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Abstra
t. Message Sequen
e Charts (MSCs) are an attra
tive visual

formalism used during the early stages of design in domains su
h as

tele
ommuni
ation software. A popular me
hanism for generating a 
ol-

le
tion of MSCs is a Hierar
hi
al Message Sequen
e Chart (HMSC). How-

ever, not all HMSCs des
ribe 
olle
tions of MSCs that 
an be \realized"

as a �nite-state devi
e. Our main goal is to pin down this notion of rea-

lizability. We propose an independent notion of regularity for 
olle
tions

of MSCs and explore its basi
 properties. In parti
ular, we 
hara
terize

regular 
olle
tions of MSCs in terms of �nite-state distributed automata


alled bounded message-passing automata, in whi
h a set of sequential

pro
esses 
ommuni
ate with ea
h other asyn
hronously over bounded

FIFO 
hannels. We also provide a logi
al 
hara
terization in terms of a

natural monadi
 se
ond-order logi
 interpreted over MSCs. It turns out

that realizable 
olle
tions of MSCs as spe
i�ed by HMSCs 
onstitute a

stri
t sub
lass of the regular 
olle
tions of MSCs.

1 Introdu
tion

Message sequen
e 
harts (MSCs) are an appealing visual formalism often used to


apture system requirements in the early stages of design. They are parti
ularly

suited for des
ribing s
enarios for distributed tele
ommuni
ation software [12,

19℄. They have also been 
alled timing sequen
e diagrams, message 
ow diagrams

and obje
t intera
tion diagrams and are used in a number of software engineer-

ing methodologies [4, 9, 19℄. In its basi
 form, an MSC depi
ts the ex
hange of

messages between the pro
esses of a distributed system along a single partially-

ordered exe
ution. A 
olle
tion of MSCs is used to 
apture the s
enarios that a

designer might want the system to exhibit (or avoid).

Given the requirements in the form of a 
olle
tion of MSCs, one 
an hope

to do formal analysis and dis
over design errors at an early stage. A natural

question in this 
ontext is to identify when a 
olle
tion of MSCs is amenable to

formal analysis. A related issue is how to represent su
h 
olle
tions.
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A standard way to generate a 
olle
tion of MSCs is to use a Hierar
hi
al

Message Sequen
e Chart (HMSC) [15℄. An HMSC is a �nite dire
ted graph in

whi
h ea
h node is labelled, in turn, by an HMSC. The labels on the nodes are

not permitted to refer to ea
h other. From an HMSC we 
an derive an equivalent

Message Sequen
e Graph (MSG) [1℄ by 
attening out the hierar
hi
al labelling

to obtain a graph where ea
h node is labelled by a simple MSC. An MSG de�nes

a 
olle
tion of MSCs obtained by 
on
atenating the MSCs labelling ea
h path

from an initial vertex to a terminal vertex. Though HMSCs provide more su

in
t

spe
i�
ations than MSGs, they are only as expressive as MSGs. Thus, one often

restri
ts one's attention to 
hara
terizing stru
tural properties of MSGs rather

than of HMSCs [2, 17, 18℄.

In [2℄, it is shown that bounded MSGs de�ne reasonable 
olle
tions of MSCs|

the 
olle
tion of MSCs generated by a bounded MSG 
an be represented as a

regular string language. Thus, behaviours 
aptured by bounded MSGs 
an, in

prin
iple, be realized as �nite-state automata. In general, the 
olle
tion of MSCs

de�ned by an arbitrary MSG is not realizable in this sense. A 
hara
terization

of the 
olle
tions of MSCs de�nable using bounded MSGs is provided in [11℄.

The main goal of this paper is to pin down this notion of realizability in

terms of a notion of regularity for 
olle
tions of MSCs. One 
onsequen
e of our

study is that our de�nition of regularity provides a general and robust setting

for studying 
olle
tions of MSCs. A se
ond 
onsequen
e, whi
h follows from the

results in [11℄, is that bounded MSGs de�ne a stri
t sub
lass of regular 
olle
tions

of MSCs. A �nal 
onsequen
e is that our notion addresses an important issue

raised in [6℄; namely, how to 
onvert requirements as spe
i�ed by MSCs into

distributed, state-based spe
i�
ations.

