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Abstract. In contrast to the classical setting of sequences, no temporal
logic has yet been identified over Mazurkiewicz traces that is equivalent
to first-order logic over traces and yet admits an elementary decision pro-
cedure. In this paper, we describe a local temporal logic over traces that
is expressively complete and whose satisfiability problem is in PSPACE.
Contrary to the situation for sequences, past modalities are essential for
such a logic. A somewhat unexpected corollary is that first-order logic
with three variables is expressively complete for traces.
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1 Introduction

Linear-time temporal logic (LTL) [15] has established itself as a useful formalism
for specifying the interleaved behaviour of reactive systems. To combat the com-
binatorial blow-up involved in describing computations of concurrent systems in
terms of interleavings, there has been a lot of interest in using temporal logic
more directly on labelled partial orders.

Mazurkiewicz traces [12] are labelled partial orders generated by dependence
alphabets of the form (X, D), where D is a dependence relation over X. If (a,b) ¢
D, a and b are deemed to be independent actions that may occur concurrently.
Traces are a natural formalism for describing the behaviour of static networks
of communicating finite-state agents [26].

LTL over X-labelled sequences is equivalent to FO3; (<), the first-order logic
over Y-labelled linear orders [11] and thus defines the class of aperiodic languages
over Y. Though FOx (<) permits assertions about both the past and the future,
future modalities suffice for establishing the expressive completeness of LTL with
respect to FOyx (<) [9]. From a practical point of view, a finite-state program
may be checked against an LTL specification relatively efficiently [2, 19, 20].

Though a number of LTL-like temporal logics have been proposed for reason-
ing directly about Mazurkiewicz traces, it has proved elusive to define a tractable
logic that is expressively complete with respect to FOx (<), the first order logic
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over traces. The first expressively complete temporal logic over traces was de-
scribed in [17]. The result was refined in [3,5] to show expressive completeness
without past modalities, using an extension of the proof technique developed for
LTL in [24, 25]. Formulae in both these logics are defined at global configurations
(maximal antichains). Unfortunately, reasoning at the level of global configura-
tions makes the complexity of deciding satisfiability non-elementary [21].

Computational tractability seems to require interpreting formulae at local
states—eflectively at individual events. This approach was followed (sometimes
indirectly) in early temporal logics over traces [1, 13, 16, 18]. While model-checking
is relatively efficient for these logics, they are not known to be expressively com-
plete. In fact, the logic TLC described in [1] is not even first-order definable.

Recently, an expressively complete local temporal logic has been defined for
the subclass of Mazurkiewicz traces where the dependence graph of the underly-
ing alphabet has a series-parallel structure [4]. Unfortunately, this logic cannot
be expressively complete over all traces—the logic uses only future modalities
and, unlike LTL over sequences, there exist two first-order inequivalent traces
that cannot be distinguished using only future modalities [23].

In this paper, we define a new local temporal logic over traces that is expres-
sively complete and whose satisfiability problem is in PSPACE. The observation
in [23] about the shortcoming of future modalities necessitates the introduction
of past modalities in our logic. As in [3,4], we show expressive completeness
using an extension to traces of the proof technique introduced in [24,25] for
LTL over sequences. However, the earlier proofs exploit the fact that the past
cannot affect the truth of a formula. The introduction of past modalities in our
logic requires the use of new techniques for “relativizing” formulae placed in new
past contexts. The satisfiability problem for our logic is settled using two-way
alternating automata, extending techniques from [1,4].

A corollary of our main result is that FO?E7 p)(<), the subclass of first-order
logic formulae with at most three variables, is expressively complete over traces,
extending the same result for sequences. This is somewhat surprising—intuition
suggests that we require variables proportional to the width of a trace. (This
result has been independently established by Walukiewicz [22].)

The paper is organized as follows. We begin with some preliminaries about
traces. In Section 3 we define our new temporal logic. Section 4 describes a
syntactic partition of traces that is used in Section 5 to establish expressive
completeness. The decision procedure for satisfiability is sketched in Section 6.
We conclude with a discussion of open questions. Many proofs have had to be
omitted in this extended abstract.

