
Foundations of Software Technology and Theoretical Computer Science,

12th Conference, Proceedings, R. Shyamasundar (Ed.),

Lecture Notes in Computer Science 652, Springer-Verlag (1992) 328{341.

CCS, Locations and

Asynchronous Transition Systems

Madhavan Mukund

?

and Mogens Nielsen

??

Computer Science Department, Aarhus University

Ny Munkegade, DK-8000 Aarhus C, Denmark

Abstract. We provide a simple non-interleaved operational semantics for

CCS in terms of asynchronous transition systems. We identify the concur-

rency present in the system in a natural way, in terms of events occurring at

independent locations in the system.

We extend the standard interleaving transition system for CCS by in-

troducing labels on the transitions with information about the locations of

events. We then show that the resulting transition system is an asynchronous

transition system which has the additional property of being elementary,

which means that it can also be represented by a 1-safe net.

We also introduce a notion of bisimulation on asynchronous transition

systems which preserves independence. We conjecture that the induced equiv-

alence on CCS processes coincides with the notion of location equivalence

proposed by Boudol et al.

1 Introduction

Process algebras like CCS [9] are a well established formalism for specifying con-

current systems. Several attempts have been made to provide a non-interleaved

semantics for CCS-like languages, in which the concurrency implicit in a process

expression P is explicitly represented in the semantics of P .

One approach is to incorporate information about concurrency into the conven-

tional sequential transition system describing the behaviour of P by introducing an

algebra of transitions. This can be done implicitly, by decorating each transition

with a \proof of its derivation" [3], or explicitly, as in [8].

Another approach is to interpret process expressions in terms of a richer model|

typically Petri nets [3, 6, 13].

Both these approaches have some drawbacks. When one introduces an algebra

over the transitions, one has to go through a second level of reasoning about the

transition system in order to identify the underlying events in the system (where we

use the term event in the sense of Petri nets).

On the other hand, translating a term directly into a Petri net su�ers from the

usual problems associated with explicitly manufacturing one particular net which

?

Permanent address: School of Mathematics, SPIC Science Foundation, 92, G.N. Chetty

Road, T. Nagar, Madras 600 017, India. Email: madhavan@ssf.ernet.in. The author's

stay in Denmark was supported by a grant from the Aarhus University Research

Foundation.

??

Email: mn@daimi.aau.dk

329

gives rise to the required behaviour|a lot of e�ort has to be put into creating the

places and hooking them up correctly to the transitions and then proving that the

net one has constructed does in fact exhibit the required behaviour.

All existing attempts at de�ning a non-interleaved semantics for CCS result in

transition systems whose state spaces are considerably larger than those of the tran-

sition systems generated by the traditional interleaving semantics. In fact, Olderog

conjectures in [13] that \It is impossible to �nd an operational Petri net semantics

which represents all the intended concurrency of process terms and for which the

reachable markings are in 1-1 correspondence with the global states of the standard

operational interleaving semantics."

In this paper, we provide a simple non-interleaved operational semantics for a

slightly restricted version of CCS satisfying the properties of Olderog's conjecture.

The restriction we make on CCS syntax is as follows. Instead of the normal

operator + expressing non-deterministic choice, we use guarded choice. In other

words, we restrict terms with + to be of the form aP + bQ, where a and b could be

the invisible action �|we do not permit general expressions of the form P +Q. The

rest of the language is the same as in standard CCS. We claim that this language

is still a very powerful and useful language for specifying concurrent systems. For

instance, all the major examples in [9] conform to our syntactic restriction.

We interpret CCS over the class of asynchronous transition systems [2, 14, 15].

An asynchronous transition system is a labelled transition system where the labels

are viewed as events. The transition system comes equipped with a binary relation

on the events which speci�es when two events in the system are independent of each

other.

Asynchronous transition systems and Petri nets are closely related to each other.

In [15], it is shown that one can de�ne a subclass of \elementary" asynchronous

transition systems which are, in a precise sense, equivalent to 1-safe Petri nets.

To obtain an asynchronous transition system from a CCS expression, we decorate

transitions with labels which indicate the location where the action occurs. While

this is in the same spirit as decorating transitions with their proofs, it turns out that

our labelling directly gives us the underlying events of the system. The independence

relation we de�ne on events reects a natural notion of independence on locations.

We then prove that the asynchronous transition system LTS(P) we associate

with a process expression P is in fact elementary. This means that we obtain \for

free" a Petri net semantics for our language, by appealing to the results of [15].

We go on to de�ne a notion of bisimulation on asynchronous transition systems

which preserves independence. When applied to the transition systems we use to

describe CCS processes, this gives rise to an equivalence on process terms which we

conjecture is equivalent to the notion of location equivalence de�ned in [5].

The paper is organized as follows. We begin with a brief introduction to asyn-

chronous transition systems. The next section introduces the process language and

its operational semantics. Section 4 establishes that the asynchronous transition sys-

tem we de�ne for a process P is elementary and discusses the connection between our

semantics and the traditional interleaved semantics for CCS. The next section de-

scribes bisimulations on asynchronous transition systems. We conclude in Section 6

with a discussion of how our work relates to other approaches and suggestions for

further study.

