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Abstract. We investigate an automata-theoretic model of distributed
systems which communicate via message-passing. Each node in the sys-
tem is a finite-state device. Channels are assumed to be reliable but may
deliver messages out of order. Hence, each channel is modelled as a set
of counters, one for each type of message. These counters may not be
tested for zero.

Though each node in the network is finite-state, the overall system is
potentially infinite-state because the counters are unbounded. We work
in an interleaved setting where the interactions of the system with the
environment are described as sequences. The behaviour of a system is
described in terms of the language which it accepts—that is, the set
of valid interactions with the environment that are permitted by the
system.

Our aim is to characterise the class of message-passing systems whose
behaviour is finite-state. Our main result is that the language accepted by
a message-passing system is regular if and only if both the language and
its complement are accepted by message-passing systems. We also exhibit
an alternative characterisation of regular message-passing languages in
terms of deterministic automata.

1 Introduction

Today, distributed systems which use asynchronous communication are ubiquitous—
the Internet is a prime example. However, there has been very little work on
studying the finite-state behaviour of such systems. In particular, this area
lacks a satisfactory automata-theoretic framework. In contrast, automata the-
ory for systems with synchronous communication is well developed via Zielonka’s
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asynchronous automata [Z87] and the connections to Mazurkiewicz trace the-
ory [M78].

In [MNRS98], we introduce networks of message-passing automata as a model
for distributed systems which communicate via message-passing. Each node in
the network is a finite-state process. The number of different types of messages
used by the system is assumed to be finite. This is not unreasonable if we dis-
tinguish “control” messages from “data” messages.

In our model, channels may reorder or delay messages, though messages are
never lost. Since messages may be reordered, the state of each channel can be
represented by a finite set of counters which record the number of messages of
each type that have been sent along the channel but are as yet undelivered.
The nodes cannot test if a counter’s value is zero—this restriction captures the
intuition that it is not practical for a node to decide that another process has
not sent a message, since messages may be delayed arbitrarily.

Though each node in the network is finite-state, the overall system is poten-
tially infinite-state since counter values are unbounded. Our goal is to charac-
terise when such a network is “effectively finite-state”. This is important because
finite-state networks are amenable to verification using automated tools [H91].

To make precise the notion of a network being “effectively finite-state”, we use
formal language theory. The behaviour of the network is described in terms of its
interaction with the environment. This can be represented as a formal language
over a finite alphabet of possible interactions. Our goal then is to characterise
when the language accepted by a network is regular.

In [MINRS98], we assume that each node interacts independently with its en-
vironment. Thus, the behaviour of the overall network is described as a language
consisting of tuples of strings. The main result is that the language accepted by
a robust message-passing network, whose behaviour is insensitive to message de-
lays and differences in speed between nodes, can be “represented” by a sequential
regular language.

Here, we adopt an interleaved approach and record the interactions of a
network with its environment from the point of view of a sequential observer.
In this framework, it is sufficient to concentrate on the global states of the
system and regard the entire network as a single automaton equipped with a
set of counters. Our main result is that a language L accepted by a message-
passing automaton is regular if and only if the complement of L is also accepted
by a message-passing automaton. This is more general than requiring that L
be robust in the sense of [MNRS98]—see Section 5.1. We also demonstrate an
alternative characterisation in terms of deterministic message-passing automata.
Along the way, we establish a variety of results about message-passing automata,
including pumping lemmas which are useful for showing when languages are not
recognisable by these automata.

The paper is organised as follows. In the next section we define message-
passing automata and establish some basic results about them. In Section 3 we
prove a Contraction Lemma which leads to the decidability of the emptiness
problem and the fact that the languages accepted by message-passing automata
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are not closed under complementation. Section 4 describes a family of pumping
lemmas which are exploited in Section 5 to prove our main results concerning
the regularity of languages accepted by message-passing automata. In the final
section, we discuss in detail the connection between our results and those in
Petri net theory and point out directions for future work. We have had to omit
many proofs in this extended abstract. Full proofs and related results can be
found in [MNRS97, MNRS98].

2 Message-Passing Automata

Natural numbers and tuples As usual, N denotes the set {0,1,2,...} of
natural numbers. For i, j € N, [i..j] denotes the set {i,i+1,...,7}, where [i..j] =
) if i > j. We compare k-tuples of natural numbers component-wise. Let m =
(m1,ma,...,mg) and T = (ni,n9,...,nk). Then m < 7 iff m; < n; for each

€ [1..k].

Message-passing automata A message-passing automaton A is a tuple
(Q, X, IT, gin, F'), where:

— (@ is a finite set of states, with initial state qi, and accepting states F C Q.
— XY is a finite input alphabet.

— I is a finite set of counters. We use C,C’, ... to denote counters. With each
counter C, we associate two symbols, Ct and C~. We write I'* to denote
the set {CT|C eT'tu{C~|CeT}.

T CQx (XUTI'*) xQ is the transition relation.

Configurations A configuration of A is a pair (¢, f) whereq € Qand f : I' - N
is a function which records the values stored in the counters. If the counters are
Cy,Cs,...,C) then we represent f by an element (f(C1), f(Cs2),..., f(Ck)) of
NE. By abuse of notation, the k-tuple (0,0, ...,0) is uniformly denoted 0, for all
values of k.

