
Generic verification of security protocols

Sahid Abdul Khan, Madhavan Mukund and S. P. Suresh

Chennai Mathematical Institute,
92 G.N. Chetty Road, T.Nagar, Chennai 600 017, India.

E-mail: {sahid,madhavan,spsuresh}@cmi.ac.in

Abstract. Security protocols are notoriously difficult to debug. One ap-
proach to the automatic verification of security protocols with a bounded
set of agents uses logic programming with analysis and synthesis rules
to describe how the attacker gains information and constructs new mes-
sages.

We propose a generic approach to verifying security protocols in
Spin. The dynamic process creation mechanism of Spin is used to non-
deterministically create different combinations of role instantiations. We
incorporate the synthesis and analysis features of the logic programming
approach to describe how the intruder learns information and replays it
back into the system. We formulate a generic “loss of secrecy” property
that is flagged whenever the intruder learns private information from an
intercepted message. We also describe a simplification of the Dolev-Yao
attacker model that suffices to analyze secrecy properties.

1 Introduction

1.1 Background

Security protocols are specifications of communication patterns which are in-
tended to let agents share secrets over a public network. They are required to
perform correctly even in the presence of malicious intruders who listen to the
message exchanges that happen over the network and also manipulate the system
(by blocking or forging messages, for instance). Obvious correctness requirements
include secrecy: an intruder cannot read the contents of a message intended for
others, and authenticity: if B receives a message that appears to be from agent
A and intended for B, then A indeed sent the same message intended for B in
the recent past.

The presence of intruders necessitates the use of encrypted communication. A
wide variety of cryptographic primitives – some of whose development involves
quite sophisticated number theory – is an essential part of the protocol designer’s
toolkit. But it has been widely acknowledged that even the use of the most
perfect cryptographic tools does not always ensure the desired security goals.
(See [AN95] for an illuminating account.) This situation arises primarily because
of logical flaws in the design of protocols.

Quite often, protocols are designed with features like ease of use, efficiency
etc. in mind, in addition to some notion of security. For instance, if every message

of a protocol were signed in the sender’s name and then encrypted with the
receiver’s public key, it appears as if a lot of the known security flaws do not
occur. But it is not usual for every message of a protocol to be signed. This could
either be for reasons of efficiency or because frequent use of certain long-term
keys might increase the chance of their being broken using cryptanalysis. Great
care needs to be exercised in such situations. The following example protocol
highlights some of the important issues nicely. It is based on a protocol designed
by Needham and Schroeder ([NS78]) and is aimed at allowing two agents A and
B to exchange two independent, secret numbers. It uses public-key encryption
but does not require agents to sign their messages.

Msg 1. A → B : {x, A}pubk
B

Msg 2. B → A : {x, y}pubk
A

Msg 3. A → B : {y}pubk
B

Here pubkA and pubkB are the public keys of A and B, respectively, and {x}k is
the notation used to denote x encrypted using key k. In the protocol, x and y are
assumed to be newly generated, unguessable (with high probability, of course!),
previously unused numbers, also called nonces (nonce stands for “number once
used”). In message 2, B includes A’s nonce. On seeing it A is assured that B

has received message 1, since only B can decrypt the first message and use x in
a later message. Similarly on receipt of the third message, B is assured of A’s
receipt of y.

At the end of a session of the protocol, both A and B share the secrets x

and y and both also know that the other agent knows x and y. But it has been
shown ([Low96]) that x and y are not necessarily known only to A and B. (Such
a property needs to be satisfied if we want to use a combination of x and y as a
key shared between A and B, for example.) The attack (called Lowe’s attack) is
given below:

Msg α.1. A → I : {x, A}pubk
I

Msg β.1. (I)A → B : {x, A}pubk
B

Msg β.2. B → (I)A : {x, y}pubk
A

Msg α.2. I → A : {x, y}pubk
A

Msg α.3. A → I : {y}pubk
I

Msg β.3. (I)A → B : {y}pubk
B

In the above attack, (I)A→B :m means that the intruder is sending message
m to B in A’s name, whereas A→(I)B :m means that the intruder is blocking
a message sent by A intended for B. The above attack consists of two parallel
sessions of the protocol, one (whose messages are labelled with α) involving A as
the initiator and I as responder, and the other (whose messages are labelled with
β) involving I (in A’s name) as the initiator and B as the responder. (This shows
that the names A, B, x and y mentioned in the protocol specification are just
placeholders or abstract names, which can be concretely instantiated in different
ways when the protocol is run. So according to A and B, they have just had a
normal protocol session with I and A, respectively. But I knows better!) After

2

the fifth message above, the intruder gets to know y which is the secret generated
by B in a session with someone whom B believes to be A. This shows that the
protocol does not satisfy the following property: whenever an agent B engages
in a session of the protocol as a responder and B believes that the initiator is
A, then the secret generated by B is known only to A and B. The seriousness of
this flaw depends on the kinds of use the protocol is put to. It is worth noting
that this attack does not depend on weaknesses of the underlying encryption
mechanism (nor even on some keys being guessed by chance). It is also worth
noting that this attack on the (simple enough) Needham-Schroeder protocol was
discovered seventeen years after the original protocol was proposed. [Low96] also
suggests a fix for the protocol:

Msg 1. A → B : {x, A}pubk
B

Msg 2. B → A : {x, y, B}pubk
A

Msg 3. A → B : {y}pubk
B

It is easy to see that the above attack does not happen anymore, but that still
doesn’t prove that the protocol does not have any vulnerabilities.

