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Abstract. The formal verification of large probabilistic models is
challenging. Exploiting the concurrency that is often present is one
way to address this problem. Here we study a class of communicating
probabilistic agents in which the synchronizations determine the
probability distribution for the next moves of the participating
agents. The key property of this class is that the synchronizations
are deterministic, in the sense that any two simultaneously enabled
synchronizations involve disjoint sets of agents. As a result, such
a network of agents can be viewed as a succinct and distributed
presentation of a large global Markov chain. A rich class of Markov
chains can be represented this way.

We use partial-order notions to define an interleaved semantics that
can be used to efficiently verify properties of the global Markov
chain represented by the network. To demonstrate this, we develop a
statistical model checking (SMC) procedure and use it to verify two
large networks of probabilistic agents.

1 Introduction

1.1 NOTE

This is a corrected version of the technical report that was cited in the VM-
CAI’2015 paper by the same authors with the title “Distributed Markov chains”.
Unfortunately we recently discovered a bug in the translation of DMCs into de-
terministic cyclic negotiations (DCNs) model. As a consequence, the main result
claimed in section 8 of the conference paper that soundness of DMCs with final
states can be determined in polynomial time needs to be withdrawn. In section
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8 of this report we sketch briefly the root cause of this gap between DMCs and
DCNs.

We present here a class of distributed probabilistic systems called distributed
Markov chains (DMCs). A DMC is a network of probabilistic transition sys-
tems that synchronize on common actions. The information that the agents gain
through a synchronization determines the probability distribution for their next
moves. Internal actions correspond to synchronizations involving only one agent.
The synchronizations are deterministic in the sense that, at any global state, if
two synchronizations are enabled then they will involve disjoint set of agents.
We capture this syntactically by requiring that at a local state of an agent, the
synchronizations that the agent is willing to engage in will all involve the same
set of partners. In many distributed probabilistic systems, the communication
protocols are naturally deterministic in this sense, or can be designed to be so.
As our two case studies in Section 7 show, the determinacy restriction is less
limiting than may appear at first sight while permitting a considerable degree
of concurrency.

We define an interleaved semantics where one synchronization action is ex-
ecuted at a time, followed by a probabilistic move by the participating agents.
Except in the trivial case where there is no concurrency, the resulting transition
system will not be a Markov chain. Hence, defining a probability measure over
interleaved runs, called trajectories, is a technical challenge. We address this by
noting that there is a natural independence relation on local actions—two ac-
tions are independent if they involve disjoint sets of agents. Using this relation,
we partition the trajectories in the usual way into equivalence classes that cor-
respond to partially ordered executions. We then use the maximal equivalence
classes to form a trajectory space that is a counterpart to the path space of a
Markov chain.

To endow this trajectory space with a probability measure, we exploit the
fact that, due to determinacy of synchronizations, any two actions enabled at
a global state will be independent. Hence, by executing all the enabled actions
simultaneously, followed by probabilistic moves by all the agents involved, one
obtains a finite state Markov chain that captures the global behavior of the DMC
under this “maximally parallel” execution semantics.

Using Mazurkiewicz trace theory [7], we then embed the trajectory space
into the path space of this Markov chain and use this embedding to induce a
probability measure over the trajectory space. Consequently, the global behavior
of this Markov chain can be verified efficiently using the interleaved semantics.

We then demonstrate that the DMC model possesses a good of modeling
power while considerably easing the task of analyzing the global behavior of the
network. We formulate a statistical model checking (SMC) procedure for DMCs
in which the specifications consist of Boolean combinations of local bounded
linear temporal logic (BLTL) [3] formulas. We then use the sequential probability
ratio test (SPRT) based SMC technique [19, 20] to analyze the global behavior
of a DMC.
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Our two case studies show that one can easily construct DMC models of a
variety of distributed probabilistic systems [6]. Both the systems we study exhibit
a considerable degree of concurrency. Further, the performance and scalability
of our interleaved semantics based verification techniques is significantly better
than the SMC procedure of PLASMA [5].

To summarize, our main contributions are: (i) establishing that determinis-
tic synchronizations are a fruitful restriction for distributed stochastic systems,
(ii) showing that the space of partially ordered runs of such systems can be en-
dowed with a probability measure due to the clean combination of concurrent
and stochastic dynamics, (iii) constructing an SMC procedure in this distributed
stochastic setting.

Related work Our work is in line with partial order based methods for
Markov Decision Processes (MDPs) [11] where, typically, a partial commutation
structure is imposed on the actions of a global MDP. For instance, in [4], partial
order reduction is used to identify “spurious” nondeterminism arising out of the
interleaving of concurrent actions, in order to determine when the underlying
behavior corresponds to a Markov chain. In contrast, in a DMC, deterministic
communication ensures that local behaviors always generate a global Markov
chain. The independence of actions is directly given by the local state spaces of
the components. This also makes it easier to model how components influence
each other through communications.

The interplay between concurrency and stochasticity has also been explored
in the setting of event structures [1,18]. In these approaches, the global behaviour
— which is not a Markov chain — is endowed with a probability measure. Fur-
ther, probabilistic verification problems are not formulated and studied. Markov
nets, studied in [2] can be easily modeled as DMCs. However, in [2], the focus is
on working out a probabilistic event structure semantics rather than on devel-
oping a model checking procedure based on the interleaved semantics, as we do
here.

Our model is formulated as a sub-class of probabilistic asynchronous au-
tomata [13], where we require synchronizations to be deterministic. This restric-
tion allows us to develop a probability measure over the (infinite) trajectory
space, which in turn paves the way for carrying out formal verification based on
probabilistic temporal logic specifications. In contrast, the work reported in [13]
is language-theoretic, with the goal of generalizing Zielonka’s theorem [21] to
a probabilistic setting. Moreover, in the model of [13], conflicting actions may
be enabled at a global state and it is difficult to see how one can formulate a
σ-algebra over the runs with a well-defined probability measure.

2 The Distributed Markov Chain (DMC) Model

We fix n agents {1, 2, . . . , n} and set [n] = {1, 2, . . . , n}. For convenience, we
denote various [n]-indexed sets of the form {Xi}i∈[n] as just {Xi}. We begin
with some notation for distributed state spaces.
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Definition 1. For i ∈ [n], let Si be a finite set of local states, where {Si} are
pairwise disjoint.

– S =
⋃
i Si is the set of local states.

– For nonempty u ⊆ [n], Su =
∏
i∈u Si is the set of u-states.

– S[n] is the set of global states, typically denoted S.
– For a state v ∈ Su and w ⊆ u, vw denotes the projection of v to Sw.
– For u = {i}, we write Si and vi rather than S{i} and v{i}, respectively.

