
Assembling Sessions⋆

Philippe Darondeau1, Löıc Hélouët1, and Madhavan Mukund2

1 IRISA, INRIA, Rennes, France
2 CMI, Chennai, India

philippe.darondeau@irisa.fr, loic.helouet@irisa.fr, madhavan@cmi.ac.in

Abstract. Sessions are a central paradigm inWeb services to implement
decentralized transactions with multiple participants. Sessions enable the
cooperation of workflows while at the same time avoiding the mixing of
workflows from distinct transactions. Languages such as BPEL, ORC,
AXML that implement Web Services usually realize sessions by attach-
ing unique identifiers to transactions. The expressive power of these lan-
guages makes the properties of the implemented services undecidable. In
this paper, we propose a new formalism for modelling web services. Our
model is session-based, but avoids using session identifiers. The model
can be translated to a dialect of Petri nets that allows the verification of
important properties of web services.

1 Introduction

Web services consist of interactions between multiple parties. In developing a
formal model for web services, we have to consider two different points of view.
The first focus is on the interactions themselves: they are typically structured
using what we will call sessions. An example of a session could include sending
an email or making an online payment. Informally, a session is a functionally
coherent sequence of interactions between agents playing specific roles, such as
server and client.

The second requirement is to capture the perspective of each agent. Typically,
agents participate in more than one session at a time: while composing a mail,
an agent may also participate in an online chat and, on the side, browse a
catalogue to select an item to purchase from an online retailer. While some
concurrent sessions may be independent of each other, there may also be non-
trivial connections between sessions. For instance, to purchase an item online,
one has to first participate in a session with the retailer to choose an item, then
make the online payment in a session with the bank, which typically returns the
agent to the shopping session with a confirmation of the transaction. Thus, we
need a mechanism to describe how an agent moves between sessions, including
the possibility of invoking multiple concurrent sessions.

We propose a formal model for sessions to capture both these aspects. A
guiding principle is that the model should support some formal verification.
We base our approach on finite automata and model interaction through shared

⋆ This work was partially funded by INRIA’s DST Associated Team, and by the
ARCUS program (Région Ile-de-France).

2 P. Darondeau,L.Hélouët, M. Mukund

actions. These shared actions can update local variables of agents, which permits
information to be transferred across agents. The local variables record the state
of an agent across sessions to permit coordination between sessions.

Our model can be translated into a class of Petri nets called Reset Post-G
nets [6] for which coverability is decidable. In terms of our model, this means, for
instance, that asking whether a specific type of session occurs is decidable. The
paper is organized as follows. After briefly discussing related work, we introduce
our model through an example in the next section. This is followed by a formal
definition of our model of session systems. Section 4 translates the semantics of
session systems into Reset Post-G nets, and highlights decidability results for
our model. We end with a brief conclusion. Due to lack of space, and also to
improve readability, some proofs are only sketched.
Related work Several other frameworks propose sessions and mechanisms to
orchestrate sessions into larger applications. The range of approaches includes
agent-centric formalisms, such as BPEL [3], workflow-based formalisms such as
Orc [8, 9], and declarative, rule-based formalisms such as AXML [1, 2]. Each
approach has its advantages and drawbacks.

A BPEL specification describes a set of independent communicating agents
equipped with a rich set of control structures. Coordination across agents is
achieved through message-passing. Interactions are grouped into sessions im-
plicitly by defining correlations which specify data values that uniquely identify
a session—for instance, a purchase order number for an online retail transaction.
This makes it difficult to identify the structure of sessions from the specification,
and workflows are often implicit, known only at runtime. Orc is a programming
language for the orchestration of services. It allows any kind of algorithmic ma-
nipulation of data, with an orchestration overlay that helps start new services
and synchronize their results. Orc has better mechanisms to define workflows
than BPEL, but lacks the notion of correlation that is essential to establish ses-
sions among the participants in a service. AXML defines web services as a set
of rules for transforming semi-structured documents described, for instance, in
XML. However, it does not make workflows explicit, and does not have a native
notion of session either. So, transactions must be defined using complex guards.
A common feature of these formalisms is that they aim to describe implemen-
tations of web services or orchestrations. BPEL, Orc and AXML can easily
simulate Turing Machines, hence rendering undecidable simple properties such
as the termination of a service. In [4], the authors develop a model for shared
experience services where multiple users participate in sessions by simultane-
ously accessing a shared communication interface—examples include conference
calls and internet chat. Though this model has a superficial resemblance to our
work—they define session data types and use finite automata to describe session
behaviours—the main aim is to provide an event-driven programming language
to describe such systems, without any support for verification, so their model
has little in common with ours.

At a different level, Petri nets have often been used to specify workflows [10]
or to serve as targets for translating high-level description languages such as
BPEL [7, 11]. However, Petri nets are not expressive enough to model sessions

Assembling Sessions 3

with correlations as in BPEL, hence translations either are restricted to a subset
of the workflow description language [11] or they are aimed at coloured extensions
of Petri nets [7] for which many properties are undecidable. Our model can
be translated to a less powerful class of Petri Nets which allows us to decide
properties such as coverability and termination.

2 Motivational example

To motivate the constructs that we incorporate into our model, we look at an
example. We model an online retail system with three types of participants:
clients (the buyers), servers (the sellers), and banks. The interactions between
these entities can be broken up into two distinct phases: selecting and confirming
the items to be purchased online, and paying for these items. The first phase,
online sale, only concerns clients and servers while the second phase, online
payment, involves all three types of entities.

