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Abstrat. In ontrast to the lassial setting of sequenes, no temporal

logi has yet been identi�ed over Mazurkiewiz traes that is equivalent

to �rst-order logi over traes and yet admits an elementary deision pro-

edure. In this paper, we desribe a loal temporal logi over traes that

is expressively omplete and whose satis�ability problem is in Pspae.

Contrary to the situation for sequenes, past modalities are essential for

suh a logi. A somewhat unexpeted orollary is that �rst-order logi

with three variables is expressively omplete for traes.
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1 Introdution

Linear-time temporal logi (LTL) [15℄ has established itself as a useful formalism

for speifying the interleaved behaviour of reative systems. To ombat the om-

binatorial blow-up involved in desribing omputations of onurrent systems in

terms of interleavings, there has been a lot of interest in using temporal logi

more diretly on labelled partial orders.

Mazurkiewiz traes [12℄ are labelled partial orders generated by dependene

alphabets of the form (�;D), whereD is a dependene relation over�. If (a; b) =2

D, a and b are deemed to be independent ations that may our onurrently.

Traes are a natural formalism for desribing the behaviour of stati networks

of ommuniating �nite-state agents [26℄.

LTL over �-labelled sequenes is equivalent to FO

�

(<), the �rst-order logi

over�-labelled linear orders [11℄ and thus de�nes the lass of aperiodi languages

over �. Though FO

�

(<) permits assertions about both the past and the future,

future modalities suÆe for establishing the expressive ompleteness of LTL with

respet to FO

�

(<) [9℄. From a pratial point of view, a �nite-state program

may be heked against an LTL spei�ation relatively eÆiently [2, 19, 20℄.

Though a number of LTL-like temporal logis have been proposed for reason-

ing diretly about Mazurkiewiz traes, it has proved elusive to de�ne a tratable

logi that is expressively omplete with respet to FO

�

(<), the �rst order logi

?
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over traes. The �rst expressively omplete temporal logi over traes was de-

sribed in [17℄. The result was re�ned in [3, 5℄ to show expressive ompleteness

without past modalities, using an extension of the proof tehnique developed for

LTL in [24, 25℄. Formulae in both these logis are de�ned at global on�gurations

(maximal antihains). Unfortunately, reasoning at the level of global on�gura-

tions makes the omplexity of deiding satis�ability non-elementary [21℄.

Computational tratability seems to require interpreting formulae at loal

states|e�etively at individual events. This approah was followed (sometimes

indiretly) in early temporal logis over traes [1, 13, 16, 18℄. While model-heking

is relatively eÆient for these logis, they are not known to be expressively om-

plete. In fat, the logi TLC desribed in [1℄ is not even �rst-order de�nable.

Reently, an expressively omplete loal temporal logi has been de�ned for

the sublass of Mazurkiewiz traes where the dependene graph of the underly-

ing alphabet has a series-parallel struture [4℄. Unfortunately, this logi annot

be expressively omplete over all traes|the logi uses only future modalities

and, unlike LTL over sequenes, there exist two �rst-order inequivalent traes

that annot be distinguished using only future modalities [23℄.

In this paper, we de�ne a new loal temporal logi over traes that is expres-

sively omplete and whose satis�ability problem is in Pspae. The observation

in [23℄ about the shortoming of future modalities neessitates the introdution

of past modalities in our logi. As in [3, 4℄, we show expressive ompleteness

using an extension to traes of the proof tehnique introdued in [24, 25℄ for

LTL over sequenes. However, the earlier proofs exploit the fat that the past

annot a�et the truth of a formula. The introdution of past modalities in our

logi requires the use of new tehniques for \relativizing" formulae plaed in new

past ontexts. The satis�ability problem for our logi is settled using two-way

alternating automata, extending tehniques from [1, 4℄.

A orollary of our main result is that FO

3

(�;D)

(<), the sublass of �rst-order

logi formulae with at most three variables, is expressively omplete over traes,

extending the same result for sequenes. This is somewhat surprising|intuition

suggests that we require variables proportional to the width of a trae. (This

result has been independently established by Walukiewiz [22℄.)

The paper is organized as follows. We begin with some preliminaries about

traes. In Setion 3 we de�ne our new temporal logi. Setion 4 desribes a

syntati partition of traes that is used in Setion 5 to establish expressive

ompleteness. The deision proedure for satis�ability is skethed in Setion 6.

We onlude with a disussion of open questions. Many proofs have had to be

omitted in this extended abstrat.

2 Preliminaries

We briey reall some notions about Mazurkiewiz traes (see [6℄ for bak-

ground). A dependene alphabet is a pair (�;D) where the alphabet � is a �nite

set of ations and the dependene relation D � ��� is reexive and symmetri.