We use x to denote configurations. If x = (g, f), @(x) denotes ¢ and F(x)
denotes f. Further, for each counter C, C'(x) denotes the value f(C).

Moves Each move of a message-passing automaton consists of either reading a
letter from its input or manipulating a counter. Reading from the input repre-
sents interaction with the environment. Incrementing and decrementing counters
correspond to sending and reading messages, respectively.

Formally, a message-passing automaton mowves from configuration x to con-
figuration x' on d € ¥ U I't if (Q(x),d,Q(x')) € T and one of the following
holds:

—de XY and F(x) = F(x').
—d=Ct,C(xX")=C(x)+1and C'(x) = C'(x') for every C" £ C.
—d=C7,C(')=C(x)—1>0and C'(x) = C'(x') for every C' # C.
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. 'dog . L.
Such a move is denoted x (0.dq) x'—that is, transitions are labelled by ele-

ments of T'. Given a sequence of transitions t1t2 ...t = (q1,d1,¢2)(g2,d2,q3) - - .
(¢n,dn,qns1), the corresponding sequence dyds ...d, over ¥ U I'*t is denoted
Oé(tltg N tn)

Computations, runs and languages A computation of A is a sequence
X0 B2 X1 BENN Xn- We also write xo filaagtn Xn to indicate that there is
a computation labelled ¢1%s...%, from xo to x,. Notice that xo and tity...¢,
uniquely determine all the intermediate configurations x1, x2, . - ., Xn- If the tran-

o . . . tita. tn
sition sequence is not relevant, we just write xo = Xn. As usual, y =

denotes that there exists x' such that x falaagtn x' and x = denotes that there
exists x' such that y = x/.

For K € N, a K-run of A is a computation xo = x, where C(xo) < K for
each C eI

If 6 is a string over X U I'*, §|x denotes the subsequence of letters from

X in 4. Let w = ajaz...ax be a string over X. A run of A over w is a 0-run

Yo Mzt v, where Q(x0) = gin and a(t1ts .. .t,)[ s = w. The run is said to be

accepting if Q(x,) € F. The string w is accepted by A if A has an accepting run
over w. The language accepted by A, denoted L(A), is the set of all strings over
X accepted by A.

A language over X is said to be message-passing recognisable if there is a
message-passing automaton with input alphabet X that accepts this language.

Ezxample 2.1. Let Lge C {a,b}* be given by {a™b" | m > n}. This language is
message-passing recognisable. Here is an automaton for Lge. The initial state is
indicated by |} and the final states have an extra circle around them.

U
D O
Cct b

The following result is basic to analysing the behaviour of message-passing
automata. It follows from the fact that any infinite sequence of N-tuples of
natural numbers contains an infinite increasing subsequence. We omit the proof.

Lemma 2.2. Let X be a set with M elements and (x1, f1), (x2, f2), -, (Tm, fm)
be a sequence over X x NN such that each coordinate of fi is bounded by K and
fori € [1.m—=1], f; and fi11 differ on at most one coordinate and this difference
is at most 1. There is a constant £ which depends only on M, N and K such
that if m > £, then there exist i,j € [1.m] with i < j, x; = z; and f; < f;.

Weak pumping constant We call the bound ¢ for M, N and K from the
preceding lemma the weak pumping constant for (M, N, K), denoted mp N k-
It is easy to see that if (M',N', K) < (M, N, K), then mar Nk < Tum N K-
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3 A Contraction Lemma

Lemma 3.1 (Contraction). For every message-passing automaton A, there is

a constant k such that if xo flzegdm Xm 15 a computation of A, with m > k, then

there exist i and j, m—k < i < j < m, such that x ftilgbm ini(jii)
a computation of A, with with xj, = x¢ for € € [0..i] and Q(x¢) = Q(Xzf(jfi))

for all £ € [j..m)].

s also

Proof Sketch. Let A have M states and N counters. We show that & can be

chosen to be s, nv,0. Let xo blzegdm Xm be a computation of A, with m > mr v 0.

We define a sequence fy,, fin—1, - - -, fo of functions from I" to N as follows:

fm(C) =0,forall C eI’
fir1(C) if ativ) ¢ {CF,C7}
Fori € [0..m—1], fz(C) = f,'+1 (0)+1 if Ol(tH_l) =C-
max(0, fi+1(C)=1) if a(tiyr) = CF

We claim, without proof, that for each 4, the function f; represents the minimum
counter values required to execute the transition sequence t;{1t;4+2 ... ¢n.

Claim: Vi € [1.m], (Q(x), f) "2 iff £ > f,.

Corollary to Claim: For each counter C' and for each position ¢ € [1..m],
C(xi) = fi(C).

Consider the sequence of N-tuples fy,, fm—1,--- fo- Since its length exceeds
T, N,0, by Lemma 2.2 there exist positions ¢ and j, m > j > % > m—mas,n,0 such
that f; < f; and Q(x;) = Q(x;). By the Corollary to Claim, for each counter C,

C(xi) > fi(C) > £;(C). Thus, x; DRI whereby yo 2Ty, TR
X;n—(j—i) is a valid computation of A for some configuration X;n—(j—i)' Since

j+1tita.tm tjp1tjyo...tm
— —

Q(x;) = Q(xi) and the computations x; ! Xm and x;
X;n—(j—i) are labelled by the same sequence of transitions, it follows that Q(x¢)

Q(XZ—(j—i)) for each ¢ € [j..m], as required. |

Corollary 3.2. A message-passing automaton A with M states and N counters
has an accepting computation iff it has an accepting computation whose length
is bounded by marN -

It is possible to provide an explicit upper bound for sy k for all values of
M, N, and K. This fact, coupled with the preceding observation, yields the fol-
lowing result (which can also be derived from the decidability of the reachability
problem for Petri nets).