The above discussion illustrates the pitfalls in security protocol design, and
also highlights the need for a systematic approach to protocol design and anal-
ysis. There are two possible approaches:

– Development of a design methodology following which we can always gen-
erate provably correct protocols. The work in [AN96], which gives a flavour
of the kinds of useful heuristics which improve protocol design, is a step in
this direction.

– Development of systematic means of analysing protocols for possible design
flaws. The bulk of the work in formal methods for security protocols focuses
on this approach. Here again, there are two possibilities:
• Development of methods for proving the correctness of certain aspects

of protocols.
• Development of systematic methods for finding flaws of those protocols

which are actually flawed.

There has been much work in applying automated theorem proving ([Pau98]
and [Bol97] are some representative papers) and specialised belief logics ([BAN90],
[AT91], [GNY90], [SC01] is a sampling of the literature) to prove properties of
protocols.

In this paper, we describe our experiments with applying the Spin model-
checking tool to verify security protocols. The outline of the paper is as follows.
In the rest of this section, we discuss the issues which arise in model checking
security protocols, and also set our work in the context of other research in
this area. In Section 2, we develop a formal model for security protocols. In the
next section, we give a high-level description of how we verify security proto-
cols in Spin, using the Needham-Schroeder protocol as a running example. Our
approach makes use of some new observations about the properties required of
the intruder. We formally justify our assumptions in Section 4. The final sec-
tion summarizes the work and discusses future directions. In an Appendix, we
provide our Promela code for modelling the Needham-Schroeder protocol.

3

1.2 Model checking security protocols

Much of the literature in formal methods for security protocols is devoted to
methods for detecting flaws in protocols using the model checking approach –
[Low96], [LR97], [MMS97], [Sch96], and [Sch97] is a representative sample. This
approach has enjoyed great success in unearthing bugs in many protocols – long
after the protocols had been put into use, in some cases. [CJ97] is a good reference
for the many attacks which have been uncovered by formal verification tools.

Model checking security protocols is particular challenging. Unlike many
other communication protocols, the actual data which is transferred in the mes-
sage exchanges is also of importance in security protocols. For instance, in the
Needham-Schroeder protocol, the nonce which B receives in the third message
should be the same as the one it sent in the second message. But that is not all.
The names A, B, n which occur in the protocol descriptions are placeholders.
During a run of the protocol, they will be instantiated with concrete agent names
like sahid, madhavan, spsuresh, etc., and concrete nonces. Further there may
be many instantiations of the same roles occurring in one run of a protocol.

Technically speaking, we are dealing with infinite state systems and even
simple problems like reachability are undecidable in various general settings.
(See [DLMS99], [ALV02], [Sur03], among others, for more details.) Therefore we
impose various external bounds, mainly on the number of different sessions or
plays (instantiations of roles) that occur in each run of the protocol. But even
then, there is a nontrivial amount of data manipulation involved, and the state
space can be huge even when we consider a small number of sessions in each run.
We attempt to master this complexity by looking at a generic secrecy property,
and by observing the intruder structure can be considerably simplified when we
search for a violation of this property.

Spin has been successfully used in model checking security protocols ([MS02]).
There are also reports of the use of other general purpose model checkers like
Murϕ to verify security protocols ([MMS97]). Many attacks have been success-
fully discovered and rediscovered by these tools. But the reports in the literature
either do not elaborate much on the details of the intruder model, or present an
intruder which is designed with a particular attack in mind. Our work is char-
acterised by a very simple, yet general intruder model, which helps us discover
all breaches of a particular simple kind of generic secrecy property efficiently.

In particular, we allow our intruder to listen in on all the messages commu-
nicated over all the channels in the network, construct arbitrary messages out
of learn messages (using the message analysis and synthesis rules which are de-
scribed in a later section), and at any point of time, send a constructed message
to the appropriate agent under anyone’s identity. But unlike the general Dolev-
Yao intruder, we do not allow our intruder to decrypt messages seen earlier using
keys learnt later. This considerably simplifies the Promela code for the intruder.

There has been a lot of work based on logic programming that has been
reported in the literature ([BP03], [MS01] and [DMTY97], for instance). To
each protocol specification is associated a set of Horn clauses whose variables
correspond to the variables occurring in the protocol specification. The negation

4

of the desired security property is encoded as a goal formula, and one attempts to
derive the formula using the clauses. In the course of a derivation, the variables
are instantiated with concrete terms. These roughly correspond to spawning
different sessions of the roles of the protocols, with different instantiations for
the nonces and other secrets. It is proved that there is a proof of the goal if and
only if there is a run of the protocol which constitutes a breach of the security
property.

We feel that the model checking approach offers two advantages over the logic
programming approach. Firstly, in the logic programming approach, extracting
the counterexample run from a proof of the goal is not always a straightforward
matter, whereas the Spin model checker readily provides us with the counterex-
ample run when it detects a violation of the desired property. Secondly, if the
model checker doesn’t report an error, we know that there is no attack on the
protocol within the bounds set on the parameters. On the other hand, with
the logic programming approach, there is no easy way of directly bounding the
number of sessions in each run of the protocol.