The independene relation I is the omplement ofD. For A � �, the set of letters
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independent of A is denoted by I(A) = fb 2 � j (a; b) 2 I for all a 2 Ag and the

set of letters depending on (some ation in) A is denoted by D(A) = � n I(A).

A Mazurkiewiz trae is a labelled partial order t = [V;�; �℄ where V is a set

of verties labelled by � : V ! � and � is a partial order over V satisfying the

following onditions: For all x 2 V , the downward set #x = fy 2 V j y � xg is

�nite, (�(x); �(y)) 2 D implies x � y or y � x, and xly implies (�(x); �(y)) 2 D,

where l = < n <

2

is the immediate suessor relation in t.

The alphabet of a trae t is the set alph(t) = �(V ) � � and its alphabet at

in�nity, alphinf(t), is the set of letters ourring in�nitely often in t. The set of

all traes is denoted by R(�;D) or simply by R. A trae t is alled �nite if V

is �nite. For t = [V;�; �℄ 2 R, we de�ne min(t) � V as the set of all minimal

verties of t. We an also read min(t) � � as the set of labels of the minimal

verties of t. It will be lear from the ontext what we atually mean.

Let t

i

= [V

i

;�

i

; �

i

℄, i 2 f1; 2g, be a pair of traes suh that V

1

\ V

2

= ;

and alphinf(t

1

) � alph(t

2

) � I . We de�ne the onatenation of t

1

and t

2

to be

t

1

� t

2

= [V;�; �℄ where V = V

1

[ V

2

, � = �

1

[ �

2

and � is the transitive losure

of �

1

[ �

2

[ (V

1

� V

2

\ �

�1

(D)). The set of �nite traes is then a monoid,

denoted M (�;D) or simply M , with the empty trae 1 = (;; ;; ;) as unit.

Here is some useful notation for sublasses of traes. For C � �, let R

C

=

ft 2 R j alph(t) � Cg and M

C

= M \ R

C

. Also, (alphinf = C) = ft 2 R j

alphinf(t) = Cg and (min = C) = ft 2 R j min(t) = Cg. For A;C � �, we set

R

A

C

= R

C

\ (alphinf = A). Observe that M

C

= R

;

C

.

The �rst order logi over traes FO

�

(<) is given by the syntax:

' ::= P

a

(x) j x < y j :' j ' _ ' j 9x';

where a 2 � and x; y 2 Var are �rst order variables. For a trae t = [V;�; �℄ and

a valuation � : Var! V , t; � j= ' denotes that t satis�es ' under �. We interpret

eah prediate P

a

by the set fx 2 V j �(x) = ag and the relation < as the strit

partial order relation of t. The semantis then lifts to all formulas as usual. Sine

the meaning of a losed formula (sentene) ' is independent of the valuation �,

we an assoiate with eah sentene ' the language L(') = ft 2 R j t j= 'g. A

trae language L � R is said to be expressible in FO

�

(<) if there is a sentene

' 2 FO

�

(<) suh that L = L('). For n > 0, FO

n

�

(<) denotes the set of formulae

with at most n distint variables (possibly bound and reused several times).

We use the algebrai notion of reognizability (see e.g. [14℄). Let h : M ! S

be a morphism to a �nite monoid S. For t; u 2 R, we say that t and u are

h-similar, denoted t �

h

u, if either t; u 2 M and h(t) = h(u) or t and u have

in�nite fatorizations in non-empty �nite traes t = t

1

t

2

� � �, u = u

1

u

2

� � � with

h(t

i

) = h(u

i

) for all i. The transitive losure �

h

of �

h

is an equivalene relation.

Sine S is �nite, this equivalene relation is of �nite index with at most jSj

2

+ jSj

equivalene lasses. A trae language L � R is reognized by h if it is saturated

by �

h

(or equivalently by �

h

), i.e., t 2 L implies [t℄

�

h

� L for all t 2 R.

Let L � R be reognized by a morphism h : M ! S. For B � �, L \ M

B

and L \ R

B

are reognized by h�

M

B

the restrition of h to M

B

.
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A �nite monoid S is aperiodi if there is an n � 0 suh that s

n

= s

n+1

for all

s 2 S. A trae language L � R is aperiodi if it is reognized by some morphism

to a �nite and aperiodi monoid.

Theorem 1 ([8, 7℄). A language L � R(�;D) is expressible in FO

�

(<) if and

only if it is aperiodi.

3 Loal temporal logi

Our loal temporal logi over traes onsists of two types of formulae: internal

formulae, evaluated at arbitrary events within a trae, and initial formulae,

asserting properties of minimal events of the trae. Internal formulae only talk

about the struture within a onneted portion of a trae. Initial formulae permit

us to ombine loal assertions aross disjoint omponents and form \global"

assertions about the struture of the trae.