Corollary 3.3. The emptiness problem for message-passing automata is decid-
able.

Corollary 3.4. Message-passing recognisable languages are not closed under
complementation.



287

Proof Sketch. We saw earlier that Lge = {a™b" | m > n} is message-passing
recognisable. We show that the language Ly, = {a™b™ | m < n} is not message-
passing recognisable. Suppose that Ly is accepted by an automaton Ay, with
M states and N counters. Consider the string w = a’ b’ where J = TM,N,0
and let p : xo filzagtin Xn be an accepting run of A4y on w. By applying the
Contraction Lemma (repeatedly, if necessary) to p, we can obtain an accepting
run p' of Ay over a word of the form a’b¥, where K < J, thus contradicting

the assumption that L(Ay) = Ly. ]

4 A Collection of Pumping Lemmas

Our main result is based on a series of pumping lemmas, which we present in
this section. For reasons of space, we do not provide any proofs. More details
may be found in [MNRS97,MNRS9S].

Change vectors For a string w and a symbol z, let #, (w) denote the number
of times z occurs in w. Let v be a sequence of transitions. Recall that a(v)
denotes the corresponding sequence of letters. For each counter C, define A (v)
to be #c+(a(v)) — #c- (a(v)). The change vector associated with v, denoted
Aw, is given by (Ac(v))cep-

Proposition 4.1. Let A= (Q, X, I',T, g, F') be a message-passing automaton.

(i) For any computation x = X' of A and any counter C € I, |Ac(v)| < |v|.

(ii) For any configuration x and sequence of transitions v, x == iff for each
prefiz u of v and each counter C € I', C(x) + Ac(u) > 0.

(iii) Let x == x' == with Q(x) = Q(x') and n € N such that, for every counter
C eI, either Ac(u) >0 or C(x) > n|u| + |v|. Then, x Ly

Proof.

(i) This follows from the fact that each move can change a counter value by at
most 1.

(if) This follows immediately from the definition of a computation.

(iii) The proof is by induction on n.
Basis: For n = 0, there is nothing to prove.
Induction step: Let n > 0 and assume the result holds for n—1. We will show
that y = x’ u;v.

n—1
From the assumption, we know that y == x’. To show that ' =", we
examine the value of each counter C' at x'. If Ac(u) < 0, then C(x) >
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nlu| + v. Since C(x") = C(x') + Ac(u) and |Ac(u)| < |ul, it follows that
C(x') > (n—1)|u| 4+ v. From the induction hypothesis, we can then conclude

n—1
that y' “=".

Pumpable decomposition Let A be a message-passing automaton with N

counters and let p : xo tlt%'tm m be a computation of A. A decomposition
Xo =2 Xis == Xj1 == Xi» == Xj» =2 " == Xin == Xj 28y, of pis said

to be pumpable if it satisfies the followmg conditions:

(i) n < N.

(ii) For each k € [1..n], Q(Xi.) = Q(Xji)-

(iii) For each v, k € [1..n], Avy, is non-zero and has at least one positive entry.

(iv) Let C be a counter and k € [1..n] such that Ac(vg) is negative. Then, there
exists £ < k such that Ac(ve) is positive.

We refer to vy,vs, ..., v, as the pumpable blocks of the decomposition. We say
that a counter C' is pumpable if Ac(v;) > 0 for some pumpable block v;. The
following lemma shows that all the pumpable counters of a pumpable decom-
position are simultaneously unbounded. We omit the proof. (This is similar to
a well-known result of Karp and Miller in the theory of vector addition sys-
tems [KM69].)

Lemma 4.2 (Counter Pumping). Let A be a message-passing automaton
and p a K-run of A, K € N, with a pumpable decomposition of the form yo, =
X =2 X T2 Xe T2 Xp o T2 Xin =2 Xja =2 Xm. Then, for any
I,J €N, with I > 1 there exist Zl,ﬁz,.. ,0n € N and a K-run p' of A of the

tn
form x§{ == Xl i XJ = XZ ﬁ XJ . X SN X S, X} such that
p' satisfies the followmg properttes

(i) Xo = Xo-
(i) Q(xp) = Q(Xm)-
(iii) Fori € [l.n], {; > I.
(iv) For every counter C, C(xj,) > C(Xm)-
(v) Let Ihump be the set of pumpable counters in the pumpable decomposition of
p- For each counter C' € Iyump, C(x;) > J.

Proof. The proof is by induction on n, the number of pumpable blocks in the
decomposition.
Basis: If n = 0, there is nothing to prove.

Induction step: Let n > 0 and assume the lemma holds for all decompositions
with n—1 pumpable blocks. For each counter C, let Jo = max(J, C(xm))-
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By the induction hypothesis, for all I',.J' € N, I' > 1, we can transform the
prefix o : xo = Xi, = Xj1 == - sy Xju_1» == Xi, of p into a K-run

‘
n—1
Un—1

£
o xh = Xt =L X, = .. =X ) =% x!, satisfying the conditions of
the lemma. We shall choose I' and J' so that the transition sequence vt u,, 1,
can be appended to ¢’ to yield the run claimed by the lemma.