In an online sale, a client logs in to a server and selects a set of items to
buy. Selecting an item involves browsing the items on offer, choosing some of
them, perhaps revoking some earlier choices and finally deciding to pay for the
selected items. At this point, the client has to choose between several modes of
payment. Once this choice is made, the online sale interaction is suspended and
the second phase is triggered.

The second phase, online payment, involves the client and the server as well as
a bank that is chosen by the server according to the mode of payment selected
by the client. The server transfers the transaction amount to the bank. The
bank then asks the client for credentials to authenticate itself and authorize this
transaction. Based on the information provided by the client, the bank either
accepts or rejects the transaction. This decision is based on several parameters,
including the correctness of the authentication data provided and the client’s
credit limit. For simplicity, we can omit the details of how the bank arrives at
this decision and model this as a nondeterministic choice between success and
failure of the payment. When the payment phase ends, the client and server
resume their interaction in the online sale. If the payment was successful, the
server generates a receipt. Otherwise, the server generates an appropriate error
notification. In case of a payment failure, the client can choose to abort the sale
or retry the payment.

This example illustrates both aspects of web services identified in the Intro-
duction. Online sale and online payment are examples of sessions—structured
interactions involving multiple agents. On the other hand, the clients, servers
and banks that participate in these sessions are examples of agents, each with
its own control structure that determines how it evolves and moves from one
session to another.

We propose to use finite-state automata to describe session schemes and
agents. These prescribe the underlying structure from which concrete sessions
are instantiated. Figure 1 depicts a session scheme for online sale, while Figure 2
shows a scheme for online payment. In these automata, transitions are labelled
by shared actions, such as PayCardA and Authenticate. Each shared action is
annotated with the names of the participants: for instance, C, S : Login indicates

4 P. Darondeau,L.Hélouët, M. Mukund

n0

n2

n1 n3

n4

n5 n6

n7

C,S:Login

C,S:Exit

C,S:Exit

C,S:Browse

C,S:Add

C,S:Remove

C,S:PayCardA

C,S:PayCardB
C,S:Receipt

C,S:Reject

C,S:Abort

C,S:Retry

Fig. 1. Session template for Online Purchase

n0 n1 n2

n3

n4

B,S:GetTransaction C,B:Authenticate C,B, S:Confirm

C,B, S:Refuse

Fig. 2. Session template for Payment

that the action Login is shared by C and S. Here, C and S are not agents but
abstract roles, to be played by actual agents when the scheme is instantiated as
a concrete session.

Each session scheme has a start node, denoted by an incoming arrow and
global final nodes marked by an outgoing arrow. Nodes with double circles are
return nodes where one or more participants can exit the session without termi-
nating the session itself. A session terminates when all participants have exited.

To ensure coordination between agents and across sessions, we need to equip
the system with data. Each agent has a set of local variables that are updated as
it evolves. In addition, each concrete session has variables to indicate its state,
including the identities of the agents playing the various roles defined in the
underlying session scheme. We will allow transitions to be guarded, so that a
shared action may be enabled or disabled depending on the current state of the
participating agents.

In a session system, several sessions that are active simultaneously may share
agents—for instance, a customer may participate in online sales with two distinct
retailers with the same bank. Sessions sharing an agent share the variables of this
agent, so one has to take care to avoid unwanted interferences across sessions.
For example, if payment information pertaining to different sessions gets mixed,
an authorization for a low-cost transaction may be misused to complete a high-
cost purchase beyond the customer’s credit limit. As we shall see, our model
allows us to enforce controlled access to critical sections through variables and
guards, and also verify that mutual exclusion is achieved through formal analysis
of the model. For the sake of readability, we have not represented variables and

Assembling Sessions 5

n0

Spawn(OnlinePay(*,*,self))

Bank

n0

Seller

Spawn(OnlineSale(*,self))

Join(OnlinePay(cid,self,Bank))

n0

Join(OnlineSale(self,Seller))

Join(OnlinePay(self,sid,*))
Buyer

Fig. 3. Agents for Banks, Sellers and Buyers

guards in the examples here. Details can be found in the extended version of
this work [5].

The other half of the system description consists of specifications for the
agents. The agents Bank, Seller and Client are shown in Figure 3. There is one
automaton for each agent: in this example, each agent has only a single state.

The typical actions of an agent are to spawn a new instance of a session
scheme and to join an existing session. In this example, OnlinePay sessions are
spawned by the bank and joined by the buyer and seller while OnlineSale sessions
are spawned by the seller and joined by the buyer. The actions Spawn and Join
refer to a session scheme with parameters that denote the association of agents
to roles. For instance, the bank’s action Spawn(OnlinePay(*,*,self)) spawns a new
instance of the session scheme OnlinePay in which the current bank agent, self,
plays the third role and the other two roles are left open for arbitrary agents. On
the other hand, the buyer’s action Join(OnlineSale(self,Seller)) says that the agent
is willing to join any existing OnlineSale session in which the other participant is
an instance of Seller, while Join(OnlinePay(self,sid,*)) says that the agent wants
to join an OnlinePay session with a specific seller agent sid in the second role,
but without any constraint on the bank playing the third role.