Our model is a restricted version of probabilistic asynchronous automata [13].

Definition 2. A probabilistic asynchronous system is a structure
({Si}, {sini }, A, loc, en, {πa}a∈A) where:

– Si is a finite set of local states for each i and {Si} is pairwise disjoint.
– sini ∈ Si is the initial state of agent i.
– A is a set of synchronization actions.
– loc : A→ 2[n] \ ∅ specifies the agents that participate in each action a.

• For a ∈ A, we write Sa instead of Sloc(a) and call it the set of a-states.

– For each a ∈ A, ena ⊆ Sa is the subset of a-states where a is enabled.
– With each a ∈ A, we associate a probabilistic transition function πa : ena →

(Sa → [0, 1]) such that, for every v ∈ ena,
∑

u∈Sa
πa(v)(u) = 1.

The action a represents a synchronization between the agents in loc(a) and
it is enabled at the global state s if sa ∈ ena. When a occurs at s, only the
components in loc(a) are involved in the move to the new global state s′; the
new a-state s′a is chosen probabilistically according to the distribution πa(sa).
On the other hand, for every j /∈ loc(a), sj = s′j .

We would like to lift the probabilities associated with individual moves to
a probability measure over the runs of the system. This is difficult to achieve
because of the combination of nondeterminism, concurrency and probability in
the model. This motivates us to restrict the nondeterminism in the model.

For an agent i and a local state s ∈ Si, we define the set of actions that i
can participate in at s to be act(s) = {a | i ∈ loc(a), s = vi for some v ∈ ena}.
Using this notion we define the DMC model as follows.

Definition 3. A distributed Markov chain (DMC) is a probabilistic asynchronous
system D = ({Si}, {sini }, A, loc, en, {πa}a∈A) in which (i) for each local state
s ∈ S, if a, b ∈ act(s) then loc(a) = loc(b), and (ii) if a, b ∈ A, a 6= b and
loc(a) = loc(b), then ena ∩ enb = ∅.

By (i), the set of partners that an agent can synchronize with is fixed de-
terministically by its current local state. Typically an agent will be willing to
engage in a set of actions at a local state. But by (ii), at most one of these
actions will be enabled in any global state.

Events Events will play a crucial role in defining the dynamics of a DMC. Let
D be a DMC. An event of D is a triple e = (v, a,v′) where v,v′ ∈ Sa, v ∈ ena
and πa(v)(v′) > 0. We define loc((v, a,v′)) to be loc(a).
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Fig. 1. The DMC model for the two players coin toss game

Suppose e = (v, a,v′) is an event and p = πa(v)(v′). Then e represents an
occurrence of the synchronization action a followed by a joint move by the agents
in loc(a) from v to v′ with probability p. Again, components outside loc(e) are
unaffected by this move.

Let Σ denote the set of events of D and e, e′, . . . range over Σ. With the
event e = (v, a,v′) we associate the probability pe = πa(v)(v′).

The interleaved semantics We now associate a global transition system with
D based on event occurrences.

Recall that S is the set of global states. The event e = (v, a,v′) is enabled at
s ∈ S iff v = sa ∈ ena. The transition system of D is TS = (S, Σ,→, sin), where
sin is the global initial state with sini = sini for each i. The transition relation

→ ⊆ S × (Σ × (0, 1]) × S is given by s
e,pe−−→ s′ iff e = (v, a,v′) is enabled at s,

s′a = v′ and sj = s′j for every j /∈ loc(e).
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Fig. 2. The transition system of a DMC for the two player coin toss game

In Fig. 1 we show a DMC describing a simple two player game. Each player
tosses an unbiased coin. If the tosses have the same outcome, the players toss
again. If the outcomes are different, then the player who tossed heads wins. In
this 2-component system, Si = {INi, Ti, Hi, Li,Wi} for i = 1, 2, where Ti/Hi

denote that a tail/head was tossed, respectively, and Li/Wi denote local los-
ing/winning states, respectively. Agent 1, for instance, has an internal action
a1 with loc(a1) = {1}, ena1 = {IN1} and πa1(IN1)(T1) = 0.5 = πa1(IN1)(H1).
Thus, e1h = ({IN1}, a1, {H1}) and e1t = ({IN1}, a1, {T1}) are both events that are
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enabled at (IN1, IN2). On the other hand, tt is an action with loc(tt) = {1, 2},
entt = {(T1, T2)}. There will be an event ett = ({T1, T2}, tt, {IN1, IN2}) with
πtt((T1, T2))((IN1, IN2)) = 1. To aid readability, such an action with a unique
event (with probability 1) as its only outcome is shown without any probability
value. In this simple example, all the actions except a1 and a2 are of this type.

The trace alphabet (Σ, I) The independence relation I ⊆ Σ × Σ given by
e I e′ iff loc(e) ∩ loc(e′) = ∅. Clearly I is irreflexive and symmetric and hence
(Σ, I) is a Mazurkiewicz trace alphabet [7].

3 The trajectory space

Let TS be the transition system associated with a DMC D. To reason about
the probabilistic behaviour of D using TS, one must build a σ-algebra over the
paths of this transition system and endow it with a probability measure. The
major difficulty is that, due to the mix of concurrency and stochasticity, TS is
not a Markov chain (except in trivial cases where there is no concurrency). In
Fig. 2, for instance, the sum of the probabilities of the transitions originating
from the state (IN1, IN2) is 2. To get around this, we first filter out concurrency
by working with equivalence classes of paths.

We shall refer to paths in TS as trajectories. A finite trajectory of TS from
s ∈ S is a sequence of the form s0e0s1 . . . sk−1ek−1sk such that s0 = s and, for

0 ≤ ` < k, s`
e`,pe`−−−−→ s`+1. Infinite trajectories are defined as usual.

For the trajectory ρ = s0e0s1 . . . sk−1ek−1sk, we define ev(ρ) to be the event
sequence e0e1 . . . ek−1. Again, this notation is extended to infinite trajectories in
the natural way. Due to concurrency, one can have infinite trajectories that are
not maximal, so we proceed as follows.

