
4th Asian Computing S
ien
e Conferen
e, ASIAN '98

Pro
eedings: Jieh Hsiang and Atsushi Ohori (eds.)

Springer Le
ture Notes in Computer S
ien
e 1538 (1998), 282{299.

Towards a
hara
terisation of �nite-state

message-passing systems

Madhavan Mukund

1?

, K Narayan Kumar

1??

,

Jaikumar Radhakrishnan

2

, and Milind Sohoni

3

1

SPIC Mathemati
al Institute, 92 G.N. Chetty Road, Madras 600 017, India.

E-mail: fmadhavan,kumarg�smi.ernet.in

2

Computer S
ien
e Group, Tata Institute of Fundamental Resear
h, Homi Bhabha

Road, Bombay 400 005, India. E-mail: jaikumar�t
s.tifr.res.in

3

Department of Computer S
ien
e and Engineering, Indian Institute of Te
hnology,

Bombay 400 076, India. E-mail: sohoni�
se.iitb.ernet.in

Abstra
t. We investigate an automata-theoreti
 model of distributed

systems whi
h
ommuni
ate via message-passing. Ea
h node in the sys-

tem is a �nite-state devi
e. Channels are assumed to be reliable but may

deliver messages out of order. Hen
e, ea
h
hannel is modelled as a set

of
ounters, one for ea
h type of message. These
ounters may not be

tested for zero.

Though ea
h node in the network is �nite-state, the overall system is

potentially in�nite-state be
ause the
ounters are unbounded. We work

in an interleaved setting where the intera
tions of the system with the

environment are des
ribed as sequen
es. The behaviour of a system is

des
ribed in terms of the language whi
h it a

epts|that is, the set

of valid intera
tions with the environment that are permitted by the

system.

Our aim is to
hara
terise the
lass of message-passing systems whose

behaviour is �nite-state. Our main result is that the language a

epted by

a message-passing system is regular if and only if both the language and

its
omplement are a

epted by message-passing systems. We also exhibit

an alternative
hara
terisation of regular message-passing languages in

terms of deterministi
 automata.

1 Introdu
tion

Today, distributed systems whi
h use asyn
hronous
ommuni
ation are ubiquitous|

the Internet is a prime example. However, there has been very little work on

studying the �nite-state behaviour of su
h systems. In parti
ular, this area

la
ks a satisfa
tory automata-theoreti
 framework. In
ontrast, automata the-

ory for systems with syn
hronous
ommuni
ation is well developed via Zielonka's

?

Partly supported by IFCPAR Proje
t 1502-1.

??

Currently on leave at Department of Computer S
ien
e, State University of New

York at Stony Brook, NY 11794-4400, USA. E-mail: kumar�
s.sunysb.edu.

283

asyn
hronous automata [Z87℄ and the
onne
tions to Mazurkiewi
z tra
e the-

ory [M78℄.

In [MNRS98℄, we introdu
e networks of message-passing automata as a model

for distributed systems whi
h
ommuni
ate via message-passing. Ea
h node in

the network is a �nite-state pro
ess. The number of di�erent types of messages

used by the system is assumed to be �nite. This is not unreasonable if we dis-

tinguish \
ontrol" messages from \data" messages.

In our model,
hannels may reorder or delay messages, though messages are

never lost. Sin
e messages may be reordered, the state of ea
h
hannel
an be

represented by a �nite set of
ounters whi
h re
ord the number of messages of

ea
h type that have been sent along the
hannel but are as yet undelivered.

The nodes
annot test if a
ounter's value is zero|this restri
tion
aptures the

intuition that it is not pra
ti
al for a node to de
ide that another pro
ess has

not sent a message, sin
e messages may be delayed arbitrarily.

Though ea
h node in the network is �nite-state, the overall system is poten-

tially in�nite-state sin
e
ounter values are unbounded. Our goal is to
hara
-

terise when su
h a network is \e�e
tively �nite-state". This is important be
ause

�nite-state networks are amenable to veri�
ation using automated tools [H91℄.

To make pre
ise the notion of a network being \e�e
tively �nite-state", we use

formal language theory. The behaviour of the network is des
ribed in terms of its

intera
tion with the environment. This
an be represented as a formal language

over a �nite alphabet of possible intera
tions. Our goal then is to
hara
terise

when the language a

epted by a network is regular.

In [MNRS98℄, we assume that ea
h node intera
ts independently with its en-

vironment. Thus, the behaviour of the overall network is des
ribed as a language

onsisting of tuples of strings. The main result is that the language a

epted by

a robust message-passing network, whose behaviour is insensitive to message de-

lays and di�eren
es in speed between nodes,
an be \represented" by a sequential

regular language.

Here, we adopt an interleaved approa
h and re
ord the intera
tions of a

network with its environment from the point of view of a sequential observer.

In this framework, it is suÆ
ient to
on
entrate on the global states of the

system and regard the entire network as a single automaton equipped with a

set of
ounters. Our main result is that a language L a

epted by a message-

passing automaton is regular if and only if the
omplement of L is also a

epted

by a message-passing automaton. This is more general than requiring that L

be robust in the sense of [MNRS98℄|see Se
tion 5.1. We also demonstrate an

alternative
hara
terisation in terms of deterministi
 message-passing automata.

Along the way, we establish a variety of results about message-passing automata,

in
luding pumping lemmas whi
h are useful for showing when languages are not

re
ognisable by these automata.

The paper is organised as follows. In the next se
tion we de�ne message-

passing automata and establish some basi
 results about them. In Se
tion 3 we

prove a Contra
tion Lemma whi
h leads to the de
idability of the emptiness

problem and the fa
t that the languages a

epted by message-passing automata

284

are not
losed under
omplementation. Se
tion 4 des
ribes a family of pumping

lemmas whi
h are exploited in Se
tion 5 to prove our main results
on
erning

the regularity of languages a

epted by message-passing automata. In the �nal

se
tion, we dis
uss in detail the
onne
tion between our results and those in

Petri net theory and point out dire
tions for future work. We have had to omit

many proofs in this extended abstra
t. Full proofs and related results
an be

found in [MNRS97,MNRS98℄.

2 Message-Passing Automata

Natural numbers and tuples As usual, N denotes the set f0; 1; 2; : : :g of

natural numbers. For i; j 2 N, [i::j℄ denotes the set fi; i+1; : : : ; jg, where [i::j℄ =

; if i > j. We
ompare k-tuples of natural numbers
omponent-wise. Let m =

hm

1

;m

2

; : : : ;m

k

i and n = hn

1

; n

2

; : : : ; n

k

i. Then m � n i� m

i

� n

i

for ea
h

i 2 [1::k℄.

Message-passing automata A message-passing automaton A is a tuple

(Q;�; �; T; q

in

; F), where:

{ Q is a �nite set of states, with initial state q

in

and a

epting states F � Q.

{ � is a �nite input alphabet.

{ � is a �nite set of
ounters. We use C;C

0

; : : : to denote
ounters. With ea
h

ounter C, we asso
iate two symbols, C

+

and C

�

. We write �

�

to denote

the set fC

+

jC 2 �g [fC

�

jC 2 �g.

{ T � Q� (� [�

�

)�Q is the transition relation.

Con�gurations A
on�guration ofA is a pair (q; f) where q 2 Q and f : � ! N

is a fun
tion whi
h re
ords the values stored in the
ounters. If the
ounters are

C

1

; C

2

; : : : ; C

k

then we represent f by an element hf(C

1

); f(C

2

); : : : ; f(C

k

)i of

N

k

. By abuse of notation, the k-tuple h0; 0; : : : ; 0i is uniformly denoted 0, for all

values of k.

