Mathematical Foundation of Computer Science (MFCS) 2000,
Proceedings: Mogens Nielsen, Branislav Rovan (eds.)
Springer Lecture Notes in Computer Science 1893 (2000), 405-414.

Regular Collections of Message Sequence Charts
(Extended Abstract)

Jesper G. Henriksen!, Madhavan Mukund?*,
K. Narayan Kumar?*, and P.S. Thiagarajan?

! BRICS**, University of Aarhus, Denmark. Email: gulmann@brics.dk
2 Chennai Mathematical Institute, Chennai, India
Email: {madhavan,kumar,pst}@smi.ernet.in

Abstract. Message Sequence Charts (MSCs) are an attractive visual
formalism used during the early stages of design in domains such as
telecommunication software. A popular mechanism for generating a col-
lection of MSCs is a Hierarchical Message Sequence Chart (HMSC). How-
ever, not all HMSCs describe collections of MSCs that can be “realized”
as a finite-state device. Our main goal is to pin down this notion of rea-
lizability. We propose an independent notion of regularity for collections
of MSCs and explore its basic properties. In particular, we characterize
regular collections of MSCs in terms of finite-state distributed automata
called bounded message-passing automata, in which a set of sequential
processes communicate with each other asynchronously over bounded
FIFO channels. We also provide a logical characterization in terms of a
natural monadic second-order logic interpreted over MSCs. It turns out
that realizable collections of MSCs as specified by HMSCs constitute a
strict subclass of the regular collections of MSCs.

1 Introduction

Message sequence charts (MSCs) are an appealing visual formalism often used to
capture system requirements in the early stages of design. They are particularly
suited for describing scenarios for distributed telecommunication software [12,
19]. They have also been called timing sequence diagrams, message flow diagrams
and object interaction diagrams and are used in a number of software engineer-
ing methodologies [4,9,19]. In its basic form, an MSC depicts the exchange of
messages between the processes of a distributed system along a single partially-
ordered execution. A collection of MSCs is used to capture the scenarios that a
designer might want the system to exhibit (or avoid).

Given the requirements in the form of a collection of MSCs, one can hope
to do formal analysis and discover design errors at an early stage. A natural
question in this context is to identify when a collection of MSCs is amenable to
formal analysis. A related issue is how to represent such collections.

* Supported in part by IFCPAR Project 2102-1.
** Basic Research in Computer Science,
Centre of the Danish National Research Foundation.

406

A standard way to generate a collection of MSCs is to use a Hierarchical
Message Sequence Chart (HMSC) [15]. An HMSC is a finite directed graph in
which each node is labelled, in turn, by an HMSC. The labels on the nodes are
not permitted to refer to each other. From an HMSC we can derive an equivalent
Message Sequence Graph (MSG) [1] by flattening out the hierarchical labelling
to obtain a graph where each node is labelled by a simple MSC. An MSG defines
a collection of MSCs obtained by concatenating the MSCs labelling each path
from an initial vertex to a terminal vertex. Though HMSCs provide more succinct
specifications than MSGs, they are only as expressive as MSGs. Thus, one often
restricts one’s attention to characterizing structural properties of MSGs rather
than of HMSCs [2,17,18].

In [2], it is shown that bounded MSGs define reasonable collections of MSCs—
the collection of MSCs generated by a bounded MSG can be represented as a
regular string language. Thus, behaviours captured by bounded MSGs can, in
principle, be realized as finite-state automata. In general, the collection of MSCs
defined by an arbitrary MSG is not realizable in this sense. A characterization
of the collections of MSCs definable using bounded MSGs is provided in [11].

The main goal of this paper is to pin down this notion of realizability in
terms of a notion of regularity for collections of MSCs. One consequence of our
study is that our definition of regularity provides a general and robust setting
for studying collections of MSCs. A second consequence, which follows from the
results in [11], is that bounded MSGs define a strict subclass of regular collections
of MSCs. A final consequence is that our notion addresses an important issue
raised in [6]; namely, how to convert requirements as specified by MSCs into
distributed, state-based specifications.

