
Automata, Languages and Programming, 29th International Colloquium, Pro
eedings:

P. Widmayer, F.T. Ruiz, R. Morales, M. Hennessy, S. Eidenbenz, R. Conejo(eds.)

Springer Le
ture Notes in Computer S
ien
e 2382 (2002), 938{949.

An Elementary Expressively Complete Temporal

Logi
 for Mazurkiewi
z Tra
es

?

Paul Gastin

1

and Madhavan Mukund

2

1

LIAFA, Universit�e Paris 7, 2, pla
e Jussieu, F-75251 Paris Cedex 05

Fax: 33 1 44 27 68 49 | Paul.Gastin�liafa.jussieu.fr

2

Chennai Mathemati
al Institute, 92 G N Chetty Road, Chennai 600 017, India

Fax: 91 44 823 3671 | madhavan�
mi.a
.in

Abstra
t. In 
ontrast to the 
lassi
al setting of sequen
es, no temporal

logi
 has yet been identi�ed over Mazurkiewi
z tra
es that is equivalent

to �rst-order logi
 over tra
es and yet admits an elementary de
ision pro-


edure. In this paper, we des
ribe a lo
al temporal logi
 over tra
es that

is expressively 
omplete and whose satis�ability problem is in Pspa
e.

Contrary to the situation for sequen
es, past modalities are essential for

su
h a logi
. A somewhat unexpe
ted 
orollary is that �rst-order logi


with three variables is expressively 
omplete for tra
es.

Keywords Temporal logi
s, Mazurkiewi
z tra
es, 
on
urren
y

1 Introdu
tion

Linear-time temporal logi
 (LTL) [15℄ has established itself as a useful formalism

for spe
ifying the interleaved behaviour of rea
tive systems. To 
ombat the 
om-

binatorial blow-up involved in des
ribing 
omputations of 
on
urrent systems in

terms of interleavings, there has been a lot of interest in using temporal logi


more dire
tly on labelled partial orders.

Mazurkiewi
z tra
es [12℄ are labelled partial orders generated by dependen
e

alphabets of the form (�;D), whereD is a dependen
e relation over�. If (a; b) =2

D, a and b are deemed to be independent a
tions that may o

ur 
on
urrently.

Tra
es are a natural formalism for des
ribing the behaviour of stati
 networks

of 
ommuni
ating �nite-state agents [26℄.

LTL over �-labelled sequen
es is equivalent to FO

�

(<), the �rst-order logi


over�-labelled linear orders [11℄ and thus de�nes the 
lass of aperiodi
 languages

over �. Though FO

�

(<) permits assertions about both the past and the future,

future modalities suÆ
e for establishing the expressive 
ompleteness of LTL with

respe
t to FO

�

(<) [9℄. From a pra
ti
al point of view, a �nite-state program

may be 
he
ked against an LTL spe
i�
ation relatively eÆ
iently [2, 19, 20℄.

Though a number of LTL-like temporal logi
s have been proposed for reason-

ing dire
tly about Mazurkiewi
z tra
es, it has proved elusive to de�ne a tra
table

logi
 that is expressively 
omplete with respe
t to FO

�

(<), the �rst order logi


?
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over tra
es. The �rst expressively 
omplete temporal logi
 over tra
es was de-

s
ribed in [17℄. The result was re�ned in [3, 5℄ to show expressive 
ompleteness

without past modalities, using an extension of the proof te
hnique developed for

LTL in [24, 25℄. Formulae in both these logi
s are de�ned at global 
on�gurations

(maximal anti
hains). Unfortunately, reasoning at the level of global 
on�gura-

tions makes the 
omplexity of de
iding satis�ability non-elementary [21℄.

Computational tra
tability seems to require interpreting formulae at lo
al

states|e�e
tively at individual events. This approa
h was followed (sometimes

indire
tly) in early temporal logi
s over tra
es [1, 13, 16, 18℄. While model-
he
king

is relatively eÆ
ient for these logi
s, they are not known to be expressively 
om-

plete. In fa
t, the logi
 TLC des
ribed in [1℄ is not even �rst-order de�nable.

Re
ently, an expressively 
omplete lo
al temporal logi
 has been de�ned for

the sub
lass of Mazurkiewi
z tra
es where the dependen
e graph of the underly-

ing alphabet has a series-parallel stru
ture [4℄. Unfortunately, this logi
 
annot

be expressively 
omplete over all tra
es|the logi
 uses only future modalities

and, unlike LTL over sequen
es, there exist two �rst-order inequivalent tra
es

that 
annot be distinguished using only future modalities [23℄.