Let Σi = {e | i ∈ loc(e)}. Suppose ξ is an event sequence (finite or infinite).
Then proji(ξ) is the sequence obtained by erasing from ξ all events that are not
in Σi. This leads to the equivalence relation ≈ over event sequences given by
ξ ≈ ξ′ iff proji(ξ) = proji(ξ

′) for every i. We let [ξ] denote the ≈-equivalence
class containing ξ and call it a (Mazurkiewicz) trace. 5 The partial order relation
v over traces is defined as [ξ] v [ξ′] iff proji(ξ) is a prefix of proji(ξ

′) for every
i. Finally the trace [ξ] is said to be maximal if for every ξ′, [ξ] v [ξ′] implies
[ξ] = [ξ′]. The trajectory ρ is maximal iff [ev(ρ)] is a maximal trace. In the
transition system of Fig. 2, (IN1, IN2)e1h(H1, IN2)e2T (H1, T2)eht((W1, L2)ew1

)ω is
a maximal infinite trajectory. In fact, in this example all the infinite trajectories
are maximal.

The σ-algebra of trajectories We denote by Trjs the set of maximal tra-
jectories from s. Two trajectories can correspond to interleavings of the same
partially ordered execution of events. Hence, one must work with equivalence

5 For infinite sequences, it is technically more convenient to define traces using equiv-
alence of projections rather than permutation of independent actions.
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classes of maximal trajectories to construct a probability measure. The equiva-
lence relation ' over Trjs that we need is defined as ρ ' ρ′ if ev(ρ) ≈ ev(ρ′).
As usual [ρ] will denote the equivalence class containing the trajectory ρ.

Let ρ be finite trajectory from s. Then ↑ρ is the subset of Trjs satisfying
ρ′ ∈ ↑ρ iff ρ is a prefix of ρ′. We now define BC(ρ), the basic trj-cylinder at
s generated by ρ, to be the least subset of Trjs that contains ↑ρ and satisfies
the closure property that if ρ′ ∈ BC(ρ) and ρ′ ' ρ′′ then ρ′′ ∈ BC(ρ). In other
words, BC(ρ) = {[ρ′] | ρ′ ∈ Trjs, [ev(ρ)] v [ev(ρ′)]}.

It is worth noting that we could have BC(ρ) ∩ BC(ρ′) 6= ∅ without hav-
ing ρ ' ρ′. For instance, in Fig. 2, let ρ = (IN1, IN2)e1h(H1, IN2) and ρ′ =
(IN1, IN2)e2t (IN1, T2). Then BC(ρ) and BC(ρ′) will have common maximal tra-
jectories of the form (IN1, IN2)e1h(H1, IN2)e2t (H1, T2) . . . .

We now define ŜA(s) to be the least σ-algebra that contains the basic trj-
cylinders at s and is closed under countable unions and complementation (rela-
tive to Trjs).

To construct the probability measure P̂ : ŜA(s) → [0, 1] we are after, a
natural idea would be to assign a probability to each basic trj-cylinder as fol-
lows. Let BC(ρ) be a basic trj-cylinder with ρ = s0e0s1 . . . sk−1ek−1sk. Then

P̂ (BC(ρ)) = p0 · p1 · . . . · pk−1, where p` = pe` , for 0 ≤ ` < k. This is inspired by
the Markov chain case in which the probability of a basic cylinder is defined to
be the product of the probabilities of the events encountered along the common
finite prefix of the basic cylinder. However, showing directly that this extends
uniquely to a probability measure over ŜAs is very difficult.

We get around this by associating a Markov chainM with D and then embed
ŜAs into SAs, the σ-algebra generated by the infinite paths inM starting from
s. The standard probability measure over SAs will then induce a probability
measure over ŜAs.

4 The Markov chain semantics

We associate a Markov chain with a DMC using a “maximal parallelism” based
semantics. A nonempty set of events u ⊆ Σ is a step at s if each e ∈ u is enabled
at s and, for every distinct pair of events e, e′ ∈ u, e I e′. We say u is a maximal
step at s if u is a step at s and u ∪ {e} is not a step at s for any e /∈ u. In
Fig. 2, {e1h, e2h}, {e1h, e2t}, {e1t , e2h} and {e1t , e2t} are maximal steps at the initial
state (IN1, IN2).

Let u be a maximal step at s. Then s′ is the u-successor of s if the following
conditions are satisfied: (i) For each e ∈ u, if e = (v, a,v′) and i ∈ loc(e) then
s′i = v′i, and (ii) sj = s′j if j /∈ loc(u), where loc(u) =

⋃
e∈u loc(e).

Suppose u is a maximal step at s and i ∈ loc(u). Then, because events in
a step are independent, it follows that there exists a unique e ∈ u such that
i ∈ loc(e), so the u-successor of s is unique. We say s′ is a successor of s if
there exists a maximal step u at s such that s′ is the u-successor of s. From the
definition of a DMC, it is easy to see that if s′ is a successor of s then there
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exists a unique maximal step u at s such that s′ is the u-successor of s. Finally,
we say that s is a deadlock if no event is enabled at s.

Definition 4. The Markov chain M : S × S → [0, 1] generated by D is given
by:

– If s ∈ S is a deadlock then M(s, s) = 1 and M(s, s′) = 0 for s 6= s′.
– Suppose s ∈ S is not a deadlock. ThenM(s, s′) = p if there exists a maximal

step u at s such that s′ is the u-successor of s and p =
∏
e∈u pe.

– If s is not a deadlock and s′ is not a successor of s then M(s, s′) = 0.

It follows thatM(s, s′) ∈ [0, 1] for every s, s′ ∈ S. In addition, if u and u′ are
two maximal steps at s then loc(u) = loc(u′) and |u| = |u′|. The initial state of
M is sin = (sin1 , s

in
2 , . . . , s

in
n ).

Lemma 5. M is a finite state Markov chain.

Proof. Clearly M(s, s′) ∈ [0, 1] for every s, s′ ∈ S. We need to show that∑
s′∈S

M(s, s′) = 1 ∀ s ∈ S.

If s is a deadlock the result follows at once. So assume that s is not a deadlock.
Let U be a maximal step at s. Let As be the set of actions that are enabled

at s. Since s is not a deadlock, As is non-empty.
If (v, a,v′) ∈ U then a ∈ As. On the other hand if a ∈ As then there must

exist an event of the form (v, a,v′) in U since U is a maximal step. For the same
reason if e1 = (v, a,v′), e2 = (u, b,u′) ∈ u then loc(e1) ∩ loc(e2) 6= ∅ iff e1 = e2.
Thus |U | = |As| and for each a ∈ As there exists a unique event in U of the form
(v, a,v′).

In what follows, for the event (v, a,v′), let ·e = v, act(e) = a and e· = v′.
For a ∈ As let Ea = {e | e ∈ Σ , act(e) = a}. Clearly sa = ·e for each e ∈ Ea
and

∑
e∈Ea

πa(sa)(e·) = 1 by definition.
The required result now follows from the fact that U is a maximal step at s

iff |U ∩ Ea| = 1 for each a ∈ As. 2

(T1, T2) (T1, H2) (H1, T2) (H1, H2)

(IN1, IN2)

(L1,W2) (W1, L2)

0.25 0.25 0.25 0.25

Fig. 3. Markov chain for the DMC in Fig. 2
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In Fig. 3 we show the Markov chain of the DMC whose transition system
was shown in Fig. 2. Again, unlabelled transitions have probability 1.