Another motivation for focussing on regularity is that this notion has turned
out to be very fruitful in a variety of contexts including finite (and infinite)
strings, trees and restricted partial orders known as Mazurkiewicz traces [7,21].
In all these settings there is a representation of regular collections in terms of
finite-state devices. There is also an accompanying monadic second-order logic
that usually induces temporal logics using which one can reason about such
collections [21]. One can then develop automated model-checking procedures
for verifying properties specified in these temporal logics. In this context, the
associated finite-state devices representing the regular collections often play a
very useful role [22].

We show here that our notion of regular MSC languages fits in nicely with
a related notion of a finite-state device, as also a monadic second-order logic.
We fix a finite set of processes P and consider M, the universe of MSCs defined
over the set P. An MSC in M can be viewed as a partial order labelled using a
finite alphabet X that is canonically fixed by P. We say that L C M is regular
if the set of all linearizations of all members of L constitutes a regular subset
of X*. A crucial point is that the universe M is itself not regular according to
our definition, unlike the classical setting of strings (or trees or Mazurkiewicz
traces). This fact has a strong bearing on the automata-theoretic and logical
formulations in our work.

407

It turns out that regular MSC languages can be stratified using the concept
of bounds. An MSC is said to be B-bounded for a natural number B if at every
“prefix” of the MSC and for every pair of processes (p,q) there are at most B
messages that p has sent to ¢ that have yet to be received by ¢. An MSC language
is B-bounded if every member of the language is B-bounded. Fortunately, for
every regular MSC language L we can effectively compute a (minimal) bound B
such that L is B-bounded. This leads to our automaton model called B-bounded
message-passing automata. The components of such an automaton correspond
to the processes in P. These components communicate with each other over (po-
tentially unbounded) FIFO channels. We say that a message-passing automaton
is B-bounded if, during its operation, it is never the case that a channel con-
tains more than B messages. We establish a precise correspondence between
B-bounded message-passing automata and B-bounded regular MSC languages.
In a similar vein, we formulate a natural monadic second-order logic MSO(P, B)
interpreted over B-bounded MSCs. We then show that B-bounded regular MSC
languages are exactly those that are definable in MSO(P, B).

In related work, a number of studies are available that are concerned with
individual MSCs in terms of their semantics and properties [1,13]. As pointed out
earlier, a nice way to generate a collection of MSCs is to use an MSG. A variety of
algorithms have been developed for MSGs in the literature—for instance, pattern
matching [14,17, 18] and detection of process divergence and non-local choice [3].
A systematic account of the various model-checking problems associated with
MSGs and their complexities is given in [2].

In this paper, we confine our attention to finite MSCs. The issues investigated
here have, at present, no counterparts in the infinite setting. We feel, however,
that our results will serve as a launching pad for a similar account concerning
infinite MSCs. This should then lead to the design of appropriate temporal
logics and automata-theoretic solutions (based on message-passing automata)
to model-checking problems for these logics.

The paper is organized as follows. In the next section we introduce MSCs
and regular MSC languages. In Section 3 we establish our automata-theoretic
characterization and, in Section 4, the logical characterization. While doing so,
we borrow one basic result and a couple of proof techniques from the theory of
Mazurkiewicz traces [7]. However, we need to modify some of these techniques in
a non-trivial way (especially in the setting of automata) due to the asymmetric
flow of information via messages in the MSC setting, as opposed to the symmetric
information flow via handshake communication in the trace setting. Due to lack
of space, we provide only proof ideas. Detailed proofs are available in [10].

2 Regular MSC Languages

Through the rest of the paper, we fix a finite set of processes (or agents) P and let
D, q,r range over P. For each p € P we define X, = {plg | p # ¢} U{p?q | p # ¢}
to be the set of communication actions in which p participates. The action plq is
to be read as p sends to g and the action p?q is to be read as p receives from q.

