�

�

#

i

is a pre�x of w

i

#

i

for ea
h

i 2 [1::n℄, then � 
an be extended to a run on w.

It is easy to observe that if we inter
hange the a

ept and reje
t states of a

robust network N , we obtain a robust network for the 
omplement of L(N ).

The network in Example 2.1 is not robust|if the number of b's ex
eeds the

number of a's, the network hangs.



193

Example 2.2. We 
an make the network of Example 2.1 robust by 
hanging the

intera
tion between the pro
esses. Rather than having the �rst pro
ess send a


ount of the number of inputs it has read, we make the pro
esses read their

inputs alternately, with a handshake in-between.

As before, let �

1

= fag; �

2

= fbg and L

ge

= fha

`

; b

m

i j ` � mg. Figure 2

shows is a robust network for L

ge

. The initial states are marked + and the

terminal states of ea
h 
omponent are marked by double 
ir
les. There is one

a

ept state, hs; si, and one reje
t state hs; ri. The terminal states hs; ti, ht; ri,

ht; si and ht; ti are neither a

epting nor reje
ting.

a

A

+

#

1

+ +

b

t

s

t

C

+

#

2

#

2

r

D

�

C

�

#

1

B

+

A

�

b

s

D

+

B

�

#

2

a

b

Fig. 2.

The loops en
losed by dashes represent the phase when the pro
esses read

their inputs alternately. This phase ends either when either pro
ess reads its

end-of-tape symbol. If the loop ends with �rst pro
ess reading #

1

, the se
ond

pro
ess must immediately read #

2

. If the loop ends with the se
ond pro
ess

reading #

2

, the �rst pro
ess 
an go on to read any number of a's.

3 Analyzing Message-Passing Networks

The next two se
tions 
ontain te
hni
al results about message-passing networks

that we need to prove our main theorem. Many of these results have analogues

in Petri net theory [13℄|a detailed dis
ussion is presented in the �nal se
tion.

The following result is basi
 to analyzing the behaviour of message-passing

networks. It follows from the fa
t that any in�nite sequen
e ofN -tuples of natural

numbers 
ontains an in�nite in
reasing subsequen
e. We omit the proof.

Lemma 3.1. Let X be a set withM elements and hx

1

; f

1

i; hx

2

; f

2

i; : : : ; hx

m

; f

m

i

be a sequen
e over X �N

N

su
h that ea
h 
oordinate of f

1

is bounded by K and

for i 2 [1::m�1℄, f

i

and f

i+1

di�er on at most one 
oordinate and this di�eren
e

is at most 1. There is a 
onstant ` whi
h depends only on M , N and K su
h

that if m � `, then there exist i; j 2 [1::m℄ with i < j, x

i

= x

j

and f

i

� f

j

.



194

Weak pumping 
onstant We 
all the bound ` for M , N and K from the

pre
eding lemma the weak pumping 
onstant for (M;N;K), denoted �

M;N;K

.

Using the weak pumping 
onstant, we 
an identify when a run of a network


an be 
ontra
ted by eliminating a sequen
e of transitions. We omit the proof.

Lemma 3.2 (Contra
tion). Let N be a message-passing network with M

global states and N 
ounters. For any K-
omputation �

0

t

1

t

2

:::t

m

=) �

m

with m >

�

M;N;K

, there exist i and j, m��

M;N;K

� i < j � m, su
h that �

0

0

t

1

:::t

i

t

j+1

:::t

m

=)

�

0

m�(j�i)

is also a K-
omputation of A, with �

0

`

= �

`

for ` 2 [0::i℄ and Q(�

`

) =

Q(�

0

`�(j�i)

) for ` 2 [j::m℄.

Corollary 3.3. A message-passing network with M global states and N 
oun-

ters has an a

epting run i� it has an a

epting run whose length is bounded by

�

M;N;0

.

It is possible to provide an expli
it upper bound for �

M;N;K

for all values

of M , N , and K. This fa
t, 
oupled with the pre
eding observation, yields the

following result.

Corollary 3.4. The emptiness problem for message-passing networks is de
id-

able.