Suppose u is a maximal step at s with |u| = m and |Si| = k for each i ∈ loc(u).
In M there will be, in general, km transitions at s. In contrast there will be at
most k · m transitions at s in TS. Hence—assuming that we do not explicitly
construct S—there can be substantial computational gains if one can verify the
properties of D by working with TS instead of M. This will become clearer
when we look at some larger examples in Section 7.

The path space of M Let M be the Markov chain associated with a DMC
D. The path space and a probability measure over this space is obtained in the
usual way. A finite path in M from s is a sequence τ = s0s1 . . . sm such that
s0 = s and M(s`, s`+1) > 0, for 0 ≤ ` < m. The notion of an infinite path
starting from s is defined as usual. Paths and Pathfins denote the set of infinite
and finite paths starting from s, respectively.

For τ ∈ Pathsfins , ↑τ ⊆ Pathss is the set of infinite paths that have τ as
a prefix. Υ ⊆ Paths is a basic cylinder at s if Υ = ↑τ for some τ ∈ Pathsfins .
The σ-algebra over Paths, denoted SA(s), is the least family that contains the
basic cylinders at s and is closed under countable unions and complementation
(relative to Paths). Ps : SA(s) → [0, 1] is the usual probability measure that
assigns to each basic cylinder ↑τ , with τ = s0s1 . . . sm, the probability p =
p0 · p1 · · · pm−1, where M(s`, s`+1) = p`, for 0 ≤ ` < m.

5 The probability measure for the trajectory space

To construct a probability measure over the trajectory space we shall associate
infinite paths in M with maximal trajectories in TS. The Foata normal form
from Mazurkiewicz trace theory will help achieve this. Let ξ ∈ Σ?. A standard
fact is that [ξ] can be canonically represented as a “step” sequence of the form
u1u2 . . . uk. More precisely, the Foata normal form of the finite trace [ξ], denoted
FN([ξ]), is defined as follows [7].

– FN([ε]) = ε.
– Suppose ξ = ξ′e and FN([ξ′]) = u1u2 . . . uk. If there exists e′ ∈ uk such

that (e′, e) /∈ I then FN([ξ]) = u1u2 . . . uk{e}. If not, let ` be the least
integer in {1, 2, . . . , k} such that e I e′ for every e′ ∈

⋃
`≤m≤k um. Then

FN([ξ]) = u1 . . . u`−1(u` ∪ {e})u`+1 . . . um.

For the example shown in Fig. 2, FN(e1h e
2
t eht ew1 ew1) = {e1h, e2t} {eht} {ew1} {ew1}.

This notion is extended to infinite traces in the obvious way. Note that ξ ≈ ξ′

iff FN(ξ) = FN(ξ′).
Conversely, we can extract a (maximal) step sequence from a path in M.

Suppose s0s1 . . . is a path in Pathss. There exists a unique sequence u1 u2 . . .
such that u` is a maximal step at s`−1 and s` is the u`-successor of s`−1 for every
` > 0. We let st(τ) = u1 u2 . . . and call it the step sequence induced by τ .

This leads to the map tp : Trjs → Pathss given by tp(ρ) = τ iff FN(ev(ρ)) =
st(τ).



10 R. Saha, J. Esparza, S. K. Jha, M. Mukund and P. S. Thiagarajan

Lemma 6. tp is well defined.

Proof. Let ρ ∈ Trjs such that ξ = ev(ρ) and FN([ξ]) = u1u2 · · · . FN([ξ]) is an
infinite sequence since we have assumedM is deadlock-free. Since ρ is a maximal
trajectory, by definition, [ξ] is a maximal event trace.

We construct a path τ = s0s1 . . . sk · · · ∈ Trjs such that sl
ul−→ sl+1 for l ≥ 0,

which implies FN([ev(ρ)]) = st(τ). We construct τ inductively as follows:

- u1 is a maximal step at s. Hence, s0 = s and there exists s1 such that
s0

u1−→ s1.
All events e ∈ u1 are pairwise independent by the definition of Foata normal
form. Also, u1 is maximal because if not, then there exists an event e 6∈ u1
which is enabled at s and is pairwise independent with all events in u1.
However, since [ξ] is a maximal event (and hence Mazurkiewicz) trace, there
exists ut for some t > 1 such that e ∈ ut which contradicts that u1u2 · · · is
a Foata normal form. Finally, there exists at least one event in u1 that is
enabled at s since ρ ∈ Trjs. Hence, by the definition of DMC, all events in
u1 are enabled at s since they are pairwise independent concluding u1 is a
maximal step at s.

- Let us assume we constructed s0s1 · · · sk−1 such that sl
ul−→ sl+1 for 0 ≤ l <

k − 1. By similar argument given above, uk−1 is a maximal step enabled at

sk−1 and hence there exists sk such that sk−1
uk−1−−−→ sk, thus completing the

proof. 2

As usual, for X ⊆ Trjs we define tp(X) = {tp(ρ) | ρ ∈ X}. It turns out
that tp maps each basic cylinder in the trajectory space to a finite union of
basic cylinders in the path space. As a result, tp maps every measurable set
of trajectories to a measurable set of paths. Consequently, one can define the
probability of a measurable set of trajectories X to be the probability of the
measurable set of paths tp(X).

To understand how tp acts on the basic cylinder BC(ρ), let FN(ev(ρ)) =
u1u2 . . . uk. We associate with ρ the set of finite paths paths(ρ) = {π | st(π) =
U1U2 . . . Uk and u` ⊆ U`, for 1 ≤ ` ≤ k}. In other words π ∈ paths(ρ) if it ex-
tends each step in FN(ev(ρ)) to a maximal step. Then, tp maps BC(ρ) to the
(finite) union of the basic cylinders generated by the finite paths in paths(ρ).
These observations and their main consequence, namely, the construction of a
probability measure over the trajectory space, can be summarized as the follow-
ing Lemma 7, 8 and 9:

Lemma 7. Let ρ = s0s1 · · · sk be a finite trajectory at s. We assume B = BC(ρ)
to be a basic trj-cylinder from s and FN([ev(ρ)]) = u1u2 · · ·uk.

(i) Suppose τ ∈ Paths. Then τ ∈ tp(BC(ρ)) iff ul ⊆ st(τ)l for 1 ≤ l ≤ k. We
define st(τ)l to be the maximal step appearing in position l of the sequence
st(τ).