The set LoTL

i

�

of internal formulae over the alphabet� is de�ned as follows:

' ::= a 2 � j :' j ' _ ' j EX' j ' U

C

';C � � j EY' j ' S

C

';C � �

Let t = [V;�; �℄ 2 R be a �nite or in�nite trae and let x 2 V be some vertex

of t. We write t; x j= ' to denote that trae t at node x satis�es the formula

' 2 LoTL

i

�

. This is de�ned indutively as follows:

t; x j= a if �(x) = a

t; x j= :' if t; x 6j= '

t; x j= ' _  if t; x j= ' or t; x j=  

t; x j= EX' if 9y: xl y and t; y j= '

t; x j= EY' if 9y: y l x and t; y j= '

t; x j= ' U

C

 if 9z � x: [t; z j=  and 8y: (x � y < z)) t; y j= ' and

8y: (�(y) 2 C and y � z)) y � x℄

t; x j= ' S

C

 if 9z � x: [t; z j=  and 8y: (z < y � x)) t; y j= ' and

8y: (�(y) 2 C and y � x)) y � z℄

The modalities EX and EY are existential extensions of the next state and

previous state operators X and Y of LTL. The modality U

C

extends the \uni-

versal" until operator U de�ned in [4℄ with an alphabeti �lter that restrits the

ations performed while ful�lling an until requirement. If t; x j= ' U

C

 then no

C-ations are performed when going from x to the node satisfying  . Sine the

�lter also applies to events that are onurrent to x, the modality U

C

no longer

looks purely at the future of an event. Similarly, S

C

is a �ltered extension of the

LTL sine operator. The intuitive meanings of U

C

and S

C

are depited below.

A

A

A











 J

J

J

J

' U

C

  

:C

' ^ :C

A

A

A











 J

J

J

J

 ' S

C

 

:C

' ^ :C
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Past modalities are essential, as indiated by the following example from

[23℄, where the dependene relation is a � b �  � d. These two traes are not

�rst-order equivalent but are bisimilar at the level of events and thus annot be

distinguished by pure future modalities. However, the two traes below an be

distinguished using the �ltered until, whih is not pure future.

a! b ! ! b!  � � �

"

d! 

d!  ! b! ! b � � �

"

a! b

For the same alphabet, one an also show that the language ad(b)

�

� M of

�nite traes is �rst order but annot be expressed by pure future modalities.

As usual, we an derive useful operators. Using un�ltered versions of until

and sine, 'U  = 'U

;

 and 'S  = 'S

;

 , we reover the lassial modalities

eventually in the future F' = > U ', eventually in the past F

�1

' = > S ',

always in the future G' = :F:', and always in the past G

�1

' = :F

�1

:'.

We also use some �ltered versions of these modalities: F

b

' = >U

b

' (eventually

in the future but above the same b's), G

b

' = :F

b

:' (for all future verties that

are above the same b's). The existene of a suessor (resp. a predeessor) above

the same b's an be written as follows:

EX

b

' =

_

d6=b

EX(d ^ ') ^ > U

b

d =

_



 ^ EX(:b ^ ' ^ > S

b

);

EY

b

' =

_



EY( ^ ') ^ > S

b

 =

_

d6=b

d ^ EY(' ^ > U

b

d):

Finally, F

1

a = F a ^ G(a ) EXF a) expresses the existene of in�nitely many

verties labelled with a above the urrent vertex. The �ltered version of this

formula, F

1

b

a = F

b

a ^ G

b

(a ) EX

b

F

b

a), requires in addition that the verties

labelled with a are above the same b's.

For A � �, let A denote the internal formula

W

a2A

a. An alphabeti sine is

a formula of the form A S

C

a for A;C � � and a 2 �.

We turn now to initial formulae. These are boolean ombinations of formu-

lae EM' asserting that some minimal vertex in the trae satis�es the internal

formula '. Formally, the set LoTL

�

of initial formulae over � is given by:

� ::= ? j EM'; ' 2 LoTL

i

�

j :� j � _ �

The semantis is de�ned as follows:

t j= EM' if 9x: (x 2 min(t) and t; x j= ')

t j= :� if t 6j= �

t j= � _ � if t j= � or t j= �

An initial formula � 2 LoTL

�

de�nes the trae language L(�) = ft 2 R j t j=

�g. We an then express various alphabeti properties using initial formulae:

L(EM a) = ft 2 R j a 2 min(t)g, L(EMF a) = ft 2 R j a 2 alph(t)g, and

L(EMF

1

a) = ft 2 R j a 2 alphinf(t)g. Therefore, for C � �, trae languages

suh as (alphinf = C) and (min = C) are expressible in LoTL

�

.