2 Preliminaries

We briefly recall some notions about Mazurkiewicz traces (see [6] for back-
ground). A dependence alphabet is a pair (X, D) where the alphabet X' is a finite
set of actions and the dependence relation D C X x X is reflexive and symmetric.
The independence relation I is the complement of D. For A C X, the set of letters
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independent of A is denoted by I(A) = {b€ X' | (a,b) € I for all a € A} and the
set of letters depending on (some action in) A is denoted by D(A) = X'\ I(A).

A Mazurkiewicz trace is a labelled partial order t = [V, <, A] where V is a set
of vertices labelled by A : V' — X and < is a partial order over V satisfying the
following conditions: For all z € V', the downward set |z = {y € V |y < z} is
finite, (A\(z), A(y)) € D implies z < y ory < z, and <y implies (A(z), A(y)) € D,
where < = < \ <? is the immediate successor relation in ¢.

The alphabet of a trace ¢ is the set alph(t) = A(V') C ¥ and its alphabet at
infinity, alphinf(t), is the set of letters occurring infinitely often in ¢. The set of
all traces is denoted by R(X, D) or simply by R. A trace ¢ is called finite if V'
is finite. For ¢ = [V, <, A\] € R, we define min(¢) C V as the set of all minimal
vertices of t. We can also read min(t) C X as the set of labels of the minimal
vertices of ¢. It will be clear from the context what we actually mean.

Let t; = [Vi, <i, Ai], @ € {1,2}, be a pair of traces such that Vy NV, = 0
and alphinf(¢;) x alph(¢z) C I. We define the concatenation of ¢; and t2 to be
ty - ta = [V, <, A] where V =V, UV,, A = A1 U A2 and < is the transitive closure
of <1 U <s U (V4 x VanNA"H(D)). The set of finite traces is then a monoid,
denoted M(X, D) or simply M, with the empty trace 1 = (0,0, ) as unit.

Here is some useful notation for subclasses of traces. For C C X, let Rg =
{t € R | alph(t) C C} and M¢c = M N Re. Also, (alphinf = C) = {t € R |
alphinf(¢t) = C} and (min = C) = {t € R | min(¢) = C}. For A,C C ¥, we set
R4 = Re N (alphinf = A). Observe that Mo = RY,.

The first order logic over traces FOx (<) is given by the syntax:

pu=P(x) |z <y|-p]|eVe|Irp,

where a € ¥ and z,y € Var are first order variables. For a trace t = [V, <, \] and
a valuation o : Var — V, ¢, 0 |= ¢ denotes that ¢ satisfies ¢ under o. We interpret
each predicate P, by the set {x € V | A(z) = a} and the relation < as the strict
partial order relation of ¢t. The semantics then lifts to all formulas as usual. Since
the meaning of a closed formula (sentence) ¢ is independent of the valuation o,
we can associate with each sentence ¢ the language L(p) ={t e R |t = ¢}. A
trace language L C R is said to be expressible in FOx(<) if there is a sentence
¢ € FOx(<) such that L = L(y). For n > 0, FO'5(<) denotes the set of formulae
with at most n distinct variables (possibly bound and reused several times).

We use the algebraic notion of recognizability (see e.g. [14]). Let h: M — S
be a morphism to a finite monoid S. For ¢t,u € R, we say that ¢t and u are
h-similar, denoted t ~, u, if either ¢t,u € M and h(t) = h(u) or ¢t and uw have
infinite factorizations in non-empty finite traces t = tit2 -+, u = ujus --- with
h(t;) = h(u;) for all i. The transitive closure &, of ~}, is an equivalence relation.
Since S is finite, this equivalence relation is of finite index with at most S| +|S|
equivalence classes. A trace language L C R is recognized by h if it is saturated
by =, (or equivalently by ~p,), i.e., t € L implies [t]x, C L for all t € R.

Let L C R be recognized by a morphism h: M — S. For B C Y, LN Mg
and L NRp are recognized by h v, the restriction of h to Mp.
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A finite monoid S is aperiodic if there is an n > 0 such that s” = s™T! for all
s € S. A trace language L C R is aperiodic if it is recognized by some morphism
to a finite and aperiodic monoid.