3 Session systems

A session system has a finite set of agents identified by names. Each agent
has a finite data store and a finite repository of links to other agents. Agents
operate at two levels. Individually, an agent executes a sequence of commands
that determine its interactions with the other agents. Collectively, interactions
are grouped into sessions. Within sessions, sets of agents perform synchronized
actions, updating their respective data stores and link repositories.

An agent can spawn sessions from predefined session schemes or join existing
sessions. It can also kill sessions and quit them. Each agent has a set of local
variables—the state of an agent is given by the current values of these variables.

Session schemes provide templates for interaction patterns involving an ab-
stract set of roles. A session is an instance of such a scheme in which concrete
agents are associated with the abstract roles. A session progresses through the
execution of synchronized actions involving subsets of the participating agents.
These actions are enabled through guards that depend on the identities and
states of the participating agents.

There may be multiple instances of a given session scheme running at a
given time. Agents cannot “name” or “address” individual sessions. However,

6 P. Darondeau,L.Hélouët, M. Mukund

agents can supply constraints when creating or joining sessions to filter out
sessions from the collection of active sessions. Agents can join existing sessions
synchronously or asynchronously. Agents that join a session synchronously are
normally released just before the session dies.

Each session has a set of role variables that are used to describe the current
mapping of abstract roles to concrete agents as well as to record constraints on
the identity and type of agents that may join in the future to play roles that are
currently unassociated.

In addition to sessions and agents, our model presupposes a global scheduler
that manages sessions and serves requests for joining sessions. Agents can query
this scheduler for the presence of a session of some kind. Queries are answered
only if such session exists in the system.

3.1 Preliminaries

Let A denote a fixed, finite set of agents and B = {tt,ff} denote the set of
boolean values. We assume the existence of two distinguished values ⊥ and ⊤,
whose interpretation will be explained later.

Each agent manipulates a set of local variables, organized as follows. There is
a fixed setX = XA⊎XB of variable names, whereXA is the set of agent variables,
including the distinguished variable self , and variables in XB are boolean. A
valuation of X is a pair of maps V = (VA, VB) where VA : XA → A ∪ {⊥} and
VB : XB → B ∪ {⊥}. The variable self is a fixed read-only value: for agent a,
VA(self) always evaluates to a.

Each agent has a local copy of the set X . For a ∈ A and x ∈ X , a.x denotes
agent a’s local copy of x. Though variables are local to agents, shared actions can
observe and update local variables of all participating agents. When referring
to variables and valuations of multiple agents simultaneously, we write Xa =
Xa

A ⊎ Xa
B and V a = (V a

A , V
a
B) to refer to the local variables and valuation of

agent a, respectively.
In addition, session schemes are provided with a finite set Y of role variables,

including a distinguished variable owner . Variables in Y are used to keep track
of agents joining a session. A valuation of Y is a map W : Y → A∪{⊥,⊤}. The
value ⊤ indicates that a role has been completed, so the corresponding agent is
released from the session. When W (y) is defined, we write y.x as an abbreviation
for W (y).x, the local copy of variable x in agent W (y). In addition, we also equip
each session with a constraint map C : Y → 2A that specifies constraints on the
agents that can play each role. The set C(y) indicates the set of agents that is
compatible with the role y. We interpret C(y) = ∅ as an unconstrained role,
rather than as a role that is impossible to fulfil.

3.2 Session schemes

A session scheme is a finite automaton with guarded transitions labelled by
shared actions. Formally, a session scheme over a set of role variables Y is a
tuple S = (N,n0, Σ, ℓ, δ), where:

– N is a finite set of session nodes, with an initial node n0.

Assembling Sessions 7

– Σ is a finite alphabet of actions that includes the special action Die that
prematurely kills a session.

– ℓ : Σ × Y → {⊥,+,⊤} defines for each shared action σ ∈ Σ and role y ∈ Y
the participation of y in σ.

• If ℓ(σ, y) = ⊥, y is not involved in σ: σ can execute even if W (y) = ⊥.

• If ℓ(σ, y) 6= ⊥, y is involved in σ: we must have W (y) 6= ⊥ for σ to occur.

• If ℓ(σ, y) = ⊤, y terminates with action σ, and then agent W (y) is
released if it joined the session synchronously.

– δ ⊆ N ×G×Σ ×U ×N , is a transition relation between nodes, where G is
the set of guards, and U is the set of update functions.

A transition (n, g, σ, u, n′) means that a session can move from node n to
node n′ when guard g holds with respect to W , the current valuations of Y and
{V a}a∈A, the current valuations of all the agents in the system. These valuations
are then updated as specified by u. The guard g and update u can only read
and modify values of variables for roles y such that ℓ(σ, y) 6= ⊥. A guard g is a
boolean combination of assertions of the form y.x1 and y1 = y2.x2. The literal
y.x1 is true if W (y) = a ∈ A and V a

B(x1) = tt. The literal y1 = y2.x2 is true if
W (y1) 6= ⊤, W (y2) = a ∈ A and W (y1) = V a

A(x2). We lift this in the usual way
to define the truth of the guard g.

3.3 Sessions

A session is an instance of a session template with roles assigned to agents in A.
Not all roles need to be defined in order for a session to be active—an action σ
can be performed provided W (y) is defined for every role that takes part in σ.

The constraint map C controls which agents can join the session in as yet
undefined roles, as we shall see later.

