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131we can construct a deterministic asynchronous automaton over a distributedalphabet (�; �) recognizing the same language, such that the independence re-lation induced by � is precisely I. This result was �rst proved by Zielonka [Zie1].Contributions of this paperIn this paper, we generalize the classical subset construction of Rabin and Scottand obtain a direct procedure for determinizing an asynchronous automaton A.This construction is the �rst that involves only a double-exponential blow-up inthe size of the state spaces. We also show that this bound is essentially optimal.The only other known way to determinize a non-deterministic asynchronousautomaton A is indirect : view it as a normal non-deterministic automaton atthe level of \global states" and then apply Zielonka's construction to obtain adeterministic asynchronous automaton. This route leads to a triple exponentialblowup in general, even if we use the newer constructions of [CMZ, MS].Our determinization construction is important for dealing with asynchronousautomata over in�nite traces [GP]. These automata generalize automata on in-�nite strings and lead to a nice theory of !-regular trace languages. However,B�uchi asynchronous automata [GP] are necessarily non-deterministic and lackan e�ective complementation construction. With a Muller acceptance condition,deterministic automata su�ce [DM], but an e�ective determinization procedureis still missing. We believe that our subset construction will lead to direct con-structions for determinizing and complementing these automata.Recently, Muscholl [Mus] has described a subset construction for asynchronouscellular automata [Zie2], as part of a complementation procedure for B�uchi asyn-chronous cellular automata. Though asynchronous cellular automata are expres-sively equivalent to asynchronous automata, the operational intuition underlyingthe two models is quite di�erent and there appears to be no obvious way to con-nect the construction in [Mus] to the one presented here.1 PreliminariesDistributed alphabet Let P be a �nite set of processes. A distributed alphabetis a pair (�; �) where � is a �nite set of actions and � : � ! 2P assigns a non-empty set of processes to each a 2 �.State spaces With each process p, we associate a �nite set of states denotedVp. Each state in Vp is called a local state. For P � P, we use VP to denote theproduct Qp2P Vp. An element ~v of VP is called a P -state. A P-state is also calleda global state. Given ~v 2 VP , and P 0 � P , we use ~vP 0 to denote the projectionof ~v onto VP 0 . Also, ~vP 0 abbreviates ~vP�P 0 . For a singleton p 2 P , we write ~vpfor ~vfpg. For a 2 �, we write Va to mean V�(a) and Va to mean V�(a). Similarly,if ~v 2 VP and �(a) � P , we write ~va for ~v�(a) and ~va for ~v�(a).Asynchronous automaton An asynchronous automaton A over (�; �) is ofthe form (fVpgp2P; f!aga2� ;V0;VF ); where!a� Va�Va is the local transition



132relation for a, and V0;VF � VP are sets of initial and �nal global states. Eachrelation !a speci�es how the processes �(a) that meet on a may decide on ajoint move. Other processes do not change their state. Thus we de�ne the globaltransition relation ) � VP �� � VP by ~v a=) ~v0 if ~va !a ~v0a and ~va = ~v0a.A is called deterministic if the global transition relation of A is a functionfrom VP �� to VP and if the set of initial states V0 is a singleton.Runs Let u 2 �� be of length of m. It is convenient to think of u as a functionu : [1::m]! �, where for i � j, [i::j] abbreviates the set fi; i+1; : : : ; jg.A (global) run of A on u is a function � : [0::m] ! VP such that �(0) 2 V0and for i 2 [1::m], �(i � 1) u(i)=) �(i).The word u is accepted by A if there is a run � ofA on u such that �(m) 2 VF .L(A), the language recognized by A, is the set of words accepted by A.The problem For a given non-deterministic asynchronous automaton A