In this paper, we de�ne a new lo
al temporal logi
 over tra
es that is expres-

sively 
omplete and whose satis�ability problem is in Pspa
e. The observation

in [23℄ about the short
oming of future modalities ne
essitates the introdu
tion

of past modalities in our logi
. As in [3, 4℄, we show expressive 
ompleteness

using an extension to tra
es of the proof te
hnique introdu
ed in [24, 25℄ for

LTL over sequen
es. However, the earlier proofs exploit the fa
t that the past


annot a�e
t the truth of a formula. The introdu
tion of past modalities in our

logi
 requires the use of new te
hniques for \relativizing" formulae pla
ed in new

past 
ontexts. The satis�ability problem for our logi
 is settled using two-way

alternating automata, extending te
hniques from [1, 4℄.

A 
orollary of our main result is that FO

3

(�;D)

(<), the sub
lass of �rst-order

logi
 formulae with at most three variables, is expressively 
omplete over tra
es,

extending the same result for sequen
es. This is somewhat surprising|intuition

suggests that we require variables proportional to the width of a tra
e. (This

result has been independently established by Walukiewi
z [22℄.)

The paper is organized as follows. We begin with some preliminaries about

tra
es. In Se
tion 3 we de�ne our new temporal logi
. Se
tion 4 des
ribes a

synta
ti
 partition of tra
es that is used in Se
tion 5 to establish expressive


ompleteness. The de
ision pro
edure for satis�ability is sket
hed in Se
tion 6.

We 
on
lude with a dis
ussion of open questions. Many proofs have had to be

omitted in this extended abstra
t.

2 Preliminaries

We brie
y re
all some notions about Mazurkiewi
z tra
es (see [6℄ for ba
k-

ground). A dependen
e alphabet is a pair (�;D) where the alphabet � is a �nite

set of a
tions and the dependen
e relation D � ��� is re
exive and symmetri
.

The independen
e relation I is the 
omplement ofD. For A � �, the set of letters
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independent of A is denoted by I(A) = fb 2 � j (a; b) 2 I for all a 2 Ag and the

set of letters depending on (some a
tion in) A is denoted by D(A) = � n I(A).

A Mazurkiewi
z tra
e is a labelled partial order t = [V;�; �℄ where V is a set

of verti
es labelled by � : V ! � and � is a partial order over V satisfying the

following 
onditions: For all x 2 V , the downward set #x = fy 2 V j y � xg is

�nite, (�(x); �(y)) 2 D implies x � y or y � x, and xly implies (�(x); �(y)) 2 D,

where l = < n <

2

is the immediate su

essor relation in t.

The alphabet of a tra
e t is the set alph(t) = �(V ) � � and its alphabet at

in�nity, alphinf(t), is the set of letters o

urring in�nitely often in t. The set of

all tra
es is denoted by R(�;D) or simply by R. A tra
e t is 
alled �nite if V

is �nite. For t = [V;�; �℄ 2 R, we de�ne min(t) � V as the set of all minimal

verti
es of t. We 
an also read min(t) � � as the set of labels of the minimal

verti
es of t. It will be 
lear from the 
ontext what we a
tually mean.

Let t

i

= [V

i

;�

i

; �

i

℄, i 2 f1; 2g, be a pair of tra
es su
h that V

1

\ V

2

= ;

and alphinf(t

1

) � alph(t

2

) � I . We de�ne the 
on
atenation of t

1

and t

2

to be

t

1

� t

2

= [V;�; �℄ where V = V

1

[ V

2

, � = �

1

[ �

2

and � is the transitive 
losure

of �

1

[ �

2

[ (V

1

� V

2

\ �

�1

(D)). The set of �nite tra
es is then a monoid,

denoted M (�;D) or simply M , with the empty tra
e 1 = (;; ;; ;) as unit.

Here is some useful notation for sub
lasses of tra
es. For C � �, let R

C

=

ft 2 R j alph(t) � Cg and M

C

= M \ R

C

. Also, (alphinf = C) = ft 2 R j

alphinf(t) = Cg and (min = C) = ft 2 R j min(t) = Cg. For A;C � �, we set

R

A

C

= R

C

\ (alphinf = A). Observe that M

C

= R

;

C

.