2 A formal model for security protocols

In this section we present a formal model for security protocols, which includes
a description of the Dolev-Yao intruder [DY83]. Our presentation is necessarily
brief. A more detailed presentation can be found in [RS05]. We then formalise
the simplified intruder of the Promela model presented in the previous section,
and prove that for the generic secrecy property we are considering, the simplified
intruder is as powerful as the Dolev-Yao intruder.

We start with a (potentially infinite) set of agents Ag, which includes the
intruder I and the others, who are called honest agents. We also start with a set
of keys K which includes long-term public, private, and shared keys, as well as
temporary session keys. For every key k, we denote by k its inverse. Public keys
and their corresponding private keys are inverses of each other, while shared keys
are their own inverses. We also assume an initial distribution of long-term keys
(for example, A has his private key, everyone’s public key, and a shared key with
everyone else) which is common knowledge. The set of keys known to A initially
is denoted KA. We also assume a countable set of nonces N . T0, the set of basic
terms, is defined to be K ∪ N ∪ Ag. The set of information terms is defined to
be

T ::= m | (t1, t2) | {t}k

where m ranges over T0 and k ranges over K. These are the terms used in the
message exchanges below. We use the standard notion of subterms of a term to
define ST (t) for every term t.

We model communication between agents by actions. An action is either a
send action of the form A!B: (M)t or a receive action of the form A?B:t. Here A

and B are distinct agents, A is honest; and M denotes the set of nonces and keys
occurring in t which have been freshly generated during this (send) action. We
define term(A!B: (M)t) and term(A?B:t) to be t. The agent B is (merely) the

5

intended receiver in A!B: (M)t and the purported sender in A?B:t. As we will see
later, every send action is an instantaneous receive by the intruder, and similarly,
every receive action is an instantaneous send by the intruder.

Definition 1 A protocol is a pair Pr = (C, R) where C ⊆ T0 is the set of
constants of Pr (intended to have a fixed interpretation in all runs of Pr, unlike
fresh nonces and keys); and R, the set of roles of Pr, is a finite nonempty subset
of Ac+ each of whose elements is a sequence of A-actions for some honest agent
A.

The semantics of a protocol is given by the set of all its runs. A run is
got by instantiating each role of the protocol in an appropriate manner, and
forming admissible interleavings of such instantiations. We present the relevant
definitions below.

An information state s is a tuple (sA)A∈Ag where sA ⊆ T for each agent A.
S denotes the set of all information states. Given a protocol Pr = (C, R), init(Pr),
the initial state of Pr is defined to be (C ∪ KA)A∈Ag .

A substitution σ is a partial map from T0 to T such that for all A ∈ Ag, if
σ(A) is defined then it belongs to Ag, for all n ∈ N , if σ(n) is defined then it
belongs to N , and for all k ∈ K, if σ(k) is defined then it belongs to K. The
definition is generalised to arbitrary terms in the usual manner.

The notion of information state that we use is very rudimentary. In general,
a control state would include more detail like the number of current sessions
each agent is involved in, how far it has progressed in each of them, and so on.
For technical ease, we code up these details in the form of events. An event of
a protocol Pr is a triple (η, σ, lp) such that η is a role of Pr, σ is a substitution,
and 1 ≤ lp ≤ |η|. The set of all events of Pr is denoted Events(Pr). For an event

e = (η, σ, lp) with η = a1 · · · a`, act(e)
def
= σ(alp) and term(e) = term(act(e)).

If lp < |η| then (η, σ, lp) →` (η, σ, lp + 1). For any event e, LP(e), the local past

of e, is defined to be the set of all events e′ such that e′
+
→`e.

We intend a run of a protocol to be an admissible sequence of events. A very
important ingredient of the admissibility criterion is the enabling of events given
a particular information state. To treat this formally, we need to define how
the agents (particularly the intruder) can build new messages from old. This is
formalised by the notion synth and analz derivations.

Definition 2 A sequent is of the form T ` t where T ⊆ T and t ∈ T .
An analz-proof (synth-proof) π of T ` t is an inverted tree whose nodes

are labelled by sequents and connected by one of the analz-rules (synth-rules) in
Figure 1, whose root is labelled T ` t, and whose leaves are labelled by instances
of the Axa rule (Axs rule). For a set of terms T , analz(T) (synth(T)) is the set
of terms t such that there is an analz-proof (synth-proof) of T ` t. For ease of
notation, synth(analz(T)) is denoted by T .

Definition 3 The notions of an action enabled at a state and update of a state
on an action are defined as follows:

6

Axa

T ∪ {t} ` t

T ` (t1, t2)
split

i
(i = 1, 2)

T ` ti

T ` {t}k T ` k
decrypt

T ` t

analz-rules

Axs

T ∪ {t} ` t

T ` t1 T ` t2
pair

T ` (t1, t2)

T ` t T ` k encrypt
T ` {t}k

synth-rules

Fig. 1. analz and synth rules.

– A!B: (M)t is enabled at s iff t ∈ sA ∪ M .

– A?B:t is enabled at s iff t ∈ sI .

– update(s, A!B: (M)t)
def
= s′ where s′A = sA ∪ M , s′I = sI ∪ {t}, and for all

agents C distinct from A and I, s′C = sC .

– update(s, A?B:t)
def
= s′ where s′A = sA ∪ {t} and for all agents C distinct

from A, s′C = sC .