over(�; �), construct a deterministic asynchronous automaton B over (�; �), suchthat L(A) = L(B).For sequential �nite automata, the determinization problem can be solvedusing the classical subset construction of Rabin and Scott. At the end of any wordu, the subset automaton maintains the set of possible states that the original(non-deterministic) automaton could be in after reading u.To determinize a non-deterministic asynchronous automaton A, we have tomodify the subset construction to work at the level of local states. The mainhurdle is the following: In general, the set of reachable global states of A afterreading u is not just the product of the subsets of reachable local states of theindividual processes.For instance, suppose we have two processes p and q with local state spacesVp = f0p; 1p; 2pg and Vq = f0q; 1q; 2qg. Let a be a letter such that �(a) = fp; qgand !a= f(h0p; 0qi; h1p; 1qi); (h0p; 0qi; h2p; 2qi)g. Suppose p and q start in thelocal states 0p and 0q respectively. After reading a, the state of p could be either1p or 2p. Similarly, local state of q could either be 1q or 2q. However, the set ofpossible fp; qg-states after reading a is not the na��ve product f1p; 2pg�f1q; 2qg|the only reachable fp; qg-states are h1p; 1qi and h2p; 2qi.So, to determinize an asynchronous automaton A, we need to record morethan just the subset of reachable local states for each process in order to keeptrack of the valid global states of A. We also have to \remember" how eachcurrent local state arose. We then need to compose these histories so that eachconsistent composition of histories yields a valid global state of A and, moreover,all the reachable global states of A can be obtained in this manner.2 Local and global viewsWe represent words as labelled partial orders. The notions we use are essentiallythose of trace theory [Maz].Events With u : [1::m] ! �, we associate a set of events Eu. Each event eis of the form (i; u(i)), where i 2 [1::m]. In addition, we de�ne an initial event



133denoted 0. The initial event marks the beginning when all processes synchronizeand agree on an initial global state. Usually, we will write E for Eu. If e = (i; a)is an event, then we may use e instead of a in abbreviations such as Ve, whichstands for Va, i.e., V�(a), or!e, which is just !a. For p 2 P and e 2 E, we writep 2 e to denote that p 2 �(u(i)) when e = (i; u(i)); for e = 0, we de�ne p 2 e tohold for all p 2 P. If p 2 e, then we say that e is a p-event .Ordering relations on E The word u imposes a total order on events: de�nee < f if e 6= f and either e = 0 or e = (i; u(i)), f = (j; u(j)), and i < j. We writee � f if e = f or e < f . Moreover, each process p orders the events in which itparticipates: de�ne /p to be the strict orderinge /p f i� e < f; p 2 e \ f and for all e < g < f; p =2 g:The set of all p-events in E is totally ordered by /�p, the reexive, transitiveclosure of /p.De�ne e < f if for some p, e /p f and e v f if e = f or e < f . The causalityrelation v� is the transitive closure of v. If e v� f then we say that e is belowf . Note that 0 is below any event. The set of events below e is denoted e#.These represent the only synchronizations in E that may have a�ected the stateof the processes in e when e occurs. The neighbourhood of e, nbd (e), consists ofe together with all its \<-predecessors"|i.e., nbd(e) = feg [ ff j f < eg.� -� -� -�� -� -� -� -�� -� -� -� -�� -� -�pqrs b a c b a c d
e0 e1 e2 e3 e4 e5 e6 e7

Fig. 1. An exampleExample 1. Consider the word bacbacd over the alphabet (�; �) for P = fp; q; r; sg,where � = fa; b; c; dg and �(a) = fp; qg, �(b) = fq; rg, �(c) = fr; sg and �(d) =fpg. The set of events Eu is then fe0; e1; e2; e3; e4; e5; e6; e7g =f0; (1; b); (2; a); (3; c); (4; b); (5; a); (6; c); (7; d)g.Figure 1 describes (Eu;v�). The arrows between the events indicate the rela-tions /p, /q, /r and /s. For example, e0 /r e1 holds, but e0 /p e1 does not hold.