Another motivation for fo
ussing on regularity is that this notion has turned

out to be very fruitful in a variety of 
ontexts in
luding �nite (and in�nite)

strings, trees and restri
ted partial orders known as Mazurkiewi
z tra
es [7, 21℄.

In all these settings there is a representation of regular 
olle
tions in terms of

�nite-state devi
es. There is also an a

ompanying monadi
 se
ond-order logi


that usually indu
es temporal logi
s using whi
h one 
an reason about su
h


olle
tions [21℄. One 
an then develop automated model-
he
king pro
edures

for verifying properties spe
i�ed in these temporal logi
s. In this 
ontext, the

asso
iated �nite-state devi
es representing the regular 
olle
tions often play a

very useful role [22℄.

We show here that our notion of regular MSC languages �ts in ni
ely with

a related notion of a �nite-state devi
e, as also a monadi
 se
ond-order logi
.

We �x a �nite set of pro
esses P and 
onsiderM, the universe of MSCs de�ned

over the set P . An MSC in M 
an be viewed as a partial order labelled using a

�nite alphabet � that is 
anoni
ally �xed by P . We say that L �M is regular

if the set of all linearizations of all members of L 
onstitutes a regular subset

of �

�

. A 
ru
ial point is that the universe M is itself not regular a

ording to

our de�nition, unlike the 
lassi
al setting of strings (or trees or Mazurkiewi
z

tra
es). This fa
t has a strong bearing on the automata-theoreti
 and logi
al

formulations in our work.
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It turns out that regular MSC languages 
an be strati�ed using the 
on
ept

of bounds. An MSC is said to be B-bounded for a natural number B if at every

\pre�x" of the MSC and for every pair of pro
esses (p; q) there are at most B

messages that p has sent to q that have yet to be re
eived by q. An MSC language

is B-bounded if every member of the language is B-bounded. Fortunately, for

every regular MSC language L we 
an e�e
tively 
ompute a (minimal) bound B

su
h that L is B-bounded. This leads to our automaton model 
alled B-bounded

message-passing automata. The 
omponents of su
h an automaton 
orrespond

to the pro
esses in P . These 
omponents 
ommuni
ate with ea
h other over (po-

tentially unbounded) FIFO 
hannels. We say that a message-passing automaton

is B-bounded if, during its operation, it is never the 
ase that a 
hannel 
on-

tains more than B messages. We establish a pre
ise 
orresponden
e between

B-bounded message-passing automata and B-bounded regular MSC languages.

In a similar vein, we formulate a natural monadi
 se
ond-order logi
 MSO(P ; B)

interpreted over B-bounded MSCs. We then show that B-bounded regular MSC

languages are exa
tly those that are de�nable in MSO(P ; B).

In related work, a number of studies are available that are 
on
erned with

individual MSCs in terms of their semanti
s and properties [1, 13℄. As pointed out

earlier, a ni
e way to generate a 
olle
tion of MSCs is to use an MSG. A variety of

algorithms have been developed for MSGs in the literature|for instan
e, pattern

mat
hing [14, 17, 18℄ and dete
tion of pro
ess divergen
e and non-lo
al 
hoi
e [3℄.

A systemati
 a

ount of the various model-
he
king problems asso
iated with

MSGs and their 
omplexities is given in [2℄.

In this paper, we 
on�ne our attention to �nite MSCs. The issues investigated

here have, at present, no 
ounterparts in the in�nite setting. We feel, however,

that our results will serve as a laun
hing pad for a similar a

ount 
on
erning

in�nite MSCs. This should then lead to the design of appropriate temporal

logi
s and automata-theoreti
 solutions (based on message-passing automata)

to model-
he
king problems for these logi
s.

