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Abstrat. Message Sequene Charts (MSCs) are an attrative visual

formalism used during the early stages of design in domains suh as

teleommuniation software. A popular mehanism for generating a ol-

letion of MSCs is a Hierarhial Message Sequene Chart (HMSC). How-

ever, not all HMSCs desribe olletions of MSCs that an be \realized"

as a �nite-state devie. Our main goal is to pin down this notion of rea-

lizability. We propose an independent notion of regularity for olletions

of MSCs and explore its basi properties. In partiular, we haraterize

regular olletions of MSCs in terms of �nite-state distributed automata

alled bounded message-passing automata, in whih a set of sequential

proesses ommuniate with eah other asynhronously over bounded

FIFO hannels. We also provide a logial haraterization in terms of a

natural monadi seond-order logi interpreted over MSCs. It turns out

that realizable olletions of MSCs as spei�ed by HMSCs onstitute a

strit sublass of the regular olletions of MSCs.

1 Introdution

Message sequene harts (MSCs) are an appealing visual formalism often used to

apture system requirements in the early stages of design. They are partiularly

suited for desribing senarios for distributed teleommuniation software [12,

19℄. They have also been alled timing sequene diagrams, message ow diagrams

and objet interation diagrams and are used in a number of software engineer-

ing methodologies [4, 9, 19℄. In its basi form, an MSC depits the exhange of

messages between the proesses of a distributed system along a single partially-

ordered exeution. A olletion of MSCs is used to apture the senarios that a

designer might want the system to exhibit (or avoid).

Given the requirements in the form of a olletion of MSCs, one an hope

to do formal analysis and disover design errors at an early stage. A natural

question in this ontext is to identify when a olletion of MSCs is amenable to

formal analysis. A related issue is how to represent suh olletions.
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A standard way to generate a olletion of MSCs is to use a Hierarhial

Message Sequene Chart (HMSC) [15℄. An HMSC is a �nite direted graph in

whih eah node is labelled, in turn, by an HMSC. The labels on the nodes are

not permitted to refer to eah other. From an HMSC we an derive an equivalent

Message Sequene Graph (MSG) [1℄ by attening out the hierarhial labelling

to obtain a graph where eah node is labelled by a simple MSC. An MSG de�nes

a olletion of MSCs obtained by onatenating the MSCs labelling eah path

from an initial vertex to a terminal vertex. Though HMSCs provide more suint

spei�ations than MSGs, they are only as expressive as MSGs. Thus, one often

restrits one's attention to haraterizing strutural properties of MSGs rather

than of HMSCs [2, 17, 18℄.

In [2℄, it is shown that bounded MSGs de�ne reasonable olletions of MSCs|

the olletion of MSCs generated by a bounded MSG an be represented as a

regular string language. Thus, behaviours aptured by bounded MSGs an, in

priniple, be realized as �nite-state automata. In general, the olletion of MSCs

de�ned by an arbitrary MSG is not realizable in this sense. A haraterization

of the olletions of MSCs de�nable using bounded MSGs is provided in [11℄.

The main goal of this paper is to pin down this notion of realizability in

terms of a notion of regularity for olletions of MSCs. One onsequene of our

study is that our de�nition of regularity provides a general and robust setting

for studying olletions of MSCs. A seond onsequene, whih follows from the

results in [11℄, is that bounded MSGs de�ne a strit sublass of regular olletions

of MSCs. A �nal onsequene is that our notion addresses an important issue

raised in [6℄; namely, how to onvert requirements as spei�ed by MSCs into

distributed, state-based spei�ations.

Another motivation for foussing on regularity is that this notion has turned

out to be very fruitful in a variety of ontexts inluding �nite (and in�nite)

strings, trees and restrited partial orders known as Mazurkiewiz traes [7, 21℄.

In all these settings there is a representation of regular olletions in terms of

�nite-state devies. There is also an aompanying monadi seond-order logi

that usually indues temporal logis using whih one an reason about suh

olletions [21℄. One an then develop automated model-heking proedures

for verifying properties spei�ed in these temporal logis. In this ontext, the

assoiated �nite-state devies representing the regular olletions often play a

very useful role [22℄.