Theorem 1 ([8,7]). A language L C R(X, D) is expressible in FOx (<) if and
only if it is aperiodic.

3 Local temporal logic

Our local temporal logic over traces consists of two types of formulae: internal
formulae, evaluated at arbitrary events within a trace, and initial formulae,
asserting properties of minimal events of the trace. Internal formulae only talk
about the structure within a connected portion of a trace. Initial formulae permit
us to combine local assertions across disjoint components and form “global”
assertions about the structure of the trace.

The set LocTLL; of internal formulae over the alphabet X is defined as follows:

pu=a€X|ap|lpVe|EXp|lpUocp,C CY|EYp|pScp,CCXY

Let t = [V, <, A] € R be a finite or infinite trace and let z € V' be some vertex
of t. We write ¢,z [= ¢ to denote that trace t at node x satisfies the formula
¢ € LocTLY,. This is defined inductively as follows:

t,zl=a it AMz)=ua

t,z |= - if t,xlEp

t,rEeVy if ttxlEportz=vy

t,r EEXp if dy.z<yandt,yl=o

t,rEEYe if Jy.y<zandt,yl=o

tx=EplUcy if 2>z [tzEYandVy. (2 <y<z)=tyl=and
Vy. (A(y) € Cand y < z) = y < 7]

t,r=pScy if Iz<z [t,zEvYandVy. (z<y<z)=tyl=and
Vy. (AM(y) € Cand y < z) = y < 7]

The modalities EX and EY are existential extensions of the next state and
previous state operators X and Y of LTL. The modality Uc extends the “uni-
versal” until operator U defined in [4] with an alphabetic filter that restricts the
actions performed while fulfilling an until requirement. If ¢, z |= ¢ Uc ¥ then no
C-actions are performed when going from z to the node satisfying . Since the
filter also applies to events that are concurrent to x, the modality U no longer
looks purely at the future of an event. Similarly, S¢ is a filtered extension of the
LTL since operator. The intuitive meanings of U and S¢ are depicted below.

~C pN-C ~C pA-C

pUc Y Y Y ©Sc ¢
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Past modalities are essential, as indicated by the following example from
[23], where the dependence relation is @ — b — ¢ — d. These two traces are not
first-order equivalent but are bisimilar at the level of events and thus cannot be
distinguished by pure future modalities. However, the two traces below can be
distinguished using the filtered until, which is not pure future.

a—=+b—=sc—>b—=c-- d—-c—=b—=c—0b--
T T
d—c a—b

For the same alphabet, one can also show that the language ad(bc)* C M of
finite traces is first order but cannot be expressed by pure future modalities.

As usual, we can derive useful operators. Using unfiltered versions of until
and since, pU Y = Uy 1P and p Sy = ¢ Sp 1, we recover the classical modalities
eventually in the future Fo = T U ¢, eventually in the past F~1o = T S o,
always in the future Gy = = F -, and always in the past G 1 = ~F 1 =p.
We also use some filtered versions of these modalities: F, p = T U, ¢ (eventually
in the future but above the same b’s), G, ¢ = = Fj, = (for all future vertices that
are above the same b’s). The existence of a successor (resp. a predecessor) above
the same b’s can be written as follows:

EXo 0 = \/ EX(AAQ) ATUyd=\/cAEX(=DA @ AT S, 0),

d#b c
EYoo=\/EY(cAQ) AT S c = \/ dAEY(p AT Uy d).
c d#b

Finally, F*a = Fa A G(a = EXFa) expresses the existence of infinitely many
vertices labelled with a above the current vertex. The filtered version of this
formula, Fi°a = Fya A Gy(a = EX;, Fp @), requires in addition that the vertices
labelled with a are above the same b’s.

For A C X, let A denote the internal formula \/,. 4 a. An alphabetic since is
a formula of the form ASca for A,C C Y and a € X.