Definition 4 Given a protocol Pr and a sequence ξ = e1 · · · ek of events of Pr,
infstate(ξ) is defined to be update(init(Pr), act(e1) · · · act(ek)). An event e is said
to be enabled at ξ iff LP(e) ⊆ {e1, . . . , ek} and act(e) is enabled at infstate(ξ).

Definition 5 Given a protocol Pr, a sequence ξ = e1 · · · ek of events of Pr is
said to be a run of Pr iff:

– for all i : 1 ≤ i ≤ k, ei is enabled at e1 · · · ei−1,

– for all i : 1 ≤ i ≤ k, NT (ei) ∩ ST (init(Pr)) = ∅, and for all i < j ≤ k,
NT (ei) ∩NT (ej) = ∅. (This is the unique origination property of runs.)

We denote the set of runs of Pr by R(Pr).

In using the model checker, we typically consider runs of Pr which involve a
bounded number of instantiations of roles.

Definition 6 An atomic term m is secret at a state s if m ∈ analz(sA)\analz(sI)
for some A ∈ Ag – it is known to some honest agent but not to the intruder.
Given a protocol Pr, and a run ξ of Pr, m is secret at ξ if it is secret at infstate(ξ).
A run is said to be leaky if some atomic term m is secret at a prefix of ξ but not
secret at ξ.

The secrecy problem is the problem of verifying whether a given protocol Pr

has a leaky run.

7

3 Protocol verification using Spin

The general approach to verifying security protocols in model-checking tools is
by now standard, and amounts to two major steps.

– Formalize the protocol.

– Formalize the behaviour of the intruder.

Our aim is to propose a methodology to achieve these two steps in a manner
that can be automated, given a reasonable description of the protocol.

3.1 Formalization of the protocol

As we have seen, a protocol can be described as a pattern of messages exchanged
between participants playing specified roles. Each role is easily described as a
proctype in Spin. What is difficult to formalize is the choice in the way these
roles are instantiated in order to find flaws in the protocol.

In our approach, each role instantiation corresponds to a fresh instance of the
given proctype. To account for the fact that the same agent may play multiple
roles, when a proctype is instantiated we also provide it with an integer identity.
The intruder has a fixed identity, 1.

In the init process, we construct at least one instance of each proctype. We
then, nondeterministically, construct multiple instances of proctypes to model
arbitrary configurations. For instance, in our model of the Needham-Schroeder
protocol, procI, procA and procB are the proctypes for the roles intruder, role
A and role B, respectively. The code in Figure 2 constructs one instance of each
proctype and then upto KEY_MAX more instances, each of which is either procA

or procB.

We also have to model nonces. Rather than deal with them symbolically, as
in done, for example, in [MS02], we use a shared global integer used_nonce.
Whenever a process requires a nonce, it increments this global variable and uses
the corresponding value. Since protocols are usually very short and we only use
a limited number of instantiations of each role, we can safely define used_nonce

as byte without running out of fresh nonces.

Public keys are implicitly identified with the identity of the agent. Thus, the
public key of agent i is just i. Similarly, shared keys can be encoded using a pair
of agent identities.

We use an array of proc_chan of synchronous Spin channels to model the
actual channels in the system. Each instance of a role with identity i reads
messages on channel proc_chan[i]. As we shall see, we allow the intruder to
read messages on every channel proc_chan[i]. We could also use a model in
which messages are always routed via the intruder, in which case we need to
include the identity of the recipient in each message.

8

init {

byte j = 3;

run procI(1); run procA(2); run procB(3);

do /* create more processes nondeterministically */

:: break;

:: j++;

if

:: (j >= KEY_MAX) -> break;

:: else -> if

:: run procA(j);

:: run procB(j);

fi;

fi;

od;

}

Fig. 2. Nondeterministic instantiation of roles

3.2 Formalization of the intruder

The Dolev-Yao intruder model can be modelled by a process that repeatedly
performs the following steps:

– Nondeterministically intercept a message on some channel and update its
information.

– Nondeterministically generate a message on some channel using known in-
formation.

The intruder updates its information using analz rules and generates fresh
messages using synth rules. In general, analz rules involve breaking up a mes-
sage into its constituent parts, storing all the parts and decrypting previously
stored messages using newly acquired keys. In the context of the secrecy prob-
lem described in the previous section, it suffices to use a simplified version of
the Dolev-Yao intruder model in which the intruder never needs to use newly
learned keys to decrypt previously stored messages. In effect, the analz phase
consists of just breaking up the current message into its constituent parts and
decrypting any encrypted component for which the intruder already possesses
the decryption key.

Recall that we model nonces and keys using integers. We can thus model the
information that the intruder knows using a boolean array indexed by integers
(or pairs of integers). Whenever the intruder intercepts a message, the analz rules
determine how these arrays are updated.

We also need to record stored messages. One approach would be to have a
boolean array indexed by all combinations of message contents, where an entry
is true whenever the corresponding message has been seen by the intruder.

9

However, since we are looking at a limited number of interleavings of relatively
short sequences of messages, it is more efficient to just maintain a list of stored
messages in an array.

Generating a message amounts to nondeterministically choosing a recipient,
a message type and populating each field in the corresponding message with
some known information of the appropriate type. Alternatively, the intruder
could simply replay an entire stored message.