We associate with each session a partial return map ρ from roles to states of
agents. If ρ(y) is defined, it means that the agent W (y) is blocked and waiting
for the session to end. Whenever W (y) terminates in this session, or the session
executes the action Die or it is killed by another agent, W (y) resumes in the
state ρ(y).

3.4 Agents

The behaviour of an agent a is described by a tuple (Q,E,∆, q0) where

– Q is the set of control states, with initial state q0.

– ∆ ⊆ Q ×G× E ×Q is the transition relation, where G is the set of guards
over Xa. For simplicity, we define a guard as any function that maps each
valuation V a = (V a

A , V
a
B) of a to either tt or ff.

– E is a set of labels defining the effect of the transition, as described below.

Variable assignment x := e, where x ∈ X and e is an expression over A∪B∪
{⊥} ∪X that is compatible with the type of x.

8 P. Darondeau,L.Hélouët, M. Mukund

Asynchronous session creation ASpawn(s, l), where s is a session scheme,
and l is a list of constraints of the form y = x where y ∈ Y and x ∈ XA. The
variables self and owner should not appear in the constraints. ASpawn(s, l)
does not execute if V (x) = ⊥ for some variable x occurring in the constraints.
The new session is created with a valuationW such thatW (owner) = V (self)
and W (y) = ⊥ for every other y ∈ Y . We also define the constraint map for
the session as follows: V (x) ∈ C(y) if and only if the constraint y = x is in l.

Synchronous session creation SSpawn(s, l), like asynchronous session cre-
ation, with the difference that the agent gives up control. This action sets
the return map ρ(owner) to the target state of the transition carrying the
spawn instruction to indicate where control returns when this agent’s role
terminates, when the session dies, or when the session is killed.

Asynchronous join AJoin(s, y, l), where the variable y is the role of session
scheme s that the process takes on joining the session and l specifies con-
straints of the form y′ = x′, with y′ ∈ Y and x′ ∈ XA. AJoin(s, y, l) does
not execute if V (x′) = ⊥ for any variable x′ occurring in the constraints.
Otherwise, it produces a pending join request (a, s, y, φ) where a = V (self).
The map φ : Y → 2A serves to filter out sessions from the collection of
running sessions and is defined by V (x′) ∈ φ(y′) if and only if the constraint
y′ = x′ appears in l.
The join request AJoin(s, y, l) is granted with respect to a session of type s
with valuationW and constraintC ifW (y) = ⊥ and V (self) ∈ C(y) and also,
for each y′, W (y′) ∈ φ(y′). Pending requests are dealt with asynchonously:
that is, control returns to the agent immediately, without waiting for the
join request to be granted.

Plain join PJoin(s, y, l) is like asynchronous join, except that this command
can be executed only if and when a session of type s meeting contraint l
exists. Thus, after the command, the agent has already a role in the joined
session and proceeds in the target state of the transition with the join in-
struction.

Synchronous join SJoin(s, y, l), like plain join, except that control returns to
the agent only after the session that it joins ends: that is, this agent’s role
terminates, the session dies or the session is killed. This action sets the return
map ρ(y) to the target state of the transition carrying the join instruction
to indicate where control returns.

Query Query(s, l), where list l specifies constraints of the form x = y for x ∈
XA and y ∈ Y (the variables self and owner may appear in these constraints).
Query(s, l) may execute even though V (x) = ⊥ for some variable x occurring
in the constraints. This command executes in an atomic step when some
session with scheme s and valuation W satisfies all constraints x = y: that
is, for every x ∈ XA, if V (x) 6= ⊥ then V (x) = W (y) and if V (x) = ⊥ then
W (y) /∈ {⊥,⊤}. If the query succeeds, for each constraint x = y, V (x) is
updated to W (y). In particular, if V (x) was earlier ⊥, x now acquires the
value W (y).

Kill Kill , kills all sessions created by the agent V (self). This has the same effect
as when these sessions execute the action Die.

Assembling Sessions 9

Quit Quit , agent V (self) leaves all sessions that it has entered. This has no
effect other than removing this agent from all session environments.

A major difference between creating and joining a session is that the creator
of a session owns the session and can kill it, whereas an agent that has joined a
session can only quit, in which case the session stays active if some roles have
not yet terminated.

Joining a session asynchronously is like thread creation: the agent that makes
a join request does not have to wait for the completion of the activities resulting
from the firing of the join transition.

On the other hand, joining a session synchronously is like a remote proce-
dure call from the perspective of the joining agent since it loses control. From
the perspective of the joined session, no new incarnation of a session scheme
is produced. The calling agent recovers control when the session it has joined
terminates—the return state of the calling agent is kept track of by the joined
session in the return map ρ.

Let us now comment about plain joins, which are in between asynchronous
and synchronous joins. Like a synchronous join, a plain join PJoin(s, y, l′) cannot
be executed before there exists some session of the specified scheme s with role
y free. Like an asynchronous join, an agent that executes a plain join does not
have to wait for the completion of the activities resulting from the firing of the
join transition. Thus, for an agent a, using a transition PJoin(s, y, l′) amounts
to waiting for another agent a′ to spawn a new session, if needed, before a
moves to another state. With the three forms of joins, one can easily model
synchronization mechanisms, remote procedure calls, or threading mechanisms.