(ii) tp(B) is a finite union of basic cylinder sets in SAs and hence is a member
of SAs. Furthermore Ps(tp(B)) =

∏
1≤l≤k pl where pl =

∏
e∈ul

pe for 1 ≤
l ≤ k.
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Proof. (i) We need to show that tp(BC(ρ)) = paths(ρ).
Suppose ρ′ ∈ BC(ρ). Then, by definition of basic cylinders, there exists
ρ′′ ∈ BC(ρ) such that ρ′ ' ρ′′ and ρ is a finite prefix of ρ′′. Hence

ρ′ ' ρ′′

=⇒ ev(ρ′) ≈ ev(ρ′′) (definition of ')

=⇒ FN([ev(ρ′)]) = FN([ev(ρ′′)]) (uniqueness of FN)

=⇒ tp(ρ′) = tp(ρ′′) (definition of tp)

Since FN([ev(ρ)]) = u1u2 · · ·uk and ρ is a finite prefix of ρ′′, tp(ρ′′) ∈
paths(ρ) and hence tp(ρ′) ∈ paths(ρ). Thus tp(BC(ρ)) ⊆ paths(ρ).
To prove the converse, let τ ∈ paths(ρ) with st(τ) = U1U2 · · · . We need
to prove τ ∈ tp(BC(ρ)). By definition of tp and BC, it is sufficent to
prove that there exists maximal trajectory ρ′ such that ρ′ ∈ BC(ρ) and
FN([ev(ρ′)]) = st(τ).
We proceed by induction on k. Suppose FN(ev(ρ)) = u1 with st(τ)1 = U1

and u1 ⊆ U1. Let U1\u1 = {e1, e2, . . . , em}. Then it is easy to see that
there exists a trajectory of the form ρ′ = ρρ1ρ2 ∈ Trjs such that ev(ρ1) =
e1e2 . . . em. Clearly ρ′ ∈ BC(ρ) such that FN(ev(ρ′)) = U1 = st(τ) and
this proves the basis step. The induction step follows from the induction
hypothesis applied at the U -successor of s for each U defined as above.

(ii) We again proceed by induction on k. Suppose k = 1. Let us assume
{U1, U2, . . . , Um} to be the set of maximal steps at s such that ul ⊆ Ul
for 1 ≤ l ≤ m. Then, from the previous part, it follows that tp(BC(ρ)) =⋃

1≤l≤m ↑(ssl) where sl is the Ul-successor of s for 1 ≤ l ≤ m. This estab-
lishes the basis step. The induction step now follows by appealing to the
induction hypothesis at s1, s2, . . . , sm. This proves that tp(B) is a member
of SAs. Then using the previous part of the lemma and inducing on k,
it is easy to show that Ps(tp(B)) =

∏
1≤l≤k pl where pl =

∏
e∈ul

pe for
1 ≤ l ≤ k.

2

Lemma 8. Let B ∈ ŜAs.

(i) B is '-closed.
(ii) tp(Trj s −B) = Paths − tp(B).

(iii) tp(B) ∈ SAs.

Proof. (i) For ρ ∈ B and ρ′ ' ρ, by definition of B ∈ ŜAs it follows that
ρ′ ∈ B. Hence B is '-closed.

(ii) Let ρ ∈ Trj s−B. If tp ∈ tp(B) then there exists ρ′ ∈ B such that tp(ρ′) =
tp(ρ). But this will imply that FN([ev(ρ)]) = FN([ev(ρ′)]) which in turn
would imply that ev(ρ) ≈ ev(ρ′). But this implies that ρ ' ρ′ leading
to the contradiction that ρ ∈ B since B is '-closed. This shows that
tp(Trj s −B) ⊆ Paths − tp(B).
Now assume τ ∈ Paths − tp(B). It is easy to show that there exists a
ρ ∈ Trj s such that tp(ρ) = τ . Clearly ρ ∈ Trj s−B. Hence Paths− tp(B) ⊆
tp(Trj s −B) which concludes the proof.
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(iii) If B is a basic cylinder at s, then the result follows from part (iii) of Lemma

7. By definition, ŜAs is closed under complementation and countable union.
Since Paths− tp(B) ∈ SAs, from the previous part we now have tp(Trj s−
B) ∈ SAs. Finally, if {Bk} is a countable collection such that Bk ∈ ŜAs

and tp(Bk) ∈ SAs for each k, tp(
⋃
k Bk) =

⋃
k tp(Bk) ∈ SAs.

Hence for any B ∈ ŜAs, tp(B) ∈ SAs. 2

Lemma 9. P̂s is well defined.

Proof. Since tp is well-defined and Ps is a probability measure, P̂s is a well-
defined function. To prove that P̂s is a well-defined measure on ŜAs, we prove
the following:

- P̂s(ŜAs) = Ps(tp(ŜAs)) = Ps(SAs) = 1, since Ps is a probability measure.

- Let {Bk} be a countable collection of pairwise disjoint sets in ŜAs. Clearly
{tp(Bk)} is a countable collection of pairwise disjoint sets in SAs. We now
have:

P̂s(
⋃
k

Bk) = Ps(tp(
⋃
k

Bk)) (definition of P̂s)

= Ps(
⋃
k

tp(Bk)) (
⋃
k

is countable union)

=
∑
k

Ps(tp(Bk)) (part (iii) of Lemma 8)

=
∑
k

P̂s(Bk) (definition of P̂s)

Hence, P̂s is a probability measure. 2

Note that while a finite path inM always induces a maximal step sequence,
a finite trajectory, in general, does not have this structure. Some components
can get ahead of others by an arbitrary amount. The lemmas above states that,
despite this, any finite trajectory defines a finite set of of basic cylinders whose
overall probability can be easily computed, by taking the product of the prob-
abilities of the events encountered along the trajectory. This helps considerably
when verifying the properties of M. In particular, local reachability properties
can be checked by exercising only those components that are relevant.

Going back to our running example, let ρt = (IN1, IN2)e1t (T1, IN2), and Xt =
↑ρt. Let ρ′t = (IN1, IN2)e2t (IN1, T2), and X ′t = ↑ρt. Assume ρh, Xh, ρ′h and X ′h
are defined similarly. Then P̂ (Xt) = P̂ (X ′h) = 0.5, while P̂ (Xh ∪ Xt) = 1.
On the other hand, due to the fact that e1h and e2h are independent, we have

P̂ (Xh ∪X ′h) = 0.75.
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6 A statistical model checking procedure for DMCs

To bring out the applicability of the DMC formalism and its interleaved seman-
tics, we formulate a statistical model checking procedure. The specification logic
PBLTL⊗ (product PBLTL) is a simple generalization of probabilistic bounded
linear time temporal logic (PBLTL) [14] that captures Boolean combinations
of local properties of the components. The logic can express interesting global
reachability properties as well since the Boolean connectives can capture -in a
limited fashion- the way the components influence each other.