We show here that our notion of regular MSC languages �ts in niely with

a related notion of a �nite-state devie, as also a monadi seond-order logi.

We �x a �nite set of proesses P and onsiderM, the universe of MSCs de�ned

over the set P . An MSC in M an be viewed as a partial order labelled using a

�nite alphabet � that is anonially �xed by P . We say that L �M is regular

if the set of all linearizations of all members of L onstitutes a regular subset

of �

�

. A ruial point is that the universe M is itself not regular aording to

our de�nition, unlike the lassial setting of strings (or trees or Mazurkiewiz

traes). This fat has a strong bearing on the automata-theoreti and logial

formulations in our work.
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It turns out that regular MSC languages an be strati�ed using the onept

of bounds. An MSC is said to be B-bounded for a natural number B if at every

\pre�x" of the MSC and for every pair of proesses (p; q) there are at most B

messages that p has sent to q that have yet to be reeived by q. An MSC language

is B-bounded if every member of the language is B-bounded. Fortunately, for

every regular MSC language L we an e�etively ompute a (minimal) bound B

suh that L is B-bounded. This leads to our automaton model alled B-bounded

message-passing automata. The omponents of suh an automaton orrespond

to the proesses in P . These omponents ommuniate with eah other over (po-

tentially unbounded) FIFO hannels. We say that a message-passing automaton

is B-bounded if, during its operation, it is never the ase that a hannel on-

tains more than B messages. We establish a preise orrespondene between

B-bounded message-passing automata and B-bounded regular MSC languages.

In a similar vein, we formulate a natural monadi seond-order logi MSO(P ; B)

interpreted over B-bounded MSCs. We then show that B-bounded regular MSC

languages are exatly those that are de�nable in MSO(P ; B).

In related work, a number of studies are available that are onerned with

individual MSCs in terms of their semantis and properties [1, 13℄. As pointed out

earlier, a nie way to generate a olletion of MSCs is to use an MSG. A variety of

algorithms have been developed for MSGs in the literature|for instane, pattern

mathing [14, 17, 18℄ and detetion of proess divergene and non-loal hoie [3℄.

A systemati aount of the various model-heking problems assoiated with

MSGs and their omplexities is given in [2℄.

In this paper, we on�ne our attention to �nite MSCs. The issues investigated

here have, at present, no ounterparts in the in�nite setting. We feel, however,

that our results will serve as a launhing pad for a similar aount onerning

in�nite MSCs. This should then lead to the design of appropriate temporal

logis and automata-theoreti solutions (based on message-passing automata)

to model-heking problems for these logis.

The paper is organized as follows. In the next setion we introdue MSCs

and regular MSC languages. In Setion 3 we establish our automata-theoreti

haraterization and, in Setion 4, the logial haraterization. While doing so,

we borrow one basi result and a ouple of proof tehniques from the theory of

Mazurkiewiz traes [7℄. However, we need to modify some of these tehniques in

a non-trivial way (espeially in the setting of automata) due to the asymmetri

ow of information via messages in the MSC setting, as opposed to the symmetri

information ow via handshake ommuniation in the trae setting. Due to lak

of spae, we provide only proof ideas. Detailed proofs are available in [10℄.

2 Regular MSC Languages

Through the rest of the paper, we �x a �nite set of proesses (or agents) P and let

p; q; r range over P . For eah p 2 P we de�ne �

p

= fp!q j p 6= qg [ fp?q j p 6= qg

to be the set of ommuniation ations in whih p partiipates. The ation p!q is

to be read as p sends to q and the ation p?q is to be read as p reeives from q.
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Fig. 1. An example MSC over fp; q; rg.

At our level of abstration, we shall not be onerned with the atual messages

that are sent and reeived. We will also not deal with the internal ations of the

agents. We set � =

S

p2P

�

p

and let a; b range over �. We also denote the set

of hannels by Ch = f(p; q) j p 6= qg and let ; d range over Ch .