The following result is immediate from the de�nition of LoTL

�

.
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Proposition 2. If a trae language is expressible in LoTL

�

, then it is express-

ible in FO

3

�

(<).

4 Deomposition of traes

The proof of our main result is a ase analysis based on partitioning the set

of traes aording to the struture of the trae. Fix a letter b 2 � and set

B = � n fbg. Using the notation introdued in the middle of Setion 2, let

�

A

= ft 2 R

A

B

j min(t) � D(b)g, � = �

;

, and 


A

= ft 2 R

I(A)

j min(t) � fbgg.

Eah trae t 2 R has a unique fatorization t = t

0

bt

1

bt

2

� � � with t

0

2 R

B

and

t

i

2 R

B

\ (min � D(b)) for all i > 0. We obtain the following partition of R.

R = M

B

(b� )

1

℄

�

[

A6=;

R

A

B




A

�

℄

�

[

A6=;

M

B

(b� )

�

b�

A




A

�

If all t

i

are �nite, then we are in the �rst blok. If t

0

=2 M , then we are in the

seond blok. Otherwise, we are in the last blok. Note that M

B

(b� )

�

= M . The

three possibilities are depited below.

(1)

M

B

b b b

�

�

�

�

�

�

�

�

�

� � � � �

(2)

R

A

B

b

�

�




A

(3)

M

B

b b b b

�

�

�

�

�

�

�

�

�

�

�

�

� � � � � �

A

b

�

�




A

The following two results will allow us to use this deomposition e�etively

in proving the expressive ompleteness of our logi.

Lemma 3. All these sets are expressible in LoTL

�

. More preisely,

1. The sets M

B

(b� )

�

and M

B

(b� )

!

are expressible in LoTL

�

.

2. R

A

B

�


A

= L(�) where

� =

 

^

a2A

EM(:b ^ F

1

b

a)

!

^

 

^

a=2A

:EM(:b ^ F

1

b

a)

!

:

3. M

B

(b� )

�

b�

A




A

= M b�

A




A

= L(�) where

� =

_

C��

 

(alphinf = C) ^ EMF

�

b ^

^

2C

F

1

 ^

^

a2A

F

1

b

a ^

^

a=2A

:F

1

b

a

�

!

:

Note that \the" b in M b�

A




A

is haraterized by the formula b ^ F

1

b

a,

where a is any letter in A.
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Lemma 4. Let A � � and let L � R be a trae language reognized by a

morphism h from M into a �nite monoid S. Then,

(1) L \ M

B

(b� )

1

=

[

�nite

(L

1

\ M

B

) � (L

2

\ (b� )

1

)

(2) L \ R

A

B




A

=

[

�nite

(L

1

\ R

A

B

) � (L

2

\


A

)

(3) L \ M b�

A




A

=

[

�nite

(L

1

\ M

B

)(L

2

\ (b� )

�

)b(L

3

\ �

A

)(L

4

\


A

)

where the trae languages L

i

� R are reognized by h.

5 Expressive ompleteness

We now show that our temporal logi for traes is expressively omplete with

respet to FO

�

(<). In light of Theorem 1, it suÆes to establish the following.

Theorem 5. Every aperiodi trae language L � R is expressible in LoTL

�

.

From Proposition 2 and Theorems 1 and 5, we dedue immediately

Corollary 6. Let L � R be a trae language. The following are equivalent

1. L is aperiodi,

3. L is expressible in FO

3

�

(<),

2. L is expressible in LoTL

�

,

4. L is expressible in FO

�

(<).

In the rest of this setion, we sketh a proof of Theorem 5. We start with a

trae language L � R reognized by a morphism h from M to a �nite aperiodi

monoid S. We use indution on j�j.

The base ase is when � = fag, a singleton. Then L is either a �nite set or

the union of a �nite set and a set of the form a

n

a

�

, n � 0. In both ases, L is

expressible in LoTL

�

. For instane, fa

!

g and fa

2

g orrespond to the formulae

EMGEX> and EMEX:EX>. Also, a

3

a

�

[ fa

!

g is expressed by EMEXEX>.

For the indution step, with j�j > 1, we �x a letter b 2 � and use the

deomposition introdued in Setion 4. Therefore, we have

L =

�

L \ M

B

(b� )

1

�

℄

�

L \

[

A6=;

R

A

B




A

�

℄

�

L \

[

A6=;

M

B

(b� )

�

b�

A




A

�

:

We show separately that the three languages above are expressible in LoTL

�

.

From Lemma 4, it suÆes to establish the following.

Proposition 7. Reall that B = � n fbg. Let A � � be non-empty and let

L � R be a trae language reognized by h. Then,

(1) (L \ R

B

) � (min � fbg) is expressible in LoTL

�

.