We use � to denote
on�gurations. If � = (q; f), Q(�) denotes q and F (�)

denotes f . Further, for ea
h
ounter C, C(�) denotes the value f(C).

Moves Ea
h move of a message-passing automaton
onsists of either reading a

letter from its input or manipulating a
ounter. Reading from the input repre-

sents intera
tion with the environment. In
rementing and de
rementing
ounters

orrespond to sending and reading messages, respe
tively.

Formally, a message-passing automaton moves from
on�guration � to
on-

�guration �

0

on d 2 � [�

�

if (Q(�); d;Q(�

0

)) 2 T and one of the following

holds:

{ d 2 � and F (�) = F (�

0

).

{ d = C

+

, C(�

0

) = C(�) + 1 and C

0

(�) = C

0

(�

0

) for every C

0

6= C.

{ d = C

�

, C(�

0

) = C(�)� 1 � 0 and C

0

(�) = C

0

(�

0

) for every C

0

6= C.

285

Su
h a move is denoted �

(q;d;q

0

)

�! �

0

|that is, transitions are labelled by ele-

ments of T . Given a sequen
e of transitions t

1

t

2

: : : t

n

= (q

1

; d

1

; q

2

)(q

2

; d

2

; q

3

) : : :

(q

n

; d

n

; q

n+1

), the
orresponding sequen
e d

1

d

2

: : : d

n

over � [�

�

is denoted

�(t

1

t

2

: : : t

n

).

Computations, runs and languages A
omputation of A is a sequen
e

�

0

t

1

�! �

1

t

2

�! : : :

t

n

�! �

n

. We also write �

0

t

1

t

2

:::t

n

=) �

n

to indi
ate that there is

a
omputation labelled t

1

t

2

: : : t

n

from �

0

to �

n

. Noti
e that �

0

and t

1

t

2

: : : t

n

uniquely determine all the intermediate
on�gurations �

1

; �

2

; : : : ; �

n

. If the tran-

sition sequen
e is not relevant, we just write �

0

=) �

n

. As usual, �

t

1

t

2

:::t

n

=)

denotes that there exists �

0

su
h that �

t

1

t

2

:::t

n

=) �

0

and � =) denotes that there

exists �

0

su
h that � =) �

0

.

For K 2 N, a K-run of A is a
omputation �

0

=) �

n

where C(�

0

) � K for

ea
h C 2 � .

If Æ is a string over � [�

�

, Æ �

�

denotes the subsequen
e of letters from

� in Æ. Let w = a

1

a

2

: : : a

k

be a string over �. A run of A over w is a 0-run

�

0

t

1

t

2

:::t

n

=) �

n

where Q(�

0

) = q

in

and �(t

1

t

2

: : : t

n

)�

�

= w. The run is said to be

a

epting if Q(�

n

) 2 F . The string w is a

epted by A if A has an a

epting run

over w. The language a

epted by A, denoted L(A), is the set of all strings over

� a

epted by A.

A language over � is said to be message-passing re
ognisable if there is a

message-passing automaton with input alphabet � that a

epts this language.

Example 2.1. Let L

ge

� fa; bg

�

be given by fa

m

b

n

j m � ng. This language is

message-passing re
ognisable. Here is an automaton for L

ge

. The initial state is

indi
ated by + and the �nal states have an extra
ir
le around them.

a

C

+

b

C

�

b

+

The following result is basi
 to analysing the behaviour of message-passing

automata. It follows from the fa
t that any in�nite sequen
e of N -tuples of

natural numbers
ontains an in�nite in
reasing subsequen
e. We omit the proof.

Lemma 2.2. Let X be a set with M elements and hx

1

; f

1

i; hx

2

; f

2

i; : : : ; hx

m

; f

m

i

be a sequen
e over X �N

N

su
h that ea
h
oordinate of f

1

is bounded by K and

for i 2 [1::m�1℄, f

i

and f

i+1

di�er on at most one
oordinate and this di�eren
e

is at most 1. There is a
onstant ` whi
h depends only on M , N and K su
h

that if m � `, then there exist i; j 2 [1::m℄ with i < j, x

i

= x

j

and f

i

� f

j

.

Weak pumping
onstant We
all the bound ` for M , N and K from the

pre
eding lemma the weak pumping
onstant for (M;N;K), denoted �

M;N;K

.

It is easy to see that if hM

0

; N

0

;Ki � hM;N;Ki, then �

M

0

;N

0

;K

0

� �

M;N;K

.

286

3 A Contra
tion Lemma

Lemma 3.1 (Contra
tion). For every message-passing automaton A, there is

a
onstant k su
h that if �

0

t

1

t

2

:::t

m

=) �

m

is a
omputation of A, with m > k, then

there exist i and j, m�k � i < j � m, su
h that �

0

0

t

1

:::t

i

t

j+1

:::t

m

=) �

0

m�(j�i)

is also

a
omputation of A, with with �

0

`

= �

`

for ` 2 [0::i℄ and Q(�

`

) = Q(�

0

`�(j�i)

)

for all ` 2 [j::m℄.

Proof Sket
h. Let A have M states and N
ounters. We show that k
an be

hosen to be �

M;N;0

. Let �

0

t

1

t

2

:::t

m

=) �

m

be a
omputation of A, withm > �

M;N;0

.

We de�ne a sequen
e f

m

; f

m�1

; : : : ; f

0

of fun
tions from � to N as follows:

f

m

(C) = 0; for all C 2 �

For i 2 [0::m�1℄; f

i

(C) =

8

<

:

f

i+1

(C) if �(t

i+1

) =2 fC

+

; C

�

g

f

i+1

(C)+1 if �(t

i+1

) = C

�

max(0; f

i+1

(C)�1) if �(t

i+1

) = C

+

We
laim, without proof, that for ea
h i, the fun
tion f

i

represents the minimum

ounter values required to exe
ute the transition sequen
e t

i+1

t

i+2

: : : t

m

.

Claim: 8i 2 [1::m℄, (Q(�

i

); f)

t

i+1

t

i+2

:::t

m

=) i� f � f

i

.

Corollary to Claim: For ea
h
ounter C and for ea
h position i 2 [1::m℄,

C(�

i

) � f

i

(C).

Consider the sequen
e of N -tuples f

m

; f

m�1

; : : : f

0

. Sin
e its length ex
eeds

�

M;N;0

, by Lemma 2.2 there exist positions i and j, m � j > i � m��

M;N;0

su
h

that f

j

� f

i

and Q(�

j

) = Q(�

i

). By the Corollary to Claim, for ea
h
ounter C,

C(�

i

) � f

i

(C) � f

j

(C). Thus, �

i

t

j+1

t

j+2

:::t

m

=) whereby �

0

t

1

t

2

:::t

i

=) �

i

t

j+1

t

j+2

:::t

m

=)

�

0

m�(j�i)

is a valid
omputation of A for some
on�guration �

0

m�(j�i)

. Sin
e

Q(�

j

) = Q(�

i

) and the
omputations �

j

t

j+1

t

j+2

:::t

m

=) �

m

and �

i

t

j+1

t

j+2

:::t

m

=)

�

0

m�(j�i)

are labelled by the same sequen
e of transitions, it follows that Q(�

`

) =

Q(�

0

`�(j�i)

) for ea
h ` 2 [j::m℄, as required. 2

Corollary 3.2. A message-passing automaton A with M states and N
ounters

has an a

epting
omputation i� it has an a

epting
omputation whose length

is bounded by �

M;N;0

.

It is possible to provide an expli
it upper bound for �

M;N;K

for all values of

M , N , and K. This fa
t,
oupled with the pre
eding observation, yields the fol-

lowing result (whi
h
an also be derived from the de
idability of the rea
hability

problem for Petri nets).