Finally, we comment on the difference between quit and kill. An agent that
Quits leaves all sessions it has entered—that is, it stops playing a role in each
of them, but does not otherwise affect the continuation of these sessions for
those agents still engaged in active roles. This is essential to model collaborative
frameworks in which the number of participants is not fixed in advance—for
example, consider chat sessions where participants can join and leave freely.
Conversely, Kill allows the owner of a session to close it unilaterally, hence
stopping the service (but without killing the participants . . .)—note that, to
ensure robustness, only the owner of a session can kill it.

3.5 Scheduling

The effect of agents’ actions on sessions and session actions are handled by the
scheduler. We do not give details about how this scheduler is implemented—for
instance, it could be via a shared memory manager.We assume that the scheduler
keeps track of all active sessions and pending session requests. Serving a session
request just consists of finding a running session of type s whose valuation W
is compatible with the constraint φ of a session demand sd = (a, s, y, φ) and
assigning role y to agent a in this running session. We denote this by a specific
action labelled Serve.

10 P. Darondeau,L.Hélouët, M. Mukund

4 Semantics of session systems

Session systems and configurations

Let A be a set of agents, X a set of variables, Y a set of role variables and S
a set of sessions defined over X and Y . The tuple (A,S, X, Y) defines a session
system. A session configuration is a tuple (s, n,W,C, ρ), where s is a session
scheme name, n is a state of session scheme s, W is a valuation of Y , C is a
constraint on roles and ρ is a return map.

An agent configuration for an agent a ∈ A is a pair (q, V) where q is a
state of the agent, and V is a valuation for variables in X . A session system
configuration is a triple (Ψ, Γ, P), where Ψ associates a configuration to each
agent a ∈ A, Γ is a set of session configurations, and P is a set of pending
demands to join sessions. The following proposition ensures that configurations
can be represented as finitely indexed multisets, and encoded as vectors, or as
markings of a Petri net.

Proposition 1. Let A be a finite set of agents and S be a set of session schemes
over finite sets of variables X and Y . If A and S are defined over finite sets of
states QP and QS, respectively, then the set C of session systems configurations

that are definable over A,S, X, Y is isomorphic to Q
|A|
P × 2|XB |·|A|×A|XA|·|A|×

N
K , where K = |S| · |QS | · |Y |2|A|+|QP |+2 + |A| · |S| · |Y ||A|+1

A session system moves from one configuration to another by performing
an action. The obvious actions are process moves from E (spawning a session,
joining a session, query, kill, quit) and session moves from Σ (shared actions,
including the special action Die). In addition, we have internal system moves that
serve requests to join a session. We say that a configuration χ′ is a successor of
a configuration χ via action σ ∈ E ∪ Σ ∪ {Serve}, and write χ

σ
−→ χ′, if and

only if starting from χ, the effect of applying σ produces configuration χ′.

Reset Post-G nets

A (labelled) Petri net is a structure (P, T, λ,m0, F) where P is a set of places,
T is a set of transitions, λ is a function that associates a label to each transition
of T , m0 : p → N associates a non-negative integer to each place of P , and
F : (P × T) ∪ (T × P) → N is a weighted flow relation. A marking m : P → N

distributes tokens across the places. A transition t is enabled at m if each place
p has at least F (p, t) tokens. When t fires, the marking m is transformed to a
new marking m′ such that m′(p) = m(p)− F (p, t) + F (t, p) for every place p.

In a generalized self-modifying net (G-net), the flow relation is enhanced to
be of the form F : (P × T) ∪ (T × P) → N[P]. In other words, the weights on
the edges between places and transitions are polynomials over the contents of
places in P . These polynomials are evaluated relative to the current marking to
determine whether a transition is enabled and compute the effect of firing it.

In Reset Post-G nets, the input polynomials F (p, t) are restricted so that
F (p, t) = {p} or F (p, t) ∈ N. The term reset refers to the fact that every edge
from a place p to a transition t weighted by a marking-dependent polynomial

Assembling Sessions 11

is in fact weighted by the monomial p, which corresponds to resetting place p.
Reset Post-G nets are a very expressive class of Petri Nets, but yet several key
properties of nets such as termination and coverability remain decidable for this
class [6]. In the rest of the paper, we will only consider Reset Post-G nets such
that F (p, t) = p or F (p, t) ∈ {0, 1}, and such that F (t, p) ∈ {0, 1} or F (t, p) is a
sum of places p′ such that F (p′, t) = p′.

Claim. Let (A,S, X, Y) be a session system starting in a configuration χ0. Then
the transition system (C, χ0,−→) is the marking graph of a Reset Post-G net.

We establish this claim by building a Reset Post-G net whose marking graph
is isomorphic to the set of configurations of the session system, and whose tran-
sitions encode moves from one configuration to another. From (A,S, X, Y), we
build the following subsets of places:

– PQ,A = {pq,a, . . .} associates a place to each pair (q, a) where a ∈ A is an
agent and q is a state of a. Since the set of states QP of all agents is finite,
the set PQ,A is finite as well.

– PV,A = {pv,a, . . .} associates a place to each pair (v, a) where a ∈ A is an
agent and v is a valuation of X . Since X is finite and the variables in X
range over finite domains, PV,A is a finite set.

– PSC = {psc, . . .} is a set of places indexed by session configurations—that
is, there exists a place psc for every tuple sc = (s, n,W,C, ρ) that describes
a valid session configuration.