3.3 Formalization of the secrecy property

Recall that a secret is formally defined as information that is introduced during
the run of the protocol by an honest agent but which is not known to the intruder
at the time of its introduction. A secret leaks if it is intercepted by the intruder
after having been sent by its originator to some other honest agent in the system.

We could also consider situations in which the secret leaks directly to the
intruder. For instance, A could generate a nonce nA that is sent unencrypted
and is intercepted by the intruder. We do not consider this to be an unintended
leakage of a secret. It is not difficult to modify our approach to consider such
situations also as leakage of secrets.

Since we keep track of the information that the intruder knows, it is quite
straightforward to flag an error when the intruder learns new information. To
ensure that this meets our definition of when a secret leaks, for each secret
nonce (respectively, key) i, we set the boolean nonce_introduced[i] (respec-
tively, key_introduced[i]) to true when i is first received by any agent. In
the Needham-Schroeder protocol, we are only interested in loss of secrecy for
nonces, so we have the following code to flag loss of secrecy.

inline modifyFlawStatus(k) {

if

:: (nonce_introduced[k] == true) ->

flaw = true;

:: else -> skip;

fi;

}

We can then write a generic verification condition for loss of secrecy in LTL
as !([](!flaw)).

3.4 Some experimental results

The Appendix describes our Promela code for verifying the Needham-Schroeder
protocol. When we ran the code through Spin, it discovered Lowe’s attack,
as shown in Figure 3. Notice that this counterexample only uses the basic 3
processes created initially, even though the Promela code permits the creation
of additional role instantiations.

10

Fig. 3. Lowe’s attack on the Needham-Schroeder protocol, discovered by Spin

We also ran a modified version of this code in which the system necessarily
generated 3 instantiations each of roles A and B. Interestingly, the counterex-
ample reported by Spin corresponds to Lowe’s attack involving the intruder and
the last two copies of A and B, with some irrelevant intervening messages be-
tween the other instances of A and B, as shown in Figure 4. When Spin was
asked to find the shortest counterexample, it found the version of Lowe’s attack
involving just the first three processes.

3.5 Comparison with earlier approaches

Ours is not the first attempt to use Spin to verify protocols. Another attempt
is described in [MS02]. In the earlier approach, instead of using synth and analz

rules to describe the behaviour of the intruder, the intruder is allowed to generate
arbitrary messages. Static analysis is used to limit the intruder’s choices to “use-
ful” messages. Nonces and other data are handled using symbolic names. Finally,
the security property is formulated explicitly, keeping in mind the nature of the
protocol. Though the authors claim that their approach can be automated, all
of these factors appear to indicate the need for manual analysis before invoking
Spin.

In contrast, our approach formulates the intruder and the security property
in a sufficiently generic manner that the Promela code for verifying a protocol
can, in principle, be synthesizes automatically from a suitable description of the
protocol, using a system such as CAPSL or Casper [Low98].

11

Fig. 4. Lowe’s attack with 6 processes

4 A simpler intruder model for secrecy properties

We now formalize the simplified intruder used in our Promela model and prove
that it is as powerful as the Dolev-Yao intruder, as far as violating the secrecy
property of Definition 6 is concerned.

In what follows, for ease of notation, we fix a protocol Pr which has a leaky
run, and fix a leaky run ξ = e1 · · · ek of Pr. For all i : 1 ≤ i ≤ k, we let ti, ξi and
Ti denote term(ei), e1 · · · ei and (infstate(ξi))I , respectively. We let T0 denote
C∪KI . For all i ≤ k, define T ′

i and Ni by induction as follows: T ′

0 = N0 = C∪KI ,
T ′

i+1 = T ′

i ∪ analz({ti+1}∪Ni) and Ni+1 = T ′

i+1 ∩T0. In other words, after every
event ei, the intruder stores the nonces and keys known till now in Ni. As soon
as ei+1 is seen, the keys from Ni are used to decrypt ei+1 and learn more nonces
and keys.

Lemma 7 There is some atomic term n0 which is secret at ξk−1 and which
belongs to Nk. Further, for all i ≤ k, if ei is a receive event then ti ∈ synth(T ′

i).

Proof. Since ξ is a leaky run of shortest length, none of its proper prefixes is a
leaky run and hence it is clear that for all i < k, ξi is not leaky, which means that
none of the terms known to the intruder at the end of ξi is a secret at ξj for any
j < i. In other words, for all i : 1 ≤ i < k and for all m ∈ analz(Ti) \ analz(Ti−1),
m 6∈ C, m 6∈ KA for any A ∈ Ag, and m 6∈ ST (tj) for any j < i.

12

Let m0 be a secret at ξk−1 which belongs to analz(Tk) (and, of course, does
not belong to analz(Tk−1)). Let π be an analz-proof of Tk ` m0, such that for all
subproofs π1 of π, if Tk ` t labels the root of π1 and t ∈ analz(Ti) \ analz(Ti−1)
for some i ≤ k, then all the leaves of π1 are labelled only by terms tj for j ≤ i.
Let $ be a subproof of π whose root is labelled Ti ` n0 for some n0 which is
secret at ξk−1, and such that none of the terms labelling the nonroot nodes of
$ is a secret at ξk−1.

