Automata, Languages and Programming, 25th International Colloquium
Proceedings: Kim G. Larsen, Sven Skyum, Glynn Winskel (eds.)
Springer Lecture Notes in Computer Science 1443 (1998), 188-199.

Robust Asynchronous Protocols Are Finite-State

Madhavan Mukund!*, K Narayan Kumar!**,
Jaikumar Radhakrishnan?, and Milind Sohoni?

! SPIC Mathematical Institute, 92 G.N. Chetty Road, Madras 600 017, India.
E-mail: {madhavan,kumar}@smi.ernet.in
2 Computer Science Group, Tata Institute of Fundamental Research, Homi Bhabha
Road, Bombay 400 005, India. E-mail: jaikumar@tcs.tifr.res.in
3 Department of Computer Science and Engineering, Indian Institute of Technology,
Bombay 400 076, India. E-mail: sohoni@cse.iitb.ernet.in

Abstract. We consider networks of finite-state machines which commu-
nicate over reliable channels which may reorder messages. Each machine
in the network also has a local input tape. Since channels are unbounded,
the network as a whole is, in general, infinite-state.

An asynchronous protocol is a network equipped with an acceptance
condition. Such a protocol is said to be robust if it never deadlocks and,
moreover, it either accepts or rejects each input in an unambiguous man-
ner. The behaviour of a robust protocol is insensitive to nondeterminism
introduced by either message reordering or the relative speeds at which
components read their local inputs.

Using an automata-theoretic model, we show that, at a global level,
every robust asynchronous protocol has a finite-state representation. To
prove this, we establish a variety of pumping lemmas. We also demon-
strate a distributed language which does not admit a robust protocol.

1 Introduction

We analyze message-passing systems from a language-theoretic point of view. In
such systems, computing agents run protocols to collectively process distributed
inputs, using messages for coordination. These messages may undergo different
relative delays and hence arrive out of order. Protocols need to be “robust” with
respect to the irregular behaviour of the transmission medium.

Most protocols assume that the transmission medium has an unlimited ca-
pacity to hold messages—undelivered messages are assumed to be stored in a
transparent manner in intermediate buffers. Can the unlimited capacity of the
medium enhance the power of message passing protocols?

Unfortunately, the answer is no; we show that even for a benign medium
which does not lose messages, a “robust” protocol cannot use unbounded buffers
to its advantage. However, if a protocol need not always gracefully halt, then
the medium can be exploited to accept a larger class of “distributed languages”.

* Partly supported by IFCPAR Project 1502-1.
** Currently on leave at Department of Computer Science, State University of New
York at Stony Brook, NY 11794-4400, USA. E-mail: kumar@cs.sunysb.edu.

189

Consider then a system of processes which interact independently with the
environment and communicate internally via message-passing. The communica-
tion between the processes and the programs which they run impose restrictions
on the distributed input—some interactions with the environment are valid and
some are not. For instance, consider a banking network which is connected to the
external world via a set of automated teller machines. The protocol may enforce
a limit on the number of withdrawals by an individual across the network.

We are interested in finite-state processes, so we assume that the number of
different types of messages used by the system is finite. This is not unreasonable if
we distinguish “control” messages from “data” messages. In our model, channels
may reorder or delay messages. For simplicity, we assume that messages are
never lost. Since messages may be reordered, the state of each channel can be
represented by a finite set of counters which record the number of messages of
each type which have been sent along the channel but are as yet undelivered.

We say that an asynchronous protocol is robust if it never deadlocks on any
distributed input and every distributed input is either accepted or rejected in
a consistent manner. In other words finite delays, reordering of messages and
nondeterministic choices made by the protocol do not affect the outcome of a
robust protocol on a given distributed input.

Our main result is that every language of distributed inputs accepted by
a robust asynchronous protocol can be “represented” by a regular sequential
language. In other words, a robust asynchronous protocol always has a glob-
ally finite-state description. This implies that robust protocols essentially use
messages only for “handshaking”. Since robust protocols can be modelled as
finite-state systems, they may, in principle, be verified using automated tools [5].