4 A Colle
tion of Pumping Lemmas

Change ve
tors For a string w and a symbol x, let #

x

(w) denote the number

of times x o

urs in w. Let v be a sequen
e of transitions. Re
all that �(v)

denotes the 
orresponding sequen
e of letters. For ea
h 
ounter C, de�ne �

C

(v)

to be #

C

+(�(v)) � #

C

�(�(v)). The 
hange ve
tor asso
iated with v, denoted

�v, is given by h�

C

(v)i

C2�

N

.

Pumpable de
omposition Let N be a message-passing network with N


ounters and let � : �

0

t

1

t

2

:::t

m

=) �

m

be a 
omputation of N . A de
omposition

�

0

u

1

=) �

i

1

v

1

=) �

j

1

u

2

=) �

i

2

v

2

=) �

j

2

u

3

=) � � �

u

y

=) �

i

y

v

y

=) �

j

y

u

y+1

=) �

m

of � is said

to be pumpable if it satis�es the following 
onditions:

(i) y � N .

(ii) For ea
h k 2 [1::y℄, Q(�

i

k

) = Q(�

j

k

).

(iii) For ea
h v

k

, k 2 [1::y℄, �v

k

has at least one positive entry.

(iv) Let C be a 
ounter and k 2 [1::y℄ su
h that �

C

(v

k

) is negative. Then, there

exists ` < k su
h that �

C

(v

`

) is positive.

We refer to v

1

; v

2

; : : : ; v

y

as the pumpable blo
ks of the de
omposition. We say

that C is a pumpable 
ounter if �

C

(v

k

) > 0 for some pumpable blo
k v

k

. The

following lemma shows that all the pumpable 
ounters of a pumpable de
ompo-

sition are simultaneously unbounded. We omit the proof. (This is similar to a

well-known result of Karp and Miller in the theory of ve
tor addition systems [7℄.)



195

Lemma 4.1 (Counter Pumping). Let N be a network and � aK-
omputation

of N , K 2 N, with a pumpable de
omposition of the form �

0

u

1

=) �

i

1

v

1

=)

�

j

1

� � �

u

y

=) �

i

y

v

y

=) �

j

y

u

y+1

=) �

m

: Then, for any I; J 2 N, with I � 1, there

exist `

1

; `

2

; : : : ; `

y

2 N and a K-
omputation �

0

of N of the form �

0

0

u

1

=) �

0

i

0

1

v

`

1

1

=)

�

0

j

0

1

� � �

u

y

=) �

0

i

0

y

v

`

y

y

=) �

0

j

0

y

u

y+1

=) �

0

p

su
h that �

0

satis�es the following properties:

(i) �

0

= �

0

0

.

(ii) Q(�

0

p

) = Q(�

m

).

(iii) For i 2 [1::y℄, `

i

� I.

(iv) For every 
ounter C, C(�

0

p

) � C(�

m

).

(v) Let �

pump

be the set of pumpable 
ounters in the pumpable de
omposition of

�. For ea
h 
ounter C 2 �

pump

, C(�

0

p

) � J .

Having shown that all pumpable 
ounters of a pumpable de
omposition 
an

be simultaneously raised to arbitrarily high values, we des
ribe a suÆ
ient 
on-

dition for a K-
omputation to admit a non-trivial pumpable de
omposition.

Strong pumping 
onstant For ea
h M;N;K 2 N, we de�ne the strong

pumping 
onstant �

M;N;K

by indu
tion on N as follows (re
all that �

M;N;K

denotes the weak pumping 
onstant for (M;N;K)):

8M;K 2 N: �

M;0;K

= 1

8M;N;K 2 N: �

M;N+1;K

= �

M;N;�

M;N+1;K

+K

+ �

M;N+1;K

+K

Lemma 4.2 (De
omposition). Let N be a network with M global states and

N 
ounters and let K 2 N. Let � : �

0

t

1

t

2

:::t

m

=) �

m

be any K-
omputation of N .

Then, there is a pumpable de
omposition �

0

u

1

=) �

i

1

v

1

=) �

j

1

� � �

u

y

=) �

i

y

v

y

=)

�

j

y

u

y+1

=) �

m

of � su
h that for every 
ounter C, if C(�

j

) > �

M;N;K

for some

j 2 [0::m℄, then C is a pumpable 
ounter in this de
omposition.