We turn now to initial formulae. These are boolean combinations of formu-
lae EM ¢ asserting that some minimal vertex in the trace satisfies the internal
formula . Formally, the set LocTLy of initial formulae over X is given by:

a:=1|EMp,¢ € LocTLy, | ~a | aVa
The semantics is defined as follows:

t=EMy if Jz. (¢ € min(¢) and t,2 |= @)
tE-a if tfEa
t=avp if tEaortEpS

An initial formula « € LocTLy defines the trace language L(a) = {t e R | t |=
a}. We can then express various alphabetic properties using initial formulae:
L(EMa) = {t € R | a € min(t)}, LIEMFa) = {t € R | a € alph(t)}, and
L(EMF*a) = {t € R | a € alphinf(¢)}. Therefore, for C C ¥, trace languages
such as (alphinf = C) and (min = C) are expressible in LocTLy.

The following result is immediate from the definition of LocTLy.
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Proposition 2. If a trace language is expressible in LocTLy, then it is express-
ible in FO%L(<).

4 Decomposition of traces

The proof of our main result is a case analysis based on partitioning the set
of traces according to the structure of the trace. Fix a letter b € X and set
B = X'\ {b}. Using the notation introduced in the middle of Section 2, let
r*={teRy |min(t) CD®)}, I' =1I", and 24 = {t € Ry(4) | min(t) C {b}}.

Each trace t € R has a unique factorization t = tobt,bts - - - with ty € Rp and
t; € Rg N (min C D(b)) for all 7 > 0. We obtain the following partition of R.

R = Mg (bI')>® W <U R4 QA> W <U MB(bF)*bFAQA>
AH£D A#£D

If all ¢; are finite, then we are in the first block. If o ¢ M, then we are in the
second block. Otherwise, we are in the last block. Note that Mp (bI")* = M. The
three possibilities are depicted below.

w| M/ S | " 0
b b b b 4
"o ol o of &
b b b b b

The following two results will allow us to use this decomposition effectively
in proving the expressive completeness of our logic.

Lemma 3. All these sets are expressible in LocTLy,. More precisely,

1. The sets M (bI")* and Mp (bI")¥ are expressible in LocTLy;.
2. RE - 24 = L(a) where

o= (/\ EM(—|b/\F§°a)> A (/\ —EM(=b A Fg%)).
a€A ag¢ A
3. Mg (bI')*bI'A 02,4 = MbI' 2,4 = L(B) where
="\ ((alphinf:C)/\EMF(b/\ N Foen \ Fean N\ —|Fb°°a>>.
ccxy ceC a€A a A

Note that “the” b in MbI'A 2, is characterized by the formula b A F°a,
where a is any letter in A.
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Lemma 4. Let A C X and let L C R be a trace language recognized by a
morphism h from M into a finite monoid S. Then,

(1) LAMsBD™ = |J (LinMg) - (L0 (D))

finite

2) LNRARsa = |J (LanNRE)- (LN 24)
finite

(3) LNMbI40, = | J (LaNMg)(Lz N (b)*)b(Ls N T4)(Ly N 24)
finite

where the trace languages L; C R are recognized by h.

5 Expressive completeness

We now show that our temporal logic for traces is expressively complete with
respect to FOx(<). In light of Theorem 1, it suffices to establish the following.

Theorem 5. Every aperiodic trace language L C R is expressible in LocTLy.
From Proposition 2 and Theorems 1 and 5, we deduce immediately

Corollary 6. Let L C R be a trace language. The following are equivalent

1. L is aperiodic, 2. L is expressible in LocTLy,
3. L is expressible in FO%(<), 4. L is expressible in FOx(<).

In the rest of this section, we sketch a proof of Theorem 5. We start with a
trace language L C R recognized by a morphism A from M to a finite aperiodic
monoid S. We use induction on | X].

The base case is when ¥ = {a}, a singleton. Then L is either a finite set or
the union of a finite set and a set of the form a™a*, n > 0. In both cases, L is
expressible in LocTLy;. For instance, {a“} and {a?} correspond to the formulae
EMGEXT and EMEX=EX T. Also, a®a* U {a“} is expressed by EM EXEX T.

For the induction step, with |¥| > 1, we fix a letter b € X and use the
decomposition introduced in Section 4. Therefore, we have

L= (LmMB(bF)OO> ¥ (Lﬂ U RgQA> ¥ <Lm U MB(bF)*bFAQA>.
A£D A#£D

We show separately that the three languages above are expressible in LocTLjy.
From Lemma 4, it suffices to establish the following.