The paper is organized as follows. In the next section, we define message-
passing networks. In Section 3 we state some basic results about these networks,
including a Contraction Lemma which leads to the decidability of the emptiness
problem. Section 4 develops a family of pumping lemmas which are exploited
in Section 5 to prove our main result about robust protocols. We also describe
a simple language for which no robust protocol exists. In the final section, we
discuss the connection between our results and those in Petri net theory and
point out directions for future work. We have had to omit detailed proofs in this
extended abstract. Full proofs and related results can be found in [10].

2 Message-passing networks

Natural numbers and tuples As usual, N denotes the set {0,1,2,...} of
natural numbers. For ¢, j € N, [i..j] denotes the set {i,i+1,...,j}, where [i..j] =
) if i > j. We compare k-tuples of natural numbers component-wise. For m =
(mi,ma,...,mg) and @ = (ny,na,...,ng), m < @ iff m; < n; for each i € [1..k].

Message-passing automata A message-passing automaton A is a tuple
(Sa,St, X, #, I, T, sin) where:

— S, and S; are disjoint, non-empty, finite sets of active and terminal states,
respectively. The initial state si, belongs to S,.

190

— XY is a finite input alphabet and # is a special end-of-tape symbol which does
not belong to X. Let ¥# denote the set X U {#]}.

— I' is a finite set of counters. With each counter C', we associate two symbols,
C* and C~. We write I'* to denote the set {CT|C € 'YU{C~|C € I'}.

— T C(Syx (XUTF) x S,)U(Sa x {#} x Sp) U(S; x I't x S;) is the transition
relation.

A message-passing automaton begins reading its input in an active state. It
remains within the set of active states until it reads the special end-of-tape
symbol. At this point, the automaton moves into the set of terminal states where
the only moves possible are those which increment or decrement counters.

Networks A message-passing network is a structure N' = ({A; }ic[1..n), Acc, Rej)
where:
— Fori € [L.n], A; = (S%, S}, Xy, #4, 13, Ty, st,) is a message-passing automa-
ton. As before, for i € [1..n], Ez# denotes the set X; U {#;}.
— For i,j € [1.n], if i # j then ;N X; = 0.
— A global state of N is an n-tuple (sy, ss,...,s,) where s; € (SL U S}) for
i € [1..n]. Let Qxr denote the set of global states of N'. If ¢ = (s1, s2,...,55)
is a global state, then ¢; denotes the i** component s;.
The initial state of N is given by ¢i, = (s, s2,...,s"). The terminal states

of NV, denoted QY, are given by Hie[l..n] Si. The sets Acc and Rej are disjoint
subsets of Q%; Acc is the set of accept states of N while Rej is the set of
reject states. We do not insist that Q% = AccU Rej—there may be terminal
states which are neither accepting nor rejecting.

Counters may be shared across the network—shared counters represent chan-
nels along which components send messages to each other. Strictly speaking, a
point-to-point channel would consist of a set of counters shared by two processes,
where one process only increments the counters and the other only decrements
the counters. Our definition permits a more generous notion of channels.

The assumption that local alphabets are pairwise disjoint is not critical—we
can always tag each input letter with the location where it is read.

Let Xy denote Uey) El# and Iy denote U;epy) Li-

Global transitions For a network N, we can define a global transition relation
T as follows. For q,q' € Qn and d € ENUFAj}, (¢,d,q") belongs to T provided:

— For some i € [1..n], d € EZ# UFijE and (¢;,d,q}) € T;.
— For j #1, q; = g;.

Configurations A configuration of N is a pair (¢, f) whereq € Qarand f : [' —
N records the values stored in the counters. If the counters are Cy,Cs,...,Ck
then we represent f by an element (f(C}), f(Cs),..., f(Ck)) of N*. By abuse of
notation, the k-tuple (0,0,...,0) is uniformly denoted 0, for all values of k.