We now prove by induction on the structure of $ the claim that for all terms
t labelling a node of $, t ∈ T ′

i for the least i such that t ∈ analz(Ti). Once
we prove this claim, it immediately follows that n0 ∈ T ′

k and, since n0 ∈ T0,
n0 ∈ Nk. Further let ei be a receive event for some i ≤ k. Then from the
admissibility conditions it is clear that ti ∈ Ti−1 = synth(analz(Ti−1)). But it
is an easy consequence of the claim that analz(Tj) ⊆ T ′

j for all j < k, and it
immediately follows from this that ti ∈ synth(T ′

i−1).

We now turn to the proof of the claim. There are three cases to consider.

– The base case is when t labels a leaf node of $. But this means that there
is some i ≤ k such that t = ti. By our assumption on π, it is clear that
t 6∈ analz(Ti−1). Therefore i is the least number such that t ∈ analz(Ti).
Clearly enough, t ∈ T ′

i as well.

– The other case is when t labels a conclusion of a split rule. Let i be the least
number such that t ∈ analz(Ti). Let t′ label the premise of the rule. Let i′

be the least number such that t′ ∈ analz(Ti′). By our assumptions on π, it
is clear that i′ ≤ i. By the induction hypothesis t′ ∈ T ′

i′ ⊆ T ′

i . From this
another application of the split rule tells us that t ∈ T ′

i .

– The most interesting case is when t labels a conclusion of a decrypt rule. Let
i be the least number such that t ∈ analz(Ti). Clearly {t}k and k label the
premises of the rule, for some key k. Let i′ and i′′ be the least numbers such
that {t}k ∈ analz(Ti′) and k ∈ analz(Ti′′). By our assumptions on π, it is
clear that i′ ≤ i and i′′ ≤ i.

Now it cannot be the case that i′ < i′′. This is because, letting j be the least
number such that k occurs as a subterm of tj , it is easy to see that j ≤ i′,
and {k, k} ⊆ analz((infstate(ξj))A) for some A ∈ Ho. Now, since i′′ is the
least number such that k ∈ analz(Ti′′), this means that k is a secret at ξj ,
which is a contradiction because it labels a nonroot node of $. Therefore
i′′ ≤ i′.

By the induction hypothesis {t}k ∈ T ′

i′ and k ∈ T ′

i′′ . If i′′ < i′, then k

would belong to T ′

i′−1 and hence to Ni′−1 (since k ∈ T0). Then it is easy
to see that t ∈ T ′

i′ ⊆ T ′

i , as desired. On the other hand, if i′ = i′′ then
{{t}k, k} ⊆ analz({ti′}∪Ni′−1), and hence t ∈ analz({ti′}∪Ni′−1) ⊆ T ′

i′ ⊆ T ′

i ,
as desired.

The above lemma shows that whenever a Dolev-Yao intruder captures a
secret, so does an intruder that does not decrypt earlier messages using keys it
has learnt later. This justifies the intruder model of Section 3.

13

5 Conclusion

We have described an approach for generic verification of secrecy properties
of security protocols using Spin. For some protocols, correctness is described
in terms of authentication rather than secrecy. We do not yet have a uniform
method for describing authentication properities in our framework. We have
also not yet embarked on the ambitious programme of writing a compiler from
a specification language such as CAPSL into Spin to automatically generate
verification models for arbitrary protocols.

References

[ALV02] Roberto M. Amadio, Denis Lugiez, and Vincent Vanackère. On the symbolic
reduction of processes with cryptographic functions. Theoretical Computer
Science, 290(1):695–740, 2002.

[AN95] Ross Anderson and Roger M. Needham. Programming Satan’s computer.
In Computer Science Today, volume 1000 of Lecture Notes in Computer
Science, pages 426–441, 1995.

[AN96] Martin Abadi and Roger M. Needham. Prudent engineering practices for
cryptographic protocols. IEEE Transactions on Software Engineering, 22:6–
15, 1996.

[AT91] Martin Abadi and Mark Tuttle. A Semantics fo a Logic of Authentica-
tion. In Proceedings of the 10th ACM Annual Symposium on Principles of
Distributed Computing, pages 201–216, Aug 1991.

[BAN90] Michael Burrows, Martin Abadi, and Roger M. Needham. A logic of au-
thentication. ACM Transactions on Computer Systems, 8(1):18–36, Feb
1990.

[Bol97] Dominique Bolignano. Towards a mechanization of cryptographic protocol
verification. In Proceedings of CAV’97, volume 1254 of Lecture Notes in
Computer Science, pages 131–142, 1997.

[BP03] Bruno Blanchet and Andreas Podelski. Verification of Cryptographic Proto-
cols: Tagging Enforces Termination. In Andrew D. Gordon, editor, Proceed-
ings of FoSSaCS’03, volume 2620 of Lecture Notes in Computer Science,
pages 136–152, 2003.

[CJ97] John Clark and Jeremy Jacob. A survey of authentication protocol liter-
ature. Electronic version available at http://www.cs.york.ac.uk./∼jac,
1997.

[DLMS99] Nancy A. Durgin, Patrick D. Lincoln, John C. Mitchell, and Andre Scedrov.
The undecidability of bounded security protocols. In Proceedings of the
Workshop on Formal Methods and Security Protocols (FMSP’99), 1999.