Proposition 7. Recall that B = X\ {b}. Let A C X be non-empty and let
L C R be a trace language recognized by h. Then,

(1) (LNRp) - (min C {b}) is expressible in LocTLy.

(2) M - (LN (bI")*) is expressible in LocTLy.
(8) LNMg (bI')*® is expressible in LocTLy.



945

(4) R4 - (LN 24) is expressible in LocTLy.

(5) LNR4 24 is expressible in LocTLy.

(6) Mg (LN (bI')*)bI'A 024 is expressible in LocTLy.
(7) Mb(L N I'4)024 is expressible in LocTLy.

(8) MbI'A (L N 2,4) is expressible in LocTLy.

(9) LNMbBI 24 is expressible in LocTLy.

In all cases, we use the induction hypothesis to derive a formula for the factor
over a smaller alphabet and then relativize this formula to the full class. As a
representative example, we sketch the proof of Proposition 7(1,2,3).

Proof of Proposition 7(1). The language L N Rp is recognized by h [m; (Sec-
tion 2). By the induction hypothesis, it is expressible in LocTLg: LN Rp =
Lp(a) = {t € Rp | t E a} for some a € LocTLp. Let & € LocTLyx be the
formula given by Lemma 8 below. We have (LNRp) - (min C {b}) = Lx(a). O

Lemma 8. Let a € LocTLg. There exists a formula a € LocTLy; such that for
all t = t1ty with t1 € Rp and min(t:) C {b}, t1 Fa iff t E a.

Proof. We show simultaneously a similar result for internal formulae: for all
¢ € LocTLj, there exists a formula ¢ € LocTLY; such that for all ¢ = #1¢s
with t; € Rp and min(ty) C {b}, and for all z € ¢, t1,z E ¢ iff t,z = &.
We use structural induction on « and ¢. We have aV § = a Vv B, o = —a,
EMp = EM(=bAP), ¢ VY = oV, mp = =@, a = a, EXp = EX, 4, EY ¢ = EY ¢,
wUc v = @Ucugy ¥, and ¢ Sc Y = @ So . m

To prove Proposition 7(2), we use a reduction to the word case. Let LTLz(XU)
denote LTL over T-labelled sequences with the strong until modality XU—for
t=tity--- € T, t |= f XU g if there exists j > 1 such that ¢;t;4, --- |= g and
tptg+1 -+ |= f for all 1 < k < j. From the theory of LTL over sequences, we
know that every aperiodic word language K € T is expressible in LTLy(XU).

We fix T' = h(bI") and define o : (bI")* — T by o(z) = h(bz1)h(bzs) - - - if
T = br1bxs - - - with x; € I for i > 1. The map o is well-defined since each trace
x € (bI')* has a unique factorization z = bx1bzy - - - with z; € I' for i > 1.

We begin with the following result.

Lemma 9. Let L C R be recognized by h. Then, LN (bI')> = o~ (K) for some
K expressible in LTLp(XU).

Proof. Let K = o(LN(bI")>°). We first show that LN (bI")> = o 1(K). The in-
clusion C is clear. Conversely, let z = bz1bzy --- € LN(b[)* and y € o~ (o(x)).
Then, y = by1by> -+ € (bI")*° with h(bx;) = h(by;) for all i. Therefore, y ~p, x
and z € L implies y € L.

Next, we show that K is recognized by the evaluation morphism e : T* — S
defined by e(u) = u for all u € T'.

Let s,t € T with s ~. t and s € K. Write s = s182--- € T and t =
tito--- € T. Since T' = h(bI") we find © = bx1bxs--- € L with z; € I' and
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h(bx;) = s; for all i > 1; and y = by by, - - - with y; € I' and h(by;) = t; for all
i > 1. From s ~, t we deduce that « ~p y. Sincez € L,y € Land t = o(y) € K.