We assume a collection of pairwise disjoint sets of atomic propositions {APi}.
As a first step, the formulas of BLTL⊗ are given as follows.

(i) ap ∈ APi is a BLTL⊗ formula and type(ap) = {i}.
(ii) If ϕ and ϕ′ are BLTL⊗ formulas with type(ϕ) = type(ϕ′) = {i} then so is

ϕUt
iϕ
′ where t is a positive integer. Further, type(ϕUt

iϕ
′) = {i}. As usual,

F tϕ abbreviates (trueUtϕ) and Gtϕ is defined as ¬F t¬ϕ.
(iii) If ϕ and ϕ′ are BLTL⊗ formulas then so are ¬ϕ and ϕ∨ϕ′ with type(¬ϕ) =

type(ϕ) and type(ϕ ∨ ϕ′) = type(ϕ) ∪ type(ϕ′).

The formulas of PBLTL⊗ are given by:

(i) Suppose ϕ is a BLTL⊗ formula and γ a rational number in the open
interval (0, 1). Then Pr≥γ(ϕ) is a PBLTL⊗ formula.

(ii) If ψ and ψ′ are PBLTL⊗ formulas then so are ¬ψ and ψ ∨ ψ′.

To define the semantics, we project each trajectory to its components. For s ∈ S
and i ∈ [n] we define Proji : Trjfins → S+

i inductively.

(i) Proji(s) = si.
(ii) Suppose ρ = s0eos1 . . . smemsm+1 is in Trjfins and ρ′ = s0e0s1 . . . sm.

If i ∈ loc(em) then Proji(ρ) = Proji(ρ
′)(sm+1)i. Otherwise Proji(ρ) =

Proji(ρ
′).

We lift Proji to infinite trajectories in the obvious way—note that Proji(ρ)
can be a finite sequence for the infinite trajectory ρ. We assume a set of local
valuation functions {Vi}, where Vi : Si → 2APi . Let ϕ be a BLTL⊗ formula with
type(ϕ) = {i}. We begin by interpreting such formulas over sequences generated
by the alphabet Si. For % ∈ S+

i ∪ Sωi , the satisfaction relation %, k |=i ϕ, with
0 ≤ k ≤ |%|, is defined as follows.

(i) %, k |=i ap for ap ∈ APi iff ap ∈ Vi(%(k)(i)), where %(k)(i) is the Si-state
at position k of the sequence %.

(ii) ¬ and ∨ are interpreted in the usual way.
(iii) %, k |=i ϕ1U

t
iϕ2 iff there exists ` such that k ≤ ` ≤ max(k + t, |%|) with

%, ` |=i ϕ2, and %,m |=i ϕ1, for k ≤ m < `.

As usual, % |=i ϕ iff %, 0 |=i ϕ. Next, suppose ϕ is a BLTL⊗ formula and ρ ∈
Paths. Then the relation ρ |=s ϕ is defined as follows.
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(i) If type(ϕ) = {i} then ρ |=s ϕ iff Proji(ρ) |=i ϕ.
(ii) Again, ¬ and ∨ are interpreted in the standard way.

Given a formula ϕ in BLTL⊗ and a global state s, we define Trjs(ϕ) to be the
set of trajectories {ρ ∈ Trjs | ρ |=s ϕ}.

Lemma 10. For every formula ϕ, Trjs(ϕ) is a member of ŜA(s).

Proof. Let Paths(ϕ) be the set of paths in the Markov chain M that satisfies
the formula ϕ. It is easy to see that Paths(ϕ) is a member of SAs. We then use
Lemma 8 to obtain the result. 2

The semantics of PBLTL⊗ is now given by the relation D |=trj
s ψ, defined as:

(i) Suppose ψ = Pr≥γ(ϕ). Then D |=trj
s ψ iff P̂ (Paths(ϕ)) ≥ γ.

(ii) Again, the interpretations of ¬ and ∨ are the standard ones.

For the example in Fig. 1, one can assert Pr≥0.99((F 7(L1)∧F 7(W2))∨(F 7(W1)∧
F 7(L2))). Here, the local states also serve as the atomic propositions. Hence,
the formula says that with probability ≥ 0.99, a winner will be decided within
7 rounds.

We writeD |=trj ψ forD |=trj
sin ψ. The model checking problem is to determine

whether D |=trj ψ. We shall adapt the SMC procedure developed in [20] to solve
this problem approximately.

6.1 The statistical model checking procedure

We note that in the Markov chain setting, given a BLTL formula and a path in
the chain, there is a bound k that depends only on the formula such that we can
decide whether the path is a model of the formula by examining just a prefix
of the path of length k [14]. By the same reasoning, for a BLTL⊗ formula ϕ,
we can compute a vector of bounds (k1, k2, . . . , kn) that depends only on ϕ such
that for any trajectory ρ starting from sin, we only need to examine a finite
prefix ρ′ of ρ that satisfies |Proji(ρ′)| ≥ ki, for 1 ≤ i ≤ n. The complication
in our setting is that it is not guaranteed that one can generate such a prefix
with bounded effort. This is due to the mix of concurrency and stochasticity in
DMCs. More precisely, at a global state s, one may need to advance the history
of the agent i but this may require first executing an event e = (v, a,v′) at s
that does not involve the agent i. However, there could also be another event
e′ = (v, a,u) enabled at s. Since one must randomly choose one of the enabled
events according to the underlying probabilities, one may repeatedly fail to steer
the computation towards a global state in which the history of i can be advanced.
A second complication is that starting from the current global state it may be
impossible to reach a global state at which some event involving i is enabled.

To cope with this, we maintain a count vector (c1, c2, . . . , cn) that records
how many times each component has moved along the trajectory ρ that has been
generated so far. A simple reachability analysis will reveal whether a component
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is dead in the current global state — that is, starting from the current state,
there is no possibility of reaching a state in which an event involving this agent
can be executed. If this is the case for the agent i or the ci is already the required
bound then remove it from the current set of active agents. If the current set of
active agents is not empty, we execute, one by one, all the enabled actions —
using a fixed linear order over the set of actions — followed by one move by each
of the participating agents, according to the underlying probabilities. Recall that
action a is enabled at s iff sa ∈ ena. Due to the determinacy of synchronizations,
the global state thus reached will depend only on the probabilistic moves chosen
by the participating agents. We then update the count vector to (c′1, c

′
2, . . . , c

′
n)

and mark the new dead components. We show in Theorem 11 that, continuing
in this manner, with probability 1 we will eventually generate a finite trajectory
ρ̂ and reach a global state s with no active agents. We then check if ρ̂ satisfies ϕ
and update the score associated with the statistical test described as follows.