To fix values for I' and J', we first estimate the value of ¢,, the number
of times we need to pump v, to satisfy all the conditions of the lemma. Let
Iss = {C | Ac(v,) > 0}. It is sufficient if the number £, is large enough for
each counter C' € I, to exceed Jo at the end of the new computation. For a
counter C' € I ;s to be above Jo at the end of the computation, it is sufficient
for C to have the value Jo + |u,,41| after vi. By the induction hypothesis, the

M]
Ac(vn)
iterations of v,, for C to reach the required value after v%». On the other hand,

we should also ensure that ¢,, > I. Thus, it is safe to set £,, to be the maximum
M]
Ac(vn) .

value of C before v’ is at least C(x;, ). Hence, it would take [

of I and maxcery [

tn
We set I' = I and estimate a value for J' such that x}, R X, With
each counter C' € (I'\ I}};;) achieving a value of at least C' (X;) at x;, and each
counter C' € (I}os \ I})}) achieving a value of at least Jo at xj,-
By the induction hypothesis, Q(x;, ) = Q(xi,) and F(xj ) > F(x,)- Since

UnUn+41

Xi, == it follows that Xy — - By Proposition 4.1 (iii), to ensure that

n

£
U Un 41

Xir "= Xp» it is sufficient to raise each counter C' with Ac(v,) < 0 to a
value of at least £, |v,| + |unt1| at X;’n' If Ac(vn) < 0 then, by the definition of
pumpable decompositions, Ac(v;) > 0 for some i € [1..n—1], so C' gets pumped
above J' in o'.

Any counter C' such that Ac(v,) > 0 will surely exceed C(x.,) at x;,- On
the other hand, a counter C' such that Ac(v,) < 0 can decrease by at most
£n|vn| + |un+1| after Xg’n-

Putting these two facts together, it suffices to set J' to €y|vn| + |[Uny1| +
MaX{C| A (v,)<0}JC-

& tn

Let o' : x) = X;’l SN X;"l = ... = Xir oy X E X, By the
induction hypothesis, we know that x{, = xo and for i € [1.n—1], {; > I. By
construction, ¢, > I as well. We have also ensured that for every counter C,
C(x;) > C(xm) and for every counter C' € Ios, C(x;) > J. The fact that
Q(x;) = Q(xm) follows from the fact that each v, loop brings the automaton
back to Q(x} ) = Q(x:.), and the fact that both p and p’ go through the same
sequence of transitions Up+1 at the end of the computation. O

Having shown that all pumpable counters of a pumpable decomposition can
be simultaneously raised to arbitrarily high values, we describe a sufficient con-
dition for a K-run to admit a non-trivial pumpable decomposition.
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Strong pumping constant For each M, N, K € N, we define the strong
pumping constant Iy n x by induction on N as follows (recall that mas v x
denotes the weak pumping constant for (M, N, K)):

VM,K € N. HM70,K:]-
VM,N,K € N. Iy N1,k = M Ny y s+ + TN+, + K

Lemma 4.3 (Decomposition). Let A be a message-passing automaton with

M states and N counters and let K € N. Let p : xo flzadm Xm be any K-
U2,

run of A. Then, there is a pumpable decomposition xo = xi, =—> Xj1 —
Vo Un, Un, Un+1

Xis = Xjo ' " = Xin = Xj. —> Xm 0f p such that for every counter C,

if C(xj) > Hu,n i for some j € [0..m], then there exists k € [1..n], such that

Ac(vg) is positive.

To prove this lemma, we need the following result.

Proposition 4.4. Let A be a message-passing automaton with M states and N
counters and let p : xo = Xn be a K-run of A in which some counter value
exceeds N,k + K. Then, there is a prefix o : xo => Xs of p such that:

— For each m € [0..s] and every counter C, C(xm) < 7m.nx + K.
— There ezists r € [0..s—1], such that o : xo = x»r = Xs, Q@(Xr) = Q(Xs)
and F(x;) < F(xs)-

Proof. Suppose that the lemma does not hold. Let p : xo frlzegtn Xn be a

computation of minimum length which fails to satisfy the lemma. Since the
initial counter values in p are bounded by K and some counter value exceeds
mm,N,k + K in p, it must be the case that the length of p is at least mpr v k-

By the definition of mas v k, there exist ¢ and j, i < j < ma N,k such
that Q(x;) = Q(x;) and F(x;) < F(x;). Since pis a K-run and j < mum N k&, all
counter values at the configurations xo, X1, - -, x; must be bounded by mar,n, &+
K. If F(xi) < F(x;j), p would satisfy the lemma with r = i and s = j, so it must
be the case F(x;) = F(x;).

tita. t;

Since x; = xj, we can construct a shorter computation p’ = xo =
t; t; [ .
Xi At Xj+1 AL ST Xn. It is easy to see that the same counter whose

value exceeded my Nk + K in p must also exceed mp n x + K in p'—the only
configurations visited by p which are not visited by p’ are those in the inter-
val Xi+1,Xi+2,---Xj- However, we have already seen that all counter values in
X0, X1, ---,X; are bounded by 7 v x + K.