330

2 Asynchronous transition systems

Asynchronous transition systems were introduced independently by Bednarczyk [2]

and Shields [14]. These transition systems incorporate information about concur-

rency explicitly, in terms of a binary relation which speci�es which pairs of events

are independent of each other. The particular de�nition we adopt here is from [15].

De�nition2.1. An asynchronous transition system is a structure ATS =

(S; i; E; I;Tran) such that

{ (S; i; E;Tran) is a transition system, where S is a set of states (with initial state

i), E is a set of events and Tran � S � E � S is the transition relation.

{ I � E � E is an irreexive, symmetric, independence relation satisfying the

following four conditions:

(i) e 2 E) 9s; s

0

2 S: (s; e; s

0

) 2 Tran.

(ii) (s; e; s

0

) 2 Tran and (s; e; s

00

) 2 Tran) s

0

= s

00

.

(iii) e

1

Ie

2

and (s; e

1

; s

1

) 2 Tran and (s; e

2

; s

2

) 2 Tran

) 9u: (s

1

; e

2

; u) 2 Tran and (s

2

; e

1

; u) 2 Tran.

(iv) e

1

Ie

2

and (s; e

1

; s

1

) 2 Tran and (s

1

; e

2

; u) 2 Tran

) 9s

2

: (s; e

2

; s

2

) 2 Tran and (s

2

; e

1

; u) 2 Tran.

Condition (i) stipulates that every event in E must appear as the label of some

transition in the system. The second condition guarantees that the system is de-

terministic. The third and fourth conditions express properties of independence:

condition (iii) says that if two independent events are enabled at a state, then they

should be able to occur \together" and reach a common state; condition (iv) says

that if two independent events occur immediately after one another in the system,

it should also be possible for them to occur with their order interchanged.

Asynchronous transition systems can be equipped with a natural notion of mor-

phism to form a category [15]. In [15], Winskel and Nielsen establish a coreection

between a subcategory of asynchronous transition systems, which we shall call ele-

mentary asynchronous transition systems, and a category of 1-safe Petri nets. At the

level of objects, what the coreection establishes is that given an elementary asyn-

chronous transition system, we can construct a 1-safe Petri net whose case graph is

isomorphic to the transition system we started with.

The extra axioms characterizing elementary asynchronous transition systems are

phrased in terms of generalized regions [7, 10, 12].

De�nition2.2. Let ATS = (S; i; E; I;Tran) be an asynchronous transition system.

A region of ATS is a pair of functions r = (r

S

; r

E

) where

r

S

: S ! f0; 1g and

r

E

: E ! (f0; 1g � f0; 1g) such that

(i) 8(s; e; s

0

) 2 Tran: (r

E

(e) = (1; 0) or r

E

(e) = (1; 1))) r

S

(s) = 1.

(ii) 8(s; e; s

0

) 2 Tran: r

S

(s

0

) = r

S

(s) + x

2

� x

1

, where r

E

(e) = (x

1

; x

2

).

(iii) Let e

1

; e

0

1

2 E and r

E

(e

1

) = (x

1

; x

2

) and r

E

(e

0

1

) = (x

0

1

; x

0

2

).

If e

1

Ie

0

1

then ((x

1

= 1) or (x

2

= 1))) x

0

1

= x

0

2

= 0.

331

For convenience, we shall refer to both components, r

S

and r

E

, of a region r

simply as r.

Regions correspond to the places of the 1-safe net that one would like to associate

with an elementary asynchronous transition system ATS. Intuitively, we want to

associate with ATS a 1-safe Petri net N such that ATS represents the case graph

of N . Let r be a region in ATS. We specify whether or not the \place" r is marked

at the \marking" s by r(s). For each \transition" e, r(e) says how r is \connected"

to e in the associated net. Conditions (i) and (ii) in the de�nition of a region then

correspond to the �ring rule for Petri nets. Condition (iii) reects the intuition that

two transitions in a net are independent provided their neighbourhoods are disjoint.

We introduce some notational conventions for regions, borrowed from net theory.

Given a region r and an event e, we say that r 2

�

e if r(e) = (1; 0) or r(e) = (1; 1).

Similarly, we say that r 2 e

�

if r(e) = (0; 1) or r(e) = (1; 1). We say that e 2

�

r if

r 2 e

�

and e 2 r

�

if r 2

�

e. Finally, for s 2 S, we sometimes say that s 2 r, or that

r holds at s, to indicate that r(s) = 1.

We can now characterize elementary asynchronous transition systems.

De�nition2.3. Let ATS = (S; i; E; I;Tran) be an asynchronous transition system.

ATS is said to be elementary if it satis�es the following three conditions.