We use x to denote configurations. If x = (g, f), @(x) denotes ¢ and F(x)

denotes f. Further, for each counter C, C'(x) denotes the value f(C).

191

Moves The network moves from configuration x to configuration x’ on d €
InUTEif (Q(x),d,Q(x')) € Ty and one of the following holds:

—de Xy and F(x) = F(x')-
—d=C*,C(X")=C(x)+ 1and C'(x) = C'(x') for every C" #£ C.
—-d=C",Cx")=C(x) —1>0and C'(x) = C'(x') for every C" # C.

. Jdog . L.
Such a move is denoted x (4.dq) x'—that is, transitions are labelled by ele-

ments of Tr. Given a sequence of transitions t1ts ...t = (q1,d1,q2)(q2, d2, q3)
-+ - (@m,dm, @m+1), the corresponding sequence dids . . . d,, over X U FAi/ is de-
noted a(tits...tm).

Computations and runs A computation of N is a sequence Yo — Y1 —2

LN Xm- We also write xo filzudm Xm to indicate that there is a computa-

tion labelled t1ty ...t from xo to x,,. Notice that xo and tits...¢,, uniquely
determine all the intermediate configurations xi,x2,...,xm- If the transition

sequence is not relevant, we just write xo = X,. As usual, x Bleedm and X =
denote that there exists x’ such that x filzadm x' and x = X/, respectively.

For K € N, a K-computation of A/ is a computation Yo = X,. where
C(x0) < K for each C € I'y.

If w is a string over a set X and ¥ C X, we write w [y to denote the
subsequence of letters from Y in w.

An input to the network A is an n-tuple w = (wy, ws, . . ., w,)—each compo-
nent w; is a word over the local alphabet X;. As we shall see when we define the
notion of a run, each component w; of the input w is assumed to be terminated
by the end-of-tape symbol #; which is not recorded as part of the input.

A run of N over w is a O-computation g falzadm Xm where Q(xo0) = Gin,
Q(Xm) € AccU Rej and a(tits ... ty)| o = wi#; for each i € [1..n]. The run is
said to be accepting if Q(xm) € Acc and rejecting if Q(xm) € Rej. The input w
is accepted by N if N has an accepting run over .

A 0-computation starting from the initial state which reads the entire input is
not automatically a run—a run must end in an accept or a reject state. As usual,
an input w is not accepted if all runs on W end in reject states—in particular, if
the network does not admit any runs on w, then W is not accepted by N.

Languages A tuple language over (X1, X5, ..., X,) is a subset of Hie[l..n] Xr.
The language accepted by N, denoted L(N), is the set of all inputs accepted by
N. A tuple language L is said to be message-passing recognizable if there is a
network N = {A;};c[1..n) with input alphabets {¥;};c[1.) such that L = L(N).

We will also be interested in the connection between sequential languages
over Xy and tuple languages accepted by message-passing networks. We say
that a word w over Xy represents the tuple (wy,ws, ..., wy) if W[z = wi#;
for each i € [1.n]. We call the word (w [y, ,wly,,...,wlx,) repre;ented by
w the N -projection of w. Let L, C X%, and L C Hie[l..n] XY, We say that Ly
represents L if the following conditions hold:

192

— For each word w in L, the AV-projection of w belongs to L.
— For each tuple w = (wy,ws,...,w,) in L, there is a word w in L, which
represents w.

Example 2.1. Let ¥y = {a} and Yy = {b}. Let Lg denote the language
{(at,b™) | £ > m}. Figure 1 shows a network which accepts Lge. The initial
state of each component is marked |} while the terminal states are marked by
double circles. There is one accept state, (s, s), and no reject state.

Dt # . 5 . D 4,
O+CrD O=XD @
At b #
2

Fig. 1.

Each time the second process reads b it has to consume a message generated
by the first process after reading a. Thus, the second process can read at most
as many b’s as the first process does a’s. The counter D is used to signal that
the first process’s input has been read completely.