134The set of events e7# is fe0; e1; e2; e3; e4; e5; e7g while e6# is fe0; e1; e2; e3; e4; e6g.Thus e6# [ e7#= E. The neighbourhood of e5, nbd (e5), is fe2; e4; e5g.Ideals I � E is called an (order) ideal if I is closed with respect to v�|i.e.,e 2 I and f v� e implies f 2 I as well.Clearly, the entire set E is an ideal, as is e# for any e 2 E.P -views Let I be an ideal. The v�-maximum p-event in I is denoted maxp(I).The p-view of I is the set Ijp = max p(I)#. So, Ijp is the set of all events in Iwhich p can \see". For P � P, the P -view of I, denoted IjP , is Sp2P Ijp. Noticethat IjP is always an ideal. In particular, we have IjP = I.Example 2. In the example of Figure 1, max r(E) = e6. So Ejr = e6 #=fe0; e1; e2; e3; e4; e6g. On the other hand, max p(E) = e7 and Ejp = e7 #=fe0; e1; e2; e3; e4; e5; e7g.3 Local runs and historiesLocal runs Let I be an ideal. A local run on I is a function r that assigns toeach e 2 I an e-state|i.e., a state in Ve|such that r(0) 2 V0 and for all e 6= 0,r is consistent with !e in nbd (e). In other words, for e 6= 0 we have ~v !e r(e),where ~v is the e-state such that for all q 2 e, ~vq = r(f)q , where f /q e.So, a local run on E assigns an e-state to each e 2 E in such a way thatall neighbourhoods in E are consistently labelled. Let R(I) denote the set of alllocal runs on I. The following is easy to verify.Proposition1. Given u : [1::m] ! �, there is a 1-1 correspondence betweenR(Eu), the set of local runs on Eu, and the set of global runs on u.Example 3. Let A = (fVpgp2P; f!aga2� ;V0;VF ) be an asynchronous automa-ton over (�; �), where P and (�; �) are as in our previous example. Each processhas four local states. Thus, Vp = f1p; 2p; 3p; 4pg, Vq = f1q; 2q; 3q; 4qg etc.Let the local transition relations of A be de�ned as in the table below:!a !b !c !df(h1p; 2qi; h3p; 3qi) f(h1q; 1ri; h2q; 2ri) f(h2r; 1si; h4r; 4si) f(h3pi; h4pi)(h1p; 3qi; h4p; 4qi) (h1q ; 1ri; h3q; 3ri) (h2r ; 3si; h4r; 4si) (h4pi; h3pi)g(h3p; 2qi; h4p; 4qi) (h3q ; 4ri; h2q; 2ri) (h2r ; 4si; h1r; 1si)(h4p; 2qi; h3p; 3qi)g (h4q ; 3ri; h2q; 2ri)g (h3r ; 1si; h3r; 3si)gV0 = fh1p; 1q; 1r; 1sig and VF = fh4p; 3q; 1r; 1si; h3p; 4q; 4r; 4sig.Then, the local runs corresponding to the only two possible global runs of Aon u = bacbacd are shown in Figure 2. The left half of each event is labelled bythe �rst run and the right half by the second run. Neither run leads to a state inVF so A does not accept u.



135- - -- - - -- - - -- -pqrs b a c b a c de0 e1 e2 e3 e4 e5 e6 e71p1p 3p4p 4p3p 3p4p1q 1q 2q 3q 3q 4q 2q 2q 4q 3q1r 1r 2r 3r 4r 3r 2r 2r 1r 4r1s 1s 4s 3s 1s 4sFig. 2. Local runsHistories Let I be an ideal. A history on I is a partial function h which assignsstates to some of the events in I; i.e., domain(h) � I and h(e) 2 Ve for eache 2 domain(h). A history h is reachable if there is some local run r on I suchthat h(e) = r(e) for all e 2 domain(h). Let H(I) denote the set of all historieson I. Clearly, every local run on I is a history; i.e., R(I) � H(I).Choices Let I be an ideal. Given a collection fHpgp2P of sets of historieson the p-views Ijp, a P -choice fhpgp2P of fHpgp2P assigns to each p 2 P ,a history hp from Hp. The choice is consistent if for each p; q 2 P , for everye 2 domain(hp) \ domain(hq), hp(e) = hq(e).Let fHpgp2P be a collection of sets of histories for P � P. We de�ne the productOp2P Hp = fh 2H(IjP ) j There exists a consistent P -choice fhpgp2P offHpgp2P such that domain(h) = Sp domain(hp) and8p 2 P: 8e 2 domain(hp): h(e) = hp(e)g:So, Np2P Hp contains all the histories on IjP which may be pieced togetherusing mutually consistent histories from the sets Hp.Example 4. Consider the local runs shown in Figure 2. For p, let h1p and h2p betwo histories whereh1p = f(e3 7! h4r; 4si; e4 7! h2q; 2ri; e5 7! h4p; 4qi; e7 7! h3pi)g, andh2p = f(e3 7! h3r; 3si; e4 7! h2q; 2ri; e5 7! h3p; 3qi; e7 7! h4pi)g.For s, let h1s and h2s be two histories whereh1s = f(e2 7! h3p; 3qi; e4 7! h2q; 2ri; e6 7! h4r; 4si)g, andh2s = f(e2 7! h4p; 4qi; e4 7! h2q; 2ri; e6 7! h1r; 1si)g.All four of these histories are reachable. There are four possible fp; sg-choicesfor �fh1p; h2pg; fh1s; h2sg	. Each of these choices is consistent. However, only twoof the runs in fh1p; h2pgNfh1s; h2wg are reachable|those generated by the choices(h1p; h1s) and (h2p; h2s). The \bad" choice (h2p; h1s) implies that h4p; 3q; 1r; 1si is avalid global state of A after u, which leads to the erroneous conclusion that Aaccepts u. The task is to rule out such bad choices by maintaining reachablehistories whose products are also reachable.