– Finally, PD = {psd, . . .} is a set of places indexed by join requests—that is,
we have one place for every tuple sd = (a, s, y, φ) representing a join action.

We can now define the transitions of the Reset Post-G net. As discussed
earlier, each action that transforms a session configuration is either a process
move, or a session move, or an internal system move that serves a pending join
request. Each move of the session system is represented by a finite set of net
transitions. This representation is not a bijection, because, for instance, a move
of an agent can be enabled in more than one valuation and in more than one
environment.

For each agent a = (Q,E,∆, q0), and transition t = (q, g, e, q′) in ∆, we build
net transitions and flow relations as follows:

– When t = (q, g, e, q′) is a variable assignment, for every valuation v satisfying
the guard g, we construct a transition te,v such that λ(te,v) = e, with preset
{pv,a, pq,a}, postset {pv′,a, pq′,a}, and flow relations F (pv,a, t) = F (pq,a, t) =
F (t, pv′,a) = F (t, pq′,a) = 1, where v′ = e(v) is the result of applying e to v.

– When t = (q, g, e, q′) with e = ASpawn(s, l), we construct one transition tv,e
for each valuation v that satisfies the guard g, with preset {pv,a, pq,a}, postset
{pv,a, pq′,a, psc}, letting sc = (s, n0,W,C, ρ∅) where n0 is the initial state of
s, W (owner) = a and W (y) = ⊥ for all other roles y, C is generated by l
and ρ∅ is the empty map. As for assignment transitions, we let F (pv,a, t) =
F (pq,a, t) = F (t, pv,a) = F (t, pq′,a) = F (t, psc) = 1.

12 P. Darondeau,L.Hélouët, M. Mukund

– When t = (q, g, e, q′) with e = SSpawn(s, l), we construct one transition tv,e
for each valuation v that satisfies the guard g, with preset {pv,a, pq,a} and
postset {pv,a, psc}, letting sc = (s, n0,W,C, ρ) where n0 is the initial state of
s, W (owner) = a and W (y) = ⊥ for all other roles y, C is generated by l and
ρ(owner) = q′. We also let F (pv,a, t) = F (pq,a, t) = F (t, pv,a) = F (t, psc) =
1. Note that with synchronous session creation, agent a loses control, and
will resume in state q′ after its role in s terminates. This information is kept
in the return map ρ in sc.

– When t = (q, g, e, q′) with e = AJoin(s, y, l), we construct a transition tv,e
labelled by e for each valuation v that satisfies the guard g, with preset
{pv,a, pq,a} and postset {pv,a, pq′,a, psd}, where sd = (a, s, y, φ) with map φ
derived from the constraints in l. The flow relation is given by F (pv,a, t) =
F (pq,a, t) = F (t, pv,a) = F (t, pq′,a) = F (t, psd) = 1.

– When t = (q, g, e, q′) with e = SJoin(s, y, l′), we construct a transition tv,e,sc
labelled by e for every valuation v that satisfies the guard g and for ev-
ery session configuration sc = (s, n,W,C, ρ) meeting constraint l′ such that
W (y) = ⊥ and a ∈ C(y). The preset of each transition is {pv,a, pq,a, psc}
and the postset is {pv,a, psc′}, where sc′ = (s, n,W ′, C′, ρ′) is an updated
session configuration in which W ′(y) = a, ρ′(y) = q′, and C′ is obtained by
adding to C the constraints in l′. The flow relation is given by F (pv,a, t) =
F (pq,a, t) = F (psc, t) = F (t, pv,a) = F (t, psc′) = 1.

– When t = (q, g, e, q′) with e = PJoin(s, y, l′), we construct a transition
tv,e,sc labelled by e for every valuation v satisfying the guard g and for
every session configuration sc = (s, n,W,C, ρ) meeting constraint l′ such that
W (y) = ⊥ and a ∈ C(y). The preset of each transition is {pv,a, pq,a, psc} and
the postset is {pv,a, pq′,a, psc′}, where sc′ = (s, n,W ′, C′, ρ) is an updated
session configuration in which W ′(y) = a and C′ is obtained by adding
to C the constraints in l′. Unlike with synchronous join, the return map
ρ is unchanged in sc′ and control is returned via the output place pq′,a
to the agent executing the join instruction. The flow relation is given by
F (pv,a, t) = F (pq,a, t) = F (psc, t) = F (t, pv,a) = F (t, pq′,a) = F (t, psc′) = 1.

– When t = (q, g, e, q′) with e = Query(s, l), we construct a transition tv,e,v′

labelled by e for every valuation v satisfying the guard g, for every session
configuration sc = (s, n,W,C, ρ) meeting constraint l, and for every valua-
tion v′ computed from v by adding the bindings of agents induced by the
constraints in l and the bindings of agents in W . The preset of each transi-
tion is {pv,a, pq,a, psc} and the postset is {pv′,a, pq′,a, psc}. The flow relation
is given by F (pv,a, t) = F (pq,a, t) = F (psc, t) = F (t, pv′,a) = F (t, pq′,a) =
F (t, psc) = 1. Note that the transition does not consume any token from the
place psc—it only tests the presence of a token.