Robustness

In general, an asynchronous protocol may process the same distributed input
in many different ways because of variations in the order in which components
read their local inputs, reordering of messages due to delays in transmission as
well as local nondeterminism at each component. Intuitively, a protocol is robust
if its behaviour is insensitive to these variations—for each distributed input,
all possible runs lead either to acceptance or rejection in a consistent manner.
Further, a robust protocol should never deadlock along any computation—in
other words, every input is processed fully and clearly identified as “accept” or
“reject”. This motivates following definition.

Robust networks Let A be a message-passing network. We say that A is
robust if the following hold:

— For each input w = (wy,ws,...,w,), N admits at least one run over w.
Moreover, if p and p' are two different runs of N over w, either both are
accepting or both are rejecting.

— Let w = (w1, ws,...,w,) be any input and p : xo flzadm Xm a 0-computation
of N such that Q(xo0) = ¢in- If a(titz .. 'tm)rzf is a prefix of w;#; for each

i € [1..n], then p can be extended to a run on .

It is easy to observe that if we interchange the accept and reject states of a
robust network A, we obtain a robust network for the complement of L(N/).

The network in Example 2.1 is not robust—if the number of b’s exceeds the
number of a’s, the network hangs.

193

Ezxample 2.2. We can make the network of Example 2.1 robust by changing the
interaction between the processes. Rather than having the first process send a
count of the number of inputs it has read, we make the processes read their
inputs alternately, with a handshake in-between.

As before, let Xy = {a}, Z» = {b} and Lge = {(a®,b™) | £ > m}. Figure 2
shows is a robust network for Lg.. The initial states are marked |} and the
terminal states of each component are marked by double circles. There is one
accept state, (s, s), and one reject state (s,r). The terminal states (s,t), (¢,r),
(t,s) and (t,t) are neither accepting nor rejecting.

Fig. 2.

The loops enclosed by dashes represent the phase when the processes read
their inputs alternately. This phase ends either when either process reads its
end-of-tape symbol. If the loop ends with first process reading #;, the second
process must immediately read #s. If the loop ends with the second process
reading #-, the first process can go on to read any number of a’s.

3 Analyzing Message-Passing Networks

The next two sections contain technical results about message-passing networks
that we need to prove our main theorem. Many of these results have analogues
in Petri net theory [13]—a detailed discussion is presented in the final section.
The following result is basic to analyzing the behaviour of message-passing
networks. It follows from the fact that any infinite sequence of N-tuples of natural
numbers contains an infinite increasing subsequence. We omit the proof.

Lemma 3.1. Let X be a set with M elements and (x1, f1),{x2, f2), -, (Tm, fm)
be a sequence over X x NV such that each coordinate of f, is bounded by K and
fori € [l.m—1], f; and fiy1 differ on at most one coordinate and this difference
is at most 1. There is a constant £ which depends only on M, N and K such
that if m > £, then there exist i,j € [1.m] with i < j, z; = z; and f; < f;.

194

Weak pumping constant We call the bound ¢ for M, N and K from the

preceding lemma the weak pumping constant for (M, N, K), denoted 7y N k-
Using the weak pumping constant, we can identify when a run of a network

can be contracted by eliminating a sequence of transitions. We omit the proof.

Lemma 3.2 (Contraction). Let N be a message-passing network with M

global states and N counters. For any K-computation xo filzudm Xm with m >

L, . . . ; tititjgaetm
TM,N,K, there exist ¢ and j, m—my Nk <t < j <m, such that x
X;n—(j—i) is also a K-computation of A, with x}, = x¢ for £ € [0..7] and Q(x¢) =

Q(XZ—(j—i)) for £ € [j..m].

Corollary 3.3. A message-passing network with M global states and N coun-
ters has an accepting run iff it has an accepting run whose length is bounded by

TM,N,0-

It is possible to provide an explicit upper bound for ms v k for all values
of M, N, and K. This fact, coupled with the preceding observation, yields the
following result.

Corollary 3.4. The emptiness problem for message-passing networks is decid-
able.