(2) M

B

� (L \ (b� )

1

) is expressible in LoTL

�

.

(3) L \ M

B

(b� )

1

is expressible in LoTL

�

.
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(4) R

A

B

� (L \


A

) is expressible in LoTL

�

.

(5) L \ R

A

B




A

is expressible in LoTL

�

.

(6) M

B

(L \ (b� )

�

)b�

A




A

is expressible in LoTL

�

.

(7) M b(L \ �

A

)


A

is expressible in LoTL

�

.

(8) M b�

A

(L \


A

) is expressible in LoTL

�

.

(9) L \ M b�

A




A

is expressible in LoTL

�

.

In all ases, we use the indution hypothesis to derive a formula for the fator

over a smaller alphabet and then relativize this formula to the full lass. As a

representative example, we sketh the proof of Proposition 7(1,2,3).

Proof of Proposition 7(1). The language L \ R

B

is reognized by h �

M

B

(Se-

tion 2). By the indution hypothesis, it is expressible in LoTL

B

: L \ R

B

=

L

B

(�) = ft 2 R

B

j t j= �g for some � 2 LoTL

B

. Let e� 2 LoTL

�

be the

formula given by Lemma 8 below. We have (L\R

B

) � (min � fbg) = L

�

(e�). ut

Lemma 8. Let � 2 LoTL

B

. There exists a formula e� 2 LoTL

�

suh that for

all t = t

1

t

2

with t

1

2 R

B

and min(t

2

) � fbg, t

1

j= � i� t j= e�.

Proof. We show simultaneously a similar result for internal formulae: for all

' 2 LoTL

i

B

, there exists a formula e' 2 LoTL

i

�

suh that for all t = t

1

t

2

with t

1

2 R

B

and min(t

2

) � fbg, and for all x 2 t

1

, t

1

; x j= ' i� t; x j= e'.

We use strutural indution on � and '. We have

^

� _ � = e� _

e

�, f:� = :e�,

℄

EM' = EM(:b^e'),

^

' _  = e'_

e

 , f:' = :e', ea = a,

℄

EX' = EX

b

e',

℄

EY' = EY e',

^

' U

C

 = e' U

C[fbg

e

 , and

^

' S

C

 = e' S

C

e

 . ut

To prove Proposition 7(2), we use a redution to the word ase. Let LTL

T

(XU)

denote LTL over T -labelled sequenes with the strong until modality XU|for

t = t

1

t

2

� � � 2 T

1

, t j= f XU g if there exists j > 1 suh that t

j

t

j+1

� � � j= g and

t

k

t

k+1

� � � j= f for all 1 < k < j. From the theory of LTL over sequenes, we

know that every aperiodi word language K 2 T

1

is expressible in LTL

T

(XU).

We �x T = h(b� ) and de�ne � : (b� )

1

! T

1

by �(x) = h(bx

1

)h(bx

2

) � � � if

x = bx

1

bx

2

� � � with x

i

2 � for i � 1. The map � is well-de�ned sine eah trae

x 2 (b� )

1

has a unique fatorization x = bx

1

bx

2

� � � with x

i

2 � for i � 1.

We begin with the following result.

Lemma 9. Let L � R be reognized by h. Then, L\ (b� )

1

= �

�1

(K) for some

K expressible in LTL

T

(XU).

Proof. Let K = �(L\ (b� )

1

). We �rst show that L\ (b� )

1

= �

�1

(K). The in-

lusion � is lear. Conversely, let x = bx

1

bx

2

� � � 2 L\(b� )

1

and y 2 �

�1

(�(x)).

Then, y = by

1

by

2

� � � 2 (b� )

1

with h(bx

i

) = h(by

i

) for all i. Therefore, y �

h

x

and x 2 L implies y 2 L.

Next, we show that K is reognized by the evaluation morphism e : T

�

! S

de�ned by e(u) = u for all u 2 T .

Let s; t 2 T

1

with s �

e

t and s 2 K. Write s = s

1

s

2

� � � 2 T

1

and t =

t

1

t

2

� � � 2 T

1

. Sine T = h(b� ) we �nd x = bx

1

bx

2

� � � 2 L with x

i

2 � and
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h(bx

i

) = s

i

for all i > 1; and y = by

1

by

2

� � � with y

i

2 � and h(by

i

) = t

i

for all

i > 1. From s �

e

t we dedue that x �

h

y. Sine x 2 L, y 2 L and t = �(y) 2 K.

Sine S is aperiodi, K � T

1

is an aperiodi language over T and is thus

expressible in LTL

T

(XU)|this is the only plae where we use S aperiodi. ut

The next step is to show that if K � T

1

is expressible in LTL

T

(XU) then

�

�1

(K) is expressible in LoTL

�

.