The �rst order logi
 over tra
es FO

�

(<) is given by the syntax:

' ::= P

a

(x) j x < y j :' j ' _ ' j 9x';

where a 2 � and x; y 2 Var are �rst order variables. For a tra
e t = [V;�; �℄ and

a valuation � : Var! V , t; � j= ' denotes that t satis�es ' under �. We interpret

ea
h predi
ate P

a

by the set fx 2 V j �(x) = ag and the relation < as the stri
t

partial order relation of t. The semanti
s then lifts to all formulas as usual. Sin
e

the meaning of a 
losed formula (senten
e) ' is independent of the valuation �,

we 
an asso
iate with ea
h senten
e ' the language L(') = ft 2 R j t j= 'g. A

tra
e language L � R is said to be expressible in FO

�

(<) if there is a senten
e

' 2 FO

�

(<) su
h that L = L('). For n > 0, FO

n

�

(<) denotes the set of formulae

with at most n distin
t variables (possibly bound and reused several times).

We use the algebrai
 notion of re
ognizability (see e.g. [14℄). Let h : M ! S

be a morphism to a �nite monoid S. For t; u 2 R, we say that t and u are

h-similar, denoted t �

h

u, if either t; u 2 M and h(t) = h(u) or t and u have

in�nite fa
torizations in non-empty �nite tra
es t = t

1

t

2

� � �, u = u

1

u

2

� � � with

h(t

i

) = h(u

i

) for all i. The transitive 
losure �

h

of �

h

is an equivalen
e relation.

Sin
e S is �nite, this equivalen
e relation is of �nite index with at most jSj

2

+ jSj

equivalen
e 
lasses. A tra
e language L � R is re
ognized by h if it is saturated

by �

h

(or equivalently by �

h

), i.e., t 2 L implies [t℄

�

h

� L for all t 2 R.

Let L � R be re
ognized by a morphism h : M ! S. For B � �, L \ M

B

and L \ R

B

are re
ognized by h�

M

B

the restri
tion of h to M

B

.
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A �nite monoid S is aperiodi
 if there is an n � 0 su
h that s

n

= s

n+1

for all

s 2 S. A tra
e language L � R is aperiodi
 if it is re
ognized by some morphism

to a �nite and aperiodi
 monoid.

Theorem 1 ([8, 7℄). A language L � R(�;D) is expressible in FO

�

(<) if and

only if it is aperiodi
.

3 Lo
al temporal logi


Our lo
al temporal logi
 over tra
es 
onsists of two types of formulae: internal

formulae, evaluated at arbitrary events within a tra
e, and initial formulae,

asserting properties of minimal events of the tra
e. Internal formulae only talk

about the stru
ture within a 
onne
ted portion of a tra
e. Initial formulae permit

us to 
ombine lo
al assertions a
ross disjoint 
omponents and form \global"

assertions about the stru
ture of the tra
e.

The set Lo
TL

i

�

of internal formulae over the alphabet� is de�ned as follows:

' ::= a 2 � j :' j ' _ ' j EX' j ' U

C

';C � � j EY' j ' S

C

';C � �

Let t = [V;�; �℄ 2 R be a �nite or in�nite tra
e and let x 2 V be some vertex

of t. We write t; x j= ' to denote that tra
e t at node x satis�es the formula

' 2 Lo
TL

i

�

. This is de�ned indu
tively as follows:

t; x j= a if �(x) = a

t; x j= :' if t; x 6j= '

t; x j= ' _  if t; x j= ' or t; x j=  

t; x j= EX' if 9y: xl y and t; y j= '

t; x j= EY' if 9y: y l x and t; y j= '

t; x j= ' U

C

 if 9z � x: [t; z j=  and 8y: (x � y < z)) t; y j= ' and

8y: (�(y) 2 C and y � z)) y � x℄

t; x j= ' S

C

 if 9z � x: [t; z j=  and 8y: (z < y � x)) t; y j= ' and

8y: (�(y) 2 C and y � x)) y � z℄

The modalities EX and EY are existential extensions of the next state and

previous state operators X and Y of LTL. The modality U

C

extends the \uni-

versal" until operator U de�ned in [4℄ with an alphabeti
 �lter that restri
ts the

a
tions performed while ful�lling an until requirement. If t; x j= ' U

C

 then no

C-a
tions are performed when going from x to the node satisfying  . Sin
e the

�lter also applies to events that are 
on
urrent to x, the modality U

C

no longer

looks purely at the future of an event. Similarly, S

C

is a �ltered extension of the

LTL sin
e operator. The intuitive meanings of U

C

and S

C

are depi
ted below.

A

A

A











 J

J

J

J

' U

C

  

:C

' ^ :C

A

A

A











 J

J

J

J

 ' S

C

 

:C

' ^ :C
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Past modalities are essential, as indi
ated by the following example from

[23℄, where the dependen
e relation is a � b � 
 � d. These two tra
es are not

�rst-order equivalent but are bisimilar at the level of events and thus 
annot be

distinguished by pure future modalities. However, the two tra
es below 
an be

distinguished using the �ltered until, whi
h is not pure future.

a! b ! 
! b! 
 � � �

"

d! 


d! 
 ! b! 
! b � � �

"

a! b

For the same alphabet, one 
an also show that the language ad(b
)

�

� M of

�nite tra
es is �rst order but 
annot be expressed by pure future modalities.