Proof Sket
h: The proof is by indu
tion on N , the number of 
ounters. In the

indu
tion, the key step is to identify a pre�x �

0

of � 
ontaining two 
on�gurations

�

r

and �

s

su
h that Q(�

r

) = Q(�

s

), F (�

r

) < F (�

s

) and, moreover, no 
ounter

value ex
eeds �

M;N;K

+K within �

0

.

Having found su
h a pre�x, we �x a 
ounter C whi
h in
reases between �

r

and �

s

and 
onstru
t a new network N

0

whi
h treats fC

+

; C

�

g as input letters.

Sin
e N

0

has N�1 
ounters, the indu
tion hypothesis yields a de
omposition

u

2

v

2

u

3

v

3

: : : u

y

v

y

u

y+1

of the suÆx of � after �

0

. We then set u

1

to be the segment

from �

0

to �

r

and v

1

to be the segment from �

r

to �

s

and argue that the resulting

de
omposition u

1

v

1

u

2

v

2

: : : u

y

v

y

u

y+1

of � satis�es the 
onditions of the lemma.

ut

The De
omposition Lemma plays a major role in the proof of our main result.



196

5 Robustness and Regularity

The main te
hni
al result of this paper is the following.

Theorem 5.1. Let N be a robust message-passing network. Then, there is a reg-

ular sequential language L

s

over �

N

whi
h represents the tuple language L(N ).

This means that at a global level, any robust asyn
hronous proto
ol 
an be

substituted by an equivalent �nite-state ma
hine. To prove this result, we need

some te
hni
al ma
hinery.

Networks with bounded 
ounters Let N = (fA

i

g

i2[1::n℄

;A

;Rej) be a

message-passing network. ForK 2 N, de�neN [K℄ = (Q[K℄; T [K℄; Q[K℄

in

; F [K℄)

to be the �nite-state automaton over the alphabet �

N

[ �

�

N

given by:

{ Q[K℄ = Q

N

� ff j f : � �! [0::K℄g, with Q[K℄

in

= (q

in

; 0).

{ F [K℄ = A

� ff j f : � �! [0::K℄g.

{ If (q; d; q

0

) 2 T

N

, then ((q; f); d; (q

0

; f

0

)) 2 T [K℄ where:

� If d 2 �

N

, f

0

= f .

� If d = C

+

, f

0

(C

0

) = f(C

0

) for C

0

6= C and f

0

(C) =

�

f(C)+1 if f(C) < K

K otherwise.

� If d = C

�

, f

0

(C

0

) = f(C

0

) for C

0

6= C, f(C) � 1 and

f

0

(C) =

�

f(C)�1 if f(C) < K

K otherwise.

Ea
h transition t = ((q; f); d; (q

0

; f

0

)) 2 T [K℄ 
orresponds to a unique transition

(q; d; q

0

) 2 T

N

, whi
h we denote t

�1

. For any sequen
e t

1

t

2

: : : t

m

of transitions

in T [K℄, �(t

1

t

2

: : : t

m

) = �(t

�1

1

t

�1

2

: : : t

�1

m

). Moreover, if (q

0

; f

0

0

)

t

1

t

2

:::t

m

=) (q

m

; f

0

m

)

and (q

0

; f

0

)

t

�1

1

t

�1

2

:::t

�1

m

=) �

m

, then Q(�

m

) = q

m

.

Thus, the �nite-state automaton N [K℄ behaves like a message-passing net-

work ex
ept that it deems any 
ounter whose value attains a value K to be

\full". On
e a 
ounter is de
lared to be full, it 
an be de
remented as many

times as desired. The following observations are immediate.

Proposition 5.2. (i) If (q

0

; f

0

0

)

t

0

1

�! � � �

t

0

m

�! (q

n

; f

0

m

) is a 
omputation of N

then, (q

0

; f

0

)

t

1

�! � � �

t

m

�! (q

m

; f

m

) is a 
omputation of N [K℄ where

{ t

0

1

: : : t

0

m

= t

�1

1

: : : t

�1

m

.

{ 8C 2 �: 8i 2 [1::m℄: f

i

(C) =

�

f

0

i

(C) if f

0

j

(C) < K for all j � i

K otherwise.