(i) Every state in S is reachable by a �nite sequence of transitions from the initial

state i. (Reachability)

(ii) 8s; s

0

2 S: s 6= s

0

) 9 a region r: r(s) 6= r(s

0

). (Separation)

(iii) 8s 2 S: 8e 2 E: If there does not exist s

0

such that (s; e; s

0

) 2 Tran, then there

exists an r 2

�

e such that r(s) = 0. (Enabling)

Call a region r non-trivial i� there exists some e 2 E such that r 2

�

e or

r 2 e

�

. Clearly, for a trivial region r, r(s) = r(s

0

) for all s; s

0

2 S. So, it follows

that conditions (ii) and (iii) in the de�nition of elementary asynchronous transition

systems actually require the existence of a non-trivial region satisfying the required

properties.

So far we have been working with unlabelled asynchronous transition systems.

Thus, the \labels" on the transitions correspond to the events of the system and are

analogous to the \names" of the transitions of a Petri net. To relate asynchronous

transition systems to, say, process algebras like CCS, we have to add an extra layer

of labelling by means of a labelling function as follows.

De�nition2.4. Let � be an alphabet. A �-labelled asynchronous transition system

is a pair (ATS; l) where ATS = (S; i; E; I;Tran) is an asynchronous transition

system, and l : E ! � is a labelling function.

Thus, for the CCS term a nilka nil , we would associate an asynchronous tran-

sition system with two events e

1

and e

2

which are independent of each other, both

labelled a.

3 The language and its operational semantics

The process language we consider is a subset of CCS where choice is always guarded.

332

We �x a set of actions Act = � [�, where � is a set of names ranged over

by �; �; : : : and � is the corresponding set of co-names f� j � 2 �g. As usual, we

assume that

�

is a bijection such that � = � for all � 2 �. The symbol � =2 Act

denotes the invisible action. We use a; b; c : : : to range over Act and �; � : : : to range

over Act

�

= Act [f�g. We also assume a set V of process variables and let x; y; : : :

range over V .

The set of process expressions Proc is given by the following grammar.

P ::=

X

i2I

�

i

P

i

j PkP j Pn� j x j rec x:P

where �

i

2 Act

�

, � 2 � and x 2 V .

Thus, the guarded sum

P

i2I

�

i

P

i

represents the process which can execute any

one of the actions �

i

(which could be �) and evolve into the corresponding process

E

i

. The indexing set I could, in general, be in�nite. We abbreviate by nil the process

consisting of a guarded sum indexed by the empty set. The normal CCS pre�xing

operator aP is represented by a guarded sum over a singleton index set.

The other constructs are standard. We do not consider the relabelling operator,

though it could be incorporated without too much di�culty into our setup.

We enrich the standard operational semantics of CCS by adding some information

on the labels of the transitions which will permit us to directly extract the underlying

events of the transition system representing the behaviour of a CCS term.

We have to depart slightly from the traditional transition system for CCS, where

states are given directly by process expressions. We will need to identify recursive

processes with their one-step unfoldings. So, de�ne � to be the least congruence

with respect to the operators k and n� such that

rec x:P � P [rec x:P=x]

where, as usual, P [rec x:P=x] denotes the term obtained by substituting rec x:P

for all free occurrences of x in P . For P 2 Proc, let [P] denote the set of process

expressions equivalent to P . The states of our transition system will e�ectively be

equivalence classes of process expressions.

Our operational semantics is de�ned as follows (henceforth we assume that

f0; 1g\ � = ;):

P =

P

i2I

�

i

P

i

�

�

i

[P][P

i

]

!
P

i

(Sum)

P

0

�

�

u

!
P

0

0

implies P

0

kP

1

�

�

0u

!
P

0

0

kP

1

(Par)

P

1

kP

0

�

�

1u

!
P

1

kP

0

0

P

0

�

a

u

!
P

0

0

, P

1

�

a

v

!
P

0

1

implies P

0

kP

1

�

�

h0u;1vi

!
P

0

0

kP

0

1

(Com)

P
�

�

u

!
P

0

implies Pn�
�

�

�u

!
P

0

n�, � =2 f�; �g (Res)

P
�

�

u

!
P

0

, P � P

1

and P

0

� P

0

1

implies P

1

�

�

u

!
P

0

1

(Struct)

333

So, for a basic action performed by a process of the form

P

i2I

�

i

P

i

, we tag the

transition with the source and target process expressions. We extend the tag with

0's and 1's on the left as we lift the transition through the left and right branches of

a parallel composition. With each communication, we keep track of the tags corre-

sponding to the two components participating in the communication. By extending

the tag to the left with � for each restriction n�, we keep track of the nesting of

restrictions with respect to the overall structure of the process. This is crucial in

order to be able to determine whether or not a communication is possible even

though the visible actions which make up the communication are restricted away.

Finally, (Struct) ensures that processes from the same equivalence class are capable

of making exactly the same moves.

The string of 0's and 1's which we use to tag a transition essentially pins down

the location where the transition occurs. Locations will provide us with a natural

way of identifying independence between transitions. Our notion of location is closely

related to the static approach advocated by Aceto [1] for dealing with the idea of

locations introduced by Boudol et al [4, 5]. We have more to say on the connection

between our approach and the approach of [1, 4, 5] in Section 5.