A �-labelled poset is a struture M = (E;�; �) where (E;�) is a poset and

� : E ! � is a labelling funtion. For e 2 E we de�ne #e = fe

0

j e

0

� eg. For

p 2 P and a 2 �, we set E

p

= fe j �(e) 2 �

p

g and E

a

= fe j �(e) = ag,

respetively. For eah  2 Ch, we de�ne the relation R



= f(e; e

0

) j �(e) =

p!q; �(e

0

) = q?p and j#e\E

p!q

j = j#e

0

\E

q?p

jg. Finally, for eah p 2 P , we de�ne

the relation R

p

= (E

p

�E

p

) \ �.

An MSC (over P) is a �nite �-labelled poset M = (E;�; �) that satis�es

the following onditions:

(i) Eah R

p

is a linear order.

(ii) If p 6= q then jE

p!q

j = jE

q?p

j.

(iii) � = (R

P

[ R

Ch

)

�

where R

P

=

S

p2P

R

p

and R

Ch

=

S

2Ch

R



.

In diagrams, the events of an MSC are presented in visual order. The events of

eah proess are arranged in a vertial line and the members of the relation R

Ch

are displayed as horizontal or downward-sloping direted edges. We illustrate

the idea with an example in Figure 1. Here P = fp; q; rg. For x 2 P , the events

in E

x

are arranged along the line labelled (x) with smaller (relative to �) events

appearing above the larger events. The R

Ch

-edges aross agents are depited by

horizontal edges|for instane e

3

R

(r;q)

e

0

2

. The labelling funtion � is easy to

extrat from the diagram|for example, �(e

0

3

) = r!p and �(e

2

) = q?p.

We de�ne regular MSC languages in terms of their linearizations. For the

MSC M = (E;�; �), let Lin(M) = f�(�) j � is a linearization of (E;�)g. By

abuse of notation, we have used � to also denote the natural extension of � to

E

�

. The string p!q r!q q?p q?r r!p p?r is a linearization of the MSC in Figure 1.

In the literature [1, 18℄ one sometimes onsiders a more generous notion of

linearization where two adjaent reeive ations in a proess orresponding to
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messages from di�erent senders are deemed to be ausally independent. For

instane, p!q r!q q?r q?p r!p p?r would also be a valid linearization of the MSC

in Figure 1. All our results go through with suitable modi�ations even in the

presene of this more generous notion of linearization.

Heneforth, we will identify an MSC with its isomorphism lass. We let M

P

be the set of MSCs over P . An MSC language L � M

P

is said to regular if

S

fLin(M) jM 2 Lg is a regular subset of �

�

. We note that the entire set M

P

is not regular by this de�nition.

To diretly haraterize the subsets of �

�

that orrespond to regular MSC

languages, we proeed as follows. Let Com = f(p!q; q?p) j (p; q) 2 Chg. For

� 2 �

�

and a 2 �, let j� j

a

denote the number of times a appears in � . We say that

� 2 �

�

is proper if for every pre�x � of � and every pair (a; b) 2 Com , j� j

a

� j� j

b

.

We say that � is omplete if � is proper and j�j

a

= j�j

b

for every (a; b) 2 Com .

Next we de�ne a ontext-sensitive independene relation I � �

�

� (� � �) as

follows: (�; a; b) 2 I if �ab is proper, a 2 �

p

and b 2 �

q

for distint proesses

p and q, and if (a; b) 2 Com then j�j

a

> j�j

b

. Observe that if (�; a; b) 2 I then

(�; b; a) 2 I .

Let �

Æ

= f� j � 2 �

�

and � is ompleteg. We then de�ne � � �

Æ

� �

Æ

to be the least equivalene relation suh that if � = �

1

ab�

2

, �

0

= �

1

ba�

2

and

(�

1

; a; b) 2 I then � � �

0

. It is important to note that � is de�ned over �

Æ

(and

not �

�

). It is easy to verify that for eah M 2 M

P

, Lin(M) is a subset of �

Æ

and is in fat a �-equivalene lass over �

Æ

.

We de�ne L � �

�

to be a regular string MSC language if there exists a

regular MSC language L � M

P

suh that L =

S

fLin(M) j M 2 Lg. It is easy

to see that L � �

�

is a regular string MSC language if and only if L is a regular

subset of �

�

, every word in L is omplete and L is �-losed (that is, for eah

� 2 L, if � 2 L and � � �

0

then �

0

2 L). Clearly regular MSC languages and

regular string MSC languages represent eah other. Hene, abusing terminology,

we will write \regular MSC language" to mean \regular string MSC language".