408

el €2

Fig. 1. An example MSC over {p,q,r}.

At our level of abstraction, we shall not be concerned with the actual messages
that are sent and received. We will also not deal with the internal actions of the
agents. We set X = UpeP X, and let a,b range over Y. We also denote the set
of channels by Ch = {(p,q) | p # q} and let ¢,d range over Ch.

A XY-labelled poset is a structure M = (E, <, A) where (E, <) is a poset and
A E — Y is a labelling function. For e € E we define Je = {e' | ¢/ < e}. For
p€Pandae€ X, weset E, = {e| ANe) € Xp} and E, = {e | A(e) = a},
respectively. For each ¢ € Ch, we define the relation R. = {(e,e’) | Ale) =
plg, Ae') = ¢7p and |LleNEpy,| = |{e' N Eyp2p|}. Finally, for each p € P, we define
the relation R, = (E, x E,) N <.

An MSC (over P) is a finite X-labelled poset M = (E, <,) that satisfies
the following conditions:

(i) Each R, is a linear order.
(ii) If p # q then [Epg| = |Eqzp).
(ili) <= (RpURcn)" where Rp = U ep Rp and Ron = U cop, Re-

In diagrams, the events of an MSC are presented in visual order. The events of
each process are arranged in a vertical line and the members of the relation R¢y,
are displayed as horizontal or downward-sloping directed edges. We illustrate
the idea with an example in Figure 1. Here P = {p, ¢,r}. For « € P, the events
in E, are arranged along the line labelled (z) with smaller (relative to <) events
appearing above the larger events. The Rcy-edges across agents are depicted by
horizontal edges—for instance ez R, q) e5. The labelling function A is easy to
extract from the diagram—for example, A(e}) = r!p and A(ez) = ¢7p.

We define regular MSC languages in terms of their linearizations. For the
MSC M = (E,<,A), let Lin(M) = {A(7) | 7 is a linearization of (E,<)}. By
abuse of notation, we have used A\ to also denote the natural extension of \ to
E*. The string plq rlq q7p q7r r!p p?r is a linearization of the MSC in Figure 1.

In the literature [1, 18] one sometimes considers a more generous notion of
linearization where two adjacent receive actions in a process corresponding to

409

messages from different senders are deemed to be causally independent. For
instance, plq rlq q?r q7p r!p p?r would also be a valid linearization of the MSC
in Figure 1. All our results go through with suitable modifications even in the
presence of this more generous notion of linearization.

Henceforth, we will identify an MSC with its isomorphism class. We let Mp
be the set of MSCs over P. An MSC language £ C Mp is said to regular if
U{Lin(M) | M € L} is a regular subset of ¥*. We note that the entire set Mp
is not regular by this definition.

To directly characterize the subsets of X* that correspond to regular MSC
languages, we proceed as follows. Let Com = {(plq,q?p) | (p,q) € Ch}. For
T € XY*and a € X, let |7, denote the number of times a appears in 7. We say that
o € X* is proper if for every prefix 7 of o and every pair (a,b) € Com, |T|q > |T|p.
We say that o is complete if o is proper and |o|, = |o|, for every (a,b) € Com.
Next we define a context-sensitive independence relation I C X* x (X x X) as
follows: (o,a,b) € I if oab is proper, a € X, and b € X, for distinct processes
p and ¢, and if (a,b) € Com then |o|, > |o|p. Observe that if (o,a,b) € I then
(0,b,a) € 1.

Let X¥° = {0 | 0 € ¥* and o is complete}. We then define ~ C X° x X°
to be the least equivalence relation such that if ¢ = o1abos, ¢’ = o1baos and
(01,a,b) € I then o ~ ¢'. It is important to note that ~ is defined over X'° (and
not X*). It is easy to verify that for each M € Mp, Lin(M) is a subset of X°
and is in fact a ~-equivalence class over X°.