The paper is organized as follows. In the next se
tion we introdu
e MSCs

and regular MSC languages. In Se
tion 3 we establish our automata-theoreti



hara
terization and, in Se
tion 4, the logi
al 
hara
terization. While doing so,

we borrow one basi
 result and a 
ouple of proof te
hniques from the theory of

Mazurkiewi
z tra
es [7℄. However, we need to modify some of these te
hniques in

a non-trivial way (espe
ially in the setting of automata) due to the asymmetri



ow of information via messages in the MSC setting, as opposed to the symmetri


information 
ow via handshake 
ommuni
ation in the tra
e setting. Due to la
k

of spa
e, we provide only proof ideas. Detailed proofs are available in [10℄.

2 Regular MSC Languages

Through the rest of the paper, we �x a �nite set of pro
esses (or agents) P and let

p; q; r range over P . For ea
h p 2 P we de�ne �

p

= fp!q j p 6= qg [ fp?q j p 6= qg

to be the set of 
ommuni
ation a
tions in whi
h p parti
ipates. The a
tion p!q is

to be read as p sends to q and the a
tion p?q is to be read as p re
eives from q.
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Fig. 1. An example MSC over fp; q; rg.

At our level of abstra
tion, we shall not be 
on
erned with the a
tual messages

that are sent and re
eived. We will also not deal with the internal a
tions of the

agents. We set � =

S

p2P

�

p

and let a; b range over �. We also denote the set

of 
hannels by Ch = f(p; q) j p 6= qg and let 
; d range over Ch .

A �-labelled poset is a stru
ture M = (E;�; �) where (E;�) is a poset and

� : E ! � is a labelling fun
tion. For e 2 E we de�ne #e = fe

0

j e

0

� eg. For

p 2 P and a 2 �, we set E

p

= fe j �(e) 2 �

p

g and E

a

= fe j �(e) = ag,

respe
tively. For ea
h 
 2 Ch, we de�ne the relation R




= f(e; e

0

) j �(e) =

p!q; �(e

0

) = q?p and j#e\E

p!q

j = j#e

0

\E

q?p

jg. Finally, for ea
h p 2 P , we de�ne

the relation R

p

= (E

p

�E

p

) \ �.

An MSC (over P) is a �nite �-labelled poset M = (E;�; �) that satis�es

the following 
onditions:

(i) Ea
h R

p

is a linear order.

(ii) If p 6= q then jE

p!q

j = jE

q?p

j.

(iii) � = (R

P

[ R

Ch

)

�

where R

P

=

S

p2P

R

p

and R

Ch

=

S


2Ch

R




.

In diagrams, the events of an MSC are presented in visual order. The events of

ea
h pro
ess are arranged in a verti
al line and the members of the relation R

Ch

are displayed as horizontal or downward-sloping dire
ted edges. We illustrate

the idea with an example in Figure 1. Here P = fp; q; rg. For x 2 P , the events

in E

x

are arranged along the line labelled (x) with smaller (relative to �) events

appearing above the larger events. The R

Ch

-edges a
ross agents are depi
ted by

horizontal edges|for instan
e e

3

R

(r;q)

e

0

2

. The labelling fun
tion � is easy to

extra
t from the diagram|for example, �(e

0

3

) = r!p and �(e

2

) = q?p.

We de�ne regular MSC languages in terms of their linearizations. For the

MSC M = (E;�; �), let Lin(M) = f�(�) j � is a linearization of (E;�)g. By

abuse of notation, we have used � to also denote the natural extension of � to

E

�

. The string p!q r!q q?p q?r r!p p?r is a linearization of the MSC in Figure 1.

In the literature [1, 18℄ one sometimes 
onsiders a more generous notion of

linearization where two adja
ent re
eive a
tions in a pro
ess 
orresponding to
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messages from di�erent senders are deemed to be 
ausally independent. For

instan
e, p!q r!q q?r q?p r!p p?r would also be a valid linearization of the MSC

in Figure 1. All our results go through with suitable modi�
ations even in the

presen
e of this more generous notion of linearization.

Hen
eforth, we will identify an MSC with its isomorphism 
lass. We let M

P

be the set of MSCs over P . An MSC language L � M

P

is said to regular if

S

fLin(M) jM 2 Lg is a regular subset of �

�

. We note that the entire set M

P

is not regular by this de�nition.