Corollary 3.3. The emptiness problem for message-passing automata is de
id-

able.

Corollary 3.4. Message-passing re
ognisable languages are not
losed under

omplementation.

287

Proof Sket
h. We saw earlier that L

ge

= fa

m

b

n

j m � ng is message-passing

re
ognisable. We show that the language L

lt

= fa

m

b

n

j m < ng is not message-

passing re
ognisable. Suppose that L

lt

is a

epted by an automaton A

lt

with

M states and N
ounters. Consider the string w = a

J

b

J+1

where J = �

M;N;0

and let � : �

0

t

1

t

2

:::t

n

=) �

n

be an a

epting run of A

lt

on w. By applying the

Contra
tion Lemma (repeatedly, if ne
essary) to �, we
an obtain an a

epting

run �

0

of A

lt

over a word of the form a

J

b

K

, where K � J , thus
ontradi
ting

the assumption that L(A

lt

) = L

lt

. 2

4 A Colle
tion of Pumping Lemmas

Our main result is based on a series of pumping lemmas, whi
h we present in

this se
tion. For reasons of spa
e, we do not provide any proofs. More details

may be found in [MNRS97,MNRS98℄.

Change ve
tors For a string w and a symbol x, let #

x

(w) denote the number

of times x o

urs in w. Let v be a sequen
e of transitions. Re
all that �(v)

denotes the
orresponding sequen
e of letters. For ea
h
ounter C, de�ne �

C

(v)

to be #

C

+
(�(v)) � #

C

�
(�(v)). The
hange ve
tor asso
iated with v, denoted

�v, is given by h�

C

(v)i

C2�

.

Proposition 4.1. Let A = (Q;�; �; T; q

in

; F) be a message-passing automaton.

(i) For any
omputation �

v

=) �

0

of A and any
ounter C 2 � , j�

C

(v)j � jvj.

(ii) For any
on�guration � and sequen
e of transitions v, �

v

=) i� for ea
h

pre�x u of v and ea
h
ounter C 2 � , C(�) +�

C

(u) � 0.

(iii) Let �

u

=) �

0

v

=) with Q(�) = Q(�

0

) and n 2 N su
h that, for every
ounter

C 2 � , either �

C

(u) � 0 or C(�) � njuj+ jvj. Then, �

u

n

v

=).

Proof.

(i) This follows from the fa
t that ea
h move
an
hange a
ounter value by at

most 1.

(ii) This follows immediately from the de�nition of a
omputation.

(iii) The proof is by indu
tion on n.

Basis: For n = 0, there is nothing to prove.

Indu
tion step: Let n > 0 and assume the result holds for n�1. We will show

that �

u

=) �

0

u

n�1

v

=) .

From the assumption, we know that �

u

=) �

0

. To show that �

0

u

n�1

v

=) , we

examine the value of ea
h
ounter C at �

0

. If �

C

(u) < 0, then C(�) �

288

njuj + v. Sin
e C(�

0

) = C(�

0

) + �

C

(u) and j�

C

(u)j � juj, it follows that

C(�

0

) � (n�1)juj+ v. From the indu
tion hypothesis, we
an then
on
lude

that �

0

u

n�1

v

=) .

2

Pumpable de
omposition Let A be a message-passing automaton with N

ounters and let � : �

0

t

1

t

2

:::t

m

=) �

m

be a
omputation of A. A de
omposition

�

0

u

1

=) �

i

1

v

1

=) �

j

1

u

2

=) �

i

2

v

2

=) �

j

2

u

3

=) � � �

u

n

=) �

i

n

v

n

=) �

j

n

u

n+1

=) �

m

of � is said

to be pumpable if it satis�es the following
onditions:

(i) n � N .

(ii) For ea
h k 2 [1::n℄, Q(�

i

k

) = Q(�

j

k

).

(iii) For ea
h v

k

, k 2 [1::n℄, �v

k

is non-zero and has at least one positive entry.

(iv) Let C be a
ounter and k 2 [1::n℄ su
h that �

C

(v

k

) is negative. Then, there

exists ` < k su
h that �

C

(v

`

) is positive.

We refer to v

1

; v

2

; : : : ; v

n

as the pumpable blo
ks of the de
omposition. We say

that a
ounter C is pumpable if �

C

(v

i

) > 0 for some pumpable blo
k v

i

. The

following lemma shows that all the pumpable
ounters of a pumpable de
om-

position are simultaneously unbounded. We omit the proof. (This is similar to

a well-known result of Karp and Miller in the theory of ve
tor addition sys-

tems [KM69℄.)

Lemma 4.2 (Counter Pumping). Let A be a message-passing automaton

and � a K-run of A, K 2 N, with a pumpable de
omposition of the form �

0

u

1

=)

�

i

1

v

1

=) �

j

1

u

2

=) �

i

2

v

2

=) �

j

2

� � �

u

n

=) �

i

n

v

n

=) �

j

n

u

n+1

=) �

m

: Then, for any

I; J 2 N, with I � 1, there exist `

1

; `

2

; : : : ; `

n

2 N and a K-run �

0

of A of the

form �

0

0

u

1

=) �

0

i

0

1

v

`

1

1

=) �

0

j

0

1

u

2

=) �

0

i

0

2

v

`

2

2

=) �

0

j

0

2

� � �

u

n

=) �

0

i

0

n

v

`

n

n

=) �

0

j

0

n

u

n+1

=) �

0

p

su
h that

�

0

satis�es the following properties:

(i) �

0

= �

0

0

.

(ii) Q(�

0

p

) = Q(�

m

).

(iii) For i 2 [1::n℄, `

i

� I.

(iv) For every
ounter C, C(�

0

p

) � C(�

m

).

(v) Let �

pump

be the set of pumpable
ounters in the pumpable de
omposition of

�. For ea
h
ounter C 2 �

pump

, C(�

0

p

) � J .

Proof. The proof is by indu
tion on n, the number of pumpable blo
ks in the

de
omposition.

Basis: If n = 0, there is nothing to prove.

Indu
tion step: Let n > 0 and assume the lemma holds for all de
ompositions

with n�1 pumpable blo
ks. For ea
h
ounter C, let J

C

= max(J;C(�

m

)).

289

By the indu
tion hypothesis, for all I

0

; J

0

2 N, I

0

� 1, we
an transform the

pre�x � : �

0

u

1

=) �

i

1

v

1

=) �

j

1

u

2

=) � � �

v

n�1

=) �

j

n�1

u

n

=) �

i

n

of � into a K-run

�

0

: �

0

0

u

1

=) �

0

i

0

1

v

`

1

1

=) �

0

j

0

1

u

2

=) � � �

v

`

n�1

n�1

=) �

0

j

0

n�1

u

n

=) �

0

i

0

n

satisfying the
onditions of

the lemma. We shall
hoose I

0

and J

0

so that the transition sequen
e v

`

n

n

u

n+1

an be appended to �

0

to yield the run
laimed by the lemma.

To �x values for I

0

and J

0

, we �rst estimate the value of `

n

, the number

of times we need to pump v

n

to satisfy all the
onditions of the lemma. Let

�

n

pos

= fC j �

C

(v

n

) > 0g. It is suÆ
ient if the number `

n

is large enough for

ea
h
ounter C 2 �

n

pos

to ex
eed J

C

at the end of the new
omputation. For a

ounter C 2 �

n

pos

to be above J

C

at the end of the
omputation, it is suÆ
ient

for C to have the value J

C

+ ju

n+1

j after v

`

n

n

. By the indu
tion hypothesis, the

value of C before v

`

n

n

is at least C(�

i

n

). Hen
e, it would take d

J

C

+ju

n+1

j�C(�

i

n

)

�

C

(v

n

)

e

iterations of v

n

for C to rea
h the required value after v

`

n

n

. On the other hand,

we should also ensure that `

n

� I . Thus, it is safe to set `

n

to be the maximum

of I and max

C2�

n

pos

d

J

C

+ju

n+1

j�C(�

i

n

)

�

C

(v

n

)

e.