As usual, we 
an derive useful operators. Using un�ltered versions of until

and sin
e, 'U  = 'U

;

 and 'S  = 'S

;

 , we re
over the 
lassi
al modalities

eventually in the future F' = > U ', eventually in the past F

�1

' = > S ',

always in the future G' = :F:', and always in the past G

�1

' = :F

�1

:'.

We also use some �ltered versions of these modalities: F

b

' = >U

b

' (eventually

in the future but above the same b's), G

b

' = :F

b

:' (for all future verti
es that

are above the same b's). The existen
e of a su

essor (resp. a prede
essor) above

the same b's 
an be written as follows:

EX

b

' =

_

d6=b

EX(d ^ ') ^ > U

b

d =

_





 ^ EX(:b ^ ' ^ > S

b


);

EY

b

' =

_




EY(
 ^ ') ^ > S

b


 =

_

d6=b

d ^ EY(' ^ > U

b

d):

Finally, F

1

a = F a ^ G(a ) EXF a) expresses the existen
e of in�nitely many

verti
es labelled with a above the 
urrent vertex. The �ltered version of this

formula, F

1

b

a = F

b

a ^ G

b

(a ) EX

b

F

b

a), requires in addition that the verti
es

labelled with a are above the same b's.

For A � �, let A denote the internal formula

W

a2A

a. An alphabeti
 sin
e is

a formula of the form A S

C

a for A;C � � and a 2 �.

We turn now to initial formulae. These are boolean 
ombinations of formu-

lae EM' asserting that some minimal vertex in the tra
e satis�es the internal

formula '. Formally, the set Lo
TL

�

of initial formulae over � is given by:

� ::= ? j EM'; ' 2 Lo
TL

i

�

j :� j � _ �

The semanti
s is de�ned as follows:

t j= EM' if 9x: (x 2 min(t) and t; x j= ')

t j= :� if t 6j= �

t j= � _ � if t j= � or t j= �

An initial formula � 2 Lo
TL

�

de�nes the tra
e language L(�) = ft 2 R j t j=

�g. We 
an then express various alphabeti
 properties using initial formulae:

L(EM a) = ft 2 R j a 2 min(t)g, L(EMF a) = ft 2 R j a 2 alph(t)g, and

L(EMF

1

a) = ft 2 R j a 2 alphinf(t)g. Therefore, for C � �, tra
e languages

su
h as (alphinf = C) and (min = C) are expressible in Lo
TL

�

.

The following result is immediate from the de�nition of Lo
TL

�

.
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Proposition 2. If a tra
e language is expressible in Lo
TL

�

, then it is express-

ible in FO

3

�

(<).

4 De
omposition of tra
es

The proof of our main result is a 
ase analysis based on partitioning the set

of tra
es a

ording to the stru
ture of the tra
e. Fix a letter b 2 � and set

B = � n fbg. Using the notation introdu
ed in the middle of Se
tion 2, let

�

A

= ft 2 R

A

B

j min(t) � D(b)g, � = �

;

, and 


A

= ft 2 R

I(A)

j min(t) � fbgg.

Ea
h tra
e t 2 R has a unique fa
torization t = t

0

bt

1

bt

2

� � � with t

0

2 R

B

and

t

i

2 R

B

\ (min � D(b)) for all i > 0. We obtain the following partition of R.

R = M

B

(b� )

1

℄

�

[

A6=;

R

A

B




A

�

℄

�

[

A6=;

M

B

(b� )

�

b�

A




A

�

If all t

i

are �nite, then we are in the �rst blo
k. If t

0

=2 M , then we are in the

se
ond blo
k. Otherwise, we are in the last blo
k. Note that M

B

(b� )

�

= M . The

three possibilities are depi
ted below.

(1)

M

B

b b b

�

�

�

�

�

�

�

�

�

� � � � �

(2)

R

A

B

b

�

�




A

(3)

M

B

b b b b

�

�

�

�

�

�

�

�

�

�

�

�

� � � � � �

A

b

�

�




A

The following two results will allow us to use this de
omposition e�e
tively

in proving the expressive 
ompleteness of our logi
.

Lemma 3. All these sets are expressible in Lo
TL

�

. More pre
isely,

1. The sets M

B

(b� )

�

and M

B

(b� )

!

are expressible in Lo
TL

�

.

2. R

A

B

�


A

= L(�) where

� =

 

^

a2A

EM(:b ^ F

1

b

a)

!