136In particular, for P � P we may form the productNp2P R(Ijp), which generatesthe set R(IjP ) of local runs on IjP .Lemma2. Let I be an ideal and P � P. Then, R(IjP ) =Np2P R(Ijp).Proof The fact that R(IjP ) �Np2P R(Ijp) is obvious.To show the converse, let r 2Np2P R(Ijp) where the consistent P -choice isfrpgp2P . Clearly domain(r) = IjP . We just have to check that nbd(e) is labelledconsistently by r for each e 2 IjP . But, if e 2 IjP then e 2 Ijp for some p 2 Pand so nbd (e) � Ijp as well. Since r = rp on Ijp and rp is a local run on Ijp, rpmust have assigned consistent values to nbd(e). 24 Finite histories and frontiersFrontiers Let I be an ideal and p; q; s 2 P. We say that event e 2 Ijp is ans-sentry for p with respect to q if e 2 Ijp \ Ijq and e /s f for some f 2 Ijq � Ijp.Thus e is an event known to p and q whose s-successor is known only to q.De�ne frontierpq(I) to be the set of all s-sentries which exist for pwith respectto q. Observe that this de�nition is asymmetric|frontierpq(I) 6= frontierqp(I).Example 5. In the example of Figure 1, Ejp \ Ejs = fe0; e1; e2; e3; e4g. Thenfrontierps(E) = fe3; e4g, whereas frontiersp(E) = fe2; e4g. So, e4 belongs to bothfrontiers|it is an r-sentry in frontierps(E) and a q-sentry in frontiersp(E).In general, e 2 frontierpq(I) could simultaneously be an s-sentry for severaldi�erent s. However, frontierpq(I) is always a bounded set, since for each s 2 Pthere is at most one s-sentry e 2 frontierpq(I).For P � P and p 2 P , de�ne the P -frontier of p at I to be the set[q2P�fpg frontierpq(I) [ frontierqp(I):Lemma3. Let I be an ideal and fhpgp2P be a consistent P -choice of fH(Ijp)gp2Psuch that for each p 2 P ,(i) hp is reachable; and(ii) the P -frontier of p is included in domain(hp).Then Np2P fhpg is a reachable history in H(IjP ).Proof Order the processes in P as p1; p2; : : : ; pk. For i 2 [1::k], let Pi =Sj2[1::i]fpjg. By assumption, for each pi, hpi is a reachable history. So, we havea local run rpi on Ijpi which agrees with hpi on domain(hpi). To show thath = Np2P fhpg is reachable, we must construct a local run r on IjP whichagrees with h on domain(h) = Sp2P domain(hp).De�ne r as follows:{ For all e 2 Ijp1 , r(e) = rp1(e).