It is not di�cult to establish that the states of the transition system de�ned by

our operational semantics are in fact equivalence classes of process expressions.

We conclude this section with a couple of examples. The �rst example illustrates

how our semantics distinguishes concurrency from non-deterministic interleaving.

Figure 1 shows the behaviour of the processes akb and ab + ba. Notice that the

transition system for akb has four transitions, but only two distinct labels on the

transitions. This captures the fact that there are only two underlying (independent)

events, labelled a and b. In contrast, the process ab+ ba has four distinct events.

akb

nilkb aknil

nilknil

�

�

�	

�

�

�	

@

@

@R

@

@

@R

a

a

0[a][nil]

0[a][nil]

b

b

1[b][nil]

1[b][nil]

ab + ba

b

a

nil

�

�

�	

�

�

�	

@

@

@R

@

@

@R

a

a

[ab+ba][b]

[a][nil]

b

b

[b][nil]

[ab+ba][a]

Fig. 1. Concurrency versus non-deterministic interleaving

The next example illustrates how our semantics deals with recursion. Consider

the two processes rec x:axkrec x:ax and rec x:(axkax). The transition systems cor-

responding to these processes are shown in Figure 2.

The standard interleaved transition system for the �rst process would consist of

a single state with a single a-labelled transition looping back to that state. On the

other hand, our semantics generates two a-labelled transitions, because, intuitively,

the a could occur at two di�erent locations in the process. However, notice that our

semantics still yields a �nite transition system for this term.

The standard interleaved transition system for rec x:(axkax) is in�nite, because

unfolding the term creates more and more components in parallel. Our semantics

334

rec x:axkrec x:ax

'$

?

&%

6

a

a

1[rec x:ax][rec x:ax]

0[rec x:ax][rec x:ax]

P = rec x(axkax)

PkaP aPkP

(PkaP)kaP

: : :

(PkP)

: : :

aPk(aPkP)

�

�

�

�

�/

S

S

S

S

Sw

�

�

�

�

�/

�

�

�

�

�/

: : : : : :

S

S

S

S

Sw

S

S

S

S

Sw

�

�/

�

�/

�

�/

: : : : : : : : :

S

Sw

S

Sw

S

Sw

a

a

0[aP][P]

0[aP][P]

a

a

1[aP][P]

1[aP][P]

a a

00[aP][P] 11[aP][P]

Fig. 2. Recursion

also assigns an in�nite transition system in such a case. Notice though, that it still

keeps track of the underlying events in a consistent manner.

The two examples in Figure 2 illustrate a general point about our semantics|our

semantics will assign a �nite transition system to a process P whenever the standard

interleaving semantics would do so.

4 From CCS to asynchronous transition systems

We would like to establish that the transition system describing the behaviour of a

process P 2 Proc is in fact a (labelled) elementary asynchronous transition system.

Due to space constraints, we restrict ourselves to an informal account of the

proof. Full details can be found in [11].

We �rst look at the labels associated with transitions by our operational seman-

tics. We can show that for any transition

^

P
�

�

u

!

^

P

0

, u is either of the form s[P][P

0

],

where s 2 (f0; 1g[�)

�

and � 2 Act

�

, or of the form shs

0

[P

0

][P

0

0

]; s

1

[P

1

][P

0

1

]i, where

s; s

0

; s

1

2 (f0; 1g [�)

�

and � = � . The �rst kind of label is associated with an

\independent" action performed by an individual component of a process, while the

second kind of label arises out of a synchronization. Henceforth, we shall often write

P instead of [P], for convenience.

Each distinct label in our transition system corresponds to an event. We can

de�ne the set of events Ev as follows:

Ev = f(�; u) j 9P; P

0

2 Proc: P
�

�

u

!
P

0

g

Using the information present in the labels, for each event e 2 Ev , we can identify

Loc(e) � f0; 1g

�

, the location(s) where e occurs, as follows:

8e = (�; u): Loc(e) =

�

fs #

f0;1g

g; if u = sPP

0

fss

0

#

f0;1g

; ss

1

#

f0;1g

g; if u = shs

0

P

0

P

0

0

; s

1

P

1

P

0

1

i

where, for s 2 (f0; 1g[�)

�

, s #

f0;1g

denotes the projection of s onto f0; 1g. In other

words, s #

f0;1g

is the subsequence of s obtained by erasing all elements not in f0; 1g.

335

From the way we introduce information about locations into our event labels,

it is clear that the location Loc(e) of an event e is a string which identi�es the

nested component where e occurs. We can identify a natural independence relation

on locations and lift it to events. First, let I

l

� f0; 1g

�

� f0; 1g

�

be given by:

8s; s

0

2 f0; 1g

�

: (s; s

0

) 2 I

l

i� s 6� s

0

and s

0

6� s;

where � is the pre�x relation on strings.