^

 

^

a=2A

:EM(:b ^ F

1

b

a)

!

:

3. M

B

(b� )

�

b�

A




A

= M b�

A




A

= L(�) where

� =

_

C��

 

(alphinf = C) ^ EMF

�

b ^

^


2C

F

1


 ^

^

a2A

F

1

b

a ^

^

a=2A

:F

1

b

a

�

!

:

Note that \the" b in M b�

A




A

is 
hara
terized by the formula b ^ F

1

b

a,

where a is any letter in A.
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Lemma 4. Let A � � and let L � R be a tra
e language re
ognized by a

morphism h from M into a �nite monoid S. Then,

(1) L \ M

B

(b� )

1

=

[

�nite

(L

1

\ M

B

) � (L

2

\ (b� )

1

)

(2) L \ R

A

B




A

=

[

�nite

(L

1

\ R

A

B

) � (L

2

\


A

)

(3) L \ M b�

A




A

=

[

�nite

(L

1

\ M

B

)(L

2

\ (b� )

�

)b(L

3

\ �

A

)(L

4

\


A

)

where the tra
e languages L

i

� R are re
ognized by h.

5 Expressive 
ompleteness

We now show that our temporal logi
 for tra
es is expressively 
omplete with

respe
t to FO

�

(<). In light of Theorem 1, it suÆ
es to establish the following.

Theorem 5. Every aperiodi
 tra
e language L � R is expressible in Lo
TL

�

.

From Proposition 2 and Theorems 1 and 5, we dedu
e immediately

Corollary 6. Let L � R be a tra
e language. The following are equivalent

1. L is aperiodi
,

3. L is expressible in FO

3

�

(<),

2. L is expressible in Lo
TL

�

,

4. L is expressible in FO

�

(<).

In the rest of this se
tion, we sket
h a proof of Theorem 5. We start with a

tra
e language L � R re
ognized by a morphism h from M to a �nite aperiodi


monoid S. We use indu
tion on j�j.

The base 
ase is when � = fag, a singleton. Then L is either a �nite set or

the union of a �nite set and a set of the form a

n

a

�

, n � 0. In both 
ases, L is

expressible in Lo
TL

�

. For instan
e, fa

!

g and fa

2

g 
orrespond to the formulae

EMGEX> and EMEX:EX>. Also, a

3

a

�

[ fa

!

g is expressed by EMEXEX>.

For the indu
tion step, with j�j > 1, we �x a letter b 2 � and use the

de
omposition introdu
ed in Se
tion 4. Therefore, we have

L =

�

L \ M

B

(b� )

1

�

℄

�

L \

[

A6=;

R

A

B




A

�

℄

�

L \

[

A6=;

M

B

(b� )

�

b�

A




A

�

:

We show separately that the three languages above are expressible in Lo
TL

�

.

From Lemma 4, it suÆ
es to establish the following.

Proposition 7. Re
all that B = � n fbg. Let A � � be non-empty and let

L � R be a tra
e language re
ognized by h. Then,

(1) (L \ R

B

) � (min � fbg) is expressible in Lo
TL

�

.

(2) M

B

� (L \ (b� )

1

) is expressible in Lo
TL

�

.

(3) L \ M

B

(b� )

1

is expressible in Lo
TL

�

.
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(4) R

A

B

� (L \


A

) is expressible in Lo
TL

�

.

(5) L \ R

A

B




A

is expressible in Lo
TL

�

.

(6) M

B

(L \ (b� )

�

)b�

A




A

is expressible in Lo
TL

�

.

(7) M b(L \ �

A

)


A

is expressible in Lo
TL

�

.

(8) M b�

A

(L \


A

) is expressible in Lo
TL

�

.

(9) L \ M b�

A




A

is expressible in Lo
TL

�

.

In all 
ases, we use the indu
tion hypothesis to derive a formula for the fa
tor

over a smaller alphabet and then relativize this formula to the full 
lass. As a

representative example, we sket
h the proof of Proposition 7(1,2,3).

Proof of Proposition 7(1). The language L \ R

B

is re
ognized by h �

M

B

(Se
-

tion 2). By the indu
tion hypothesis, it is expressible in Lo
TL

B

: L \ R

B

=

L

B

(�) = ft 2 R

B

j t j= �g for some � 2 Lo
TL

B

. Let e� 2 Lo
TL

�

be the

formula given by Lemma 8 below. We have (L\R

B

) � (min � fbg) = L

�

(e�). ut

Lemma 8. Let � 2 Lo
TL

B

. There exists a formula e� 2 Lo
TL

�

su
h that for

all t = t

1

t

2

with t

1

2 R

B

and min(t

2

) � fbg, t

1

j= � i� t j= e�.