Since S is aperiodic, K C T is an aperiodic language over 7' and is thus
expressible in LTLy (XU)—this is the only place where we use S aperiodic. O

The next step is to show that if K C T is expressible in LTLy(XU) then
o~ 1(K) is expressible in LocTLjy;.

Lemma 10. Let f € LTLy(XU). There exists f € LocTLY, such that for all
t=1t1t" witht; € M and t' € (bI")*° \ {1}, we have o(t') = f iff t,min(t') = f.

Proof Sketch. We use a/g,:cglctural induction on f. Clearly, :f = —lf and f/\\//g =
FV§. We claim that f XU g = EX((-bV /) U (bAG)).

Let t' = tots--- with ¢; € bI" for all i > 1 and let z = min(¢').

Assume that o(t') = f XU g and let j > 2 be such that o(tjtj41---) F g
and o(tgtpsr---) = f for 2 < k < j. Let &' € ¢t with z <2’ and z = min(¢;).
We have ' < z, AM(z) = b and ¢,z |= g, by induction. Suppose y € t with
' <y < z. Either A(y) # b and ¢ Y = b, or there exists 2 < k < j with
y = min(t;) and, by induction, ¢,y |= f. Therefore, t, 2’ |= (=bV f)U (b AG) and
t,x = EX((-bV /)U (DA T)).

Conversely, assume that t,z = EX((=bV f) U (b A §)). Let 2',z € t with
z<z' <z t,zEbAgandty = —bV f for all #' <y < z. Since A(z) = b, there
exists j > 2 with z = min(¢;) and by induction, we get o(t;tj+1---) = g. Now,
let 2 < k < j and y = min(¢x). We have 2’ < y < z and since A\(y) = b we get
t,y &= f and o(tktgs+1 - -+) = f by induction. Therefore, o(t') = f XU g.

It remains to deal with a formula of the form f = s € T. For all r € S, the
trace language hj'(r) C Mg is aperiodic and, by induction on |¥|, hp'(r) =
Lp(a,) for some formula o, € LocTLg. Let a5 € LocTLiE be the formula
obtained using Lemma 11. We claim that 5§ = \/h(b),T:s a.

We write t' = biots with to € I' and t3 € (b[)*. Let r = h(t2). Then,
t> = a, and by Lemma 11 we obtain ¢, min(¢') = a;.. Now, if o(t') |E s then
s = h(btz) = h(b)r and we get t, min(t') = 5.

Conversely, assume that ¢, min(t') E «, for some r with s = h(b)r. By
Lemma 11 we get t2 = a,. and h(tz) = r. Hence, h(btz) =s and o(t') Es. O

Lemma 11. For all a € LocTLp, there is a formula & € LocTLiE such that for
all t = t1btats € R with t1 € M, t2 € Rp, min(t2) C D(b) and min(t3) C {b} we
have ty = a iff t, min(btat3) E a

o

Proof. We simultaneously establish an equivalent result for internal formulae:
for all ¢ € LocTL}, there exists a formula ¢ € LocTLY, such that for all ¢ =
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t1btats € R with t1 € M, t2 € Rp, min(ty) C D(b) and min(ts) C {b} and for all
T € tg, we have ty,2 = iff t,2 = ¢.

We proceed by structural 1nduct10n on a and ¢. As always we have ~a = —a,
avﬂ—avﬂ, —up-—up, and <pV¢ %V 1. Now, EM(p— EX(=bAQ), a=a,
Ech = EXp &, EY<p =EY,(-b A @),

pUcy = \/ P UcnB)uib) (W AESD)
BCE

pScty =\ (ESH)A(BScnpup () A =b)).
BCE

We prove the formula for Uc. Let x € to with t2,z |= U 9. Let z € t2 be such
that < z, ta, 2 E 9, ta,y Epforall z <y < z, and for all y € t2, y < z and
A(y) € C implies y < z. By induction, ¢, z |= 1; and t,y Epforallz <y <z

Let E = alph(l+, 2) = alph({y € t2 | y < 2}). Clearly, t,z = ESb. Let y € t
with y < 2. If A(y) = b, then y < min(btats) < x. If A(y) € C N E, then there
exists y' € to such that A\(y') = A(y) € C and y < y'. From y' < z, we deduce
y' <z and then y <y’ <. B