We define L C X* to be a reqular string MSC language if there exists a
regular MSC language £ C Myp such that L = |J{Lin(M) | M € L}. It is easy
to see that L C X* is a regular string MSC language if and only if L is a regular
subset of X* every word in L is complete and L is ~-closed (that is, for each
o €L,if 0 € L and 0 ~ ¢’ then ¢’ € L). Clearly regular MSC languages and
regular string MSC languages represent each other. Hence, abusing terminology,
we will write “regular MSC language” to mean “regular string MSC language”.
From the context, it should be clear whether we are working with MSCs from
Mp or complete words over X*.

Given a regular subset L C X*, we can decide whether L is a regular MSC
language. We say that a state s in a finite-state automaton is live if there is
a path from s to a final state. Let A = (S, X, sin, 0, F) be the minimal DFA
representing L. Then it is not difficult to see that L is a regular MSC language
if and only if we can associate with each live state s € S, a channel-capacity
function s : Ch — N that satisfies the following conditions.

(i) If s € {sin} U F then K;(c) = 0 for every c € Ch.

(i) If s, s" are live states and 6(s,plg) = s’ then Ky ((p,q)) = Ks((p,q))+1 and
ICS’ (C) = ’Cs (C) for every ¢ 7é (p7 q)

(iii) If s, s’ are live states and (s, q?p) = s’ then Ks((p,q)) > 0, K5 ((p,q)) =
Ka((p>0)—1 and Ky () = Ky (c) for every c £ (p,q).

(iv) Suppose d(s,a) = s; and 0(s1,b) = sy witha € ¥, and b € Xy, p # ¢. If
(a,b) ¢ Com or Ks((p,q)) > 0, there exists s} such that 6(s,b) = s} and
d(s},a) = sa.

410

These conditions can be checked in time linear in the size of 6. We conclude
this section by introducing the notion of B-bounded MSC languages. Let B € N
be a natural number. We say that a complete word ¢ is B-bounded if for each
prefix 7 of o and for each channel (p,q) € Ch, |T|pg — |T|g?p < B. We say that
L C X¥° is B-bounded if every word o € L is B-bounded. Let L be a regular
MSC language and let A = (S, X, s;p,0, F') be its minimal DFA, as described
above, with capacity functions {K;}ses. Let By = maxses,cecn Ks(c). Then it
is easy to see that L is Br-bounded and that By can be effectively computed
from A. Finally, we shall say that the MSC M is B-bounded if every string in
Lin(M) is B-bounded. A collection of MSCs is B-bounded if every member of
the collection is B-bounded.

3 An Automata-Theoretic Characterization

Recall that the set of processes P determines the communication alphabet X
and that for p € P, X, denotes the actions in which process p participates.

Definition 3.1. A message-passing automaton over X is a structure A =
({Ap}per, 4, sin, F) where

— A is a finite alphabet of messages.
— Each component A, is of the form (S,,—p) where
e S, is a finite set of p-local states.
o =, C S, x X, x AxS, is the p-local transition relation.
— Sin € HpeP Sy is the global initial state.
- FC HpeP Sp is the set of global final states.

The local transition relation —, specifies how process p sends and receives
messages. The transition (s, plg,m,s’) specifies that when p is in the state s,
it can send the message m to g by executing the action pl¢ and move to the
state s'. The message m is, as a result, appended to the queue in channel (p, q).
Similarly, the transition (s, p?q,m,s’) signifies that in the state s, the process p
can receive the message m from ¢ by executing the action p?q and move to the
state s’. The message m is removed from the head of the queue in channel (g, p).

The set of global states of A is given by HpeP Sp. For a global state s, we
let s, denote the pth component of s. A configuration is a pair (s, x) where s is
a global state and y : Ch — A* is the channel state that specifies the queue of
messages currently residing in each channel c¢. The initial configuration of A is
(Sin, X=) where x.(c) is the empty string ¢ for every channel ¢. The set of final
configurations of Ais F x {x:}.