[DMTY97] Mourad Debbabi, Mohamed Mejri, Nadia Tawbi, and Imed Yahmadi. For-
mal automatic verification of authentication protocols. In Proceedings of
the First IEEE International Conference on Formal Engineering Methods
(ICFEM97). IEEE Press, 1997.

[DY83] Danny Dolev and Andrew Yao. On the Security of public-key protocols.
IEEE Transactions on Information Theory, 29:198–208, 1983.

[GNY90] Li Gong, Roger Needham, and Raphael Yahalom. Reasoning About Belief
in Cryptographic Protocols. In Deborah Cooper and Teresa Lunt, editors,
Proceedings 1990 IEEE Symposium on Research in Security and Privacy,
pages 234–248. IEEE Computer Society, 1990.

14

[Low96] Gavin Lowe. Breaking and fixing the Needham-Schroeder public key proto-
col using FDR. In Proceedings of TACAS’96, volume 1055 of Lecture Notes
in Computer Science, pages 147–166, 1996.

[Low98] Gavin Lowe. Casper: A compiler for the analysis of security protocols.
Journal of computer security, 6:53–84, 1998.

[LR97] Gavin Lowe and Bill Roscoe. Using CSP to detect errors in the TMN pro-
tocol. IEEE Transactions of Software Engineering, 23(10):659–669, 1997.

[MMS97] John C. Mitchell, Mark Mitchell, and Ulrich Stern. Automated analysis of
cryptographic protocols using Murϕ. In Proceedings of the IEEE Sympo-
sium on Security and Privacy, pages 141–153, 1997.

[MS01] Jonathan K. Millen and Vitaly Shmatikov. Constraint solving for bounded-
process cryptographic protocol analysis. In ACM Conference on Computer
and Communications Security, pages 166–175, 2001.

[MS02] P. Maggi and R. Sisto. Using SPIN to Verify Security Protocols. In Pro-
ceedings of the 9th International SPIN Workshop on Model Checking of
Software, number 2318 in Lecture Notes in Computer Science, pages 187–
204, 2002.

[NS78] Roger M. Needham and Michael D. Schroeder. Using Encryption for Au-
thentication in Large Networks of Computers. Communications of the
ACM, 21(12):993–999, 1978.

[Pau98] Lawrence C. Paulson. The inductive approach to verifying cryptographic
protocols. Journal of computer security, 6:85–128, 1998.

[RS05] R. Ramanujam and S.P.Suresh. Decidability of context-explicit security
protocols. Journal of Computer Security, 13(1):135–165, 2005.

[SC01] Paul F. Syverson and Iliano Cervesato. The logic of authentication pro-
tocols. In Ricardo Focardi and Roberto Gorrieri, editors, Foundations of
Security Analysis and Design, volume 2171 of Lecture Notes in Computer
Science, pages 63–106, 2001.

[Sch96] Steve Schneider. Security properties and CSP. In Proceedings of the IEEE
Computer Society Symposium on Security and Privacy, 1996.

[Sch97] Steve Schneider. Verifying authentication protocols with CSP. In Proceed-
ings of the 10th IEEE Computer Security Foundations Workshop, 1997.

[Sur03] S.P. Suresh. Foundations of Security Protocol Analysis. PhD thesis, The In-
stitute of Mathematical Sciences, Chennai, India, November 2003. Madras
University. Available at http://www.cmi.ac.in/∼spsuresh.

15

A Promela model of the Needham-Schroeder protocol

#define NONCE_MAX 8

#define KEY_MAX 8

#define STORE_MAX 10

mtype {msg1, msg2, msg3};

byte used_nonce = 1, used_key = 1, s_ptr;

typedef Crypt {

byte key;

byte info1;

byte info2;

};

typedef stored_data {

mtype msg_type;

Crypt data;

}

stored_data stored_mesg[STORE_MAX];

typedef channel {

chan C = [0] of { mtype, /* message type */

bool, /* is it sent by intruder? */

Crypt };

};

channel proc_chan[KEY_MAX];

bool known_nonce[NONCE_MAX], known_key[KEY_MAX];

bool nonce_introduced[NONCE_MAX];

bool flaw; /* security property */

/* nondeterministically chooses a known nonce */

inline chooseNonce(nonce) {

nonce = 1;

do

:: (known_nonce[nonce] == true) ->

break;

:: nonce++;

if

:: (nonce >= NONCE_MAX) ->

nonce = 1; /* to ensure nonce has a sensible value */

break;

:: else -> skip;

fi;

16

od;

}

/* nondeterministically chooses a running process */

inline getAValidProcess(i) {

i = 1;

do /* choose the process to send the message */

:: break;

:: i++;

if

:: (i == KEY_MAX - 1) ->

break;

:: else -> skip;

fi;

od;

}

inline modifyFlawStatus(k) {

if

:: (nonce_introduced[k] == true) ->

flaw = true;

:: else -> skip;

fi;

}

inline replayMessage() {

i = 0;

do

:: (i > s_ptr) -> break;

:: else ->

if

:: (1) ->

msg = stored_mesg[i].msg_type;

data.key = stored_mesg[i].data.key;

data.info1 = stored_mesg[i].data.info1;

data.info2 = stored_mesg[i].data.info2;

getAValidProcess(i);

proc_chan[i].C!msg(true, data);

break;

:: skip;

fi;

i++;

od;

17

}

init {

byte j;

run procI(1);

run procA(2);

run procB(3);

j = 3;

do /* create processes nondeterministically */

:: break;