– When t = (q, g, e, q′) with e = Kill , we construct a transition tv,e for every
valuation v satisfying the guard g. Each of these transitions has as preset
{pv,a, pq,a} ∪ {psci | sci = (s, n,W,C, ρ) ∧ W (owner) = a}. The postset of
the transition is the union of {pv,a, pq′,a} and the set of all places pqj ,bj such
that bj is a process which has issued a Synhronous Join with return state qj .

Assembling Sessions 13

The flow relation is defined as follows: F (pv,a, t) = F (pq,a, t) = F (t, pv,a) =
F (t, pq′,a) = 1, F (psci , t) = psci for every session configuration sci owned by
agent a (the transition consumes all sessions created by a), and F (t, pqj ,bj) =∑

{psc | sc = (s′, n′,W ′, C′, ρ′) ∧ W ′(y) = bj ∧ ρ′(y) = qj}. Note that an
agent bj can be blocked in at most one session, so F (t, pqj ,bj) ≤ 1 and control
is returned to agent bj only when it was blocked.

– When t = (q, g, e, q′) with e = Quit , we construct a transition tv,e for ev-
ery valuation v satisfying the guard g. Each of these transitions has preset
{pv,a, pq,a} ∪ NT , where NT = {psci | sci = (s, n,W,C, ρ) ∧ (∃y)(W (y) =
a)}. The postset of the transition is {pv,a, pq′,a}∪NT ′, where NT ′ is the set
of places psc′i representing session configurations sc′i = (s, n,W ′, C, ρ) such
that, for some sci = (s, n,W,C, ρ) in NT , W (y) = a ⇒ W ′(y) = ⊤ and
W ′(y) = W (y) otherwise for all y, and W ′(y) 6= ⊤ for some y. The flow rela-
tion is defined as follows: F (pv,a, t) = F (pq,a, t) = F (t, pv,a) = F (t, pq′,a) =
1, F (psci , t) = psci for every session configuration sci appearing in NT (the
transition consumes all sessions involving a), and F (t, psc′

i
) = psci for every

session configuration sc′i in NT ′. This way, session configurations involving
a, but still having other non-terminated roles, are transformed into session
configurations without agent a.

The second part of the translation concerns the internal progress of sessions.
We will distinguish two kinds of transitions, depending on whether the translated
action brings the session to termination or not.

We consider first the non terminating actions σ 6= Die. Let sc = (s, n,W,C, ρ)
be a session configuration, and let (n, g, σ, u, n′) ∈ δ with guard g and update
u. Executing such an action in sc is conditioned to the satisfaction of guard g
w.r.t. W and transforms sc into a configuration sc′ = (s, n′,W ′, C′, ρ), where
W ′(y) = ⊤ if ℓ(σ, y) = ⊤ and W ′(y) = W (y) otherwise. Then for every valuation
v that satisfies g, we construct a transistion tsc,v with preset {pv,a, psc} and
postset {psc′ , pv′,a} ∪ Pρ,σ, where Pρ,σ = {pq′′,a | ∃y,W (y) 6= W ′(y) ∧ ρ(y) =
q′′∧W (y) = a} and v′ = u(v) is the result of applying u to v. In other words, all
agents that have joined the session synchronously and that leave the session by
action σ resume their activity in the control state q′′ specified at join time. The
flow relation is F (pv,a, tsc,v) = F (psc, tsc,v) = F (tsc,v, psc′) = F (tsc,v, pv′,a) = 1.
Moreover, for every place pq′′,a in Pρ,σ, we let F (tsc,v, pq′′,a) = 1.

We now consider the terminating action Die. For every session configuration
sc = (s, n,W,C, ρ), and for every (n, g, σ, u, n′) ∈ δ such that σ = Die and guard
g is satisfied w.r.t. W , we construt a transition tsc,die labeled by action Die with
the preset psc and the postset Pρ = {pq′′,a | ∃y, ρ(y) = q′′∧W (y) = a}. The flow
relation is F (psc, tsc,die) = 1, and F (tsc,die, p) = 1 for every p in Pρ.

Finally, we have to translate into net transitions the system moves that serve
pending join requests. Serving a request just consists of removing the request
from the set of pending requests and modifying the configuration of a session
compatible with this request in the set of session configurations.

For every Asynchronous Join pending demand sd = (a, s, y, φ) and for every
session configuration sc = (s, n,W,C, ρ) compatible with this request, we con-

14 P. Darondeau,L.Hélouët, M. Mukund

struct a transition tsc,sd labeled with the internal action Serve. The preset of
tsc,sd is {psc, psd} and its postset is {psc′}, where sc′ = (s, n,W ′, C′, ρ) is ob-
tained from sc by setting W ′(y) = a (and W ′(y′) = W (y′) for every y′ 6= y) and
letting C′ be C augmented by the constraints in φ. The flow relation is given by
F (psc, tsc,sd) = F (psd, tsc,sd) = F (tsc,sd, psc′) = 1.

Note that for every transition of the global Petri net obtained in the end,
the weight of the flow relation from a place p to a transition t is either 0 or 1 or
F (p, t) = p, whereas the weight of the flow relation from a transition t to a place
p is either 0 or 1 or a polynomial over the contents of a set of places. Hence, the
semantic model for session systems corresponds to Reset Post-G nets.