We set I

0

= I and estimate a value for J

0

su
h that �

0

i

0

n

v

`

n

n

u

n+1

=) �

0

p

with

ea
h
ounter C 2 (� n �

n

pos

) a
hieving a value of at least C(�

m

) at �

0

p

and ea
h

ounter C 2 (�

pos

n �

n

pos

) a
hieving a value of at least J

C

at �

0

p

.

By the indu
tion hypothesis, Q(�

0

i

0

n

) = Q(�

i

n

) and F (�

0

i

0

n

) � F (�

i

n

). Sin
e

�

i

n

v

n

u

n+1

=) , it follows that �

0

i

0

n

v

n

u

n+1

=) . By Proposition 4.1 (iii), to ensure that

�

0

i

0

n

v

`

n

n

u

n+1

=) �

0

p

, it is suÆ
ient to raise ea
h
ounter C with �

C

(v

n

) < 0 to a

value of at least `

n

jv

n

j+ ju

n+1

j at �

0

i

0

n

. If �

C

(v

n

) < 0 then, by the de�nition of

pumpable de
ompositions, �

C

(v

i

) > 0 for some i 2 [1::n�1℄, so C gets pumped

above J

0

in �

0

.

Any
ounter C su
h that �

C

(v

n

) � 0 will surely ex
eed C(�

m

) at �

0

p

. On

the other hand, a
ounter C su
h that �

C

(v

n

) < 0
an de
rease by at most

`

n

jv

n

j+ ju

n+1

j after �

0

i

0

n

.

Putting these two fa
ts together, it suÆ
es to set J

0

to `

n

jv

n

j + ju

n+1

j +

max

fCj�

C

(v

n

)<0g

J

C

.

Let �

0

: �

0

0

u

1

=) �

0

i

0

1

v

`

1

1

=) �

0

j

0

1

u

2

=) � � �

u

n

=) �

0

i

0

n

v

`

n

n

=) �

0

j

0

n

u

n+1

=) �

0

p

. By the

indu
tion hypothesis, we know that �

0

0

= �

0

and for i 2 [1::n�1℄, `

i

� I . By

onstru
tion, `

n

� I as well. We have also ensured that for every
ounter C,

C(�

0

p

) � C(�

m

) and for every
ounter C 2 �

pos

, C(�

0

p

) � J . The fa
t that

Q(�

0

p

) = Q(�

m

) follows from the fa
t that ea
h v

n

loop brings the automaton

ba
k to Q(�

0

i

0

n

) = Q(�

i

n

), and the fa
t that both � and �

0

go through the same

sequen
e of transitions u

n+1

at the end of the
omputation. 2

Having shown that all pumpable
ounters of a pumpable de
omposition
an

be simultaneously raised to arbitrarily high values, we des
ribe a suÆ
ient
on-

dition for a K-run to admit a non-trivial pumpable de
omposition.

290

Strong pumping
onstant For ea
h M;N;K 2 N, we de�ne the strong

pumping
onstant �

M;N;K

by indu
tion on N as follows (re
all that �

M;N;K

denotes the weak pumping
onstant for (M;N;K)):

8M;K 2 N: �

M;0;K

= 1

8M;N;K 2 N: �

M;N+1;K

= �

M;N;�

M;N+1;K

+K

+ �

M;N+1;K

+K

Lemma 4.3 (De
omposition). Let A be a message-passing automaton with

M states and N
ounters and let K 2 N. Let � : �

0

t

1

t

2

:::t

m

=) �

m

be any K-

run of A. Then, there is a pumpable de
omposition �

0

u

1

=) �

i

1

v

1

=) �

j

1

u

2

=)

�

i

2

v

2

=) �

j

2

� � �

u

n

=) �

i

n

v

n

=) �

j

n

u

n+1

=) �

m

of � su
h that for every
ounter C,

if C(�

j

) > �

M;N;K

for some j 2 [0::m℄, then there exists k 2 [1::n℄, su
h that

�

C

(v

k

) is positive.

To prove this lemma, we need the following result.

Proposition 4.4. Let A be a message-passing automaton with M states and N

ounters and let � : �

0

=) �

n

be a K-run of A in whi
h some
ounter value

ex
eeds �

M;N;K

+K. Then, there is a pre�x � : �

0

=) �

s

of � su
h that:

{ For ea
h m 2 [0::s℄ and every
ounter C, C(�

m

) < �

M;N;K

+K.

{ There exists r 2 [0::s�1℄, su
h that � : �

0

=) �

r

=) �

s

, Q(�

r

) = Q(�

s

)

and F (�

r

) < F (�

s

).

Proof. Suppose that the lemma does not hold. Let � : �

0

t

1

t

2

:::t

n

=) �

n

be a

omputation of minimum length whi
h fails to satisfy the lemma. Sin
e the

initial
ounter values in � are bounded by K and some
ounter value ex
eeds

�

M;N;K

+K in �, it must be the
ase that the length of � is at least �

M;N;K

.

By the de�nition of �

M;N;K

, there exist i and j, i < j � �

M;N;K

su
h

that Q(�

i

) = Q(�

j

) and F (�

i

) � F (�

j

). Sin
e � is a K-run and j � �

M;N;K

, all

ounter values at the
on�gurations �

0

; �

1

; : : : ; �

j

must be bounded by �

M;N;K

+

K. If F (�

i

) < F (�

j

), � would satisfy the lemma with r = i and s = j, so it must

be the
ase F (�

i

) = F (�

j

).

Sin
e �

i

= �

j

, we
an
onstru
t a shorter
omputation �

0

= �

0

t

1

t

2

:::t

i

=)

�

i

t

j+1

�! �

j+1

t

j+2

�! � � �

t

n

�! �

n

. It is easy to see that the same
ounter whose

value ex
eeded �

M;N;K

+K in � must also ex
eed �

M;N;K

+K in �

0

|the only

on�gurations visited by � whi
h are not visited by �

0

are those in the inter-

val �

i+1

; �

i+2

; : : : �

j

. However, we have already seen that all
ounter values in

�

0

; �

1

; : : : ; �

j

are bounded by �

M;N;K

+K.

It is
lear that if �

0

satis�es the lemma, then so does �. On the other hand, if

�

0

does not satisfy the lemma, then � is not a minimum length
ounterexample

to the lemma. In either
ase we obtain a
ontradi
tion. 2

We now return to the proof of the De
omposition Lemma.

291

Proof. (of Lemma 4.3) The proof is by indu
tion on N , the number of
ounters.

Basis: If N = 0, set n = 0 and u

1

= �.

Indu
tion step: Let �

gt

denote the set of
ounters whose values ex
eed �

M;N;K

in the K-run �.

If �

gt

= ;, we set n = 0 and u

1

= �.

Otherwise, by Proposition 4.4, we
an �nd positions r and s in � su
h that

�

0

u

0

=) �

r

v

0

=) �

s

=) �

m

, with Q(�

r

) = Q(�

s

), F (�

r

) < F (�

s

) and all
ounter

values at �

0

; �

1

; : : : ; �

s

bounded by �

M;N;K

+K.

Let � be the input alphabet of A and � its set of
ounters. Fix a
ounter

C

0

in whi
h in
reases stri
tly between �

r

and �

s

|that is, C

0

(�

s

) > C

0

(�

r

). By

our
hoi
e of �

r

and �

s

, su
h a
ounter must exist. Constru
t an automaton

A

0

with input alphabet � [fC

0+

; C

0�

g and
ounters � n fC

0

g. The states and

transitions of A

0

are the same as those of A. In other words, A

0

behaves like A

ex
ept that it treats moves involving the
ounter C

0

as input letters.