From the ontext, it should be lear whether we are working with MSCs from

M

P

or omplete words over �

�

.

Given a regular subset L � �

�

, we an deide whether L is a regular MSC

language. We say that a state s in a �nite-state automaton is live if there is

a path from s to a �nal state. Let A = (S;�; s

in

; Æ; F ) be the minimal DFA

representing L. Then it is not diÆult to see that L is a regular MSC language

if and only if we an assoiate with eah live state s 2 S, a hannel-apaity

funtion K

s

: Ch ! N that satis�es the following onditions.

(i) If s 2 fs

in

g [ F then K

s

() = 0 for every  2 Ch.

(ii) If s; s

0

are live states and Æ(s; p!q) = s

0

then K

s

0

((p; q)) = K

s

((p; q))+1 and

K

s

0

() = K

s

() for every  6= (p; q).

(iii) If s; s

0

are live states and Æ(s; q?p) = s

0

then K

s

((p; q)) > 0, K

s

0

((p; q)) =

K

s

((p; q))�1 and K

s

0

() = K

s

() for every  6= (p; q).

(iv) Suppose Æ(s; a) = s

1

and Æ(s

1

; b) = s

2

with a 2 �

p

and b 2 �

q

, p 6= q. If

(a; b) =2 Com or K

s

((p; q)) > 0, there exists s

0

1

suh that Æ(s; b) = s

0

1

and

Æ(s

0

1

; a) = s

2

.
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These onditions an be heked in time linear in the size of Æ. We onlude

this setion by introduing the notion of B-bounded MSC languages. Let B 2 N

be a natural number. We say that a omplete word � is B-bounded if for eah

pre�x � of � and for eah hannel (p; q) 2 Ch , j� j

p!q

� j� j

q?p

� B. We say that

L � �

Æ

is B-bounded if every word � 2 L is B-bounded. Let L be a regular

MSC language and let A = (S;�; s

in

; Æ; F ) be its minimal DFA, as desribed

above, with apaity funtions fK

s

g

s2S

. Let B

L

= max

s2S;2Ch

K

s

(). Then it

is easy to see that L is B

L

-bounded and that B

L

an be e�etively omputed

from A. Finally, we shall say that the MSC M is B-bounded if every string in

Lin(M) is B-bounded. A olletion of MSCs is B-bounded if every member of

the olletion is B-bounded.

3 An Automata-Theoreti Charaterization

Reall that the set of proesses P determines the ommuniation alphabet �

and that for p 2 P , �

p

denotes the ations in whih proess p partiipates.

De�nition 3.1. A message-passing automaton over � is a struture A =

(fA

p

g

p2P

; �; s

in

;F) where

{ � is a �nite alphabet of messages.

{ Eah omponent A

p

is of the form (S

p

;!

p

) where

� S

p

is a �nite set of p-loal states.

� !

p

� S

p

��

p

��� S

p

is the p-loal transition relation.

{ s

in

2

Q

p2P

S

p

is the global initial state.

{ F �

Q

p2P

S

p

is the set of global �nal states.

The loal transition relation !

p

spei�es how proess p sends and reeives

messages. The transition (s; p!q;m; s

0

) spei�es that when p is in the state s,

it an send the message m to q by exeuting the ation p!q and move to the

state s

0

. The message m is, as a result, appended to the queue in hannel (p; q).

Similarly, the transition (s; p?q;m; s

0

) signi�es that in the state s, the proess p

an reeive the message m from q by exeuting the ation p?q and move to the

state s

0

. The message m is removed from the head of the queue in hannel (q; p).

The set of global states of A is given by

Q

p2P

S

p

. For a global state s, we

let s

p

denote the pth omponent of s. A on�guration is a pair (s; �) where s is

a global state and � : Ch ! �

�

is the hannel state that spei�es the queue of

messages urrently residing in eah hannel . The initial on�guration of A is

(s

in

; �

"

) where �

"

() is the empty string " for every hannel . The set of �nal

on�gurations of A is F � f�

"

g.