Lemma 10. Let f 2 LTL

T

(XU). There exists

e

f 2 LoTL

i

�

suh that for all

t = t

1

t

0

with t

1

2 M and t

0

2 (b� )

1

n f1g, we have �(t

0

) j= f i� t;min(t

0

) j=

e

f:

Proof Sketh. We use a strutural indution on f . Clearly,

f

:f = :

e

f and

℄

f _ g =

e

f _ eg. We laim that

^

f XU g = EX

�

(:b _

e

f) U (b ^ eg)

�

:

Let t

0

= t

2

t

3

� � � with t

i

2 b� for all i > 1 and let x = min(t

0

).

Assume that �(t

0

) j= f XU g and let j > 2 be suh that �(t

j

t

j+1

� � �) j= g

and �(t

k

t

k+1

� � �) j= f for 2 < k < j. Let x

0

2 t with x l x

0

and z = min(t

j

).

We have x

0

� z, �(z) = b and t; z j= eg, by indution. Suppose y 2 t with

x

0

� y < z. Either �(y) 6= b and t; y j= :b, or there exists 2 < k < j with

y = min(t

k

) and, by indution, t; y j=

e

f . Therefore, t; x

0

j= (:b_

e

f)U (b^ eg) and

t; x j= EX

�

(:b _

e

f) U (b ^ eg)

�

.

Conversely, assume that t; x j= EX((:b _

e

f) U (b ^ eg)). Let x

0

; z 2 t with

xlx

0

� z, t; z j= b^ eg and t; y j= :b_

e

f for all x

0

� y < z. Sine �(z) = b, there

exists j > 2 with z = min(t

j

) and by indution, we get �(t

j

t

j+1

� � �) j= g. Now,

let 2 < k < j and y = min(t

k

). We have x

0

� y < z and sine �(y) = b we get

t; y j=

e

f and �(t

k

t

k+1

� � �) j= f by indution. Therefore, �(t

0

) j= f XU g.

It remains to deal with a formula of the form f = s 2 T . For all r 2 S, the

trae language h

�1

B

(r) � M

B

is aperiodi and, by indution on j�j, h

�1

B

(r) =

L

B

(�

r

) for some formula �

r

2 LoTL

B

. Let f�

r

2 LoTL

i

�

be the formula

obtained using Lemma 11. We laim that es =

W

h(b)�r=s

f�

r

:

We write t

0

= bt

2

t

3

with t

2

2 � and t

3

2 (b� )

1

. Let r = h(t

2

). Then,

t

2

j= �

r

and by Lemma 11 we obtain t;min(t

0

) j= f�

r

. Now, if �(t

0

) j= s then

s = h(bt

2

) = h(b)r and we get t;min(t

0

) j= es.

Conversely, assume that t;min(t

0

) j= f�

r

for some r with s = h(b)r. By

Lemma 11 we get t

2

j= �

r

and h(t

2

) = r. Hene, h(bt

2

) = s and �(t

0

) j= s. ut

Lemma 11. For all � 2 LoTL

B

, there is a formula e� 2 LoTL

i

�

suh that for

all t = t

1

bt

2

t

3

2 R with t

1

2 M , t

2

2 R

B

, min(t

2

) � D(b) and min(t

3

) � fbg we

have t

2

j= � i� t;min(bt

2

t

3

) j= e�.

t

1

b

�

�

�

t

2

b

�

�

t

3

Proof. We simultaneously establish an equivalent result for internal formulae:

for all ' 2 LoTL

i

B

, there exists a formula e' 2 LoTL

i

�

suh that for all t =
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t

1

bt

2

t

3

2 R with t

1

2 M , t

2

2 R

B

, min(t

2

) � D(b) and min(t

3

) � fbg and for all

x 2 t

2

, we have t

2

; x j= ' i� t; x j= e':

We proeed by strutural indution on � and '. As always, we have f:� = :e�,

^

� _ � = e� _

e

�, f:' = :e', and

^

' _  = e' _

e

 . Now,

℄

EM' = EX(:b ^ e'), ea = a,

℄

EX' = EX

b

e',

℄

EY' = EY

b

(:b ^ e'),

^

' U

C

 =

_

E��

e' U

(C\E)[fbg

(

e

 ^ E S b)

^

' S

C

 =

_

E��

(E S b) ^ (e' S

(C\E)[fbg

(

e

 ^ :b)):

We prove the formula for U

C

. Let x 2 t

2

with t

2

; x j= 'U

C

 . Let z 2 t

2

be suh

that x � z, t

2

; z j=  , t

2

; y j= ' for all x � y < z, and for all y 2 t

2

, y � z and

�(y) 2 C implies y � x. By indution, t; z j=

e

 and t; y j= e' for all x � y < z.