4 A Collection of Pumping Lemmas

Change vectors For a string w and a symbol z, let #,(w) denote the number
of times z occurs in w. Let v be a sequence of transitions. Recall that a(v)
denotes the corresponding sequence of letters. For each counter C, define Ax(v)
to be #c+(a(v)) — #c- (a(v)). The change vector associated with v, denoted
A’U, is given by (AC(U»CGFN-

Pumpable decomposition Let A be a message-passing network with N

counters and let p : xo flzadm Xm be a computation of N. A decomposition

U1 U1 U2 U2 u3 Uy, Uy, Uy+1 . .
Xo = Xiy, = Xj1 = Xiz = Xjo = '+ = Xi, = Xj, — Xm Of p is said
to be pumpable if it satisfies the following conditions:

(i) y < N.

(i) For each k € [}, Q(xs,) = Q(xs).

(iii) For each vy, k € [1..y], Avy, has at least one positive entry.

(iv) Let C be a counter and k € [1..y] such that Ac(vy,) is negative. Then, there
exists £ < k such that Ac(ve) is positive.

We refer to vy,vs,...,vy as the pumpable blocks of the decomposition. We say
that C' is a pumpable counter if Ac(vi) > 0 for some pumpable block vg. The
following lemma shows that all the pumpable counters of a pumpable decompo-
sition are simultaneously unbounded. We omit the proof. (This is similar to a
well-known result of Karp and Miller in the theory of vector addition systems [7].)

195

Lemma 4.1 (Counter Pumping). Let N be a network and p a K -computation

U1

of N, K € N, with a pumpable decomposition of the form xo = xi, =—

Uy +1

Xj1 - =2 Xi, SN Xj, = Xm. Then, for any I,J € N, with I > 1, there
£
exist £1,0a, ..., 4, € N and a K-computation p' of N of the form x§) == X;’l =L

!

Ly
X =N X SN X S X, such that p' satisfies the following properties:
v v

(i) Xo = Xo-
(it) Q(xp) = Q(Xm)-
(iii) Fori e [l.y], {; > 1.
(iv) For every counter C, C(x;) > C(xm)-
(v) Let Iyump be the set of pumpable counters in the pumpable decomposition of
p- For each counter C' € Iyump, C(x;) > J.

Having shown that all pumpable counters of a pumpable decomposition can
be simultaneously raised to arbitrarily high values, we describe a sufficient con-
dition for a K-computation to admit a non-trivial pumpable decomposition.

Strong pumping constant For each M,N,K € N, we define the strong
pumping constant Iy n x by induction on N as follows (recall that mas v x
denotes the weak pumping constant for (M, N, K)):

VM,K € N. IIAJJL](=1
VM,N,K € N. IIng,N+1,6 = M, Nomag npr, o+ + TNtk + K

Lemma 4.2 (Decomposition). Let N be a network with M global states and

N counters and let K € N. Let p : xo flzadm Xm be any K-computation of N.

Then, there is a pumpable decomposition xo =—> Xis == X1 N Xi, =%
Xj, R Xm Of p such that for every counter C, if C(x;) > Im N K for some
Jj € 10..m], then C is a pumpable counter in this decomposition.

Proof Sketch: The proof is by induction on NN, the number of counters. In the
induction, the key step is to identify a prefix p' of p containing two configurations
Xr and xs such that Q(x,) = Q(xs), F(xr) < F(xs) and, moreover, no counter
value exceeds mar, N,k + K within p'.

Having found such a prefix, we fix a counter C' which increases between .
and ;s and construct a new network N/ which treats {C+,C~} as input letters.
Since N’ has N—1 counters, the induction hypothesis yields a decomposition
U2U2U3V3 - . . UyUyUy+1 Of the suffix of p after p'. We then set u; to be the segment
from x¢ to x, and v; to be the segment from y, to xs and argue that the resulting
decomposition u1v1u2vVs . .. Uyvyuy 1 of p satisfies the conditions of the lemma.

O

The Decomposition Lemma plays a major role in the proof of our main result.

196
5 Robustness and Regularity

The main technical result of this paper is the following.