Consider the
omputation �

s

t

s+1

t

s+2

:::t

m

=) �

m

of A. It is easy to see that there

is a
orresponding
omputation �

0

: �

0

s

t

s+1

t

s+2

:::t

m

=) �

0

m

of A

0

su
h that for ea
h

k 2 [s::m℄, Q(�

k

) = Q(�

0

k

) and for ea
h
ounter C 6= C

0

, C(�

k

) = C(�

0

k

).

From Proposition 4.4, we know that �

0

is in fa
t a (�

M;N;K

+K)-run of A

0

.

Further, for every
ounter C in �

gt

n fC

0

g, there exists a j 2 [s::m℄, su
h that

C(�

0

j

) = C(�

j

) > �

M;N;K

> �

M;N�1;�

M;N;K

+K

. (In the K-run �, no
ounter

ould have ex
eeded �

M;N;K

before �

s

be
ause Proposition 4.4 guarantees that

all
ounter values at �

0

; �

1

; : : : ; �

s

are bounded by �

M;N;K

+K.) By the indu
tion

hypothesis, we
an �nd a pumpable de
ompostion

�

0

s

u

0

1

=) �

0

i

0

1

v

0

1

=) �

0

j

0

1

u

0

2

=) �

0

i

0

2

v

0

2

=) �

0

j

0

2

u

0

3

=) � � �

u

0

p

=) �

0

i

0

p

v

0

p

=) �

0

j

0

p

u

0

p+1

=) �

m

of �

0

su
h that if C is a
ounter with C(�

0

j

) > �

M;N�1;�

M;N;K

+K

for some

j 2 [s::m℄, then there exists k 2 [1::p℄ su
h that �

C

(v

0

k

) is positive.

Consider the
orresponding
omputation

�

s

u

0

1

=) �

i

0

1

v

0

1

=) �

j

0

1

u

0

2

=) �

i

0

2

v

0

2

=) �

j

0

2

� � �

u

0

p

=) �

i

0

p

v

0

p

=) �

j

0

p

u

0

p+1

=) �

m

of A. In this
omputation, for ea
h k 2 [1::p℄, Q(�

i

0

k

) = Q(�

0

i

0

k

) = Q(�

0

j

0

k

) =

Q(�

j

0

k

). Further, for ea
h C 2 �

gt

nfC

0

g, C(�

i

0

k

) = C(�

0

i

0

k

) and C(�

j

0

k

) = C(�

0

j

0

k

).

We pre�x the
omputation �

s

u

0

1

v

0

1

:::u

0

p+1

=) �

m

with the K-run �

0

u

0

=) �

r

v

0

=)

�

s

whi
h we used to identify �

s

and �

r

. We then assert that the
omposite

K-run

�

0

u

0

=) �

r

v

0

=) �

s

u

0

1

=) �

i

00

1

v

0

1

=) �

j

00

1

u

0

2

=) �

i

00

2

v

0

2

=) �

j

00

2

� � �

u

0

p

=) �

i

00

p

v

0

p

=) �

j

00

p

u

0

p+1

=) �

m

:

provides the de
omposition

�

0

u

1

=) �

i

1

v

1

=) �

j

1

u

2

=) �

i

2

v

2

=) �

j

2

� � �

u

n

=) �

i

n

v

n

=) �

j

n

u

n+1

=) �

m

292

of �
laimed in the statement of the lemma. In other words, u

1

= u

0

, v

1

= v

0

,

�

i

1

= �

r

and �

j

1

= �

s

, while for k 2 [2::n℄, u

k

= u

0

k�1

, v

k

= v

0

k�1

, �

i

k

= �

i

0

k�1

and �

j

k

= �

j

0

k�1

.

Let us verify that this de
omposition satis�es all the
onditions required by

the lemma.

First we verify that this de
omposition is pumpable.

{ Sin
e p � N�1, it is
lear than n = p+1 � N .

{ By
onstru
tionQ(�

i

1

) = Q(�

r

) = Q(�

s

) = Q(�

j

1

). For k 2 [2::n℄, Q(�

i

k

) =

Q(�

i

0

k�1

) = Q(�

j

0

k�1

) = Q(�

j

k

).

{ We know that �v

1

= �v

0

is non-zero and stri
tly positive by the
hoi
e of

v

0

. For k 2 [2::n℄, we know that �

C

(v

k

) = �

C

(v

0

k�1

) for C 6= C

0

. Sin
e we

have already established that �v

0

k�1

is non-zero and has at least one positive

entry for k 2 [2::n℄, it follows that the
orresponding
hange ve
tors �v

k

are

also non-zero and have at least one positive entry.

{ Let C be a
ounter and k 2 [1::n℄ su
h that �

C

(v

k

) is negative. Sin
e

�v

1

= �v

0

is positive by the
hoi
e of v, it must be that k 2 [2::n℄. If

C 6= C

0

, then �

C

(v

0

k�1

) = �

C

(v

k

) is negative. In this
ase, we already know

that there exists ` 2 [2::k�1℄, su
h that �

C

(v

0

`�1

) = �

C

(v

`

) is positive.

On the other hand, if C = C

0

, it
ould be that �

C

0

(v

0

z

) is negative for all

z 2 [1::p℄, sin
e C

0

is treated as an input letter rather than as a
ounter in

the automaton A

0

. However, we know that �

C

0

(v

1

) = �

C

0

(v

0

) is positive by

the
hoi
e of v

0

and C

0

, so C

0

also satis�es the
ondition of the lemma.

Finally, let C be a
ounter su
h that C(�

j

) > �

M;N;K

for some j 2 [1::m℄.

If C 6= C

0

, then C(�

j

) > �

M;N�1;�

M;N;K

+K

for some j 2 [s::m℄, so we already

know that �

C

(v

0

k�1

) = �

C

(v

k

) is positive for some k 2 [2::n℄. On the other

hand, if C = C

0

, we know that �

C

(v

1

) = �

C

(v

0

) is positive by the
hoi
e of v

0

and C

0

.

2

The Counter Pumping Lemma allows us to pump blo
ks of transitions in

a
omputation. However, it is possible for a pumpable blo
k to
onsist solely

of invisible transitions whi
h in
rement and de
rement
ounters. Using the De-

omposition Lemma, we
an prove a more traditional kind of pumping lemma,

stated in terms of input strings. We omit the proof.

Lemma 4.5 (Visible Pumping). Let L be a message-passing re
ognisable lan-

guage. There exists n 2 N su
h that for all input strings w, if w 2 L and

jwj � n then w
an be written as w

1

w

2

w

3

su
h that jw

1

w

2

j � n, jw

2

j � 1 and

w

1

w

i

2

w

3

2 L for all i � 1.

Another
onsequen
e of Lemmas 4.2 and 4.3 is a stri
t hierar
hy theorem for

message-passing automata, whose proof we omit.

Lemma 4.6 (Counter Hierar
hy). For k 2 N, let L

k

be the set of languages

re
ognisable by message-passing automata with k
ounters. Then, for all k, L

k

(

L

k+1

.

293

5 Regularity of Message-Passing Re
ognisable Languages

Automata with bounded
ounters

Let A = (Q;�; �; T; q

in

; F) be a message-passing automaton. For K 2 N, de�ne

A[K℄ = (Q[K℄; T [K℄; Q[K℄

in

; F [K℄) to be the �nite-state automaton over the

alphabet � [�

�

given by:

{ Q[K℄ = Q� ff j f : � �! [0::K℄g, with Q[K℄

in

= (q

in

; 0).