We now define the set of reachable configurations Conf4 and the global
transition relation = C Confaq x X x Conf,4 inductively as follows:

- (Sin7XE) € Conf.A'
— Suppose (s,x) € Confa, (s',X') is a configuration and (s,, plq,m, s;,) € =,
such that the following conditions are satisfied:

411

w: =) @ =

plq q?p(

>

q7p
q'p

®
®

Fig. 2. A 3-bounded message-passing automaton.

e 7 # p implies s, = s}, for each r € P.
e X'((p,9)) = x((p,q)) - m and for ¢ # (p, q), X'(c) = x(c).

Then (s, x) Z% (s',x') and (s',X') € Confa.
— Suppose (s, x) € Confa, (s',x') is a configuration and (s,,p?q,m, s;,) € =,
such that the following conditions are satisfied:
e 7 7 p implies s, = s}, for each r € P.
e x((¢,p)) =m-x'((¢g,p)) and for ¢ # (¢,p), X'(¢c) = x(c).

Then (s, x) Z% (s',x') and (s',X') € Confa.

Let 0 € ¥*. A run of A over ¢ is a map p : Pre(oc) — Confa (where Pre(o)
is the set of prefixes of o) such that p(e) = (sin, xe) and for each 7a € Pre(o),
p(T) == p(ra). The run p is accepting if p(o) is a final configuration. We define
L(A) = {0 | A has an accepting run over o}. It is easy to see that every member
of L(A) is complete and L(A) is ~-closed.

Clearly, L(.A) need not be regular. Consider, for instance, a message-passing
automaton for the canonical producer-consumer system in which the producer p
sends an arbitrary number of messages to the consumer ¢g. Since we can reorder
all the p!q actions to be performed before all the ¢7p actions, the queue in
channel (p,q) can grow arbitrarily long. Hence, the reachable configurations of
this system are not bounded and the corresponding language is not regular.

For B € N, we say that a configuration (s, x) of the message-passing automa-
ton A is B-bounded if for every channel ¢ € Ch, it is the case that |x(c)| < B.
We say that A is a B-bounded automaton if every reachable configuration
(s,x) € Confa is B-bounded. It is not difficult to show that given a message-
passing automaton A and a bound B € N, one can decide whether A is B-
bounded. Figure 2 shows an example of a 3-bounded message-passing automa-
ton with two components, p and ¢. In this example, the message alphabet is
a singleton, and is hence omitted. The initial state is (s1,t;) and there is only
one final state, (s2,?3). This automaton accepts an infinite set of MSCs, none of
which can be expressed as the concatenation of two or more non-trivial MSCs.
It follows easily that the MSC language accepted by this automaton cannot be
represented by an MSG.

412

Lemma 3.2. Let A be a B-bounded automaton over X. Then L(A) is a B-
bounded reqular MSC language.

This result follows from the definitions and it constitutes the easy half of the
characterization we wish to obtain. The difficult half is :

Lemma 3.3. Let L C X* be a B-bounded reqular MSC language. Then there
exists a B-bounded message-passing automaton A over X such that L(A) = L.

The first step in the proof is to view L as a regular Mazurkiewicz trace
language over an appropriate alphabet and apply Zielonka’s theorem [23] to
obtain an asynchronous automaton recognizing L. The second step, which is the
hard part, is to simulate this asynchronous automaton by a B-bounded message
passing automaton. This simulation makes crucial use of the technique developed
in [16] for locally maintaining the latest information about other processes in a
message-passing system.

We say that A is a bounded message-passing automaton if A is B-bounded
for some B € N. The main result of this section is an easy consequence of the
two previous lemmas.

Theorem 3.4. Let L C X* be a reqular MSC language. Then there exists a
bounded message-passing automaton A over X such that L(A) = L.