Theorem 5.1. Let N be a robust message-passing network. Then, there is a reg-
ular sequential language L over X which represents the tuple language L(N).

This means that at a global level, any robust asynchronous protocol can be
substituted by an equivalent finite-state machine. To prove this result, we need
some technical machinery.

Networks with bounded counters Let N = ({A;}icq1..n), Acc, Rej) be a
message-passing network. For K € N, define N[K]| = (Q[K], T[K], Q[Kin, F[K])
to be the finite-state automaton over the alphabet X U FAi/ given by:

= QK] =Qn x{f | f: " — [0.K]}, with Q[KJin = (¢in, 0)-

— FIK]|=Acex {f | f: T — [0..K]}.

— If (q,d,q') € Ty, then ((¢, f),d, (¢, f')) € T[K] where:

s Ifde Sy, f' = /. _
o Ifd=C*, f/(C") = F(C") for C' # C and f'(C) = {QC)“ ftﬁércvglsiK
e Ifd=C", f/(C")=f(C") for C' #C, f(C)>1 and

, [fO)-1if f(C) < K
f(e) = {K otherwise.

Each transition ¢t = ((q, f),d, (¢, f')) € T[K] corresponds to a unique transition

(q,d,q") € Ty, which we denote t~!. For any sequence tts .. .t,, of transitions

in T[K], a(tity. .. tm) = a(t; 5" .. 1), Moreover, if (g0, £3) 25 (qm, £1.)
R

and (qo, fo) © =" Xm, then Q(xm) = qm-

Thus, the finite-state automaton N[K] behaves like a message-passing net-
work except that it deems any counter whose value attains a value K to be
“full”. Once a counter is declared to be full, it can be decremented as many
times as desired. The following observations are immediate.

Proposition 5.2. (i) If (qo, f}) by ey (qn, f}) is a computation of N
then, (qo, fo) Lyt (gm, fm) is a computation of N[K]| where
— ot =t
_ . ' [o) iff]{(C')<Kf07‘ all 3 <
VC e I.Vie[l.m]. f;(C) = {K otherwise.

(ii) Let (qo, fo) BN (qms fm) be a computation of N[K]. There is a maz-
t_l
imum prefix t1 ...ty of ty...tm such that N has a computation (qo, f}) —

-1

te—) (ge, f7) with fo = fy. Moreover, if £ < m, then for some counter C,
a(t[ﬁl) =C~, fi(C) =0 and for some j <, fi(C) = K.

197

(iii) Let Lseq(N') denote the set of all words over Xy which arise in accept-

ing runs of N'—in other words, w € Lgseq(N) if there is an accepting run

Xo ftzdm Xm of N such that w = a(tita...ty)x, - Let Ly, (N[K]) =

{wlsy | w e LN[K])}. Then, Lseq(N) C Lx, (N[K]).
We can now prove our main result.

Proof Sketch: (of Theorem 5.1)
Let N be a robust network with M global states and N counters. By inter-
changing the accept and reject states, we obtain a robust network A for L(N)
with the same state-transition structure as N. Let K denote IT M,N,0, the strong
pumping constant for A’ (and N). Consider the finite-state automaton NK]
generated from N by ignoring all counter values above K.

We know that L., (N) is a subset of Ly, (N[K]). We claim that there is no
word w € Ly, (N[K]) which represents an input (wy,ws,...,w,) from L(N).

Assuming the claim, it follows that for every word w in Ly, (N[K]), the
N-projection (w [y, ,w [x,,...,w s,) belongs to L(N). On the other hand,
since Lgeq(N) is a subset of Ly, (N[K]), every tuple (wi,ws,...,w,) in L(N)
is represented by some word in Ly, (N[K]). Thus, Ly, (N[K]) represents the
language L(N). Since N[K] is a finite-state automaton, the result follows.

To complete the proof, we must verify the claim. Suppose that there is a word

w in Ly, (NK]) which represents a tuple (wy,w2,...,w,) in L(N). There must

be arun p: xo frlzedm Xm of N[K] on w which leads to a final state (g, f), where

q is an accept state of N and hence a reject state of NV.