(ii) Let (q

0

; f

0

)

t

1

�! � � �

t

m

�! (q

m

; f

m

) be a 
omputation of N [K℄. There is a max-

imum pre�x t

1

: : : t

`

of t

1

: : : t

m

su
h that N has a 
omputation (q

0

; f

0

0

)

t

�1

1

�!

: : :

t

�1

`

�! (q

`

; f

0

`

) with f

0

= f

0

0

. Moreover, if ` < m, then for some 
ounter C,

�(t

�1

`+1

) = C

�

, f

0

`

(C) = 0 and for some j < `, f

0

j

(C) = K.



197

(iii) Let L

seq

(N ) denote the set of all words over �

N

whi
h arise in a

ept-

ing runs of N|in other words, w 2 L

seq

(N ) if there is an a

epting run

�

0

t

1

t

2

:::t

m

=) �

m

of N su
h that w = �(t

1

t

2

: : : t

m

)�

�

N

. Let L

�

N

(N [K℄) =

fw�

�

N

j w 2 L(N [K℄)g. Then, L

seq

(N ) � L

�

N

(N [K℄).

We 
an now prove our main result.

Proof Sket
h: (of Theorem 5.1)

Let N be a robust network with M global states and N 
ounters. By inter-


hanging the a

ept and reje
t states, we obtain a robust network N for L(N )

with the same state-transition stru
ture as N . Let K denote �

M;N;0

, the strong

pumping 
onstant for N (and N ). Consider the �nite-state automaton N [K℄

generated from N by ignoring all 
ounter values above K.

We know that L

seq

(N ) is a subset of L

�

N

(N [K℄). We 
laim that there is no

word w 2 L

�

N

(N [K℄) whi
h represents an input hw

1

; w

2

; : : : ; w

n

i from L(N ).

Assuming the 
laim, it follows that for every word w in L

�

N

(N [K℄), the

N -proje
tion hw �

�

1

; w �

�

2

; : : : ; w �

�

n

i belongs to L(N ). On the other hand,

sin
e L

seq

(N ) is a subset of L

�

N

(N [K℄), every tuple hw

1

; w

2

; : : : ; w

n

i in L(N )

is represented by some word in L

�

N

(N [K℄). Thus, L

�

N

(N [K℄) represents the

language L(N ). Sin
e N [K℄ is a �nite-state automaton, the result follows.

To 
omplete the proof, we must verify the 
laim. Suppose that there is a word

w in L

�

N

(N [K℄) whi
h represents a tuple hw

1

; w

2

; : : : ; w

n

i in L(N ). There must

be a run � : �

0

t

1

t

2

:::t

m

=) �

m

of N [K℄ on w whi
h leads to a �nal state (q; f), where

q is an a

ept state of N and hen
e a reje
t state of N .

Sin
e N has the same stru
ture as N , by Proposition 5.2 it is possible to

mimi
 � in N . However, sin
e hw

1

; w

2

; : : : ; w

n

i 2 L(N ) and N is robust, it is

not possible to mimi
 all of � in N|otherwise, N would admit both a

epting

and reje
ting runs on hw

1

; w

2

; : : : ; w

n

i. So, N must get \stu
k" after some pre�x

�

1

: �

0

t

1

t

2

:::t

`

=) �

`

of �|for some 
ounter C, t

`+1

is a C

�

move with C(�

`

) = 0.

We 
all the residual 
omputation �

2

: �

`

t

`+1

t

`+2

:::t

m

=) �

m

the stu
k suÆx of �.

Without loss of generality, assume that � has a stu
k suÆx of minimum length

among all a

epting runs over words in L

�

N

(N [K℄) representing tuples in L(N ).

Let u be the pre�x of w whi
h has been read in �

1

and v be the suÆx of

w whi
h is yet to be read. Let hu

1

; u

2

; : : : ; u

n

i and hv

1

; v

2

; : : : ; v

n

i be the N -

proje
tions of u and v, respe
tively. Clearly, u

i

is a pre�x of w

i

#

i

for ea
h

i 2 [1::n℄. Sin
e N is robust, there must be an extension of �

1

to a run over

hw

1

; w

2

; : : : ; w

n

i|this run must be a

epting sin
e hw

1

; w

2

; : : : ; w

n

i 2 L(N ).