137{ For i 2 [2::k], for all e 2 Ijpi � IjPi�1 , r(e) = rpi(e).So, we \sweep across" IjP starting from Ijp1 and ending at Ijpk , assigningstates according to rp1 ; rp2; : : : ; rpk in k \stages". Clearly domain(r) = IjP andr agrees with h on domain(h). We have to show that r is a local run; i.e., wehave to show that r is consistent with !e across nbd (e) for each e 2 IjP .Let e 2 IjP . We know that r(e) was assigned at some stage i 2 [1::k]. Clearly,e 2 Ijpi and so nbd (e) � Ijpi as well. If nbd (e) � Ijpi�IjPi�1 , then all the eventsin nbd (e) are assigned r values at stage i according to rpi . Since rpi is a localrun on I, these values must be consistent with !e.The crucial case is when some f 2 nbd (e) lies in IjPi�1 and so has al-ready been assigned a value. But then f 2 IjPi�1 \ Ijpi which is the sameas Sj2[1::i�1](Ijpj \ Ijpi). In other words, for some p`, ` 2 [1::i�1], f belongs tofrontierp`pi (I). So f 2 domain(hp` ) \ domain(hpi), by assumption. Therefore,the value r(f) must agree with hp` (f) = hpi(f) and hence must agree with rpi(f)as well. So, even though f 2 nbd (e) has already been assigned a value beforestage i, the value agrees with rpi . Thus, e�ectively, nbd (e) is assigned values asgiven by rpi and these must be consistent with!e since rpi is a local run on I. 2This is a �nite version of Lemma 2 above. Suppose that at the end of a wordu, each process p maintains all reachable histories on a �nite (bounded) set ofevents spanning the P-frontier of p in Eu. Then, by the previous lemma, theproduct of these histories will generate all the reachable global states of A afteru. Further, the number of possible histories on a bounded set is also �nite.The problem now is with maintaining frontier information locally|i.e., howcan a process p compute and locally update its frontier? This is done usingslightly larger, but still bounded, sets of events called primary and secondaryinformation, which between them subsume the frontier. It turns out that thesesets can be updated locally with each synchronization between processes. Thesethen will be the domains of the histories maintained by each process.5 Primary and secondary informationPrimary information Let I be an ideal and p; q 2 P. Then latestp!q(I)denotes the maximum q-event in Ijp. So, latestp!q(I) is the latest q-event in Ithat p knows about. The primary information of p after I, primaryp(I), is theset flatestp!q(I)gq2P . As usual, for P � P, primaryP (I) = Sp2P primaryp(I).Secondary information The secondary information of p after I, secondaryp(I),is the set Sq2P primaryq(latestp!q(I)#). In other words, this is the latest infor-mation that p has in I about the primary information of q, for each q 2 P. Onceagain, for P � P, secondaryP (I) = Sp2P secondaryp(I).Each event in secondaryp(I) is of the form latestq!s(latestp!q(I) #) forsome q; s 2 P. This is the latest s-event which q knows about upto the eventlatestp!q(I). We abbreviate latestq!s(latestp!q(I)#) by latestp!q!s(I). Noticethat each primary event latestp!q(I) is also a secondary event latestp!p!q(I).



138Example 6. In Figure 1, latests!p(E) = e2 whereas latestp!s(E) = e3. Also,latests!p!r(E) = e1 while latestp!s!r(E) = e3.The following result, which is proved in [KMS, MS], lets us identify all thefrontier events in E using primary and secondary information.Lemma4. Let I be an ideal, p; q; s 2 P and e 2 frontierpq(I) an s-sentry. Thene = latestp!s(I). Also, for some s0 2 P, e = latestq!s0!s(I).So, for every p 2 P and u 2 ��, each process p maintains all reachable historiesover the �nite set secondaryp(Eu). By the preceding lemma, this set includesall events in the P-frontier of Eu as well as the maximal event max p(Eu) =latestp!p!p(Eu).We now need to show that these sets may be updated locally|i.e., if w = ua,then secondaryp(Ew) may be computed from secondaryp(Eu) for each processp 2 a using only the information available with the processes in a. (Note thatsecondaryP(Eua) is a subset of secondaryP(Eu) together with the new a-event.)Since we are manipulating events, in general, we require a mechanism forassigning \unambiguous" labels to the events in Eu while u is being read. Inour context, \unambiguous" means that distinct events in secondaryP(Eu) areassigned distinct labels. It turns out that we can maintain such a labelling us-ing a �nite set of labels L and simultaneously update the labels assigned tosecondaryP(Eu) in a consistent way with each local synchronization. This in-volves running the \gossip