Proof. We show simultaneously a similar result for internal formulae: for all

' 2 Lo
TL

i

B

, there exists a formula e' 2 Lo
TL

i

�

su
h that for all t = t

1

t

2

with t

1

2 R

B

and min(t

2

) � fbg, and for all x 2 t

1

, t

1

; x j= ' i� t; x j= e'.

We use stru
tural indu
tion on � and '. We have

^

� _ � = e� _

e

�, f:� = :e�,

℄

EM' = EM(:b^e'),

^

' _  = e'_

e

 , f:' = :e', ea = a,

℄

EX' = EX

b

e',

℄

EY' = EY e',

^

' U

C

 = e' U

C[fbg

e

 , and

^

' S

C

 = e' S

C

e

 . ut

To prove Proposition 7(2), we use a redu
tion to the word 
ase. Let LTL

T

(XU)

denote LTL over T -labelled sequen
es with the strong until modality XU|for

t = t

1

t

2

� � � 2 T

1

, t j= f XU g if there exists j > 1 su
h that t

j

t

j+1

� � � j= g and

t

k

t

k+1

� � � j= f for all 1 < k < j. From the theory of LTL over sequen
es, we

know that every aperiodi
 word language K 2 T

1

is expressible in LTL

T

(XU).

We �x T = h(b� ) and de�ne � : (b� )

1

! T

1

by �(x) = h(bx

1

)h(bx

2

) � � � if

x = bx

1

bx

2

� � � with x

i

2 � for i � 1. The map � is well-de�ned sin
e ea
h tra
e

x 2 (b� )

1

has a unique fa
torization x = bx

1

bx

2

� � � with x

i

2 � for i � 1.

We begin with the following result.

Lemma 9. Let L � R be re
ognized by h. Then, L\ (b� )

1

= �

�1

(K) for some

K expressible in LTL

T

(XU).

Proof. Let K = �(L\ (b� )

1

). We �rst show that L\ (b� )

1

= �

�1

(K). The in-


lusion � is 
lear. Conversely, let x = bx

1

bx

2

� � � 2 L\(b� )

1

and y 2 �

�1

(�(x)).

Then, y = by

1

by

2

� � � 2 (b� )

1

with h(bx

i

) = h(by

i

) for all i. Therefore, y �

h

x

and x 2 L implies y 2 L.

Next, we show that K is re
ognized by the evaluation morphism e : T

�

! S

de�ned by e(u) = u for all u 2 T .

Let s; t 2 T

1

with s �

e

t and s 2 K. Write s = s

1

s

2

� � � 2 T

1

and t =

t

1

t

2

� � � 2 T

1

. Sin
e T = h(b� ) we �nd x = bx

1

bx

2

� � � 2 L with x

i

2 � and
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h(bx

i

) = s

i

for all i > 1; and y = by

1

by

2

� � � with y

i

2 � and h(by

i

) = t

i

for all

i > 1. From s �

e

t we dedu
e that x �

h

y. Sin
e x 2 L, y 2 L and t = �(y) 2 K.

Sin
e S is aperiodi
, K � T

1

is an aperiodi
 language over T and is thus

expressible in LTL

T

(XU)|this is the only pla
e where we use S aperiodi
. ut

The next step is to show that if K � T

1

is expressible in LTL

T

(XU) then

�

�1

(K) is expressible in Lo
TL

�

.

Lemma 10. Let f 2 LTL

T

(XU). There exists

e

f 2 Lo
TL

i

�

su
h that for all

t = t

1

t

0

with t

1

2 M and t

0

2 (b� )

1

n f1g, we have �(t

0

) j= f i� t;min(t

0

) j=

e

f:

Proof Sket
h. We use a stru
tural indu
tion on f . Clearly,

f

:f = :

e

f and

℄

f _ g =

e

f _ eg. We 
laim that

^

f XU g = EX

�

(:b _

e

f) U (b ^ eg)

�

:

Let t

0

= t

2

t

3

� � � with t

i

2 b� for all i > 1 and let x = min(t

0

).

Assume that �(t

0

) j= f XU g and let j > 2 be su
h that �(t

j

t

j+1

� � �) j= g

and �(t

k

t

k+1

� � �) j= f for 2 < k < j. Let x

0

2 t with x l x

0

and z = min(t

j

).

We have x

0

� z, �(z) = b and t; z j= eg, by indu
tion. Suppose y 2 t with

x

0

� y < z. Either �(y) 6= b and t; y j= :b, or there exists 2 < k < j with

y = min(t

k

) and, by indu
tion, t; y j=

e

f . Therefore, t; x

0

j= (:b_

e

f)U (b^ eg) and

t; x j= EX

�

(:b _

e

f) U (b ^ eg)

�

.