Now, de�ne an independence relation on events I � Ev � Ev as follows:

8e; e

0

2 Ev : (e; e

0

) 2 I i� 8s 2 Loc(e): 8s

0

2 Loc(e

0

): (s; s

0

) 2 I

l

:

To analyze the behaviour of a process term P , we need to decompose it into

its basic components. Components are identi�ed by a (partial) function Comp :

(f0; 1g[�)

�

�Proc * Proc which, given a process term P and a location s, returns

the subprocess of P located at s. Comp is de�ned inductively as follows.

Comp("; P) = P , provided P 6= rec x:P

x

(where " is the empty string)

Comp(0s; P

0

kP

1

) = Comp(s; P

0

)

Comp(1s; P

0

kP

1

) = Comp(s; P

1

)

Comp(�s; Pn�) = Comp(s; P)

Comp(s; rec x:P) = Comp(s; P [rec x:P=x])

Notice that a process expression given by a guarded sum cannot be broken down

further into components. Such expressions can be regarded as sequential components.

Using the labels on the transitions, we can \project" each move of P down to the

sequential component where it occurs. For instance, given a transition of the form

P
�

�

sP

1

P

0

1

!
P

0

, we can assert that this event occurs in the sequential component P

1

�

Comp(s; P), resulting in the component at s being transformed to the expression

P

0

1

� Comp(s; P

0

).

Conversely, we can identify when the moves of the sequential components can be

lifted to the whole process. This is not completely straightforward. The moves of a

sequential component may be forbidden in the overall process because the component

lies within the scope of a restriction. This is where we crucially use the information

in the labels about the nesting of restriction symbols with respect to the locations.

Finally, it turns out that the occurrence of an event e leaves sequential compo-

nents lying at locations independent of Loc(e) untouched. This con�rms that our

de�nition of the independence relation on events, based on the locations where they

occur, is a natural one.

We now de�ne precisely the asynchronous transition system which we wish to

prove elementary. Let

^

P be any process expression. Then LTS(

^

P) =

((S

^

P

; [

^

P]; E

^

P

; I

^

P

;Tran

^

P

); l

^

P

) where

{ S

^

P

= f[P

0

] j P

0

2 Proc and 9P

0

; P

1

; : : : ; P

n

: P = P

0

; P

0

= P

n

and for all

i 2 f1; 2; : : : ; ng, there exists a move P

i�1

�

�

i

u

i

!
P

i

|i.e. P

0

is reachable from

^

Pg.

[

^

P] is the initial state.

{ E

^

P

= f(�; u) 2 Ev j 9[P

0

]; [P

00

] 2 S

^

P

: P

0

�

�

u

!
P

00

g.

336

{ I

^

P

= I \ (E

^

P

� E

^

P

), where I is the independence relation on events de�ned

earlier.

{ Tran

^

P

� S

^

P

� E

^

P

� S

^

P

= f([P]; (�; u); [P

0

]) j P
�

�

u

!
P

0

g

{ l

^

P

: E

^

P

! Act

�

is given by l

^

P

(�; u) = �.

It is straightforward to verify that for each

^

P , LTS(

^

P) is in fact a labelled

asynchronous transition system.

To show that it is elementary we have to identify enough regions to satisfy the

properties of \separation" and \enabling" given in De�nition 2.3.

Given s 2 (f0; 1g [�)

�

and P of the form

P

i2I

�

i

P

i

, we can de�ne a region

R(s; P), consisting of all process terms whose sequential component at s is given by

P .

So, the region R(s; P) holds at a state P

0

i� the component of P

0

at location s

is a sequential component equivalent to P|in other words, Comp(s; P

0

) � P .

For e = (�; u), R(s; P) 2

�

e i� e is located at s and e originates from a sequential

component equivalent to P .

To decide when R(s; P) 2 e

�

is a little more complicated. If e = (�; s

1

P

1

P

0

1

), the

na��ve expectation is that R(s; P) 2 e

�

provided that s = s

1

and P

0

1

� P . However

P

0

1

need not be a sequential term, so we actually have to link e to the sequential

components of P

0

1

. In other words, we have to check that Comp(s

0

1

; P

0

1

) � P for some

s

0

1

. Since s

0

1

is the \sub-location" of the component with respect to s

1

, the location

where e occurs, it must in fact be the case that s

1

s

0

1

= s in order that R(s; P) 2 e

�

.

We can then show that regions of the form R(s; P) are su�cient to ensure that

for every process term

^

P , LTS(

^

P) satis�es the regional axioms required for it to be

elementary. In this way, we achieve what we set out to prove.

Theorem4.1. 8P 2 Proc: LTS(P) is an elementary asynchronous transition sys-

tem.

In [11], we compare our semantics with the traditional interleaved semantics for

CCS in terms of foldings. Here we shall just briey present the main results. Details

can be found in [11].

Foldings are special types of bisimulations in which the target of the folding

is, in general, a smaller, more compact representation of the behaviour described

by the �rst system. Foldings have also been de�ned in [6], where they are called

transition-preserving (tp) homomorphisms.

For a process term P in our language, let TS(P) denote the standard transition

system associated with P by the interleaved semantics given in [9]. Then, we can

show the following.