Theorem 11. With probability 1, the method of generating a finite trajectory
described in section 6.1 will terminate.

Proof. The core task is to check whether D |=trj
s P̂≥γ(ϕ) where ϕ is a BLTL⊗

formula. Let (k1, k2, . . . , kn) be the bound vector obtained from ϕ as follows. If
i /∈ type(ϕ) then ki = 0. If i ∈ type(ϕ) then ki is the maximum of the bounds
associated (in the usual way) with the i-type formulas appearing in ϕ.

Let ρ be a finite trajectory such that the corresponding count vector is
(c1, c2, . . . , cn). In other words the agent i has executed ci events so far along ρ.

Let sin
ρ−→ s. Then, ρ is terminal if for every i either ci ≥ ki or there exists i

such that ci < ki and the component i is dead at s. It is easy to show that one
can effectively determine if a finite trajectory is terminal. Let TER be the set of
terminal finite trajectories and Υ = ∪ρ∈TERBC(ρ). Clearly TER is a countable

set and hence Υ is in ŜA. It is now enough to prove that P̂ (Υ ) = 1.
It will be more convenient to carry out the proof in the Markov chain setting.

We first blow upM into the larger M̂ as follows. Let Ŝ = S×(C1×C2×· · ·×Cn)
such that Ci = {0, 1, . . . , ki} ∪ {ωi} for every i. Here, ωi denotes “large” and
satisfies ki < ωi and ωi + 1 = ωi for every i.

We define M̂ via: M̂((s, c)(s′, c′)) = p iff M(s, s′) = p. Morever, if s′ is the
u-successor of s then for each i the following conditions hold. Suppose i ∈ loc(u).
Then c′(i) = c + 1 if c(i) < ki and c′(i) = ωi if c(i) = ki or c(i) = ωi. On the
other hand, c′(i) = c(i) if i 6∈ loc(u).

It is easy to verify that M̂ is a finite state Markov chain. The initial state
is (sin,0), where 0(i) = 0 for each i. In what follows we will often suppress the
mention of (sin,0).

Let τ be a finite path in M̂ that ends at (s, c). We say (s, c) is final iff ki ≤ ci
for every i or there exists i such that c(i) < ki and i is dead at (s, c). Then τ is

terminal iff (s, c) is final. Similar to TER, we now define T̂ER to be the set of

terminal finite paths in M̂. From the definitions it follows that tp(TER) = T̂ER
and hence it suffices to prove that P (∪

τ∈T̂ER
BC(τ)) = 1. Here, P denotes the
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usual probability measure over SA(sin,0) in M̂. We also note that T̂ER is a
countable set and hence

⋃
τ∈T̂ER

BC(τ) will be a member of SA(sin,0).

Next, let (s, c) ∈ Ŝ. Let Ŵ be the set of final states. Now as shown in [3],

P (
⋃
τ∈T̂ER

BC(τ)) = 1 follows if we can show that (sin,0) ∈ Ŝ − Pre∗(Ŝ −
Pre∗(Ŵ)) where Pre∗(x̂) for Ŝ ⊆ Ŝ is the least subset of Ŝ that contains X̂ and

satisfies: If ŝ ∈ X̂ and M̂(ŝ′, ŝ) > 0 then ŝ′ ∈ Pre∗(X̂).

We now claim that Pre∗(Ŵ) = Ŝ. It is easy to see that proving this is

sufficient since this leads to Ŝ−Pre∗(Ŝ−Pre∗(Ŵ)) = Ŝ and trivially (sin,0) ∈ Ŝ.

We recall Ŷ ⊆ Ŝ is a strongly connected component of M iff there is a path
from ŝ to û for every ŝ, û ∈ Ŷ. Let {SC1, SC2, . . . , SCr} be the set of strongly

connected components (SCCs) of M̂. The relation � over SCCs is given by:
SC � SC ′ iff there exists a state ŝ ∈ SC, a state û ∈ SC ′ and a path from ŝ to

û in M̂. Clearly, � is a partial order relation and the maximal elements under
preceq will be called the bottom strongly connected components (BSCCs).

Now let Ŷ be a BSCC and (s, c), (s′, c′) ∈ Ŷ. Then it must be the case that
c = c′. Next, suppose c(i) < ki for some i. Then i must be dead at (s, c) which

implies that i is dead at every state at Ŷ. Consequently, every state in Ŷ is final.

By definition of BSCCs, we now have Pre∗(Ŵ) = Ŝ, thus concluding the proof.
2

Statistical test The parameters for the test are δ, α, β, where δ is the size of
the indifference region and (α, β) is the strength of the test, with α bounding
the Type I errors (false positives) and β bounding the Type II errors (false
negatives). These parameters are to be chosen by the user. We generate finite
i.i.d. sample trajectories sequentially. We associate a Bernoulli random variable
x` with the sample ρ` and set x` = 1 if ρ` ∈ Trjsin(ϕ) and set x` = 0 otherwise.
We let cm =

∑
` x` and compute the score SPRT via

SPRT =
(γ−)cm(1− γ−)n−cm

(γ+)
cm(1− γ+)n−cm

Here γ+ = γ + δ and γ− = γ − δ. If SPRT ≤ β
1−α , we declare D |=trj P̂≥rϕ.

If SPRT ≥ 1−β
α , we declare D 6|=trj P̂≥γϕ. Otherwise, we draw one more sample

and repeat.
This test is then extended to handle formulas of the form ¬ψ and ψ1 ∨ψ2 in

the usual way [14]. It is easy to establish the correctness of this statistical model
checking procedure.

7 Experimental results

We have tested our SMC procedure on two probabilistic distributed algorithms:
(i) a leader election protocol for a unidirectional ring of anonymous processes by
Itai and Rodeh [10,12] and (ii) a randomized solution to the dining philosophers
problem [17]. Both these algorithms -for large instances- exhibit a considerable
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degree of concurrency since any two agents that do not share a neighbor can exe-
cute independently. We focused on approximately verifying termination proper-
ties of these algorithms to bring out the scalability and the performance features
of our SMC technique. We also compared our results with the corresponding
ones obtained using the tool Plasma [5].