We now de�ne the set of reahable on�gurations Conf

A

and the global

transition relation ) � Conf

A

�� � Conf

A

indutively as follows:

{ (s

in

; �

"

) 2 Conf

A

.

{ Suppose (s; �) 2 Conf

A

, (s

0

; �

0

) is a on�guration and (s

p

; p!q;m; s

0

p

) 2 !

p

suh that the following onditions are satis�ed:
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p?q
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Fig. 2. A 3-bounded message-passing automaton.

� r 6= p implies s

r

= s

0

r

for eah r 2 P .

� �

0

((p; q)) = �((p; q)) �m and for  6= (p; q), �

0

() = �().

Then (s; �)

p!q

=) (s

0

; �

0

) and (s

0

; �

0

) 2 Conf

A

.

{ Suppose (s; �) 2 Conf

A

, (s

0

; �

0

) is a on�guration and (s

p

; p?q;m; s

0

p

) 2 !

p

suh that the following onditions are satis�ed:

� r 6= p implies s

r

= s

0

r

for eah r 2 P .

� �((q; p)) = m � �

0

((q; p)) and for  6= (q; p), �

0

() = �().

Then (s; �)

p?q

=) (s

0

; �

0

) and (s

0

; �

0

) 2 Conf

A

.

Let � 2 �

�

. A run of A over � is a map � : Pre(�)! Conf

A

(where Pre(�)

is the set of pre�xes of �) suh that �(") = (s

in

; �

"

) and for eah �a 2 Pre(�),

�(�)

a

=) �(�a). The run � is aepting if �(�) is a �nal on�guration. We de�ne

L(A) = f� j A has an aepting run over �g. It is easy to see that every member

of L(A) is omplete and L(A) is �-losed.

Clearly, L(A) need not be regular. Consider, for instane, a message-passing

automaton for the anonial produer-onsumer system in whih the produer p

sends an arbitrary number of messages to the onsumer q. Sine we an reorder

all the p!q ations to be performed before all the q?p ations, the queue in

hannel (p; q) an grow arbitrarily long. Hene, the reahable on�gurations of

this system are not bounded and the orresponding language is not regular.

For B 2 N, we say that a on�guration (s; �) of the message-passing automa-

ton A is B-bounded if for every hannel  2 Ch , it is the ase that j�()j � B.

We say that A is a B-bounded automaton if every reahable on�guration

(s; �) 2 Conf

A

is B-bounded. It is not diÆult to show that given a message-

passing automaton A and a bound B 2 N, one an deide whether A is B-

bounded. Figure 2 shows an example of a 3-bounded message-passing automa-

ton with two omponents, p and q. In this example, the message alphabet is

a singleton, and is hene omitted. The initial state is (s

1

; t

1

) and there is only

one �nal state, (s

2

; t

3

). This automaton aepts an in�nite set of MSCs, none of

whih an be expressed as the onatenation of two or more non-trivial MSCs.

It follows easily that the MSC language aepted by this automaton annot be

represented by an MSG.
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Lemma 3.2. Let A be a B-bounded automaton over �. Then L(A) is a B-

bounded regular MSC language.

This result follows from the de�nitions and it onstitutes the easy half of the

haraterization we wish to obtain. The diÆult half is :

Lemma 3.3. Let L � �

�

be a B-bounded regular MSC language. Then there

exists a B-bounded message-passing automaton A over � suh that L(A) = L.

The �rst step in the proof is to view L as a regular Mazurkiewiz trae

language over an appropriate alphabet and apply Zielonka's theorem [23℄ to

obtain an asynhronous automaton reognizing L. The seond step, whih is the

hard part, is to simulate this asynhronous automaton by a B-bounded message

passing automaton. This simulation makes ruial use of the tehnique developed

in [16℄ for loally maintaining the latest information about other proesses in a

message-passing system.

We say that A is a bounded message-passing automaton if A is B-bounded

for some B 2 N. The main result of this setion is an easy onsequene of the

two previous lemmas.

Theorem 3.4. Let L � �

�

be a regular MSC language. Then there exists a

bounded message-passing automaton A over � suh that L(A) = L.