To dire
tly 
hara
terize the subsets of �

�

that 
orrespond to regular MSC

languages, we pro
eed as follows. Let Com = f(p!q; q?p) j (p; q) 2 Chg. For

� 2 �

�

and a 2 �, let j� j

a

denote the number of times a appears in � . We say that

� 2 �

�

is proper if for every pre�x � of � and every pair (a; b) 2 Com , j� j

a

� j� j

b

.

We say that � is 
omplete if � is proper and j�j

a

= j�j

b

for every (a; b) 2 Com .

Next we de�ne a 
ontext-sensitive independen
e relation I � �

�

� (� � �) as

follows: (�; a; b) 2 I if �ab is proper, a 2 �

p

and b 2 �

q

for distin
t pro
esses

p and q, and if (a; b) 2 Com then j�j

a

> j�j

b

. Observe that if (�; a; b) 2 I then

(�; b; a) 2 I .

Let �

Æ

= f� j � 2 �

�

and � is 
ompleteg. We then de�ne � � �

Æ

� �

Æ

to be the least equivalen
e relation su
h that if � = �

1

ab�

2

, �

0

= �

1

ba�

2

and

(�

1

; a; b) 2 I then � � �

0

. It is important to note that � is de�ned over �

Æ

(and

not �

�

). It is easy to verify that for ea
h M 2 M

P

, Lin(M) is a subset of �

Æ

and is in fa
t a �-equivalen
e 
lass over �

Æ

.

We de�ne L � �

�

to be a regular string MSC language if there exists a

regular MSC language L � M

P

su
h that L =

S

fLin(M) j M 2 Lg. It is easy

to see that L � �

�

is a regular string MSC language if and only if L is a regular

subset of �

�

, every word in L is 
omplete and L is �-
losed (that is, for ea
h

� 2 L, if � 2 L and � � �

0

then �

0

2 L). Clearly regular MSC languages and

regular string MSC languages represent ea
h other. Hen
e, abusing terminology,

we will write \regular MSC language" to mean \regular string MSC language".

From the 
ontext, it should be 
lear whether we are working with MSCs from

M

P

or 
omplete words over �

�

.

Given a regular subset L � �

�

, we 
an de
ide whether L is a regular MSC

language. We say that a state s in a �nite-state automaton is live if there is

a path from s to a �nal state. Let A = (S;�; s

in

; Æ; F ) be the minimal DFA

representing L. Then it is not diÆ
ult to see that L is a regular MSC language

if and only if we 
an asso
iate with ea
h live state s 2 S, a 
hannel-
apa
ity

fun
tion K

s

: Ch ! N that satis�es the following 
onditions.

(i) If s 2 fs

in

g [ F then K

s

(
) = 0 for every 
 2 Ch.

(ii) If s; s

0

are live states and Æ(s; p!q) = s

0

then K

s

0

((p; q)) = K

s

((p; q))+1 and

K

s

0

(
) = K

s

(
) for every 
 6= (p; q).

(iii) If s; s

0

are live states and Æ(s; q?p) = s

0

then K

s

((p; q)) > 0, K

s

0

((p; q)) =

K

s

((p; q))�1 and K

s

0

(
) = K

s

(
) for every 
 6= (p; q).

(iv) Suppose Æ(s; a) = s

1

and Æ(s

1

; b) = s

2

with a 2 �

p

and b 2 �

q

, p 6= q. If

(a; b) =2 Com or K

s

((p; q)) > 0, there exists s

0

1

su
h that Æ(s; b) = s

0

1

and

Æ(s

0

1

; a) = s

2

.
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These 
onditions 
an be 
he
ked in time linear in the size of Æ. We 
on
lude

this se
tion by introdu
ing the notion of B-bounded MSC languages. Let B 2 N

be a natural number. We say that a 
omplete word � is B-bounded if for ea
h

pre�x � of � and for ea
h 
hannel (p; q) 2 Ch , j� j

p!q

� j� j

q?p

� B. We say that

L � �

Æ

is B-bounded if every word � 2 L is B-bounded. Let L be a regular

MSC language and let A = (S;�; s

in

; Æ; F ) be its minimal DFA, as des
ribed

above, with 
apa
ity fun
tions fK

s

g

s2S

. Let B

L

= max

s2S;
2Ch

K

s

(
). Then it

is easy to see that L is B

L

-bounded and that B

L


an be e�e
tively 
omputed

from A. Finally, we shall say that the MSC M is B-bounded if every string in

Lin(M) is B-bounded. A 
olle
tion of MSCs is B-bounded if every member of

the 
olle
tion is B-bounded.