In the leader election protocol, each process randomly chooses an identity
from {1, 2, . . . , N}, and passes it on to its neighbor. If a process receives an
identity lower than its own, the message is dropped. If the identity is higher
than its own, the process drops out of the election and forwards the message.
Finally, if the identity is the same as its own, the process forwards the message,
noting the identity clash. If an identity clash is recorded, all processes with the
highest identity choose a fresh identity and start another round.

Since the initial choice of identity for the N processes can be done concur-
rently, in the global Markov chain, there will be NN possible moves. However,
correspondingly in the interleaved semantics, there will be N2 transitions from
the initial state.

We have built a DMC model of this system in which each process and chan-
nel is an agent. Messages are transferred between processes and channels via
synchronizations while ensuring this is done using a deterministic protocol. For
simplicity, all channels in our implementation have capacity 1. We can easily
construct higher capacity channels by cascading channels of capacity 1 while
staying within the DMC formalism.

The challenge in modeling the dining philosophers problem as a DMC is to
represent the forks between philosophers, which are typically modeled as shared
variables. We use a deterministic round robin protocol to simulate these shared
variables. The same technique can be used for a variety of other randomized
distributed algorithms presented as case studies for Plasma.

Fig. 4. Comparison of simulation times in DMC and Plasma

We ran our trajectories based SPRT procedure written in Python program-
ming language on a Linux server (Intel Xeon 2.30 GHz, 16 core, 72GB RAM).
For the first example, we verified that a leader is elected with probability above
0.99 within K rounds, for a ring of N processes for various values of N up to
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1000. For each N , it turned out that K = N is a good choice for K as explained
below.

The termination property was specified as follows. Let Li denote the boolean
variable which evaluate to true iff in the current global state, node i has been
elected as the leader. Then for N processes with K = N , the specification is:

Pr≥0.99(

n∨
i=1

[FN (¬L1)∧· · ·∧FN (¬Li−1)∧FN (Li)∧FN (¬Li+1)∧· · ·∧FN (¬Ln)])

For the dining philosophers, we verified that with probability above 0.95
every philosopher eventually eats, up to N = 500 philosophers. In both the ex-
periments, we set the bound on both the Type I and Type II errors to be 0.01
and the indifference region to be 0.01. We tested the same properties with the
same statistical parameters using the Plasma model. Plasma supports paral-
lel execution and multithreading. Since our DMC implementation is currently
sequential, we restricted Plasma to single-threaded sequential execution for a
meaningful comparison.

In Fig. 4, we have compared the running time for SPRT model-checking in
the DMC model with that for Plasma. The x-axis is the number of processes
in the system and the y-axis is the running time, in seconds. We have not been
able to determine from the literature how Plasma translates the model into a
DTMC. Consequently we could only compare the simulation times at the system
level while treating the Plasma tool as a black box. In the case of Plasma,
the specifications use time bounds which we took it to imply the number of
time steps for which the model is simulated. We found that for N = 1000,
Plasma verifies the termination property to be true if the time bound is set to
be 10, 000. Further, increasing the bound does not cause the simulation times to
change. Hence we fixed the time bound to be 10, 000 for all choices of N in the
Plasma setting. In the DMC setting we found that setting K = N caused our
implementation to verify the termination property to be true. Again, increasing
this to larger number of rounds does not change the simulation times. For this
reason we fixed K = N for each N .

The experiments show that as the model size increases, the running time
increase for the DMC approach is almost linear whereas for Plasma it is more
rapid. The results also show the significant performance and scalability advan-
tages of using the interleaved semantics approach based on DMC models. We
expect further improvements to be easily achieved via a parallel implementation.

8 DMCs with global final states

At first sight, DMCs appear to be closely related to the model of deterministic
cyclic negotiations (DCNs) [9]. However, in the DCNs, the control flow is not
influenced in anyway by the internal states of the agents. This issue was not
dealt with carefully enough in the translation proposed in the conference paper
and in the accompanying technical report since its correctness seemed obvious!

The trouble is, in a DMC, the control flow is strongly influenced by the
internal states of the agents and this leads to a significant gap between the
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expressive powers of the two formalisms. This gap is best brought out in net
theoretic terms. A DCN can be easily represented as the subclass of Petri nets
known as extended free choice nets (EFC nets). In such nets, if a place is a
common input place of two transitions then these transitions have the same set
of input places. In other words it can not be the case that two transition t1 and
t2 have as their input places, say, {p1, p} and {p2, p} respectively with p1 6= p2
since p is a common input place.

On the other hand, the natural net representation of a DMC will not in gen-
eral be an EFC net. For instance, for the coin toss example, its net representation
is shown in Figure 5, which is obviously not an EFC net.

IN1 IN2

aH
1 aT

1 aH
2 aT

2

H1 T1 H2 T2

ht th

W1 L2 L1 W2

w1 w2

hh tt

Fig. 5. Net representation for the coin toss example

We believe that there are natural subclasses of DMCs that can be represented
as DCNs and hence will admit a polynomial time procedure for checking their
soundness (when they are accompanied by final states). However the full class
of DMCs does not admit a representation as DCNs and it is not clear whether
such DMCs accompanied by final states admit a polynomial time algorithm for
checking soundness (i.e every state reachable from the initial state can reach the
final state).

9 Conclusion

We have formulated a distributed probabilistic system model called DMCs. Our
model achieves a clean mix of concurrency and probabilistic dynamics by re-
stricting synchronizations to be deterministic. Our key technical contribution is
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the construction of a probability measure over the σ-algebra generated by the
(interleaved) trajectories of a DMC. This opens the door to using partial order
reduction techniques to efficiently verify the dynamic properties of a DMC. As a
first step we have developed a SPRT based statistical model checking procedure
for the logic PBLTL⊗. Our experiments suggest that our method can handle
systems of significant sizes.

The main partial order concept we have used is to group trajectories into
equivalence classes. One can also explore how ample sets [15] and related notions
can be used to model check properties specified in logics such as PCTL [3].
Another possibility is to see if the notion of finite unfoldings from Petri net
theory can be applied in the setting of DMCs [8,16].

In our two case studies, the specification has a global character in that it
mentions every agent in the system. In many specifications, only a few agents
will be mentioned. If the system is loosely coupled, we can check whether the
required property is fulfilled without having to exercise all the agents. This will
lead to additional computational gains.

In many of the benchmark examples in [6], the probabilistic moves are lo-
cal. On the other hand, DMCs allow synchronous probabilistic moves where
the probability distribution is influenced by information obtained through com-
munication. It will be interesting to exploit this feature to model and analyze
applications arising in embedded control systems.

We currently allow agents to gain complete information about the state of the
agents they synchronize with. In practice, only a part of this state may/should
be exposed.
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