Theorem4.2. For each P 2 Proc, TS(P) can be folded onto LTS(P) (when we

\forget" about the independence relation and regard LTS(P) as just a labelled tran-

sition system).

This means that our approach yields a tractable system whenever the conven-

tional approach would. This has an important bearing on the possibilities of me-

chanically verifying properties of such systems.

337

We can extend the notion of a folding to asynchronous transition systems in such

a way that the folding preserves the independence relation. We can then relate our

operational semantics to Winskel and Nielsen's denotational semantics for CCS in

terms of asynchronous transition systems [15]. For P 2 Proc, let Den(P) denote the

asynchronous transition system associated with P by the denotational semantics of

[15]. Then we have the following.

Theorem4.3. For each P 2 Proc, there is an (independence-preserving) folding

from Den(P) onto LTS(P).

This provides a formal justi�cation for our choice of the independence relation

between events.

5 Bisimulations on asynchronous transition systems

We now examine the question of how to de�ne a sensible notion of bisimulation on

labelled asynchronous transition systems which respects the independence relation

on the underlying events.

As we had mentioned earlier, asynchronous transition systems can be equipped

with a natural notion of morphism [15]. Though transition system morphisms pre-

serve behaviour, they are unsatisfactory for de�ning a natural notion of bisimulation

because they map states and events in such a way that independence is preserved

globally.

Intuitively, a bisimulation describes how systems match each other's behaviour

along individual runs. In the conventional framework, the existence of a bisimula-

tion between two systems ensures that the branching behaviour of each system can

be faithfully simulated by the other along each run. When extending this to asyn-

chronous transition systems, it is natural to further require that the independence

relation be preserved by the bisimulation along each run, but not necessarily globally .

To illustrate this point, consider the two CCS expressions (b+�k�b)n� and b+�b.

In the �rst process, the two b moves would be considered independent in our set up,

because they appear on di�erent sides of the k operator. However, it is easy to see

that in any run of the �rst process, exactly one of the two b moves will occur. So, it

seems reasonable to expect that these two processes should be bisimilar, though the

second process has no independent events.

Thus one needs a way of relating two systems along each run. Unfortunately, this

means that it no longer su�ces to present the bisimulation in terms of a relation

on states|we have also to \remember" how we reached the state. In particular, we

need to remember the independences we have observed so far. This ensures that in

extending the run from that state, we can remain consistent with the choices already

made while relating events along this run.

One way to formalize this intuition is to follow the approach Aceto uses to char-

acterize a static version of location equivalence [1].

For the next few de�nitions, �x a pair of labelled asynchronous transition systems

(ATS

1

; l

1

) and (ATS

2

; l

2

), where ATS

k

= (S

k

; i

k

; E

k

; I

k

;Tran

k

), k = 1; 2.

De�nition5.1. A relation ' � E

1

� E

2

is lI-consistent provided

338

{ 8(e

1

; e

2

) 2 ': l

1

(e

1

) = l

2

(e

2

).

{ 8e

1

; e

0

1

2 E

1

: 8e

2

; e

0

2

2 E

2

: (e

1

; e

2

) 2 ' and (e

0

1

; e

0

2

) 2 ') e

1

I

1

e

0

1

i� e

2

I

2

e

0

2

.

The �rst condition says that the labels on the related events must match, whereas

the second condition says that the independence relation must be preserved by ' in

a strong way. In other words, ' is consistent with respect to both l and I.

Let � denote the family of all lI-consistent relations ' � E

1

�E

2

.

To de�ne a notion of equivalence based on these lI-consistent relations between

events, we associate with each ' 2 �, a relation �

'

� S

1

� S

2

. s

1

�

'

s

2

is to be

read as follows; if we reach s

1

in TS

1

and s

2

in TS

2

during a simulation along which

we have associated events by ', then it is possible to extend the simulation along

all possible choices of transitions at s

1

and s

2

in a manner consistent with '.

Formally, we have the following de�nition:

De�nition5.2. �

�

= f�

'

j ' 2 �g is the largest �-indexed family of symmetric

relations on S

1

� S

2

satisfying:

If s

1

�

'

s

2

then 8(s

1

; e

1

; s

0

1

) 2 Tran

1

: 9(s

2

; e

2

; s

0

2

) 2 Tran

2

such that ' [

f(e

1

; e

2

)g 2 � and s

0

1

�

'[f(e

1

;e

2

)g

s

0

2

.

Two labelled asynchronous transition systems are bisimilar if their initial states

are related by the empty relation between events.

De�nition5.3. ATS

1

� ATS

2

i� i

1

�

;

i

2

.

It is easy to verify the following.

Proposition5.4. � is an equivalence relation on labelled asynchronous transition

systems.

Example 5.1. Let P

1

= (b + �k�b)n� and P

2

= b + �b. Then LTS(P

1

) � LTS(P

2

),

as shown below.

LTS(P

1

) has three events, e

1

= (b; �0[b+�][nil]), e

2

= (�; �h0[b+�][nil]; 1[�b][b]i),

and e

3

= (b; �1[b][nil]).