3 An Automata-Theoreti
 Chara
terization

Re
all that the set of pro
esses P determines the 
ommuni
ation alphabet �

and that for p 2 P , �

p

denotes the a
tions in whi
h pro
ess p parti
ipates.

De�nition 3.1. A message-passing automaton over � is a stru
ture A =

(fA

p

g

p2P

; �; s

in

;F) where

{ � is a �nite alphabet of messages.

{ Ea
h 
omponent A

p

is of the form (S

p

;!

p

) where

� S

p

is a �nite set of p-lo
al states.

� !

p

� S

p

��

p

��� S

p

is the p-lo
al transition relation.

{ s

in

2

Q

p2P

S

p

is the global initial state.

{ F �

Q

p2P

S

p

is the set of global �nal states.

The lo
al transition relation !

p

spe
i�es how pro
ess p sends and re
eives

messages. The transition (s; p!q;m; s

0

) spe
i�es that when p is in the state s,

it 
an send the message m to q by exe
uting the a
tion p!q and move to the

state s

0

. The message m is, as a result, appended to the queue in 
hannel (p; q).

Similarly, the transition (s; p?q;m; s

0

) signi�es that in the state s, the pro
ess p


an re
eive the message m from q by exe
uting the a
tion p?q and move to the

state s

0

. The message m is removed from the head of the queue in 
hannel (q; p).

The set of global states of A is given by

Q

p2P

S

p

. For a global state s, we

let s

p

denote the pth 
omponent of s. A 
on�guration is a pair (s; �) where s is

a global state and � : Ch ! �

�

is the 
hannel state that spe
i�es the queue of

messages 
urrently residing in ea
h 
hannel 
. The initial 
on�guration of A is

(s

in

; �

"

) where �

"

(
) is the empty string " for every 
hannel 
. The set of �nal


on�gurations of A is F � f�

"

g.

We now de�ne the set of rea
hable 
on�gurations Conf

A

and the global

transition relation ) � Conf

A

�� � Conf

A

indu
tively as follows:

{ (s

in

; �

"

) 2 Conf

A

.

{ Suppose (s; �) 2 Conf

A

, (s

0

; �

0

) is a 
on�guration and (s

p

; p!q;m; s

0

p

) 2 !

p

su
h that the following 
onditions are satis�ed:
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(p) :

?>=<89:;
s

1

p!q

��

=)

(q) :

?>=<89:;
t

1

q!p





q?p

��

=)

?>=<89:;76540123
s

2

p!q

		

?>=<89:;
t

2

q?p

JJ

?>=<89:;76540123
t

3

?>=<89:;
s

3

p?q

II

Fig. 2. A 3-bounded message-passing automaton.

� r 6= p implies s

r

= s

0

r

for ea
h r 2 P .

� �

0

((p; q)) = �((p; q)) �m and for 
 6= (p; q), �

0

(
) = �(
).

Then (s; �)

p!q

=) (s

0

; �

0

) and (s

0

; �

0

) 2 Conf

A

.

{ Suppose (s; �) 2 Conf

A

, (s

0

; �

0

) is a 
on�guration and (s

p

; p?q;m; s

0

p

) 2 !

p

su
h that the following 
onditions are satis�ed:

� r 6= p implies s

r

= s

0

r

for ea
h r 2 P .

� �((q; p)) = m � �

0

((q; p)) and for 
 6= (q; p), �

0

(
) = �(
).

Then (s; �)

p?q

=) (s

0

; �

0

) and (s

0

; �

0

) 2 Conf

A

.