Conversely, assume that t; x j= EX((:b _

e

f) U (b ^ eg)). Let x

0

; z 2 t with

xlx

0

� z, t; z j= b^ eg and t; y j= :b_

e

f for all x

0

� y < z. Sin
e �(z) = b, there

exists j > 2 with z = min(t

j

) and by indu
tion, we get �(t

j

t

j+1

� � �) j= g. Now,

let 2 < k < j and y = min(t

k

). We have x

0

� y < z and sin
e �(y) = b we get

t; y j=

e

f and �(t

k

t

k+1

� � �) j= f by indu
tion. Therefore, �(t

0

) j= f XU g.

It remains to deal with a formula of the form f = s 2 T . For all r 2 S, the

tra
e language h

�1

B

(r) � M

B

is aperiodi
 and, by indu
tion on j�j, h

�1

B

(r) =

L

B

(�

r

) for some formula �

r

2 Lo
TL

B

. Let f�

r

2 Lo
TL

i

�

be the formula

obtained using Lemma 11. We 
laim that es =

W

h(b)�r=s

f�

r

:

We write t

0

= bt

2

t

3

with t

2

2 � and t

3

2 (b� )

1

. Let r = h(t

2

). Then,

t

2

j= �

r

and by Lemma 11 we obtain t;min(t

0

) j= f�

r

. Now, if �(t

0

) j= s then

s = h(bt

2

) = h(b)r and we get t;min(t

0

) j= es.

Conversely, assume that t;min(t

0

) j= f�

r

for some r with s = h(b)r. By

Lemma 11 we get t

2

j= �

r

and h(t

2

) = r. Hen
e, h(bt

2

) = s and �(t

0

) j= s. ut

Lemma 11. For all � 2 Lo
TL

B

, there is a formula e� 2 Lo
TL

i

�

su
h that for

all t = t

1

bt

2

t

3

2 R with t

1

2 M , t

2

2 R

B

, min(t

2

) � D(b) and min(t

3

) � fbg we

have t

2

j= � i� t;min(bt

2

t

3

) j= e�.

t

1

b

�

�

�

t

2

b

�

�

t

3

Proof. We simultaneously establish an equivalent result for internal formulae:

for all ' 2 Lo
TL

i

B

, there exists a formula e' 2 Lo
TL

i

�

su
h that for all t =
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t

1

bt

2

t

3

2 R with t

1

2 M , t

2

2 R

B

, min(t

2

) � D(b) and min(t

3

) � fbg and for all

x 2 t

2

, we have t

2

; x j= ' i� t; x j= e':

We pro
eed by stru
tural indu
tion on � and '. As always, we have f:� = :e�,

^

� _ � = e� _

e

�, f:' = :e', and

^

' _  = e' _

e

 . Now,

℄

EM' = EX(:b ^ e'), ea = a,

℄

EX' = EX

b

e',

℄

EY' = EY

b

(:b ^ e'),

^

' U

C

 =

_

E��

e' U

(C\E)[fbg

(

e

 ^ E S b)

^

' S

C

 =

_

E��

(E S b) ^ (e' S

(C\E)[fbg

(

e

 ^ :b)):

We prove the formula for U

C

. Let x 2 t

2

with t

2

; x j= 'U

C

 . Let z 2 t

2

be su
h

that x � z, t

2

; z j=  , t

2

; y j= ' for all x � y < z, and for all y 2 t

2

, y � z and

�(y) 2 C implies y � x. By indu
tion, t; z j=

e

 and t; y j= e' for all x � y < z.

Let E = alph(#

t

2

z) = alph(fy 2 t

2

j y � zg). Clearly, t; z j= E S b. Let y 2 t

with y � z. If �(y) = b, then y � min(bt

2

t

3

) � x. If �(y) 2 C \ E, then there

exists y

0

2 t

2

su
h that �(y

0

) = �(y) 2 C and y � y

0

. From y

0

� z, we dedu
e

y

0

� x and then y � y

0

� x.