4 A Logical Characterization

We formulate a monadic second-order logic that characterizes regular B-boun-
ded MSC languages for each fixed B € N. Thus our logic will be parameterized
by a pair (P, B). For convenience, we fix B € N through the rest of the section.
As usual, we shall assume a supply of individual variables z,y, ..., a supply of
set variables X,Y, ..., and a family of unary predicate symbols {Q,}.ex. The
syntax of the logic is then given by:

MSO(P,B) =:=Qu(z) |[r€ X |z <y |~¢|pVe|(@r)p | (3X)p

Thus the syntax does not reflect any information about B or the structural
features of an MSC. These aspects will be dealt with in the semantics. Let
Mp g be the set of B-bounded MSCs over P. The formulas of our logic are
interpreted over the members of Mp g. Let M = (E, <, A) be an MSC in Mp g
and 7 be an interpretation that assigns to each individual variable a member
Z(z) in E and to each set variable X a subset Z(X) of E. Then M =7 ¢ denotes
that M satisfies ¢ under Z. This notion is defined in the expected manner. For
instance, M |=17 Qq(z) if AM(Z(z)) = a, M =7 « < y if Z(z) < Z(y) etc. For
convenience, we have used < to denote both the predicate symbol in the logic
and the corresponding causality relation in the model M.

As usual, ¢ is a sentence if there are no free occurrences of individual or
set variables in . With each sentence ¢ we can associate an MSC language
L, ={M e Mpp| M [E ¢}. Wesay that L C Mp g is MSO(P, B)-definable

413

if there exists a sentence ¢ such that £, = £. We wish to argue that £L C Mp p
is MSO(P, B)-definable if and only if it is a B-bounded regular MSC language.
It turns out the techniques used for proving a similar result in the theory of
traces [8] can be suitably modified to derive our result.

Lemma 4.1. Let ¢ be a sentence in MSO(P, B). Then L, is a B-bounded reg-
wlar MSC language.

Proof Sketch: The fact that £, is B-bounded follows from the semantics
and hence we just need to establish regularity. Consider MSO(X'), the monadic
second-order theory of finite strings in X™*. This logic has the same syntax as
MSO(P, B) except that the ordering relation is interpreted over the positions of
a structure in ¥*. Let L = (J{Lin(M) | M € L,}. We exhibit a sentence @ in
MSO(X) such that L = {0 | ¢ = ¢}. The main observation is that the bound
B ensures that the family of channel-capacity functions K can be captured by
a fixed number of sets, which is used both to assert channel-consistency and
to express the partial order of MSCs in terms of the underlying linear order of
positions. The required conclusion will then follow from Biichi’s theorem [5]. O

Lemma 4.2. Let L C Mp g be a regular MSC language. Then L is MSO(P, B)-
definable.

Proof Sketch: Let L = (J{Lin(M) | M € L}. Then L is a regular (string)
MSC language over X. Hence by Biichi’s theorem [5] there exists a sentence ¢
in MSO(X) such that L = {0 | 0 |= ¢}. An important property of ¢ is that one
linearization of an MSC satisfies ¢ if and only if all linearizations of the MSC
satisfy . We then define the sentence ¢ = || in MSO(P, B) inductively such
that the language of MSCs defined by @ is precisely £. The key idea here is to
define a canonical linearization of MSCs along the lines of [20] and show that the
underlying linear order is expressible in MSO(P, B). We obtain a formula ¢ that
says “along the canonical linearization of an MSC, the sentence ¢ is satisfied”.

Since MSO(X) is decidable, it follows that MSO(P, B) is decidable as well.
To conclude, we can summarize the main results of this paper as follows.

Theorem 4.3. Let L C X*, where X is the communication alphabet associated
with a set P of processes. Then, the following are equivalent.

(i) L is a regular MSC language.

(i) L is a B-bounded regular MSC language, for some B € N.
(iii) There exists a bounded message-passing automaton A such that L(A) = L.
(iv) L is MSO(P, B)-definable, for some B € N.