Let � 2 �

�

. A run of A over � is a map � : Pre(�)! Conf

A

(where Pre(�)

is the set of pre�xes of �) su
h that �(") = (s

in

; �

"

) and for ea
h �a 2 Pre(�),

�(�)

a

=) �(�a). The run � is a

epting if �(�) is a �nal 
on�guration. We de�ne

L(A) = f� j A has an a

epting run over �g. It is easy to see that every member

of L(A) is 
omplete and L(A) is �-
losed.

Clearly, L(A) need not be regular. Consider, for instan
e, a message-passing

automaton for the 
anoni
al produ
er-
onsumer system in whi
h the produ
er p

sends an arbitrary number of messages to the 
onsumer q. Sin
e we 
an reorder

all the p!q a
tions to be performed before all the q?p a
tions, the queue in


hannel (p; q) 
an grow arbitrarily long. Hen
e, the rea
hable 
on�gurations of

this system are not bounded and the 
orresponding language is not regular.

For B 2 N, we say that a 
on�guration (s; �) of the message-passing automa-

ton A is B-bounded if for every 
hannel 
 2 Ch , it is the 
ase that j�(
)j � B.

We say that A is a B-bounded automaton if every rea
hable 
on�guration

(s; �) 2 Conf

A

is B-bounded. It is not diÆ
ult to show that given a message-

passing automaton A and a bound B 2 N, one 
an de
ide whether A is B-

bounded. Figure 2 shows an example of a 3-bounded message-passing automa-

ton with two 
omponents, p and q. In this example, the message alphabet is

a singleton, and is hen
e omitted. The initial state is (s

1

; t

1

) and there is only

one �nal state, (s

2

; t

3

). This automaton a

epts an in�nite set of MSCs, none of

whi
h 
an be expressed as the 
on
atenation of two or more non-trivial MSCs.

It follows easily that the MSC language a

epted by this automaton 
annot be

represented by an MSG.
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Lemma 3.2. Let A be a B-bounded automaton over �. Then L(A) is a B-

bounded regular MSC language.

This result follows from the de�nitions and it 
onstitutes the easy half of the


hara
terization we wish to obtain. The diÆ
ult half is :

Lemma 3.3. Let L � �

�

be a B-bounded regular MSC language. Then there

exists a B-bounded message-passing automaton A over � su
h that L(A) = L.

The �rst step in the proof is to view L as a regular Mazurkiewi
z tra
e

language over an appropriate alphabet and apply Zielonka's theorem [23℄ to

obtain an asyn
hronous automaton re
ognizing L. The se
ond step, whi
h is the

hard part, is to simulate this asyn
hronous automaton by a B-bounded message

passing automaton. This simulation makes 
ru
ial use of the te
hnique developed

in [16℄ for lo
ally maintaining the latest information about other pro
esses in a

message-passing system.

We say that A is a bounded message-passing automaton if A is B-bounded

for some B 2 N. The main result of this se
tion is an easy 
onsequen
e of the

two previous lemmas.

Theorem 3.4. Let L � �

�

be a regular MSC language. Then there exists a

bounded message-passing automaton A over � su
h that L(A) = L.

4 A Logi
al Chara
terization

We formulate a monadi
 se
ond-order logi
 that 
hara
terizes regular B-boun-

ded MSC languages for ea
h �xed B 2 N. Thus our logi
 will be parameterized

by a pair (P ; B). For 
onvenien
e, we �x B 2 N through the rest of the se
tion.

As usual, we shall assume a supply of individual variables x; y; : : :, a supply of

set variables X;Y; : : :, and a family of unary predi
ate symbols fQ

a

g

a2�

. The

syntax of the logi
 is then given by:

MSO(P ; B) ::= Q

a

(x) j x 2 X j x � y j :' j ' _ ' j (9x)' j (9X)'

Thus the syntax does not re
e
t any information about B or the stru
tural

features of an MSC. These aspe
ts will be dealt with in the semanti
s. Let

M

P;B

be the set of B-bounded MSCs over P . The formulas of our logi
 are

interpreted over the members ofM

P;B

. LetM = (E;�; �) be an MSC inM

P;B

and I be an interpretation that assigns to ea
h individual variable a member

I(x) in E and to ea
h set variable X a subset I(X) of E. ThenM j=

I

' denotes

that M satis�es ' under I. This notion is de�ned in the expe
ted manner. For

instan
e, M j=

I

Q

a

(x) if �(I(x)) = a, M j=

I

x � y if I(x) � I(y) et
. For


onvenien
e, we have used � to denote both the predi
ate symbol in the logi


and the 
orresponding 
ausality relation in the model M .