Since N has the same structure as N\, by Proposition 5.2 it is possible to
mimic p in N. However, since (wy,ws,...,w,) € L(N) and A is robust, it is
not possible to mimic all of p in N —otherwise, N would admit both accepting

and rejecting runs on (wy, ws, . .., wy,). So, N must get “stuck” after some prefix

p1 X0 5" v, of p—for some counter C, tp41 is a C~ move with C(x¢) = 0.

tepr1tepa . tm
We call the residual computation ps : x¢ | == Xm the stuck suffiz of p.

Without loss of generality, assume that p has a stuck suffix of minimum length
among all accepting runs over words in Ly;,, (N[K]) representing tuples in L(N).
Let u be the prefix of w which has been read in p; and v be the suffix of
w which is yet to be read. Let (ui,us,...,u,) and {vy,vs,...,v,) be the -
projections of u and v, respectively. Clearly, u; is a prefix of w;#; for each
i € [1..n]. Since N is robust, there must be an extension of p; to a run over
(wy,ws, ..., wy,)—this run must be accepting since (w;,ws, ..., w,) € L(N).

Since N[K] can decrement C after p; while A" cannot, C' must have attained
the value K along p;. By Lemmas 4.1 and 4.2, we can transform p; into a
computation p| of N which reaches a configuration Xp, With Q(x,1) = Q(xe),
C(xp;) > 0and F(xy) > F(xe)-

Let (u},u),...,ul) be the input read along p}. Since p; could be extended to
an accepting run of A" over (ujvy, ..., u,v,), pi can be extended to an accepting
run of N over (u}vy,...,ulv,). On the other hand, we can extend p| in NK]
to a successful run over u'v, where u' is the sequentialization of (uy,us, ..., u,)
along p! . This means that u'v € Ly, (N[K]) represents a tuple in L(N).

198

Since the counter C has a non-zero value after pj, we can extend p| in N
to execute some portion of the stuck suffix ps of p. If this extension of p] gets
stuck, we have found a run which has a shorter stuck suffix than p, contradicting
our assumption that p had a stuck suffix of minimum length.

On the other hand, if we can extend p| to mimic the rest of p, we find
that A has an accepting run on (u}vy,...,ul,v,) as well as a rejecting run on
(u}vy, ..., ulv,). This contradicts the robustness of N.

Thus it must be the case that there is no word w which is accepted by N [K]
but which represents a tuple in L(N).

a

Ezample 5.3. Consider a network with two processes where Xy = {a,c} and
Yy = {b,d}. Let L = {(a’cF,b/d") | i > €and j > k}. We can modify the
network in Example 2.1 to accept L—we use two counters A and B to store the
number of a’s and b’s read, respectively. We then decrement B each time c is
read and A each time d is read to verify if the input is in L.

However, there is no robust protocol for L. If L has a robust protocol, there
must be a regular language Ly which represents L. Let A be a finite-state au-
tomaton for Ly with n states. Choose a string w € Ly which has at least n
occurrences each of ¢ and d. It is easy to see that either all d’s in w occur after
all a’s or all ¢’s in w occur after all b’s. We can then pump a suffix of w so that
either the number of d’s exceeds the number of a’s or the number of ¢’s exceeds
the number of b’s, thereby generating a word u € Ly with (uls, ,uls,) ¢ L.

6 Discussion

Other models for asynchronous commmunication Many earlier attempts
to model asynchronous systems focus on the infinite-state case—for instance, the
port automaton model of Panangaden and Stark [12] and the I/O automaton
model of Lynch and Tuttle [8]. Also, earlier work has looked at issues far removed
from those which are traditionally considered in the study of finite-state systems.