Let E = alph(#

t

2

z) = alph(fy 2 t

2

j y � zg). Clearly, t; z j= E S b. Let y 2 t

with y � z. If �(y) = b, then y � min(bt

2

t

3

) � x. If �(y) 2 C \ E, then there

exists y

0

2 t

2

suh that �(y

0

) = �(y) 2 C and y � y

0

. From y

0

� z, we dedue

y

0

� x and then y � y

0

� x.

Conversely, let x 2 t

2

and E � � with t; x j= e' U

(C\E)[fbg

(

e

 ^ E S b). Let

z 2 t with x � z, t; z j=

e

 ^ E S b, t; y j= e' for all x � y < z, and for all

y � z, �(y) 2 (C \ E) [ fbg implies y � x. If z 2 t

3

then y = min(t

3

) satis�es

�(y) = b, y � z and y 6� x, a ontradition. Therefore, z 2 t

2

and by indution,

we get t

2

; z j=  and t

2

; y j= ' for all x � y < z. Now, let y 2 t

2

with y � z

and �(y) 2 C. Sine t; z j= E S b we dedue that alph(#

t

2

z) � E. Therefore,

�(y) 2 C \ E and we obtain y � x. ut

Proof of Proposition 7(2). By Lemma 9, L \ (b� )

1

= �

�1

(L

T

(f)) for some

f 2 LTL

T

(XU). Let

e

f 2 LoTL

i

�

be given by Lemma 10 and de�ne the formula

 = EM(b ^

e

f) _ EM(:b ^ F

b

EX(b ^

e

f)). We laim that

M

B

� (L \ (b� )

1

n f1g) = M

B

� (b� )

1

\ L():

Indeed, let t = t

1

t

0

with t

1

2 M

B

, t

0

2 L \ (b� )

1

n f1g and let x = min(t

0

). We

have �(t

0

) j= f and by Lemma 10 we get t; x j=

e

f . Now, if x 2 min(t) we have

t j= EM(b ^

e

f) and otherwise we have t j= EM(:b ^ F

b

EX(b ^

e

f)).

Conversely, let t = t

1

t

0

with t

1

2 M

B

, t

0

2 (b� )

1

and assume that t j= .

Neessarily, b 2 alph(t) and therefore t

0

6= 1. From t j=  we dedue that

t; x j= b ^

e

f with x = min(t

0

). By Lemma 10 we get �(t

0

) j= f . Therefore,

t

0

2 �

�1

(L

T

(f)) � L and t belongs to the left-hand side.

Sine M

B

� (b� )

1

and M

B

are both expressible in LoTL

�

, we dedue that

M

B

� (L \ (b� )

1

) is expressible in LoTL

�

. ut

Proof of Proposition 7(3). From Lemma 4, L \ M

B

(b� )

1

is a �nite union of

languages of the form (L

1

\M

B

) �(L

2

\(b� )

1

) where the trae languages L

i

� R
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are reognized by h. Now, sine the produt M

B

(b� )

1

is unambiguous, we have

(L

1

\ M

B

) � (L

2

\ (b� )

1

) = (L

1

\ M

B

) � (b� )

1

\ M

B

� (L

2

\ (b� )

1

)

(L

1

\ M

B

) � (b� )

1

= (M

B

� (b� )

1

) \ ((L

1

\ R

B

) � (min � fbg)):

We onlude using Lemma 3 and Proposition 7(1,2). ut

We an prove Proposition 7(1-3) using no EY and only sines of the form

A S

C

a (\alphabeti" sines). If L � M then L = L\ M

B

(b� )

�

, so we only need

to onsider the �rst ase in the deomposition. From this, we have the following.

Theorem 12. Let L � M be a trae language reognized by h. Then, L is ex-

pressible in LoTL

�

without using EY and with alphabeti sines only.

6 Satis�ability

To deide satis�ability, we work with alternating automata over sequentializa-

tions of traes. The states of the alternating automaton onsist of subformulas

of the main formula together with bookkeeping information about the letters

traversed while satisfying until and sine requirements. The basi tehnique we

use was introdued in [1℄ and re�ned in [4℄. The additional ompliation for our

logi is that we have to deal with past requirements, both expliitly in the oper-

ators EY and S

C

, and impliitly, beause of the alphabeti �lters in U

C

and S

C

.

We thus need two-way alternating automata. Nevertheless, heking emptiness

for this lass remains within Pspae [10℄ for eah �xed dependene alphabet

(�;D). Due to spae onstraints, we omit all details of the onstrution.