4 A Logial Charaterization

We formulate a monadi seond-order logi that haraterizes regular B-boun-

ded MSC languages for eah �xed B 2 N. Thus our logi will be parameterized

by a pair (P ; B). For onveniene, we �x B 2 N through the rest of the setion.

As usual, we shall assume a supply of individual variables x; y; : : :, a supply of

set variables X;Y; : : :, and a family of unary prediate symbols fQ

a

g

a2�

. The

syntax of the logi is then given by:

MSO(P ; B) ::= Q

a

(x) j x 2 X j x � y j :' j ' _ ' j (9x)' j (9X)'

Thus the syntax does not reet any information about B or the strutural

features of an MSC. These aspets will be dealt with in the semantis. Let

M

P;B

be the set of B-bounded MSCs over P . The formulas of our logi are

interpreted over the members ofM

P;B

. LetM = (E;�; �) be an MSC inM

P;B

and I be an interpretation that assigns to eah individual variable a member

I(x) in E and to eah set variable X a subset I(X) of E. ThenM j=

I

' denotes

that M satis�es ' under I. This notion is de�ned in the expeted manner. For

instane, M j=

I

Q

a

(x) if �(I(x)) = a, M j=

I

x � y if I(x) � I(y) et. For

onveniene, we have used � to denote both the prediate symbol in the logi

and the orresponding ausality relation in the model M .

As usual, ' is a sentene if there are no free ourrenes of individual or

set variables in '. With eah sentene ' we an assoiate an MSC language

L

'

= fM 2 M

P;B

j M j= 'g. We say that L � M

P;B

is MSO(P ; B)-de�nable
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if there exists a sentene ' suh that L

'

= L. We wish to argue that L �M

P;B

is MSO(P ; B)-de�nable if and only if it is a B-bounded regular MSC language.

It turns out the tehniques used for proving a similar result in the theory of

traes [8℄ an be suitably modi�ed to derive our result.

Lemma 4.1. Let ' be a sentene in MSO(P ; B). Then L

'

is a B-bounded reg-

ular MSC language.

Proof Sketh: The fat that L

'

is B-bounded follows from the semantis

and hene we just need to establish regularity. Consider MSO(�), the monadi

seond-order theory of �nite strings in �

�

. This logi has the same syntax as

MSO(P ; B) exept that the ordering relation is interpreted over the positions of

a struture in �

�

. Let L =

S

fLin(M) j M 2 L

'

g. We exhibit a sentene b' in

MSO(�) suh that L = f� j � j= b'g. The main observation is that the bound

B ensures that the family of hannel-apaity funtions K an be aptured by

a �xed number of sets, whih is used both to assert hannel-onsisteny and

to express the partial order of MSCs in terms of the underlying linear order of

positions. The required onlusion will then follow from B�uhi's theorem [5℄. ut

Lemma 4.2. Let L �M

P;B

be a regular MSC language. Then L is MSO(P ; B)-

de�nable.

Proof Sketh: Let L =

S

fLin(M) j M 2 Lg. Then L is a regular (string)

MSC language over �. Hene by B�uhi's theorem [5℄ there exists a sentene '

in MSO(�) suh that L = f� j � j= 'g. An important property of ' is that one

linearization of an MSC satis�es ' if and only if all linearizations of the MSC

satisfy '. We then de�ne the sentene b' = jj'jj in MSO(P ; B) indutively suh

that the language of MSCs de�ned by b' is preisely L. The key idea here is to

de�ne a anonial linearization of MSCs along the lines of [20℄ and show that the

underlying linear order is expressible in MSO(P ; B). We obtain a formula b' that

says \along the anonial linearization of an MSC, the sentene ' is satis�ed".

Sine MSO(�) is deidable, it follows that MSO(P ; B) is deidable as well.

To onlude, we an summarize the main results of this paper as follows.

Theorem 4.3. Let L � �

�

, where � is the ommuniation alphabet assoiated

with a set P of proesses. Then, the following are equivalent.

(i) L is a regular MSC language.

(ii) L is a B-bounded regular MSC language, for some B 2 N.

(iii) There exists a bounded message-passing automaton A suh that L(A) = L.

(iv) L is MSO(P ; B)-de�nable, for some B 2 N.
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