Conversely, let z € t; and E C X with ¢, = ¢ Ucneyugey (¥ A ESD). Let
z €twithze <z ¢tz E J/\ESb, t,y E ¢ for all z < y < z, and for all
y <z Ay) € (CNE)U{b} implies y < z. If z € t3 then y = min(¢3) satisfies
AMy) = b,y <z and y £ x, a contradiction. Therefore, z € t> and by induction,
we get t2,z |= ¢ and ta,y = ¢ for all ¢ < y < z. Now, let y € t2 with y < z
and A(y) € C. Since t,z | E S b we deduce that alph(l, z) C E. Therefore,
Ay) € CN E and we obtain y < z. a

Proof of Proposition 7(2). By Lemma 9, L N (bI')* = = o YLr(f)) for some
f € LTL7(XV). Let fe LocTLY, be given by Lemma 10 and define the formula
=EM(b A f) VEM(=b A Fo EX(b A f)). We claim that

Mp - (LN (1) \ {1}) = Mg - (bI)* 1 L(7).

Indeed, let t = ¢,¢" with ¢, € Mg, t' € LN (bI")> \ {1} and let z = min(t'). We
have o(t') |= f and by Lemma 10 we get ¢,z = f. Now, if € min(¢) we have
t = EM(b A f) and otherwise we have t = EM(=b A F, EX(b A f)).

Conversely, let t = t1t" with t; € Mg, t' € (bI')*>° and assume that t = 7.
Necessarily, b € alph(¢) and therefore ' # 1. From ¢t = v we deduce that
t,z = bA f with z = min(¢'). By Lemma 10 we get o(t') = f. Therefore,
t'€ o Y (Lr(f)) C L and t belongs to the left-hand side.

Since Mg - (bI")*° and Mp are both expressible in LocTLy;, we deduce that
Mg - (LN (bI")*) is expressible in LocTLy. o

Proof of Proposition 7(3). From Lemma 4, L N Mp(bI")* is a finite union of
languages of the form (L; NMp )-(LaN(bI")*°) where the trace languages L; C R
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are recognized by h. Now, since the product Mg (bI")* is unambiguous, we have

(Li "\Mg) - (Ly N (bI')*®) = (Ly N Mg) - (bI)>® N Mg - (Ly N (bI')™)
(Ly N Mg) - (b)™ = (Mg - (31)*) N (L1 N Rg) - (min C {b})).

We conclude using Lemma 3 and Proposition 7(1,2). o

We can prove Proposition 7(1-3) using no EY and only sinces of the form
A Sc a (“alphabetic” sinces). If L € M then L = LN Mg (bI")*, so we only need
to consider the first case in the decomposition. From this, we have the following.

Theorem 12. Let L C M be a trace language recognized by h. Then, L is ex-
pressible in LocTLy without using EY and with alphabetic sinces only.

6 Satisfiability

To decide satisfiability, we work with alternating automata over sequentializa-
tions of traces. The states of the alternating automaton consist of subformulas
of the main formula together with bookkeeping information about the letters
traversed while satisfying until and since requirements. The basic technique we
use was introduced in [1] and refined in [4]. The additional complication for our
logic is that we have to deal with past requirements, both explicitly in the oper-
ators EY and S¢, and implicitly, because of the alphabetic filters in U and S¢.
We thus need two-way alternating automata. Nevertheless, checking emptiness
for this class remains within PspACE [10] for each fixed dependence alphabet
(X, D). Due to space constraints, we omit all details of the construction.

7 Open problems

As we have seen in Section 3, the introduction of past modalities is unavoidable
when constructing an expressively complete local temporal logic over traces. A
natural question is whether unfiltered versions of Uz and S¢ are sufficient for
expressive completeness. We also do not know whether the temporal logic based
only on EX and U¢ is expressively complete. Another alternative is to keep the
unfiltered until and to use a concurrency modality asserting the existence of a
concurrent vertex satisfying some formula. Also, we have seen in Theorem 12
that no EY are required for finite traces and that alphabetic sinces are sufficient.
We do not know whether the same restriction applies to infinite traces.
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