{ F [K℄ = F � ff j f : � �! [0::K℄g.

{ If (q; d; q

0

) 2 T , then ((q; f); d; (q

0

; f

0

)) 2 T [K℄ where:

� If d 2 �, f

0

= f .

� If d = C

+

, f

0

(C

0

) = f(C

0

) for all C

0

6= C and

f

0

(C) =

�

f(C)+1 if f(C) < K

K otherwise:

� If d = C

�

, f

0

(C

0

) = f(C

0

) for all C

0

6= C, f(C) � 1 and

f

0

(C) =

�

f(C)�1 if f(C) < K

K otherwise:

Ea
h transition t = ((q; f); d; (q

0

; f

0

)) 2 T [K℄
orresponds to a unique transition

(q; d; q

0

) 2 T , whi
h we denote t

�1

. For a sequen
e of transitions t

1

t

2

: : : t

n

, we

write (t

1

t

2

: : : t

n

)

�1

for t

�1

1

t

�1

2

: : : t

�1

n

. For any sequen
e t

1

t

2

: : : t

n

of transitions

in T [K℄, �(t

1

t

2

: : : t

n

) = �((t

1

t

2

: : : t

n

)

�1

). Moreover, if (q

0

; f

0

0

)

t

1

t

2

:::t

n

=) (q

n

; f

0

n

)

and (q

0

; f

0

)

(t

1

t

2

:::t

n

)

�1

=) �

n

, then Q(�

n

) = q

n

.

Thus, the �nite-state automaton A[K℄ behaves like a message-passing au-

tomaton ex
ept that it deems any
ounter whose value attains a value K to be

\full" . On
e a
ounter is de
lared to be full, it
an be de
remented as many

times as desired. The following observations are immediate.

Proposition 5.1. (i) If (q

0

; f

0

0

)

t

0

1

�! (q

1

; f

0

1

)

t

0

2

�! � � �

t

0

n

�! (q

n

; f

0

n

) is a
omputa-

tion of A then, (q

0

; f

0

)

t

1

�! (q

1

; f

1

)

t

2

�! � � �

t

n

�! (q

n

; f

n

) is a
omputation of

A[K℄ where

{ t

0

1

t

0

2

: : : t

0

n

= (t

1

t

2

: : : t

n

)

�1

.

{ 8C 2 �: 8i 2 [1::n℄: f

i

(C) =

�

f

0

i

(C) if f

0

j

(C) < K for all j � i

K otherwise

(ii) Let (q

0

; f

0

)

t

1

�! (q

1

; f

1

)

t

2

�! � � �

t

n

�! (q

n

; f

n

) be a
omputation of A[K℄.

Then there is a maximal pre�x t

1

t

2

: : : t

`

of t

1

t

2

: : : t

n

su
h that there is a

omputation (q

0

; f

0

0

)

t

�1

1

�! (q

1

; f

0

1

)

t

�1

2

�! : : :

t

�1

`

�! (q

`

; f

0

`

) of A with f

0

= f

0

0

.

Moreover, if ` < n, then for some
ounter C, �(t

0

`+1

) = C

�

, f

0

`

(C) = 0 and

there is a j < ` su
h that f

0

j

(C) = K.

(iii) Let L(A[K℄) be the language over �[�

�

a

epted by A[K℄. Let L

�

(A[K℄) =

fw�

�

j w 2 L(A[K℄)g. Then, L(A) � L

�

(A[K℄).

294

Syn
hronised produ
ts of message-passing automata

Produ
t automata Let A

i

= (Q

i

; �

i

; �

i

; T

i

; q

i

in

; F

i

), i = 1; 2, be a pair of

message-passing automata. The produ
t automaton A

1

� A

2

is the stru
ture

(Q

1

�Q

2

; �

1

[�

2

; �

1

[�

2

; T

1

�T

2

; (q

1

in

; q

2

in

); F

1

�F

2

), where ((q

1

; q

2

); d; (q

0

1

; q

0

2

)) 2

T

1

� T

2

i� one of the following holds:

{ d 2 (�

1

[�

1

) \ (�

2

[�

2

) and (q

i

; d; q

0

i

) 2 T

i

for i 2 f1; 2g.

{ d 2 (�

1

[�

1

) n (�

2

[�

2

), (q

1

; d; q

0

1

) 2 T

1

and q

2

= q

0

2

.

{ d 2 (�

2

[�

2

) n (�

1

[�

1

), (q

2

; d; q

0

2

) 2 T

2

and q

1

= q

0

1

.

For t = ((q

1

; q

2

); d; (q

0

1

; q

0

2

)) 2 T and i 2 f1; 2g, let �

i

(t) denote (q

i

; d; q

0

i

)

if d 2 (�

i

[�

i

) and the empty string " otherwise. As usual, �

i

(t

1

t

2

: : : t

n

) is

just �

i

(t

1

)�

i

(t

2

) : : : �

i

(t

n

). Thus, for a sequen
e of transitions � = t

1

t

2

: : : t

n

over

T

1

�T

2

, �

1

(�) and �

2

(�) denote the proje
tions of � onto the transitions ofA

1

and

A

2

respe
tively. Clearly, �(t

1

t

2

: : : t

n

)�

(�

i

[�

i

)

= �(�

i

(t

1

t

2

: : : t

n

)) for i 2 f1; 2g.

We shall often write a
on�guration ((q

1

; q

2

); f) of A

1

� A

2

as a pair of

on�gurations ((q

1

; f

1

); (q

2

; f

2

)) of A

1

and A

2

, where f

1

and f

2

are restri
tions

of f to �

1

and �

2

respe
tively.

The following observations are easy
onsequen
es of the de�nition of produ
t

automata.

Proposition 5.2. (i) ((q

1

in

; 0); (q

2

in

; 0))

t

1

t

2

:::t

n

=) ((q

1

; f

1

); (q

2

; f

2

)) is a
omputa-

tion of A

1

�A

2

if and only if (q

1

in

; 0)

�

1

(t

1

t

2

:::t

n

)

=) (q

1

; f

1

) and (q

2

in

; 0)

�

2

(t

1

t

2

:::t

n

)

=)

(q

2

; f

2

) are
omputations of A

1

and A

2

respe
tively.

(ii) If �

1

= �

2

and �

1

\ �

2

= ;, then L(A

1

�A

2

) = L(A

1

) \ L(A

2

).

5.1 Regularity and
losure under
omplementation

Our �rst
hara
terisation of regular message-passing re
ognisable languages is

the following.

Theorem 5.3. Let L be a language over �. L and L are message-passing re
og-

nisable i� L is regular.

This result is related to the main result of [MNRS98℄ whi
h states that if we

re
ord the behaviour of message-passing systems as tuples of sequen
es, every

robust system is e�e
tively �nite-state. In the sequential setting, a language L

would be robust in the sense of [MNRS98℄ if there were a single automaton A

with a

ept and reje
t states su
h that for ea
h word w 2 L, every run of A on

w leads to an a

ept state and for ea
h word w =2 L, every run of A on w leads

to a reje
t state. Here, the requirement on L is mu
h weaker|all we demand

is that both L and L be a

epted independently by message-passing automata,

possibly with very di�erent state spa
es.

To prove the theorem, we need an auxiliary result. Let L � �

�

be su
h that

both L and its
omplement L are message-passing re
ognisable. Let L = L(A)

and L = L(A), where we may assume that A and A use disjoint sets of
ounters.

295

The language a

epted by A�A must be empty. LetM be the number of states

of A � A and N be the number of
ounters that it uses. Let K be a number

greater than �

M;N;0

, the strong pumping
onstant for (M;N; 0). Re
all that

A[K℄ = (Q[K℄; T [K℄; Q[K℄

in

; F [K℄) is a �nite-state automaton without
ounters

working on the input alphabet � [�

�

.