It is clear that if p’ satisfies the lemma, then so does p. On the other hand, if
p' does not satisfy the lemma, then p is not a minimum length counterexample
to the lemma. In either case we obtain a contradiction. |

We now return to the proof of the Decomposition Lemma.



291

Proof. (of Lemma 4.8) The proof is by induction on N, the number of counters.

Basis: It N =0, set n =0 and u; = p.

Induction step: Let I, denote the set of counters whose values exceed Iy n
in the K-run p.

If I}y = 0, we set n = 0 and u; = p.
Otherwise, by Proposition 4.4, we can find positions r and s in p such that

X0 = Xr = Xs = Xm, With Q(xr) = Q(xs), F(xr) < F(xs) and all counter
values at xo, X1, ---,Xs bounded by myr v x + K.

Let X' be the input alphabet of A4 and I" its set of counters. Fix a counter
C' in which increases strictly between x, and xs—that is, C'(xs) > C'(x,). By
our choice of x, and xs, such a counter must exist. Construct an automaton
A’ with input alphabet ¥ U {C'*,C'~} and counters I' \ {C'}. The states and
transitions of A4’ are the same as those of A. In other words, A’ behaves like A

except that it treats moves involving the counter C’ as input letters.

. . totitstotm .
Consider the computation y, ' == Xm of A. It is easy to see that there

is a corresponding computation p' : x. fealeggentm X, of A" such that for each
k€ [s.m], Q(xx) = Q(x}) and for each counter C # C', C(xx) = C(x})-

From Proposition 4.4, we know that p' is in fact a (mp n,x+K)-run of A’
Further, for every counter C in Iy \ {C'}, there exists a j € [s..m], such that
C(x;) = C(xj) > ImNx > g N-1,7p n i+ (In the K-run p, no counter
could have exceeded I,y k before x, because Proposition 4.4 guarantees that
all counter values at xo, X1, - - - , Xs are bounded by mar v k+K.) By the induction
hypothesis, we can find a pumpable decompostion

Xo =2 Xy =2 X = X = X = = = X 22 e
of p' such that if C is a counter with C(x;) > Iy N—1,7 nx+K for some
Jj € [s..m], then there exists k € [1..p] such that Ac(vy,) is positive.
Consider the corresponding computation

r
Up+1

u vi uy vy U, U
Xs == Xiy = Xji = Xiy, = Xjp =" = Xij, = Xj;, = Xm

of A. In this computation, for each & € [1..p], Q(xi) = Q(x} ) = QX)) =

[3 Tk

Q(xjy ). Further, for each C' € I\ {C'}, C'(xi) = C(X;;ﬂ) and C(x;;) = C(X;k)'

/v/ u/ ’
101 Upy
=

U !
We prefix the computation xg " \m with the K-run yo = xr =—>
Xs which we used to identify ys; and x,. We then assert that the composite
K-run
w' v u’1 vi u’2 vé u;, v; u;+1
Xo == Xr == Xs = Xif = Xjy = Xif = Xj§ ~*" Xiy == Xjy = Xm-
provides the decomposition

Un +1

(758 V1 us, Vo Un, Un,
X0 = Xi1 = Xji = Xis = Xj2 ' " " = Xin = Xjn = Xm
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of p claimed in the statement of the lemma. In other words, u; = v/, v; = v/,
Xii = Xr and xj, = Xs, while for &k € [2..n], up = u},_;, vk = V},_ 1, Xix = Xil,_,
and xj, = Xji_,-

Let us verify that this decomposition satisfies all the conditions required by
the lemma.

First we verify that this decomposition is pumpable.

— Since p < N—1, it is clear than n = p+1 < N.

— By construction Q(xi,) = Q(xr) = Q(xs) = Q(xz)- For k € [2..n], Q(xi.) =
Qxi_,) =Qxj_,) = Q)

— We know that Av; = Av' is non-zero and strictly positive by the choice of
v'. For k € [2..n], we know that Ac(vy) = Ac(v),_;) for C # C'. Since we
have already established that Avj,_, is non-zero and has at least one positive
entry for k € [2..n], it follows that the corresponding change vectors Avy, are
also non-zero and have at least one positive entry.

— Let C be a counter and k € [l..n] such that Ac(vg) is negative. Since

Avy = Av' is positive by the choice of v, it must be that k£ € [2..n]. If
C # (', then Ac(v),_;) = Ac(vg) is negative. In this case, we already know
that there exists £ € [2..k—1], such that Ac(v)_,) = Ac(ve) is positive.
On the other hand, if C = C', it could be that Ac(v)) is negative for all
z € [1..p], since C' is treated as an input letter rather than as a counter in
the automaton A'. However, we know that Ac/(v1) = Acr (v') is positive by
the choice of v and C', so C' also satisfies the condition of the lemma.

Finally, let C be a counter such that C(x;) > IIm,n,k for some j € [1..m].

If C # ', then C(x;) > Iy N-1,7y n x+K for some j € [s..m], so we already

know that Ac (v, ;) = Ac(vk) is positive for some k € [2..n]. On the other

hand, if C = C’, we know that Ac(vy) = Ac(v') is positive by the choice of v’
and C".