automaton" [MS] in the background.We will suppressthe details here but assume that there is an asynchronous automaton AG withthe same structure as the automaton A which works as follows.Let u 2 ��. Each process p in AG inductively maintains a labelling function�p(u) : P� P! L such that:1. Let q; s 2 P. Then for all q0; q00; s0; s00 2 P, �q(u)(q0; q00) = �s(u)(s0; s00) i�latestq!q0!q00 (Eu) = latests!s0!s00(Eu).2. If w = ua and q; q0; q00; s; s0; s00 2 P such that latestq!q0!q00 (Ew) =latests!s0!s00(Eu) then �q(w)(q0; q00) = �s(u)(s0; s00).So, after reading u, each process p in AG maintains a labelling �p(u) ofsecondaryp(Eu) such that, across the system, distinct events in secondaryP(Eu)are assigned distinct labels. The map �p(u) is a �nite object and can be incorpo-rated into the local state of p. Further, all the processes which synchronize on anaction a can consistently update their primary and secondary information andextend the labellings f�p(u)gp2a to new labellings f�p(ua)gp2a which maintainthe inductive assertion. The second condition ensures that the new labellingsf�p(ua)gp2a do not reassign fresh labels to \old" events in secondaryP(Eua).6 The determinization algorithmWe are now ready to present our deterministic asynchronous automaton B =(fV Bp gp2P; f!Ba ga2� ;VB0 ;VBF ) corresponding to our original non-deterministic



139asynchronous automaton A such that L(A) = L(B). B will incorporate thegossip automaton AG.Formally, a state in V Bp consists of the following information:{ A labelling �p : (P � P)! L.{ A set of histories RHp where each h 2 RHp is a partial function on Lthat maps a label ` to a P -state (where P � P is the set of processes thatparticipated in the event that ` was assigned to) such that domain(h) =range(�p).Intuitively, after reading a word u, process p has computed �p as the labellingof secondaryp(Eu) given by the gossip automaton AG. Thus, the label �p(q; r)represents the secondary event latestp!q!r(Eu).The set RHp is supposed to contain all reachable histories over the secondaryevents secondaryp(Eu). Since distinct events in secondaryp(Eu) are assigned dis-tinct labels, each history in RHp is a function from range(�p) to P -states.Initially, each p 2 P stores the following:{ For each pair of processes q; r 2 P, �p(q; r) = `0, where `0 is some arbitrarybut �xed label from L.{ For each initial state ~v of A, there is a history h in RHp such that h(`0) = ~v.The initial state VB0 is the product of the initial states of the individual processes.We now describe the transition rules f!Ba ga2�. Suppose B reads a when theglobal state of B is fh�0p;RH0pigp2P. Then the local states of processes in a areupdated as follows.{ For each p 2 a, construct a new labelling function �00p : P � P ! L. This isdone by the gossip automaton, AG. For the new event ea, let �00p (ea) = `a.{ Compute new histories RH00p for each p 2 a as follows. Consider ha 2Np2afRH0pg. Let ~v be the global a-state corresponding to ha|i.e., ~vp =(hp(�0p(p; p)))p for each p 2 a (recall that latestp!p!p(I) = maxp(I)). LetVha = f~v0 j ~v !a ~v0g. So, Vha is the set of all possible a-states v0 which canbe used to extend ha to cover the new event ea so that nbd (ea) is consistentlylabelled with respect to !a.Each element ~v0 2 Vha together with ha generates a history h0p in RH00p :8` 2 range(�00p ): h0p(`) = �~v0 if ` = `aha(`) otherwiseSo, the new a-event is assigned the a-tuple ~v0 while the other secondaryevents of p (after reading a) inherit their h0p values from ha. Repeat thisprocedure for each ha 2 Np2)fRH0pg to generate the entire set RH00p foreach p 2 a.We now de�ne the �nal states of B. Let ~� be a global state of B, where~�p = h�0p;RH0pi for each p 2 P. Each history h 2 Np2P RH0p gives rise to aglobal state ~v of A as follows: for each p 2 P, ~vp = (h(�0p(p; p)))p. Let subset(~�)denote the set of global states of A generated from ~� in this manner. Then wecan de�ne VBF = f~� j subset(~�) \ VF 6= ;g:



140Theorem5. L(A) = L(B).Proof For u 2 ��, let ~� be the global state of B after reading u such that~�p = h�00p ;RH00pi for each p 2 P. We claim the following:Claim For each p 2 P, RH00p is precisely the set of all reachable histories on theset of events secondaryp(Eu).Assuming the claim, we know from Proposition 1 and Lemmas 2, 3 and 4that the global states in subset(~�) are precisely the global states that A couldbe in after u. So, B accepts u i� subset(~�) \ VF 6= ; i� there is a run of A on uleading to a �nal state i� A accepts u and we are done.Proof of Claim To prove the claim, we proceed by induction on juj.(juj = 0). Then u = ", the empty word. The claim is trivially true at this statesince all the secondary events in Eu are the initial event 0 and each processmaintains a set of histories which assigns all possible initial states of A to theinitial event.(juj > 0). Let u = wa and assume inductively that after reading w, the localstates fh�0p;RH0pigp2P satisfy the Claim. We have to argue that the procedurefor updating the local states of p 2 a maintains the property asserted in theClaim.Now, assume RH0p contains all reachable histories over secondaryp(Ew) foreach p 2 a. The gossip automaton AG guarantees that �00p labels precisely theevents in secondaryp(Eu). We have to show that RH00p contains all reachablehistories over secondaryp(Eu).For all p 2 a, Eujp = Ewja [ feag, where ea is the new a-event. So, anylocal run on Eujp consists of a local run on Ewja extended to cover ea such thatnbd(ea) is consistently labelled.We argue that the product Np2a RH0p is precisely the projection of R(Ew ja)onto secondarya(Ew). By Lemma 3, every history h 2 Np2a RH0p is a reach-able history on Ewja and so is the projection of some local run on Ewja ontosecondarya(Ejw).Conversely, consider any local run r on Ewja. Decompose r into local runs rpover Ewjp for each p 2 a by looking at r restricted to Ewjp. Since RH0p has allreachable histories on secondaryp(Ew), the projection hp of rp on secondaryp(Ew)belongs toRH0p. So, the projection of r onto secondarya(Ew) belongs toNp2a RH0p.So, we can reconstruct all possible a-moves of A after w by looking atNp2a RH0p. The procedure for updating RH0p to RH00p in the de�nition of !Bpthen guarantees that RH00p contains all reachable p-histories over secondaryp(Eu)for each p 2 a. 27 The complexity of determinizationTheorem6. Let A = (fVpgp2P; f!aga2� ;V0;VF ) be a non-deterministic asyn-chronous automaton with N processes such that max p2PjVpj = M . Then, in the



141corresponding deterministic automaton B that we construct, each process has atmost 2MO(N3) states.Proof Each local state of B is of the form h�p;RHpi. From [MS], AG canmaintain and update �p consistently using O(N3 logN ) bits.We now need to maintain histories over secondary events. Each history h con-sists of N2 P -states. Since a P -state can be written down using N logM bits, hcan be written down using N3 logM bits. The number of di�erent histories pos-sible over N2 events is �MO(N)�N2 = MO(N3). A set of histories can therefore bewritten down using MO(N3) bits. So, in total we need MO(N3)+O(N3 logN ) =MO(N3) bits. 2The upper bound we describe above is essentially optimal because of the follow-ing double-exponential lower bound, which is proved in [KMS].Theorem7. There is a sequence of languages LKN over distributed alphabets(�KN ; �KN ), K;N � 2, such that LKN is recognized by a non-deterministicasynchronous automaton with local state spaces and transition relations whosesizes are polynomial in K and N , whereas any deterministic asynchronous au-tomaton recognizing LKN must have at least one process with 2KN=N states.References[CMZ] R. Cori, Y. Metivier, W. Zielonka: Asynchronous mappings and asynchronouscellular automata, Inf. and Comput., 106 (1993) 159{202.[DM] V. Diekert, A. Muscholl: Deterministic asynchronous automata for in�nitetraces, Proc. STACS '93, LNCS 665 (1993) 617{628.[GP] P. Gastin, A. Petit: Asynchronous cellular automata for in�nite traces, Proc.ICALP '92, LNCS 623 (1992) 583{594.[KMS] N. Klarlund, M. Mukund, M. Sohoni: Determinizing asynchronous automata,Report DAIMI-PB 460, Computer Science Department, Aarhus University,Aarhus, Denmark (1993).[Maz] A. Mazurkiewicz: Basic notions of trace theory, in: J.W. de Bakker, W.-P. de Roever, G. Rozenberg (eds.), Linear time, branching time and partialorder in logics and models for concurrency, LNCS 354, (1989) 285{363.[MS] M. Mukund, M. Sohoni: Gossiping, asynchronous automata and Zielonka's the-orem, Report TCS-94-2, School of Mathematics, SPIC Science Foundation,Madras (1994). See also \Keeping track of the latest gossip: Bounded time-stamps su�ce", Proc. FST&TCS '93, LNCS 761 (1993) 388{399.[Mus] A. Muscholl: On the complementation of B�uchi asynchronous cellular au-tomata, Proc. ICALP 1994.[Zie1] W. Zielonka: Notes on �nite asynchronous automata, R.A.I.R.O.|Inf. Th�eor.et Appl., 21 (1987) 99{135.[Zie2] W. Zielonka: Safe executions of recognizable trace languages, in Logic at Botik,LNCS 363 (1989) 278{289.