As usual, ' is a senten
e if there are no free o

urren
es of individual or

set variables in '. With ea
h senten
e ' we 
an asso
iate an MSC language

L

'

= fM 2 M

P;B

j M j= 'g. We say that L � M

P;B

is MSO(P ; B)-de�nable
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if there exists a senten
e ' su
h that L

'

= L. We wish to argue that L �M

P;B

is MSO(P ; B)-de�nable if and only if it is a B-bounded regular MSC language.

It turns out the te
hniques used for proving a similar result in the theory of

tra
es [8℄ 
an be suitably modi�ed to derive our result.

Lemma 4.1. Let ' be a senten
e in MSO(P ; B). Then L

'

is a B-bounded reg-

ular MSC language.

Proof Sket
h: The fa
t that L

'

is B-bounded follows from the semanti
s

and hen
e we just need to establish regularity. Consider MSO(�), the monadi


se
ond-order theory of �nite strings in �

�

. This logi
 has the same syntax as

MSO(P ; B) ex
ept that the ordering relation is interpreted over the positions of

a stru
ture in �

�

. Let L =

S

fLin(M) j M 2 L

'

g. We exhibit a senten
e b' in

MSO(�) su
h that L = f� j � j= b'g. The main observation is that the bound

B ensures that the family of 
hannel-
apa
ity fun
tions K 
an be 
aptured by

a �xed number of sets, whi
h is used both to assert 
hannel-
onsisten
y and

to express the partial order of MSCs in terms of the underlying linear order of

positions. The required 
on
lusion will then follow from B�u
hi's theorem [5℄. ut

Lemma 4.2. Let L �M

P;B

be a regular MSC language. Then L is MSO(P ; B)-

de�nable.

Proof Sket
h: Let L =

S

fLin(M) j M 2 Lg. Then L is a regular (string)

MSC language over �. Hen
e by B�u
hi's theorem [5℄ there exists a senten
e '

in MSO(�) su
h that L = f� j � j= 'g. An important property of ' is that one

linearization of an MSC satis�es ' if and only if all linearizations of the MSC

satisfy '. We then de�ne the senten
e b' = jj'jj in MSO(P ; B) indu
tively su
h

that the language of MSCs de�ned by b' is pre
isely L. The key idea here is to

de�ne a 
anoni
al linearization of MSCs along the lines of [20℄ and show that the

underlying linear order is expressible in MSO(P ; B). We obtain a formula b' that

says \along the 
anoni
al linearization of an MSC, the senten
e ' is satis�ed".

Sin
e MSO(�) is de
idable, it follows that MSO(P ; B) is de
idable as well.

To 
on
lude, we 
an summarize the main results of this paper as follows.

Theorem 4.3. Let L � �

�

, where � is the 
ommuni
ation alphabet asso
iated

with a set P of pro
esses. Then, the following are equivalent.

(i) L is a regular MSC language.

(ii) L is a B-bounded regular MSC language, for some B 2 N.

(iii) There exists a bounded message-passing automaton A su
h that L(A) = L.

(iv) L is MSO(P ; B)-de�nable, for some B 2 N.

Referen
es

1. Alur, R., Holzmann, G. J., and Peled, D.: An analyzer for message sequen
e 
harts.

Software Con
epts and Tools, 17(2) (1996) 70{77.



414

2. Alur, R., and Yannakakis, M.: Model 
he
king of message sequen
e 
harts. Pro
.

CONCUR'99, LNCS 1664, Springer-Verlag (1999) 114{129.