LTS(P

2

) also has three events, e

0

1

= (b; [b + �b][nil]), e

0

2

= (�; [b + �b][b]), and

e

0

3

= (b; [b][nil]).

We can de�ne

{ �

;

= f(P

1

; P

2

); (P

2

; P

1

)g.

{ �

f(e

1

;e

0

1

)g

= f((nilk�b)n�; nil); (nil ; (nilk�b)n�)g.

{ �

f(e

2

;e

0

2

)g

= f((nilkb)n�; b); (b; (nilkb)n�)g.

{ �

f(e

2

;e

0

2

);(e

3

;e

0

3

)g

= f((nilknil)n�; nil); (nil ; (nilknil)n�)g.

ut

Example 5.2. Let P

1

= (a�ckb�d)n� and P

2

= (a�dkb�c)n�. Then LTS(P

1

) 6�

LTS(P

2

).

Both processes are deterministic, so they both have only one possible run. Since

each event has a unique label in each process, along this run we will have to relate, for

instance, the a and c labelled events in P

1

to the corresponding a and c events in P

2

.

339

However, these events are not independent in P

1

whereas they are independent in

P

2

. So, there exists no lI-consistent relation corresponding to the (unique) maximal

run of P

1

and P

2

. ut

The equivalence � applies in general to all labelled asynchronous transition sys-

tems. When restricted to the transition systems we construct for CCS terms, it

amounts to de�ning a notion of strong bisimulation over terms in Proc. We can

extend the de�nition smoothly to deal with weak bisimulation over CCS terms as

follows.

First, given an Act

�

-labelled asynchronous transition system (ATS; l), where

ATS = (S; i; E; I;Tran), de�ne the weak transistion relation) � S �E � S in the

obvious way.

) = f(s; e; s

0

) j 9s

0

; s

1

; : : : ; s

n

: 9e

0

; e

1

; : : : ; e

n�1

: s = s

0

; s

0

= s

n

and 80 � i < n: (s

i

; e

i

; s

i+1

)

such that e = e

j

; 0 � j < n; where l(e) 6= �

and 80 � i < n: i 6= j) l(e

i

) = �g

We need to extend) to describe purely internal transitions between states. In

this framework, it is convenient to construct a second relation; � S � S such that

; = f(s; s

0

) j s = s

0

or 9s

0

; s

1

; : : : ; s

n

: 9e

0

; e

1

; : : : ; e

n�1

: s = s

0

; s

0

= s

n

and 80 � i < n: (s

i

; e

i

; s

i+1

); where l(e

i

) = �g

Now consider a pair of Act

�

-labelled asynchronous transition systems (ATS

1

; l

1

)

and (ATS

2

; l

2

), where ATS

k

= (S

k

; i

k

; E

k

; I

k

;Tran

k

); k = 1; 2, with weak transition

relations)

k

and ;

k

, k = 1; 2 respectively.

We retain the notion of an lI-consistent relation as before. We can now de�ne

a weak notion of equivalence ' between transition systems. We �rst begin with the

�-indexed versions of '.

De�nition5.5. '

�

= f'

'

j ' 2 �g is the largest �-indexed family of symmetric

relations on S

1

� S

2

satisfying:

If s

1

'

'

s

2

then

{ 8(s

1

; e

1

; s

0

1

) 2)

1

: 9(s

2

; e

2

; s

0

2

) 2)

2

such that ' [f(e

1

; e

2

)g 2 � and

s

0

1

'

'[f(e

1

;e

2

)g

s

0

2

.

{ 8(s

1

; s

0

1

) 2 ;

1

: 9(s

2

; s

0

2

) 2 ;

2

such that s

0

1

'

'

s

0

2

.

Once again we say that ATS

1

' ATS

2

i� i

1

'

;

i

2

. It can be veri�ed that ' is

an equivalence relation on Act

�

-labelled asynchronous transition systems.

The induced weak equivalence ' on process terms is closely related to the no-

tion of location equivalence de�ned by Boudol et al [5]. Aceto [1] has provided an

alternative characterization of this equivalence for a sublanguage where processes

are viewed as \networks" of sequential components|i.e. parallel composition is re-

stricted to the top level.

It is not hard to see that by restricting our language to a language like the one

Aceto considers, our de�nition of ' coincides with his notion of location equivalence,

and hence, with the notion of Boudol et al. In fact, we believe that this is true for

the entire language we consider. Let �

l

denote the location equivalence of [5].

340

Conjecture. 8P; P

0

2 Proc: LTS(P) ' LTS(P

0

) i� P �

l

P

0

.

6 Discussion

In this paper, we have described how to provide a semantics for CCS in terms of ele-

mentary asynchronous transition systems which is close to the standard operational

semantics for CCS. By appealing to the coreection between this class of transition

systems and 1-safe Petri nets established in [15], we obtain as a corollary a Petri net

semantics for the language we consider.

Admittedly, the language we consider is not full CCS. However, as we have al-

ready mentioned, we believe that the language studied here is a powerful and useful

subset of CCS which is su�cient for specifying most concurrent systems of interest.