Lemma 5.4. L(A[K℄�A) = ;.

Proof. Let A[K℄ = (Q[K℄; T [K℄; Q[K℄

in

; F [K℄) and A = (Q;�; � ; T ; q

in

F). Ea
h

omputation � ofA[K℄�A is of the form ((q

0

; 0); (q

0

; 0))

u

1

�! ((q

1

; f

1

); (q

1

; f

1

))

u

2

�!

� � �

u

n

�! ((q

n

; f

n

); (q

n

; f

n

)), where, for i 2 [0::n℄, u

i

2 T [K℄� T .

By Propositions 5.1 and 5.2,
orresponding to the sequen
e u

1

u

2

: : : u

n

there

exists a maximal sequen
e of transitions v

1

v

2

: : : v

m

of A�A where:

{ Ea
h v

i

belongs to T � T .

{ For ea
h i 2 [1::m℄, �

2

(v

i

) = �

2

(u

i

).

{ For ea
h i 2 [1::m℄, �

1

(v

i

) =

�

(�

1

(u

i

))

�1

if �

1

(u

i

) 6= "

" otherwise

{ �

0

: ((q

0

; 0); (q

0

; 0))

v

1

�! ((q

1

; f

0

1

); (q

1

; f

1

))

v

2

�! � � �

v

m

�! ((q

m

; f

0

m

); (q

m

; f

m

)) is

a
omputation of A�A.

{ If m < n, then for some

^

C 2 � , �(u

m+1

) =

^

C

�

, f

0

m

(

^

C) = 0 and f

0

j

(

^

C) = K

for some j 2 [0::m℄.

Let us de�ne the residue length of � to be n�m.

Suppose that L(A[K℄�A) is non-empty. Sin
e L(A�A) is empty, it is easy

to see that any a

epting run of A[K℄�A has a non-zero residue length. Without

loss of generality, assume that the run �
onsidered earlier is an a

epting run

of A[K℄ � A whose residue length is minimal. Then, in the
orresponding run

�

0

of A � A, the
ounter

^

C 2 � attains the value K along �

0

and then goes

to 0 at the end of the run so that the move labelled

^

C

�

is not enabled at

((q

m

; f

0

m

); (q

m

; f

m

)).

Sin
e K ex
eeds the strong pumping
onstant for A�A, by Lemma 4.2 we

an �nd an alternative run �̂

0

: ((q

0

; 0); (q

0

; 0))

v

0

1

v

0

2

:::v

0

`

=) ((q

0

`

; f

0

`

); (q

0

`

; f

0

`

)) with

(q

0

`

; q

0

`

) = (q

m

; q

m

), f

0

`

(

^

C) � K, and all other
ounter values at (f

0

`

; f

0

`

) at least

as large as at (f

m

; f

0

m

). In parti
ular, every
ounter whi
h ex
eeded the
uto�

value K along �

0

is pumpable and thus ex
eeds K along �̂

0

as well.

By Propositions 5.1 and 5.2, we
an
onstru
t a
orresponding sequen
e of

transitions u

0

1

u

0

2

: : : u

0

`

over T [K℄�T su
h that �

1

(v

0

1

v

0

2

: : : v

0

`

) = (�

1

(u

0

1

u

0

2

: : : u

0

`

))

�1

and �

2

(v

0

1

v

0

2

: : : v

0

`

) = �

2

(u

0

1

u

0

2

: : : u

0

`

), where �̂ : ((q

0

; 0); (q

0

; 0))

u

0

1

u

0

2

:::u

0

`

=)

((q

00

`

; f

00

`

); (q

0

`

; f

0

`

)) is a run of A[K℄ � A with (q

00

`

; q

0

`

) = (q

m

; q

m

) and f

00

`

(C) �

f

m

(C) for ea
h C 2 � .

We already know that f

0

`

(C) � f

m

(C) for ea
h C 2 � . Further, sin
e every

ounter whi
h ex
eeded the
uto� value K along �

0

also ex
eeds K along �̂

0

, we

know that any
ounter whi
h has be
ome full along � would also have saturated

296

along �̂. Thus, we
an extend �̂ to an a

epting run � by appending the sequen
e

of transitions u

m+1

u

m+2

: : : u

n

whi
h o

ur at the end of the a

epting run �.

Re
all that �(u

m+1

) =

^

C

�

and f

0

`

(

^

C) � 1 by our
hoi
e of �̂

0

. From this, it

follows that the residue length of the newly
onstru
ted a

epting run � is at

least one less than the residue length of �, whi
h is a
ontradi
tion, sin
e � was

assumed to be an a

epting run of minimal residue length. 2

We
an now prove Theorem 5.3.

Proof. (of Theorem 5.3)

Let L = L(A) and L = L(A). De�ne A[K℄ as above. We
laim that L

�

(A[K℄) =

L(A). By Proposition 5.1, we know that L(A) � L

�

(A[K℄). On the other hand,

from the previous lemma it follows that L

�

(A[K℄)\L(A) = ;. This implies that

L

�

(A[K℄) � L(A), whi
h means that L

�

(A[K℄) � L(A). So L(A) = L

�

(A[K℄).

Sin
e A[K℄ is a �nite-state automaton, it follows that L(A) is regular. Therefore,

if a language and its
omplement are message-passing re
ognisable then the

language is regular.

The
onverse is obvious. 2

Observe that our
onstru
tion is e�e
tive|given message-passing automata A

and A for L and L respe
tively, we
an
onstru
t a �nite-state automaton A[K℄

for L.

5.2 Regularity and determina
y

Our next
hara
terisation of regularity is in terms of deterministi
 message-

passing automata.

Deterministi
 Message-Passing Automata A message-passing automaton

A = (Q;�; �; T; q

in

; F) is said to be deterministi
 if the following two
onditions

hold:

{ If (q; d

1

; q

1

); (q; d

2

; q

2

) 2 T , with d

1

; d

2

2 �, then d

1

= d

2

implies q

1

= q

2

.

{ If (q; d

1

; q

1

); (q; d

2

; q

2

) 2 T , with d

1

2 �

�

, then d

1

= d

2

and q

1

= q

2

.

Though this notion of determinism seems rather strong, any relaxation of

the de�nition will allow deterministi
 automata to simulate non-deterministi

automata in a trivial manner. If we permit the automaton to
hoose between

a
ounter move and another transition (whi
h may or may not be a
ounter

move), we
an add a spurious
ounter C and repla
e any non-deterministi

hoi
e

between transitions t

1

= (q; d; q

1

) and t

2

= (q; d; q

2

) by a
hoi
e between t

1

and

a move (q; C

+

; q

C

) involving C whi
h leads to a new state where t

0

2

= (q

C

; d; q

2

)

is enabled.

The following result
hara
terises languages a

epted by deterministi
 message-

passing automata. Similar results have been demonstrated for deterministi
 Petri

net languages [Pel87,V82℄.

297

Proposition 5.5. Let A be a deterministi
 message-passing automaton. Then,

either L(A) is regular or there is a word w =2 L(A) su
h that every extension of

w also does not belong to L(A).

Proof Sket
h. Let A be a deterministi
 message-passing automaton. We say that

A is � -blo
ked on a word w if, while reading w, A gets stu
k at a state with a

single outgoing edge labelled C

�

, for some
ounter C. If A is � -blo
ked on w,

it is easy to see A is also � -blo
ked on w

0

for any extension w

0

of w, so every

extension of w is outside L(A).