O

The Counter Pumping Lemma, allows us to pump blocks of transitions in
a computation. However, it is possible for a pumpable block to consist solely
of invisible transitions which increment and decrement counters. Using the De-
composition Lemma, we can prove a more traditional kind of pumping lemma,
stated in terms of input strings. We omit the proof.

Lemma 4.5 (Visible Pumping). Let L be a message-passing recognisable lan-
guage. There exists n € N such that for all input strings w, if w € L and
|w| > n then w can be written as wiwaws such that lwiws| < n, |ws| > 1 and
wlwéwg €L foralli>1.

Another consequence of Lemmas 4.2 and 4.3 is a strict hierarchy theorem for

message-passing automata, whose proof we omit.

Lemma 4.6 (Counter Hierarchy). For k € N, let Ly, be the set of languages
recognisable by message-passing automata with k counters. Then, for all k, L C

Lit1.
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5 Regularity of Message-Passing Recognisable Languages
Automata with bounded counters

Let A= (Q, X, [T, qn, F) be a message-passing automaton. For K € N, define
A[K] = (Q[K],T[K], Q[K]in, F[K]) to be the finite-state automaton over the
alphabet ¥ U I'* given by:

- QK] =Qx{f | f:I' — [0.K]}, with Q[KJin = (¢in, 0)-
- FIK]=Foc{f] f: ' — [0.K]}.
— If (q,d,q') € T, then ((q, f),d, (¢, f")) € T[K] where:

e lfde X, f' =f.
o If d=C*, f/(C") = f(C") for all C" # C and
FO)+1if f(C) < K

1) = { K otherwise.
e Ifd=C, f'/(C")=f(C") for all C" # C, f(C) > 1 and

f’(C) — {f(C)—l if f(C) <K

K otherwise.

Each transition ¢t = ((q, f),d, (¢, f')) € T[K] corresponds to a unique transition
(q,d,q'") € T, which we denote ¢t~!. For a sequence of transitions ¢t ...t,, we
write (1t ...t,) " for t7't5 ...t 1. For any sequence t;ty...t, of transitions

in T[K], altits .. tn) = a((tits...t,)~"). Moreover, if (go, f}) "5 (gn, f1)

tito..tn) "t

and (g0, fo) “"EX) x, then Q(xn) = 4.

Thus, the finite-state automaton A[K] behaves like a message-passing au-
tomaton except that it deems any counter whose value attains a value K to be
“full” . Once a counter is declared to be full, it can be decremented as many
times as desired. The following observations are immediate.

Proposition 5.1. (i) If (qo,fo) b, (ql,fl) i) RN (Gn, f) is a computa-
tion of A then, (qo, fo) — (q1, f1) NN (Gn, fn) is a computation of
A[K] where

— tith ..t = (tity. .. t,) 7L
- . ' [ flC) iffj’.(C)<Kfor all j <1
VC eI . Vie[l.n]. f;(C)= {K otherwise

(ii) Let (qo, fo) 5 (q1, f1) -2 -+ 25 (qn, fa) be a computation of A[K].

Then there is a mazximal prefic t1ts ...ty of t1ts...t, such that there is a
—1 —1

computation (qo, f}) b, (@1, f1) Ly L (ge, f7) of A with fo = f§.
Moreover, if £ < n, then for some counter C, a(t,, ) = C~, f;(C) =0 and
there is a j < £ such that f;(C) = K.

(iii) Let L(A[K]) be the language over XUI'T accepted by A[K]. Let Ls;(A[K]) =
{wls | w e L(A[K])}. Then, L(A) C Lx(A[K]).
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Synchronised products of message-passing automata

Product automata Let A; = (Q;, X;, [, T},q},,F;), i = 1,2, be a pair of
message-passing automata. The product automaton A; x As is the structure
(Ql X QZ; 21U227 I UF27 Ty XT27 (qiln7 q%n)? Fi x F2)7 where ((q17q2)7 d7 (qia qé)) €
T, x Ty iff one of the following holds:

—de(Zyun)n(X,UIy) and (¢;,d, q;) € T; for i € {1,2}.
—de (X ul)\ (22 Uly), (q1,d,q1) € T1 and g2 = ¢5.
—de (Dyuly)\ (X1UI), (g2,d,q5) €T and q1 = q}.

For t = ((q17q2)7d7 (qiaqé)) € T'and i € {172}7 let Wl(t) denote (Qi,d, q;)
if d € (¥; UI;) and the empty string e otherwise. As usual, m;(t1t2...t,) is
just m;(t1)m;(t2) - .. mi(tn). Thus, for a sequence of transitions p = t1ts .. . ¢, over
Ty xT», w1 (p) and w2 (p) denote the projections of p onto the transitions of .4; and
As respectively. Clearly, a(tits ... t,)[(z,ur) = a(mi(titz .. . t,)) for i € {1,2}.

We shall often write a configuration ((q1,¢2),f) of A; x Ay as a pair of
configurations ((¢1, f1), (g2, f2)) of A; and Az, where f; and f» are restrictions
of f to Il and I% respectively.

The following observations are easy consequences of the definition of product
automata.

Proposition 5.2. (i) ((¢1,0),(¢2,0)) "25™ ((¢1, /1), (g2, f2)) is a computa-

— 7I'2(t1t2...tn)

tion of Ay x Ay if and only if (¢},,0) """ (g1, f1) and (3,,0)
(g2, f2) are computations of Ay and As respectively.
(ZZ) If 21 = 22 and Fl N F2 = w, then L(Al X Az) = L(Al) N L(Az)

5.1 Regularity and closure under complementation

Our first characterisation of regular message-passing recognisable languages is
the following.