We feel that the bene�ts that we obtain by restricting the syntax more than justify

the choice we have made.

For one, we use a very straightforward extension of the standard operational

semantics. To actually read o� the events of the transition system and the indepen-

dence relation on the events from our operational semantics is trivial. Having proved

here once and for all that the resulting asynchronous transition system is elementary,

we can be sure that we are working with a \nice" object. So, for instance, feeding our

operational description of a term into a veri�cation tool should be no more di�cult

than feeding the standard interleaved description of the term.

It may appear that our semantics is but a special case of, say, the proved tran-

sition approach of [3]. However, if we derive an asynchronous transition system

describing a term P in our language using their semantics, with the independence

relation given by their concurrency relation on proofs, the resulting transition system

is not necessarily elementary.

In comparison with the approaches of [3, 8], our semantics is simple in the sense

that labels on transitions directly yield the underlying events of the system, without

resorting to a second level of reasoning about the transitions.

In the approaches which directly yield a Petri net semantics [3, 6, 13], for every

term P one has to �rst construct a \concrete" implementation of a net describing

the behaviour of P and then work back to recover the global states, because one

typically needs to reason about the global states of the system. Instead, we directly

provide the global states and, through the independence relation, provide a means

of recovering the local states if they are required.

The fact that the traditional interleaved transition system for a process P can

be folded onto the asynchronous transition system LTS(P) assigned by our seman-

tics means that our approach yields a tractable system whenever the conventional

approach would.

Another interesting feature of our semantics is that the independence relation on

events directly reects the idea of events occurring at independent locations. This

seems to be a very natural way to think about independence. We feel that it would

be di�cult to extend this idea in a straightforward way to the full language.

In this paper, we have also introduced a notion of bisimulation over labelled asyn-

chronous transition systems which preserves independence along individual runs.

This permits us to equip our language with a simple notion of equivalence which

341

respects the non-interleaved nature of our semantics and yet abstracts away from

the concrete syntax. This is a feature which has been lacking in earlier approaches

to providing a non-interleaved semantics for CCS.

It is clear that there is a close connection between the equivalence we de�ne and

the location equivalence of [5]. The equivalence de�ned in [5] is based on a transition

system which is in�nitely branching, even for the simplest of process terms. If our

conjecture that the two equivalences coincide is true, then we would have an e�ective

way of checking location equivalence for a very large class of CCS processes.

An issue which is yet to be resolved is how best to de�ne bisimulations over

asynchronous transition systems. We believe that our approach reects the right

intuition. However, we would be happier with a more \global" de�nition of how to

relate two systems, rather than the incremental de�nition we have provided here,

which makes is rather clumsy to actually present a bisimulation (as in Example 5.1).

Acknowledgment

We have bene�ted greatly from many discussions with P.S. Thiagarajan.

References

1. L. Aceto: A static view of localities, Report 1483, INRIA, Sophia-Antipolis (1991).

2. M.A. Bednarczyk: Categories of asynchronous systems, PhD Thesis, Report 1/88, Com-

puter Science, University of Sussex (1988).

3. G. Boudol, I. Castellani: Three equivalent semantics for CCS, Springer LNCS 469,

96{141 (1990).

4. G. Boudol, I. Castellani, M. Hennessy, A. Kiehn: Observing localities, Springer LNCS

520, 93{102 (1991).

5. G. Boudol, I. Castellani, M. Hennessy, A. Kiehn: A theory of processes with localities,

Report 1632, INRIA, Sophia-Antipolis (1992)

6. P. Degano, R. de Nicola, U Montanari: A distributed operational semantics for CCS

based on Condition/Event systems, Acta Informatica, 26, 59{91 (1988).

7. A. Ehrenfeucht, G. Rozenberg: Partial 2-structures; Part II: State spaces of concurrent

systems, Acta Informatica, 27, 348-368 (1990).

8. G.L. Ferrari, U. Montanari: Towards the uni�cation of models for concurrency, Springer

LNCS 431, 162-176 (1990).

9. R. Milner: Communication and Concurrency, Prentice-Hall, London (1989).

10. M. Mukund: Transition system models for concurrency, Report DAIMI-PB-399, Com-

puter Science Department, Aarhus University, Aarhus, Denmark (1992).

11. M. Mukund, M. Nielsen: CCS, locations and asynchronous transition systems, Report

DAIMI-PB-395, Computer Science Department, Aarhus University, Aarhus, Denmark

(1992).

12. M. Nielsen, G. Rozenberg, P.S. Thiagarajan: Elementary transition systems, Theoret-

ical Computer Science, 96, 1, 3{33 (1992).

13. E.-R. Olderog: Nets, Terms and Formulas, Cambridge University Press, Cambridge

(1991).

14. M.W. Shields: Concurrent machines, Computer Journal, 28, 449{465 (1985).

15. G. Winskel, M. Nielsen: Models for concurrency, (to appear in S. Abramsky,

D.M. Gabbay, T.S.E. Maibaum eds. Handbook of Logic in Computer Science).