Definition 1. Let χ = (Ψ, Γ, P) and χ′ = (Ψ ′, Γ ′, P ′) be two configurations of a
session system. Configuration χ′ is reachable from χ if and only if there exists a
sequence of moves starting from χ that leads to configuration χ′. Configuration
χ′ covers χ, denoted by χ ⊑ χ′, iff Ψ ′ = Ψ , and for every session configuration sc
and session demand sd we have Γ [sc] ≤ Γ ′[sc] and P [sd] ≤ P ′[sd]. Configuration
χ′ is coverable from χ iff there exists a sequence of moves starting from χ and
leading to a configuration χ′′ such that χ′

⊏ χ′′. A session system is bounded
iff there exists some constant B such that Γ [sc] ≤ B and P [sd] ≤ B for every
sc and sd in any reachable configuration χ = (Ψ, Γ, P).

Proposition 2. Given a session system (A,S, X, Y) with initial configuration
χ0 and a configuration χ ∈ C, one can decide whether one can reach a marking χ′

from χ0 that covers χ. Termination—that is, the absence of infinite runs starting
from χ0— is also decidable.

Proof: This proposition stems directly from the properties of Reset Post-G Nets,
for which coverability of a given configuration and termination are decidable. ⊓⊔

Coverability is an important issue for the kind of services we want to model.
To illustrate this, let us return to the example of Section 2, where we wanted to
check that an agent a does not participate in two payments at the same time.
This property may be expressed as follows: “There is no reachable configuration
of the system in which agent a participates as a customer in at least two purchase
sessions s, s′ whose states are included in {n3, n5}”. This property reduces to a
coverability check in the Reset Post-G net modelling the session system.

Proposition 3. Given a session system (A,S, X, Y) with initial configuration
χ0, one can decide neither upon the reachability of a given configuration χ ∈ C
from χ0 nor on the boundedness of the session system.

Proof Sketch: One can simulate Reset Petri Nets with session systems. Now,
boundedness and exact reachability are undecidable for Reset Petri Nets. ⊓⊔

5 Conclusion

We have proposed a session-based formalism for modeling distributed orches-
trations. We voluntarily limited the expressiveness of the language to ensure
decidability of some important practical properties. Indeed, many properties of
session systems, such as the possibility for an agent or for a session to perform a

Assembling Sessions 15

given sequence of transitions, may be expressed as a coverability problem on Re-
set Post-G nets. As deadlock and exact reachability are undecidable in general,
a natural question is how to restrict the model to enhance decidability.

A second issue to consider is the implementation of session systems. The
natural implementation is a distributed architecture in which agents use only
their local variables. However, agents share sessions that have to be managed
globally, along with requests and queries. This means, in particular, that an
implementation of session systems has to maintain a kind of shared memory
that can be queried by agents. This can be costly, and a challenge is to provide
implementations with the minimal synchronization.

A third issue is to consider session systems as descriptions of security pro-
tocols, and to see whether an environment can break security through legal
use of the protocol. For instance, the well known session replay attack of the
Needham-Schroeder protocol can apparently be modelled by a simple session
type system, and the failure of the protocol (the existence of a session involving
unexpected pairs of users) can be reduced to a coverability issue. Whether such
an approach can be extended to more complex protocols for detecting unknown
security failures is an open question.

References

1. S. Abiteboul, O. Benjelloun, I. Manolescu, T. Milo, and R. Weber. Active XML:
A data-centric perspective on web services. In BDA02, 2002.

2. S. Abiteboul, L. Segoufin, and V. Vianu. Static analysis of Active XML systems.
In PODS08, pages 221–230, 2008.

3. T. Andrews, F. Curbera, H. Dholakia, Y. Goland, J. Klein, F. Leymann, K. Liu,
D. Roller, D. Smith, S. Thatte, I. Trickovic, and S. Weerawarana. Business process
execution language for web services (BPEL4WS). version 1.1, 2003.

4. R.M. Arlein, D. Dams, R.B. Hull, J.P. Letourneau, and K.S. Namjoshi. Telco meets
the web: Programming shared-experience services. Bell Labs Technical Journal,
14(3):167–185, 2009.

5. P. Darondeau, L. Hlout, and M. Mukund. Assembling sessions (long version).
Technical report, Inria Rennes and Chennai Mathematical Institute, 2011. http:

//www.irisa.fr/distribcom/DST09/DHM-ATVA-Long.pdf.
6. C. Dufourd, A. Finkel, and P. Schnoebelen. Reset nets between decidability and

undecidability. In Proc. of ICALP’98, volume 1443 of Lecture Notes in Computer

Science, pages 103–115, 1998.
7. S. Hinz, K. Schmidt, and C. Stahl. Transforming bpel to petri nets. In Business

Process Management, 3rd International Conference, BPM 2005, volume 3649 of
LNCS, pages 220–235, 2005.

8. D. Kitchin, W.R. Cook, and J. Misra. A language for task orchestration and its
semantic properties. In CONCUR’06, pages 477–491, 2006.

9. J. Misra and W. Cook. Computation orchestration. Software and Systems Model-

ing, 6(1):83–110, 2007.
10. W.M.P van der Aalst. The application of Petri nets to workflow management. The

Journal of Circuits, Systems and Computers, 8(1):21–66, 1998.
11. H.M.W. Verbeek and W.M.P van der Aalst. Analyzing BPEL processes using Petri

nets. Second International Workshop on Applications of Petri Nets to Coordina-

tion, Workflow and Business Process Management, 8(1):59–78, 2005.