Theorem 5.3. Let L be a language over X. L and L are message-passing recog-
nisable iff L is reqular.

This result is related to the main result of [MNRS98] which states that if we
record the behaviour of message-passing systems as tuples of sequences, every
robust system is effectively finite-state. In the sequential setting, a language L
would be robust in the sense of [MNRS98] if there were a single automaton A
with accept and reject states such that for each word w € L, every run of A on
w leads to an accept state and for each word w ¢ L, every run of A on w leads
to a reject state. Here, the requirement on L is much weaker—all we demand
is that both L and L be accepted independently by message-passing automata,
possibly with very different state spaces.

To prove the theorem, we need an auxiliary result. Let L C X* be such that
both L and its complement L are message-passing recognisable. Let L = L(A)
and L = L(A), where we may assume that A and A use disjoint sets of counters.
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The language accepted by A x A must be empty. Let M be the number of states
of A x A and N be the number of counters that it uses. Let K be a number
greater than ITys N, the strong pumping constant for (M, N,0). Recall that
AK] = (Q[K], T[K], Q[Kin, F[K]) is a finite-state automaton without counters
working on the input alphabet X U I'*.

Lemma 5.4. L(A[K] x A) = 0.

Proof. Let A[K] = (Q[K], T[K], Q[K]in, F[K]) and A = (Q X, T, T an) Each
computation p of A[K]x A is of the form ((go,0), (T, 0)) —> (@1, f1), @, 1)) —
% ((qn, fn)s (@, ), where, for i € [0..n], u; € T[K] x T.
By Propositions 5.1 and 5.2, corresponding to the sequence u;us . .. u, there
exists a maximal sequence of transitions vyvs ...v,, of A x A where:

— Each v; belongs to T' x T'.

— For each i € [1..m], ma(v;) = m2(u;).

(7T1(Uz'))_1 if 7T1(U,i) 7é 5

€ otherwise

p": ((20,0), (7o,0)) i)_(((h;f{): (@, /1)) e (@ fin)s @ 1)) 18

a computation of A x A. X X X

— If m < n, then for some C € I', a(um+1) = C~, f,,(C) =0 and fi(C) = K
for some j € [0..m].

— For each i € [1.m], m (v;) =

Let us define the residue length of p to be n—m.

Suppose that L(A[K] x A) is non-empty. Since L(A x A) is empty, it is easy
to see that any accepting run of A[K]x 4 has a non-zero residue length. Without
loss of generality, assume that the run p considered earlier is an accepting run
of A[K] x A whose residue length is minimal. Then, in the corresponding run
p' of A x A, the counter C' € I' attains the value K along p' and then goes
to 0 at the end of the run so that the move labelled C~ is not enabled at

Since K exceeds the strong pumping constant for A x A, by Lemma 4.2 we
v 0.V

can find an alternative run 5’ : ((go,0), (7p,0)) "= ((g}, £1), (@), f)) with
(97, T0) = (@m>Tn), fé(é’) > K, and all other counter values at (fé,?le) at least

as large as at (fo, f;n) In particular, every counter which exceeded the cutoff
value K along p' is pumpable and thus exceeds K along p' as well.

By Propositions 5.1 and 5.2, we can construct a corresponding sequence of
transitions u{u} ... uj over T[K]xT such that m (v} vh ... v}) = (m (uful ... u))) 7!

A = _ = uluy...u
and m2(vivh...v)) = me(ujul...u)), where p : ((go,0),(gy,0)) ‘="

(4}, 1), @, T¢) is a run of A[K] x A with (¢/,;) = (4m,Ty,) and f{'(C) >
fm(C) for each C € I'.

We already know that ?;(C) > f,.(C) for each C € I'. Further, since every
counter which exceeded the cutoff value K along p' also exceeds K along p', we
know that any counter which has become full along p would also have saturated
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along p. Thus, we can extend p to an accepting run ¢ by appending the sequence
of transitions %, +1%m+2 . . . uyp which occur at the end of the accepting run p.
Recall that a(um,11) = C~ and f}(C) > 1 by our choice of . From this, it
follows that the residue length of the newly constructed accepting run o is at
least one less than the residue length of p, which is a contradiction, since p was

assumed to be an accepting run of minimal residue length. |

We can now prove Theorem 5.3.

Proof. (of Theorem 5.3)
Let L = L(A) and L = L(A). Define A[K] as above. We claim that Ly (A[K]) =
L(A). By Proposition 5.1, we know that L(A) C Lx(A[K]). On the other hand,

from the previous lemma it follows that Ly (A[K])NL(A) = (. This implies that

Lx(A[K]) C L(A), which means that Lx(A[K]) C L(A). So L(A) = Ly (A[K]).
Since A[K] is a finite-state automaton, it follows that L(.A) is regular. Therefore,
if a language and its complement are message-passing recognisable then the
language is regular.

The converse is obvious. a

Observe that our construction is effective—given message-passing automata A
and A for L and L respectively, we can construct a finite-state automaton A[K]
for L.

5.2 Regularity and determinacy

Our next characterisation of regularity is in terms of deterministic message-
passing automata.