If A is not � -blo
ked for any word w, we
onstru
t a �nite-state automaton

A

0

with "-moves over � with the same state spa
e as A. In A

0

, ea
h
ounter

move (q; d; q

0

), d 2 �

�

, is repla
ed by a "-move (q; "; q

0

). There is a natural

orresponden
e between
omputations of A and runs of A

0

. It is easy to see that

L(A) � L(A

0

). Using the fa
t that A is not � -blo
ked for any word w, we
an

show that any a

epting run of A

0

an be mapped ba
k to an a

epting run of

A. Thus L(A

0

) � L(A). In other words, L(A

0

) = L(A), so L(A) is regular. 2

The pre
eding
hara
terisation implies that non-deterministi
 message-passing

automata are stri
tly more powerful than deterministi
 message-passing au-

tomata. Consider the language L = fw j w = w

1

a

m

b

n

aw

2

g where w

1

; w

2

2

fa; bg

�

and m � n � 1. This language is message-passing re
ognisable but vio-

lates the
ondition of Proposition 5.5: L is not regular and for any word w =2 L,

we
an always �nd an extension of w in L|for instan
e, waba 2 L for all

w 2 fa; bg

�

.

Observe, however, that even deterministi
 message-passing automata are

stri
tly more powerful than normal �nite-state automata. For instan
e, the lan-

guage L

ge

of Example 2.1 is not regular but the automaton a

epting the lan-

guage is deterministi
.

With these observations about deterministi
 automata behind us, we
an now

state our alternative
hara
terisation of regularity. First, we need some notation.

For a string w, let w

R

denote the string obtained by reading w from right to

left. For a language L, let L

R

be the set of strings fw

R

j w 2 Lg.

Theorem 5.6. Let L be a message-passing re
ognisable language su
h that L

R

is re
ognised by a deterministi
 message-passing automaton. Then, L is regular.

The idea is to
ompute a
onstant � whi
h depends on the number of states

M and the number of
ounters N of A and to then show that L is re
ognised

by the �nite-state automaton L[� ℄. The proof is quite involved and we omit it

due to la
k of spa
e.

6 Dis
ussion

Other models for asyn
hronous
ommmuni
ation Many earlier attempts

to model asyn
hronous systems fo
us on the in�nite-state
ase|for instan
e, the

298

port automaton model of Panangaden and Stark [PS88℄ and the I/O automaton

model of Lyn
h and Tuttle [LT87℄. Also, earlier work has looked at issues far

removed from those whi
h are traditionally
onsidered in the study of �nite-state

systems.

Re
ently, Abdulla and Jonsson have studied de
ision problems for distributed

systems with asyn
hronous
ommuni
ation [AJ93℄. However, they model
han-

nels as unbounded, �fo bu�ers, a framework in whi
h most interesting questions

be
ome unde
idable. The results of [AJ93℄ show that the �fo model be
omes

tra
table if messages may be lost in transit: questions su
h as rea
hability of

on�gurations be
ome de
idable. While their results are, in general, in
ompara-

ble to ours, we remark that their positive results hold for our model as well.

Petri net languages Our model is
losely related to Petri nets [G78,J86℄. We

an go ba
k and forth between labelled Petri nets and message-passing networks

while maintaining a bije
tion between the �ring sequen
es of a net N and the

omputations of the
orresponding automaton A.

There are several ways to asso
iate a language with a Petri net [H75,J86,Pet81℄.

The �rst is to examine all �ring sequen
es of the net. The se
ond is to look at

�ring sequen
es whi
h lead to a set of �nal markings. The third is to identify

�ring sequen
es whi
h rea
h markings whi
h dominate some �nal marking. The

third
lass
orresponds to message-passing re
ognisable languages.

A number of positive results have been established for the �rst
lass of

languages|for instan
e, regularity is de
idable [GY80,VV80℄. On the other

hand, a number of negative results have been established for the se
ond
lass of

languages|for instan
e, it is unde
idable whether su
h a language
ontains all

strings [VV80℄. However, none of these results, positive or negative,
arry over

to the third
lass|ours is one of the few tangible results for this
lass of Petri

net languages.

Dire
tions for future work We believe that Theorem 5.6 holds even with-

out the determina
y requirement on L

R

. An interesting question is to develop a

method for transforming sequential spe
i�
ations in terms of message-passing au-

tomata into equivalent distributed spe
i�
ations in terms of the message-passing

network model of [MNRS98℄. Another
hallenging question is the de
idability of

regularity for message-passing re
ognisable languages.

Referen
es

[AJ93℄ P.A. Abdulla and B. Jonsson: Verifying programs with unreliable
hannels,

in Pro
. 8th IEEE Symp. Logi
 in Computer S
ien
e, Montreal, Canada

(1993).

[GY80℄ A. Ginzburg and M. Yoeli: Ve
tor Addition Systems and Regular Lan-

guages, J. Comput. System. S
i. 20 (1980) 277{284

[G78℄ S.A. Greiba
h: Remarks on Blind and Partially Blind One-Way Multi-

ounter Ma
hines, Theoret. Comput. S
i 7 (1978) 311{324.

[H75℄ M. Ha
k: Petri Net Languages, C.S.G. Memo 124, Proje
t MAC, MIT

(1975).

299

[H91℄ G.J. Holzmann: Design and validation of
omputer proto
ols, Prenti
e Hall

(1991).

[J86℄ M. Jantzen: Language Theory of Petri Nets, in W. Brauer, W. Reisig,

G. Rozenberg (eds.), Petri Nets: Central Models and Their Properties,

Advan
es in Petri Nets, 1986, Vol 1, Springer LNCS 254 (1986) 397{412.

[KM69℄ R.M. Karp and R.E. Miller: Parallel Program S
hemata, J. Comput. Sys-

tem S
i., 3 (4) (1969) 167{195.

[LT87℄ N.A. Lyn
h and M. Tuttle: Hierar
hi
al Corre
tness Proofs for Distributed

Algorithms, Te
hni
al Report MIT/LCS/TR-387, Laboratory for Com-

puter S
ien
e, MIT (1987).

[M78℄ A. Mazurkiewi
z: Con
urrent Program S
hemes and their Interpretations,

Report DAIMI-PB-78, Computer S
ien
e Department, Aarhus University,

Denmark (1978).

[MNRS97℄ M. Mukund, K. Narayan Kumar, J. Radhakrishnan and M. Sohoni:

Message-Passing Automata and Asyn
hronous Communi
ation, Report

TCS-97-4, SPIC Mathemati
al Institute, Madras, India (1997).

[MNRS98℄ M. Mukund, K. Narayan Kumar, J. Radhakrishnan and M. Sohoni: Robust

Asyn
hronous Proto
ols are Finite-State, Pro
. ICALP 98, Springer LNCS

(1998) (to appear).

[PS88℄ P. Panangaden and E.W. Stark: Computations, Residuals, and the Power

of Indetermina
y, in T. Lepisto and A. Salomaa (eds.), Pro
. ICALP '88,

Springer LNCS 317 (1988) 439{454.

[Pel87℄ E. Pelz: Closure Properties of Deterministi
 Petri Nets, Pro
. STACS 87,

Springer LNCS 247, (1987) 371-382.

[Pet81℄ J.L. Peterson: Petri net theory and the modelling of systems, Prenti
e Hall

(1981).

[VV80℄ R. Valk and G. Vidal-Naquet: Petri Nets and Regular Languages, J. Com-

put. System. S
i. 20 (1980) 299{325.

[V82℄ G. Vidal-Naquet: Deterministi
 languages for Petri nets, Appli
ation and

Theory of Petri Nets, Informatik-Fa
hberi
hte 52, Springer-Verlag (1982).

[Z87℄ W. Zielonka: Notes on Finite Asyn
hronous Automata, R.A.I.R.O.|Inf.

Th�eor. et Appl., 21 (1987) 99{135.