References

1. Alur, R., Holzmann, G. J., and Peled, D.: An analyzer for message sequence charts.
Software Concepts and Tools, 17(2) (1996) 70-77.

414

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

Alur, R., and Yannakakis, M.: Model checking of message sequence charts. Proc.
CONCUR’99, LNCS 1664, Springer-Verlag (1999) 114-129.

Ben-Abdallah, H., and Leue, S.: Syntactic detection of process divergence and non-
local choice in message sequence charts. Proc. TACAS’97, LNCS 1217, Springer-
Verlag (1997) 259-274.

. Booch, G., Jacobson, I., and Rumbaugh, J.: Unified Modeling Language User

Guide. Addison-Wesley (1997).

Biichi, J. R.: On a decision method in restricted second order arithmetic. Z. Math.
Logik Grundlag. Math 6 (1960) 66-92.

Damm, W., and Harel, D.: LCSs: Breathing life into message sequence charts. Proc.
FMOODS’99, Kluwer Academic Publishers (1999) 293-312.

Diekert, V., and Rozenberg, G. (Eds.): The book of traces. World Scientific (1995).
Ebinger, W., and Muscholl, A.: Logical definability on infinite traces. Theoretical
Computer Science 154(1) (1996) 67-84.

Harel, D., and Gery, E.: Executable object modeling with statecharts. IEEE Com-
puter, July 1997 (1997) 31-42.

Henriksen, J. G., Mukund, M., Narayan Kumar, K., and Thiagarajan, P. S.: To-
wards a theory of regular MSC languages, Report RS-99-52, BRICS, Department
of Computer Science, University of Aarhus, Denmark (1999).

Henriksen, J. G., Mukund, M., Narayan Kumar, K., and Thiagarajan, P. S.: On
message sequence graphs and finitely generated regular MSC languages, Proc.
ICALP’2000, LNCS 1853, Springer-Verlag (2000).

ITU-TS Recommendation Z.120: Message Sequence Chart (MSC). ITU-TS, Geneva
(1997)

Ladkin, P. B., and Leue, S.: Interpreting message flow graphs. Formal Aspects of
Computing 7(5) (1995) 473-509.

Levin, V., and Peled, D.: Verification of message sequence charts via template
matching. Proc. TAPSOFT’97, LNCS 1214, Springer-Verlag (1997) 652-666.
Mauw, S., and Reniers, M. A.: High-level message sequence charts, Proc. SDL ’97,
Elsevier (1997) 291-306.

Mukund, M., Narayan Kumar, K., and Sohoni, M.: Keeping track of the lat-
est gossip in message-passing systems. Proc. Structures in Concurrency Theory
(STRICT), Workshops in Computing Series, Springer-Verlag (1995) 249-263.
Muscholl, A.: Matching Specifications for Message Sequence Charts. Proc. FOS-
SACS’99, LNCS 1578, Springer-Verlag (1999) 273-287.

Muscholl, A., Peled, D., and Su, Z.: Deciding properties for message sequence
charts. Proc. FOSSACS’98, LNCS 1378, Springer-Verlag (1998) 226-242.
Rudolph, E., Graubmann, P., and Grabowski, J.: Tutorial on message sequence
charts. In Computer Networks and ISDN Systems—SDL and MSC, Volume 28
(1996).

Thiagarajan, P. S.; and Walukiewicz, I: An expressively complete linear time tem-
poral logic for Mazurkiewicz traces. Proc. IEEE LICS’97 (1997) 183-194.
Thomas, W.: Automata on infinite objects. In van Leeuwen, J. (Ed.), Handbook of
Theoretical Computer Science, Volume B, North-Holland (1990) 133-191.

Vardi, M. Y., and Wolper, P.: An automata-theoretic approach to automatic pro-
gram verification. In Proc. IEEE LICS’86 (1986) 332-344.

Zielonka, W.: Notes on finite asynchronous automata. R.A.I.R.O.—Inf. Théor. et
Appl., 21 (1987) 99-135.