7 Open problems

As we have seen in Setion 3, the introdution of past modalities is unavoidable

when onstruting an expressively omplete loal temporal logi over traes. A

natural question is whether un�ltered versions of U

C

and S

C

are suÆient for

expressive ompleteness. We also do not know whether the temporal logi based

only on EX and U

C

is expressively omplete. Another alternative is to keep the

un�ltered until and to use a onurreny modality asserting the existene of a

onurrent vertex satisfying some formula. Also, we have seen in Theorem 12

that no EY are required for �nite traes and that alphabeti sines are suÆient.

We do not know whether the same restrition applies to in�nite traes.

Referenes

1. R. Alur, D. Peled, and W. Penzek. Model-heking of ausality properties. In

Proeedings of LICS'95, pages 90{100, 1995.

2. C. Couroubetis, M.Y. Vardi, P. Wolper, and M. Yannakakis. Memory eÆient

algorithms for the veri�ation of temporal properties. formal Methods in System

Design, 1:275{288, 1992.



949

3. V. Diekert and P. Gastin. LTL is expressively omplete for Mazurkiewiz traes.

In Proeedings of ICALP 2000, number 1853 in LNCS, pages 211{222. Springer

Verlag, 2000.

4. V. Diekert and P. Gastin. Loal temporal logi is expressively omplete for ograph

dependene alphabets. In Proeedings of LPAR'01, number 2250 in LNAI, pages

55{69. Springer Verlag, 2001.

5. V. Diekert and P. Gastin. LTL is expressively omplete for Mazurkiewiz traes.

Journal of Computer and System Sienes, 2002. To appear.

6. V. Diekert and G. Rozenberg, editors. The Book of Traes. World Sienti�,

Singapore, 1995.

7. W. Ebinger and A. Musholl. Logial de�nability on in�nite traes. Theoretial

Computer Siene, 154:67{84, 1996.

8. W. Ebinger. Charakterisierung von Sprahklassen unendliher Spuren durh

Logiken. Dissertation, Institut f�ur Informatik, Universit�at Stuttgart, 1994.

9. D. Gabbay, A. Pnueli, S. Shelah, and J. Stavi. On the temporal analysis of fairness.

In Proeedings of PoPL'80, pages 163{173, Las Vegas, Nev., 1980.

10. T. Jiang and B. Ravikumar. A note on the spae omplexity of some deision

problems for �nite automata. Information Proessing Letters, 40:25{31, 1991.

11. J.A.W. Kamp. Tense Logi and the Theory of Linear Order. PhD thesis, University

of California, Los Angeles, California, 1968.

12. A. Mazurkiewiz. Conurrent program shemes and their interpretations. DAIMI

Rep. PB 78, Aarhus University, Aarhus, 1977.

13. P. Niebert. A �-alulus with loal views for sequential agents. In Proeedings of

MFCS'95, number 969 in LNCS, pages 563{573. Springer Verlag, 1995.

14. D. Perrin and J.-E. Pin. In�nite words. Tehnial report, LITP, Avril 1997.

15. A. Pnueli. The temporal logis of programs. In Proeedings of the 18th IEEE

FOCS, 1977, pages 46{57, 1977.

16. R. Ramanujam. Loally linear time temporal logi. In Proeedings of LICS'96,

pages 118{128, 1996.

17. P.S. Thiagarajan and I. Walukiewiz. An expressively omplete linear time tem-

poral logi for Mazurkiewiz traes. In Proeedings of LICS'97, pages 183{194,

1997.

18. P.S. Thiagarajan. A trae based extension of linear time temporal logi. In Pro-

eedings of LICS'94, pages 438{447, 1994.

19. M.Y. Vardi and P. Wolper. An automata-theoreti approah to automati program

veri�ation. In Proeedings of LICS'86, pages 322{331, 1986.

20. M.Y. Vardi. An automata-theoreti approah to linear temporal logi. In Logis for

Conurreny: Struture versus Automata, number 1043 in LNCS, pages 238{266.

Springer Verlag, 1996.

21. I. Walukiewiz. DiÆult on�gurations { on the omplexity of LTrL. In Proeedings

of ICALP'98, number 1443 in LNCS, pages 140{151. Springer Verlag, 1998.

22. I. Walukiewiz. Private ommuniation, 2001.

23. I. Walukiewiz. Loal logis for traes. Journal of Automata, Languages and

Combinatoris, 2002. To appear.

24. Th. Wilke. Classifying disrete temporal properties. Habilitationsshrift (post-

dotoral thesis), April 1998.

25. Th. Wilke. Classifying disrete temporal properties. In Proeedings of STACS'99,

number 1563 in LNCS, pages 32{46. Springer Verlag, 1999.

26. W. Zielonka. Notes on �nite asynhronous automata. R.A.I.R.O. | Informatique

Th�eorique et Appliations, 21:99{135, 1987.