Sin
e N [K℄ 
an de
rement C after �

1

while N 
annot, C must have attained

the value K along �

1

. By Lemmas 4.1 and 4.2, we 
an transform �

1

into a


omputation �

0

1

of N whi
h rea
hes a 
on�guration �

�

0

1

with Q(�

�

0

1

) = Q(�

`

),

C(�

�

0

1

) > 0 and F (�

�

0

1

) � F (�

`

).

Let hu

0

1

; u

0

2

; : : : ; u

0

n

i be the input read along �

0

1

. Sin
e �

1


ould be extended to

an a

epting run of N over hu

1

v

1

; : : : ; u

n

v

n

i, �

0

1


an be extended to an a

epting

run of N over hu

0

1

v

1

; : : : ; u

0

n

v

n

i. On the other hand, we 
an extend �

0

1

in N [K℄

to a su

essful run over u

0

v, where u

0

is the sequentialization of hu

1

; u

2

; : : : ; u

n

i

along �

0

1

. This means that u

0

v 2 L

�

N

(N [K℄) represents a tuple in L(N ).



198

Sin
e the 
ounter C has a non-zero value after �

0

1

, we 
an extend �

0

1

in N

to exe
ute some portion of the stu
k suÆx �

2

of �. If this extension of �

0

1

gets

stu
k, we have found a run whi
h has a shorter stu
k suÆx than �, 
ontradi
ting

our assumption that � had a stu
k suÆx of minimum length.

On the other hand, if we 
an extend �

0

1

to mimi
 the rest of �, we �nd

that N has an a

epting run on hu

0

1

v

1

; : : : ; u

0

n

v

n

i as well as a reje
ting run on

hu

0

1

v

1

; : : : ; u

0

n

v

n

i. This 
ontradi
ts the robustness of N .

Thus it must be the 
ase that there is no word w whi
h is a

epted by N [K℄

but whi
h represents a tuple in L(N ).

ut

Example 5.3. Consider a network with two pro
esses where �

1

= fa; 
g and

�

2

= fb; dg. Let L = fha

i




k

; b

j

d

`

i j i � ` and j � kg. We 
an modify the

network in Example 2.1 to a

ept L|we use two 
ounters A and B to store the

number of a's and b's read, respe
tively. We then de
rement B ea
h time 
 is

read and A ea
h time d is read to verify if the input is in L.

However, there is no robust proto
ol for L. If L has a robust proto
ol, there

must be a regular language L

s

whi
h represents L. Let A be a �nite-state au-

tomaton for L

s

with n states. Choose a string w 2 L

s

whi
h has at least n

o

urren
es ea
h of 
 and d. It is easy to see that either all d's in w o

ur after

all a's or all 
's in w o

ur after all b's. We 
an then pump a suÆx of w so that

either the number of d's ex
eeds the number of a's or the number of 
's ex
eeds

the number of b's, thereby generating a word u 2 L

s

with hu�

�

1

; u�

�

2

i =2 L.

6 Dis
ussion

Other models for asyn
hronous 
ommmuni
ation Many earlier attempts

to model asyn
hronous systems fo
us on the in�nite-state 
ase|for instan
e, the

port automaton model of Panangaden and Stark [12℄ and the I/O automaton

model of Lyn
h and Tuttle [8℄. Also, earlier work has looked at issues far removed

from those whi
h are traditionally 
onsidered in the study of �nite-state systems.

Re
ently, Abdulla and Jonsson have studied de
ision problems for distributed

systems with asyn
hronous 
ommuni
ation [1℄. However, they model 
hannels as

unbounded, �fo bu�ers, a framework in whi
h most interesting questions be
ome

unde
idable. The results of [1℄ show that the �fo model be
omes tra
table if

messages may be lost in transit: questions su
h as rea
hability of 
on�gurations

be
ome de
idable. While their results are, in general, in
omparable to ours, we

remark that their positive results hold for our model as well.

Petri net languages Our model is 
losely related to Petri nets [3, 6℄. We 
an

go ba
k and forth between labelled Petri nets and message-passing networks

while maintaining a bije
tion between the �ring sequen
es of a net N and the


omputations of the 
orresponding network N .