Recently, Abdulla and Jonsson have studied decision problems for distributed
systems with asynchronous communication [1]. However, they model channels as
unbounded, fifo buffers, a framework in which most interesting questions become
undecidable. The results of [1] show that the fifo model becomes tractable if
messages may be lost in transit: questions such as reachability of configurations
become decidable. While their results are, in general, incomparable to ours, we
remark that their positive results hold for our model as well.

Petri net languages Our model is closely related to Petri nets [3,6]. We can
go back and forth between labelled Petri nets and message-passing networks
while maintaining a bijection between the firing sequences of a net N and the
computations of the corresponding network .

There are several ways to associate a language with a Petri net [4,6,13]. The
first is to examine all firing sequences of the net. The second is to look at firing
sequences which lead to a set of final markings. A third possibility is to identify

199

firing sequences which reach markings which dominate some final marking. The
third class corresponds to message-passing recognizable languages.

A number of positive results have been established for the first class of
languages—for instance, regularity is decidable [2, 14]. On the other hand, a num-
ber of negative results have been established for the second class of languages—
for instance, it is undecidable whether such a language contains all strings [14].
However, none of these results, positive or negative, carry over to the third
class—ours is one of the few tangible results for this class of Petri net languages.

Directions for future work A challenging problem is to synthesize a dis-
tributed protocol from a description in terms of global states. In systems with
synchronous communication, this is possible using an algorithm whereby each
process maintains the latest information about the rest of the system [11,15].
This algorithm has been extended to message-passing systems and could help in
solving the synthesis problem [9]. Another important question is to be able to
decide whether a given protocol is robust. We believe the problem is decidable.

References

1. P.A. Abdulla and B. Jonsson: Verifying programs with unreliable channels, in Proc.
8th IEEE Symp. Logic in Computer Science, Montreal, Canada (1993).

2. A. Ginzburg and M. Yoeli: Vector addition systems and regular languages, J.
Comput. System. Sci. 20 (1980) 277-284

3. S.A. Greibach: Remarks on blind and partially blind one-way multicounter ma-
chines, Theoret. Comput. Sci 7 (1978) 311-324.

4. M. Hack: Petri Net Languages, C.S.G. Memo 124, Project MAC, MIT (1975).

5. G.J. Holzmann: Design and validation of computer protocols, Prentice Hall (1991).

6. M. Jantzen: Language theory of Petri nets, in W. Brauer, W. Reisig, G. Rozenberg
(eds.), Advances in Petri Nets, 1986, Vol 1, Springer LNCS 254 (1986) 397-412.

7. R.M. Karp and R.E. Miller: Parallel program schemata, J. Comput. System Sci.,
3 (4) (1969) 167-195.

8. N.A. Lynch and M. Tuttle: Hierarchical correctness proofs for distributed algo-
rithms, MIT/LCS/TR-387, Laboratory for Computer Science, MIT (1987).

9. M. Mukund, K. Narayan Kumar and M. Sohoni: Keeping track of the latest gossip
in message-passing systems, Proc. Structures in Concurrency Theory (STRICT),
Berlin 1995, Workshops in Computing Series, Springer-Verlag (1995) 249-263.

10. M. Mukund, K. Narayan Kumar, J. Radhakrishnan and M. Sohoni: Counter au-
tomata and asynchronous communication, Report T'CS-97-4, SPIC Mathematical
Institute, Madras, India (1997).

11. M. Mukund and M. Sohoni: Gossiping, asynchronous automata and Zielonka’s the-
orem, Report TCS-94-2, School of Mathematics, SPIC Science Foundation, Madras,
India (1994).

12. P. Panangaden and E.W. Stark: Computations, residuals, and the power of inde-
terminacy, Proc. ICALP ’88, Springer LNCS 317 (1988) 439-454.

13. J.L. Peterson: Petri net theory and the modelling of systems, Prentice Hall (1981).

14. R. Valk and G. Vidal-Naquet: Petri nets and regular languages, J. Comput. System.
Sei. 23 (3) (1981) 299-325.

15. W. Zielonka: Notes on finite asynchronous automata, R.A.I.R.O.—Inf. Théor. et
Appl., 21 (1987) 99-135.