:: j++;

if

:: (j >= KEY_MAX) ->

break;

:: else ->

if

:: run procA(j);

:: run procB(j);

fi;

fi;

od;

}

proctype procA(int agent_id) {

byte my_nonce, recvd_nonce;

byte i = 1;

chan my_chan = proc_chan[_pid].C;

chan p_chan;

Crypt data;

atomic {

getAValidProcess(i); /* choose the partner */

p_chan = proc_chan[i].C;

used_nonce++;

my_nonce = used_nonce;

data.key = i; data.info1 = _pid; data.info2 = my_nonce;

p_chan!msg1(false, data); /* 0 to signify that it is not sent by intruder proc */

18

}

my_chan?msg2(_, data);

do /* if unexpected message go to infinite loop */

:: ((data.key == _pid) && (data.info1 == my_nonce)) -> break;

od;

atomic {

recvd_nonce = data.info2;

nonce_introduced[recvd_nonce] = true;

data.key = i; data.info1 = recvd_nonce;

p_chan!msg3(false, data);

}

}

/* Process B */

proctype procB(int agent_id) {

byte partner, p_nonce, my_nonce;

chan my_chan = proc_chan[_pid].C;

chan p_chan;

Crypt data;

my_chan?msg1(_, data);

do /* if unexpected message go to infinite loop */

:: (data.key == _pid) -> break;

od;

atomic {

partner = data.info1; p_nonce = data.info2;

nonce_introduced[p_nonce] = true;

p_chan = proc_chan[partner].C;

used_nonce++;

my_nonce = used_nonce;

data.key = partner; data.info1 = p_nonce; data.info2 = my_nonce;

p_chan!msg2(false, data);

}

my_chan?msg3(_, data);

do /* if unexpected message go to infinite loop */

:: ((data.key == _pid) && (data.info1 == my_nonce)) -> break;

od;

19

}

/* Intruder Process */

proctype procI(int agent_id) {

mtype msg;

chan temp_chan;

Crypt data;

byte i, j, k, nonce;

atomic {

known_nonce[1] = true; /* nonce 1 is for the intruder */

known_key[1] = true;

}

do

:: /* intercept a message */

if /* choose a channel to intercept */

:: proc_chan[1].C?msg(false, data);

:: proc_chan[2].C?msg(false, data);

:: proc_chan[3].C?msg(false, data);

:: proc_chan[4].C?msg(false, data);

:: proc_chan[5].C?msg(false, data);

:: proc_chan[6].C?msg(false, data);

:: proc_chan[7].C?msg(false, data);

fi;

atomic {

if

:: (s_ptr < STORE_MAX) ->

stored_mesg[s_ptr].msg_type = msg;

stored_mesg[s_ptr].data.key = data.key;

stored_mesg[s_ptr].data.info1 = data.info1;

stored_mesg[s_ptr].data.info2 = data.info2;

s_ptr++;

:: else -> skip;

fi;

if

:: (msg == msg1) ->

j = data.info1; k = data.info2;

if /* if possible decrypt */

:: (known_key[data.key]) ->

if

:: (!known_nonce[k]) -> modifyFlawStatus(k);

20

:: else -> skip;

fi;

known_nonce[k] = true;

:: else -> skip;

nonce_introduced[k] = true;

fi;

:: (msg == msg2) ->

j = data.info1; k = data.info2;

if /* if possible decrypt */

:: (known_key[data.key]) ->

if

:: (!known_nonce[j]) ->

modifyFlawStatus(i, j);

:: else -> skip;

fi;

known_nonce[j] = true;

if

:: (!known_nonce[k]) ->

modifyFlawStatus(i, k);

:: else -> skip;

fi;

known_nonce[k] = true;

:: else -> skip;

nonce_introduced[j] = true;

nonce_introduced[k] = true;

fi;

:: (msg == msg3) ->

j = data.info1;

if /* if possible decrypt */

:: (known_key[data.key]) ->

if

:: (!known_nonce[j]) ->

modifyFlawStatus(i, j);

21

:: else -> skip;

fi;

known_nonce[j] = true;

:: else -> skip;

nonce_introduced[j] = true;

fi;

:: else -> skip;

fi;

}

:: /* message replay */

atomic { replayMessage() };

:: atomic { /* synthesize a message */

getAValidProcess(i); /* choose the process to send the message */

temp_chan = proc_chan[i].C; data.key = i;

if

:: /* create a message of type 1 */

chooseNonce(nonce); /* choose the nonce for 1st field */

getAValidProcess(i); /* choose the initiator */

data.info1 = i; data.info2 = nonce;

temp_chan!msg1(true, data);

:: /* create a message of type 2 */

chooseNonce(nonce); /* choose the nonce for 1st field */

data.info1 = nonce;

chooseNonce(nonce); /* choose the nonce for 2nd field */

data.info2 = nonce;

temp_chan!msg2(true, data);

:: /* create a message of type 3 */

chooseNonce(nonce); /* choose the nonce for 1st field */

data.info1 = nonce;

temp_chan!msg3(true, data);

fi;

}

od;

}

22

never { /* !([](!flaw)) */

T0_init:

if

:: ((flaw)) -> goto accept_all

:: (1) -> goto T0_init

fi;

accept_all:

skip

}

23