There are several ways to asso
iate a language with a Petri net [4, 6, 13℄. The

�rst is to examine all �ring sequen
es of the net. The se
ond is to look at �ring

sequen
es whi
h lead to a set of �nal markings. A third possibility is to identify



199

�ring sequen
es whi
h rea
h markings whi
h dominate some �nal marking. The

third 
lass 
orresponds to message-passing re
ognizable languages.

A number of positive results have been established for the �rst 
lass of

languages|for instan
e, regularity is de
idable [2, 14℄. On the other hand, a num-

ber of negative results have been established for the se
ond 
lass of languages|

for instan
e, it is unde
idable whether su
h a language 
ontains all strings [14℄.

However, none of these results, positive or negative, 
arry over to the third


lass|ours is one of the few tangible results for this 
lass of Petri net languages.

Dire
tions for future work A 
hallenging problem is to synthesize a dis-

tributed proto
ol from a des
ription in terms of global states. In systems with

syn
hronous 
ommuni
ation, this is possible using an algorithm whereby ea
h

pro
ess maintains the latest information about the rest of the system [11, 15℄.

This algorithm has been extended to message-passing systems and 
ould help in

solving the synthesis problem [9℄. Another important question is to be able to

de
ide whether a given proto
ol is robust. We believe the problem is de
idable.

Referen
es

1. P.A. Abdulla and B. Jonsson: Verifying programs with unreliable 
hannels, in Pro
.

8th IEEE Symp. Logi
 in Computer S
ien
e, Montreal, Canada (1993).

2. A. Ginzburg and M. Yoeli: Ve
tor addition systems and regular languages, J.

Comput. System. S
i. 20 (1980) 277{284

3. S.A. Greiba
h: Remarks on blind and partially blind one-way multi
ounter ma-


hines, Theoret. Comput. S
i 7 (1978) 311{324.

4. M. Ha
k: Petri Net Languages, C.S.G. Memo 124, Proje
t MAC, MIT (1975).

5. G.J. Holzmann: Design and validation of 
omputer proto
ols, Prenti
e Hall (1991).

6. M. Jantzen: Language theory of Petri nets, in W. Brauer, W. Reisig, G. Rozenberg

(eds.), Advan
es in Petri Nets, 1986, Vol 1, Springer LNCS 254 (1986) 397{412.

7. R.M. Karp and R.E. Miller: Parallel program s
hemata, J. Comput. System S
i.,

3 (4) (1969) 167{195.

8. N.A. Lyn
h and M. Tuttle: Hierar
hi
al 
orre
tness proofs for distributed algo-

rithms, MIT/LCS/TR-387, Laboratory for Computer S
ien
e, MIT (1987).

9. M. Mukund, K. Narayan Kumar and M. Sohoni: Keeping tra
k of the latest gossip

in message-passing systems, Pro
. Stru
tures in Con
urren
y Theory (STRICT),

Berlin 1995, Workshops in Computing Series, Springer-Verlag (1995) 249{263.

10. M. Mukund, K. Narayan Kumar, J. Radhakrishnan and M. Sohoni: Counter au-

tomata and asyn
hronous 
ommuni
ation, Report TCS-97-4, SPIC Mathemati
al

Institute, Madras, India (1997).

11. M. Mukund and M. Sohoni: Gossiping, asyn
hronous automata and Zielonka's the-

orem, Report TCS-94-2, S
hool of Mathemati
s, SPIC S
ien
e Foundation, Madras,

India (1994).

12. P. Panangaden and E.W. Stark: Computations, residuals, and the power of inde-

termina
y, Pro
. ICALP '88, Springer LNCS 317 (1988) 439{454.

13. J.L. Peterson: Petri net theory and the modelling of systems, Prenti
e Hall (1981).

14. R. Valk and G. Vidal-Naquet: Petri nets and regular languages, J. Comput. System.

S
i. 23 (3) (1981) 299{325.

15. W. Zielonka: Notes on �nite asyn
hronous automata, R.A.I.R.O.|Inf. Th�eor. et

Appl., 21 (1987) 99{135.