Conversely, let x 2 t

2

and E � � with t; x j= e' U

(C\E)[fbg

(

e

 ^ E S b). Let

z 2 t with x � z, t; z j=

e

 ^ E S b, t; y j= e' for all x � y < z, and for all

y � z, �(y) 2 (C \ E) [ fbg implies y � x. If z 2 t

3

then y = min(t

3

) satis�es

�(y) = b, y � z and y 6� x, a 
ontradi
tion. Therefore, z 2 t

2

and by indu
tion,

we get t

2

; z j=  and t

2

; y j= ' for all x � y < z. Now, let y 2 t

2

with y � z

and �(y) 2 C. Sin
e t; z j= E S b we dedu
e that alph(#

t

2

z) � E. Therefore,

�(y) 2 C \ E and we obtain y � x. ut

Proof of Proposition 7(2). By Lemma 9, L \ (b� )

1

= �

�1

(L

T

(f)) for some

f 2 LTL

T

(XU). Let

e

f 2 Lo
TL

i

�

be given by Lemma 10 and de�ne the formula


 = EM(b ^

e

f) _ EM(:b ^ F

b

EX(b ^

e

f)). We 
laim that

M

B

� (L \ (b� )

1

n f1g) = M

B

� (b� )

1

\ L(
):

Indeed, let t = t

1

t

0

with t

1

2 M

B

, t

0

2 L \ (b� )

1

n f1g and let x = min(t

0

). We

have �(t

0

) j= f and by Lemma 10 we get t; x j=

e

f . Now, if x 2 min(t) we have

t j= EM(b ^

e

f) and otherwise we have t j= EM(:b ^ F

b

EX(b ^

e

f)).

Conversely, let t = t

1

t

0

with t

1

2 M

B

, t

0

2 (b� )

1

and assume that t j= 
.

Ne
essarily, b 2 alph(t) and therefore t

0

6= 1. From t j= 
 we dedu
e that

t; x j= b ^

e

f with x = min(t

0

). By Lemma 10 we get �(t

0

) j= f . Therefore,

t

0

2 �

�1

(L

T

(f)) � L and t belongs to the left-hand side.

Sin
e M

B

� (b� )

1

and M

B

are both expressible in Lo
TL

�

, we dedu
e that

M

B

� (L \ (b� )

1

) is expressible in Lo
TL

�

. ut

Proof of Proposition 7(3). From Lemma 4, L \ M

B

(b� )

1

is a �nite union of

languages of the form (L

1

\M

B

) �(L

2

\(b� )

1

) where the tra
e languages L

i

� R



948

are re
ognized by h. Now, sin
e the produ
t M

B

(b� )

1

is unambiguous, we have

(L

1

\ M

B

) � (L

2

\ (b� )

1

) = (L

1

\ M

B

) � (b� )

1

\ M

B

� (L

2

\ (b� )

1

)

(L

1

\ M

B

) � (b� )

1

= (M

B

� (b� )

1

) \ ((L

1

\ R

B

) � (min � fbg)):

We 
on
lude using Lemma 3 and Proposition 7(1,2). ut

We 
an prove Proposition 7(1-3) using no EY and only sin
es of the form

A S

C

a (\alphabeti
" sin
es). If L � M then L = L\ M

B

(b� )

�

, so we only need

to 
onsider the �rst 
ase in the de
omposition. From this, we have the following.

Theorem 12. Let L � M be a tra
e language re
ognized by h. Then, L is ex-

pressible in Lo
TL

�

without using EY and with alphabeti
 sin
es only.

6 Satis�ability

To de
ide satis�ability, we work with alternating automata over sequentializa-

tions of tra
es. The states of the alternating automaton 
onsist of subformulas

of the main formula together with bookkeeping information about the letters

traversed while satisfying until and sin
e requirements. The basi
 te
hnique we

use was introdu
ed in [1℄ and re�ned in [4℄. The additional 
ompli
ation for our

logi
 is that we have to deal with past requirements, both expli
itly in the oper-

ators EY and S

C

, and impli
itly, be
ause of the alphabeti
 �lters in U

C

and S

C

.

We thus need two-way alternating automata. Nevertheless, 
he
king emptiness

for this 
lass remains within Pspa
e [10℄ for ea
h �xed dependen
e alphabet

(�;D). Due to spa
e 
onstraints, we omit all details of the 
onstru
tion.

7 Open problems

As we have seen in Se
tion 3, the introdu
tion of past modalities is unavoidable

when 
onstru
ting an expressively 
omplete lo
al temporal logi
 over tra
es. A

natural question is whether un�ltered versions of U

C

and S

C

are suÆ
ient for

expressive 
ompleteness. We also do not know whether the temporal logi
 based

only on EX and U

C

is expressively 
omplete. Another alternative is to keep the

un�ltered until and to use a 
on
urren
y modality asserting the existen
e of a


on
urrent vertex satisfying some formula. Also, we have seen in Theorem 12

that no EY are required for �nite tra
es and that alphabeti
 sin
es are suÆ
ient.

We do not know whether the same restri
tion applies to in�nite tra
es.
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