Deterministic Message-Passing Automata A message-passing automaton
A=(Q,X, [T, qn, F) is said to be deterministic if the following two conditions
hold:

- If (¢,dv, 1), (¢, d2,q2) €T, with dy,dy € ¥, then d; = d» implies ¢; = go.
~ If (¢, d1,q1), (¢, d2,q2) € T, with di € I'*, then di = d» and q1 = go.

Though this notion of determinism seems rather strong, any relaxation of
the definition will allow deterministic automata to simulate non-deterministic
automata in a trivial manner. If we permit the automaton to choose between
a counter move and another transition (which may or may not be a counter
move), we can add a spurious counter C' and replace any non-deterministic choice
between transitions ¢, = (¢,d, ¢1) and t2 = (¢, d, g2) by a choice between ¢; and
a move (¢, CT, gc) involving C which leads to a new state where t5 = (q¢, d, ¢2)
is enabled.

The following result characterises languages accepted by deterministic message-
passing automata. Similar results have been demonstrated for deterministic Petri
net languages [Pel87,V82].
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Proposition 5.5. Let A be a deterministic message-passing automaton. Then,
either L(A) is regular or there is a word w ¢ L(A) such that every extension of
w also does not belong to L(A).

Proof Sketch. Let A be a deterministic message-passing automaton. We say that
A is I'-blocked on a word w if, while reading w, A gets stuck at a state with a
single outgoing edge labelled C~, for some counter C. If A is I'-blocked on w,
it is easy to see A is also I'-blocked on w' for any extension w’ of w, so every
extension of w is outside L(A).

If A is not I'-blocked for any word w, we construct a finite-state automaton
A" with e-moves over X with the same state space as A. In A’, each counter
move (¢,d,q'), d € I't, is replaced by a e-move (g,¢,q'). There is a natural
correspondence between computations of A and runs of A’. It is easy to see that
L(A) C L(A"). Using the fact that A is not I'-blocked for any word w, we can
show that any accepting run of A’ can be mapped back to an accepting run of
A. Thus L(A") C L(A). In other words, L(A") = L(A), so L(A) is regular. O

The preceding characterisation implies that non-deterministic message-passing
automata are strictly more powerful than deterministic message-passing au-
tomata. Consider the language L = {w | w = wia™b"aw2} where wy,wy €
{a,b}* and m > n > 1. This language is message-passing recognisable but vio-
lates the condition of Proposition 5.5: L is not regular and for any word w ¢ L,
we can always find an extension of w in L—for instance, waba € L for all
w € {a,b}*.

Observe, however, that even deterministic message-passing automata are
strictly more powerful than normal finite-state automata. For instance, the lan-
guage Lge of Example 2.1 is not regular but the automaton accepting the lan-
guage is deterministic.

With these observations about deterministic automata behind us, we can now
state our alternative characterisation of regularity. First, we need some notation.
For a string w, let w® denote the string obtained by reading w from right to
left. For a language L, let L be the set of strings {w? | w € L}.

Theorem 5.6. Let L be a message-passing recognisable language such that L®
is recognised by a deterministic message-passing automaton. Then, L is reqular.

The idea is to compute a constant 7 which depends on the number of states
M and the number of counters N of A and to then show that L is recognised
by the finite-state automaton L[r]. The proof is quite involved and we omit it
due to lack of space.

6 Discussion

Other models for asynchronous commmunication Many earlier attempts
to model asynchronous systems focus on the infinite-state case—for instance, the
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port automaton model of Panangaden and Stark [PS88] and the I/O automaton
model of Lynch and Tuttle [LT87]. Also, earlier work has looked at issues far
removed from those which are traditionally considered in the study of finite-state
systems.

Recently, Abdulla and Jonsson have studied decision problems for distributed
systems with asynchronous communication [AJ93]. However, they model chan-
nels as unbounded, fifo buffers, a framework in which most interesting questions
become undecidable. The results of [AJ93] show that the fifo model becomes
tractable if messages may be lost in transit: questions such as reachability of
configurations become decidable. While their results are, in general, incompara-
ble to ours, we remark that their positive results hold for our model as well.

Petri net languages Our model is closely related to Petri nets [G78,J86]. We
can go back and forth between labelled Petri nets and message-passing networks
while maintaining a bijection between the firing sequences of a net N and the
computations of the corresponding automaton A4.

There are several ways to associate a language with a Petrinet [H75,J86,Pet81].
The first is to examine all firing sequences of the net. The second is to look at
firing sequences which lead to a set of final markings. The third is to identify
firing sequences which reach markings which dominate some final marking. The
third class corresponds to message-passing recognisable languages.

A number of positive results have been established for the first class of
languages—for instance, regularity is decidable [GY80,VV80]. On the other
hand, a number of negative results have been established for the second class of
languages—for instance, it is undecidable whether such a language contains all
strings [VV80]. However, none of these results, positive or negative, carry over
to the third class—ours is one of the few tangible results for this class of Petri
net languages.

Directions for future work We believe that Theorem 5.6 holds even with-
out the determinacy requirement on L. An interesting question is to develop a
method for transforming sequential specifications in terms of message-passing au-
tomata into equivalent distributed specifications in terms of the message-passing
network model of [MNRS98]. Another challenging question is the decidability of
regularity for message-passing recognisable languages.
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