3. Ben-Abdallah, H., and Leue, S.: Synta
ti
 dete
tion of pro
ess divergen
e and non-

lo
al 
hoi
e in message sequen
e 
harts. Pro
. TACAS'97, LNCS 1217, Springer-

Verlag (1997) 259{274.

4. Boo
h, G., Ja
obson, I., and Rumbaugh, J.: Uni�ed Modeling Language User

Guide. Addison-Wesley (1997).

5. B�u
hi, J. R.: On a de
ision method in restri
ted se
ond order arithmeti
. Z. Math.

Logik Grundlag. Math 6 (1960) 66{92.

6. Damm,W., and Harel, D.: LCSs: Breathing life into message sequen
e 
harts. Pro
.

FMOODS'99, Kluwer A
ademi
 Publishers (1999) 293{312.

7. Diekert, V., and Rozenberg, G. (Eds.): The book of tra
es. World S
ienti�
 (1995).

8. Ebinger, W., and Mus
holl, A.: Logi
al de�nability on in�nite tra
es. Theoreti
al

Computer S
ien
e 154(1) (1996) 67{84.

9. Harel, D., and Gery, E.: Exe
utable obje
t modeling with state
harts. IEEE Com-

puter, July 1997 (1997) 31{42.

10. Henriksen, J. G., Mukund, M., Narayan Kumar, K., and Thiagarajan, P. S.: To-

wards a theory of regular MSC languages, Report RS-99-52, BRICS, Department

of Computer S
ien
e, University of Aarhus, Denmark (1999).

11. Henriksen, J. G., Mukund, M., Narayan Kumar, K., and Thiagarajan, P. S.: On

message sequen
e graphs and �nitely generated regular MSC languages, Pro
.

ICALP'2000, LNCS 1853, Springer-Verlag (2000).

12. ITU-TS Re
ommendation Z.120:Message Sequen
e Chart (MSC). ITU-TS, Geneva

(1997)

13. Ladkin, P. B., and Leue, S.: Interpreting message 
ow graphs. Formal Aspe
ts of

Computing 7(5) (1995) 473{509.

14. Levin, V., and Peled, D.: Veri�
ation of message sequen
e 
harts via template

mat
hing. Pro
. TAPSOFT'97, LNCS 1214, Springer-Verlag (1997) 652{666.

15. Mauw, S., and Reniers, M. A.: High-level message sequen
e 
harts, Pro
. SDL '97,

Elsevier (1997) 291{306.

16. Mukund, M., Narayan Kumar, K., and Sohoni, M.: Keeping tra
k of the lat-

est gossip in message-passing systems. Pro
. Stru
tures in Con
urren
y Theory

(STRICT), Workshops in Computing Series, Springer-Verlag (1995) 249{263.

17. Mus
holl, A.: Mat
hing Spe
i�
ations for Message Sequen
e Charts. Pro
. FOS-

SACS'99, LNCS 1578, Springer-Verlag (1999) 273{287.

18. Mus
holl, A., Peled, D., and Su, Z.: De
iding properties for message sequen
e


harts. Pro
. FOSSACS'98, LNCS 1378, Springer-Verlag (1998) 226{242.

19. Rudolph, E., Graubmann, P., and Grabowski, J.: Tutorial on message sequen
e


harts. In Computer Networks and ISDN Systems|SDL and MSC, Volume 28

(1996).

20. Thiagarajan, P. S., and Walukiewi
z, I: An expressively 
omplete linear time tem-

poral logi
 for Mazurkiewi
z tra
es. Pro
. IEEE LICS'97 (1997) 183{194.

21. Thomas, W.: Automata on in�nite obje
ts. In van Leeuwen, J. (Ed.), Handbook of

Theoreti
al Computer S
ien
e, Volume B, North-Holland (1990) 133{191.

22. Vardi, M. Y., and Wolper, P.: An automata-theoreti
 approa
h to automati
 pro-

gram veri�
ation. In Pro
. IEEE LICS'86 (1986) 332{344.

23. Zielonka, W.: Notes on �nite asyn
hronous automata. R.A.I.R.O.|Inf. Th�eor. et

Appl., 21 (1987) 99{135.


