Foundations of Software Technology and Theoretical Computer Science
19th Conference, Proceedings, C. Pandu Rangan, V. Raman and R. Ramanujam (eds.)
Springer Lecture Notes in Computer Science 1739 (1999), 219-231.

Synthesizing distributed transition systems from
global specifications*

Ilaria Castellani', Madhavan Mukund?, and P S Thiagarajan®

L INRIA Sophia Antipolis, 2004 route des Lucioles, B.P. 93, 06092 Sophia Antipolis
Cedex, France. E-mail: Ilaria.Castellani@sophia.inria.fr
2 Chennai Mathematical Institute, 92 G.N. Chetty Road, Chennai 600 017, India.
E-mail: {madhavan,pst}@smi.ernet.in

Abstract. We study the problem of synthesizing distributed implemen-
tations from global specifications. In particular, we characterize when a
global transition system can be implemented as a synchronized product
of local transition systems. Our work extends a number of previous stud-
ies in this area which have tended to make strong assumptions about the
specification—either in terms of determinacy or in terms of information
concerning concurrency.

We also examine the more difficult problem where the correctness of
the implementation in relation to the specification is stated in terms of
bisimulation rather than isomorphism. As an important first step, we
show how the synthesis problem can be solved in this setting when the
implementation is required to be deterministic.

1 Introduction

Designing distributed systems has always been a challenging task. Interactions
between the processes can introduce subtle errors in the system’s overall be-
haviour which may pass undetected even after rigorous testing. A fruitful ap-
proach in recent years has been to specify the behaviour of the overall system in
a global manner and then automatically synthesize a distributed implementation
from the specification.

The question of identifying when a sequential specification has an implemen-
tation in terms of a desired distributed architecture was first raised in the con-
text of Petri nets. Ehrenfeucht and Rozenberg [ER90] introduced the concept
of regions to describe how to associate places of nets with states of a transi-
tion system. In [NRT92], Nielsen, Rozenberg and Thiagarajan use regions to
characterize the class of transition systems which arise from elementary net sys-
tems. Subsequently, several authors have extended this characterization to larger
classes of nets (for a sample of the literature, see [BD98,Muk92, WN95]).

Here, we focus on product transition systems—networks of transition sys-
tems which coordinate by synchronizing on common actions [Arn94]. This model

* This work has been sponsored by IFCPAR Project 1502-1. This work has also been
supported in part by BRICS (Basic Research in Computer Science, Centre of the
Danish National Research Foundation), Aarhus University, Denmark.

comes with a natural notion of component and induced notions of concurrency
and causality. It has a well-understood theory, at least in the linear-time set-
ting [Thi95]. This model is also the basis for system descriptions in a number of
model-checking tools [Kur94,Hol97].

We establish two main sets of results in this paper. First, we characterize
when an arbitrary transition system is isomorphic to a product transition sys-
tem with a specified distribution of actions. Our characterization is effective—
for finite-state specifications, we can synthesize a finite-state implementation.
We then show how to obtain implementations when concurrency is specified in
terms of an abstract independence relation, in the sense of Mazurkiewicz trace
theory [Maz89]. We also present realizability relationships between product tran-
sition systems in terms of a natural preorder over the distribution of actions
across agents. Our result subsumes the work of Morin [Mor98] on synthesizing
product systems from deterministic specifications.

Our second result deals with the situation when we have global specifications
which are behaviourally equivalent to, but not necessarily isomorphic to, product
systems. The notion of behavioural equivalence which we use is strong bisimu-
lation [Mil89]. The synthesis problem here is to implement a global transition
system 7T'S as a product transition system T'S such that T'S and T'S are bisimilar
to each other. We show how to solve this problem when the implementation is
deterministic. Notice that the specification itself may be nondeterministic. Since
distributed systems implemented in hardware, such as digital controllers, are de-
terministic, the determinacy assumption is a natural one. Solving the synthesis
problem modulo bisimulation in the general case where the implementation may
be nondeterministic appears to be hard.

The problem of expressing a global transition system as a product of com-
ponent transition systems modulo bisimilarity has also been investigated in the
context of process algebras in [Mol89,MM93]. In [GM92], Groote and Moller
examine the use of decomposition techniques for the verification of parallel sys-
tems. These results are established in the context of transition systems which
are generated using process algebra expressions. Generalizing these results to
arbitrary, unstructured, finite-state systems appears hard.

The paper is organized as follows. In the next section we formally introduce
product transition systems and formulate the synthesis problem. In Section 3,
we characterize the class of transition systems which are isomorphic to product
transition systems. The subsequent section extends these results to the context
where the distributed implementation is described using an independence rela-
tion. Next, we show that deterministic systems admit canonical minimal imple-
mentations. In Section 6, we present our second main result, characterizing the
class of transition systems which are bisimilar to deterministic product systems.

2 The synthesis problem for product transition systems

Labelled transition systems provide a general framework for modelling comput-
ing systems. A labelled transition system is defined as follows.

Definition 2.1. Let X be a finite nonempty set of actions. A labelled transition
system over X is a structure TS = (Q,—,qin), where Q is a set of states,
qin € @ is the initial state and —C () x X' x () is the transition relation.

We abbreviate a transition sequence of the form qo — q1--- — ¢, as
g 3" ¢,. In every transition system T'S = (Q, —, ¢in) which we encounter,
we assume that each state in @) is reachable from the initial state—that is, for
each ¢ € Q there exists a transition sequence gin, = qo " —" ¢n = q.

A large class of distributed systems can be fruitfully modelled as networks of
local transition systems whose moves are globally synchronized through common

actions. To formalize this, we begin with the notion of a distributed alphabet.

Definition 2.2. A distributed alphabet over X, or a distribution of X, is a tuple
of nonempty sets X = (X1,..., Xy) such that |J, ., Xi = X. For each action
a € X, the locations of a are given by the set locs(a) = {i | a € X;}. If Y is
clear from the context, we write just loc(a) to denote locs(a).

We consider two distributions to be the same if they differ only in the order of
their components.
Henceforth, for any natural number k, [1..k] denotes the set {1,2,...,k}.

Definition 2.3. Let (¥y,...,X}) be a distribution of X. For each i € [1..k], let
TS; = (Qi,—i,qt,) be a transition system over ;. The product (T'Sy || - ||
T'Sy) is the transition system T'S = (Q, =, ¢in) over ¥ = J, ;<4 X4, where:

— (in = (qiln7 Tt ’qikn)'
—QC(Q1x--xQk) and >C Q x X x Q are defined inductively by:
® (in € Q
o Let g€ Q and a € X. Fori € [1..k], let q[i] denote the it" component of
q. If for each i € loc(a), T'S; has a transition q[i] —; q’, then ¢ — ¢'
and ¢' € Q where ¢'[i] = q} for i € loc(a) and ¢'[j] = q[j] for j ¢ loc(a).

We often abbreviate the product (T'Sy || -+ - || T'Sk) by |lic[1.e) T'S:-

The synthesis problem
The synthesis problem can now be formulated as follows. If T'S =

(Q,—, ¢n) is a transition system over X, and X = (X,...,X) is a distri-
bution of X, does there exist a X-implementation of T'S—that is, a tuple of
transition systems (T'Sy, ..., TSg) such that T'S; is a transition system over X;

and the product ||;ef. 4 7'S; is isomorphic to 7'S?

Example 2.4. Let Y= ({a,c}, {b,c}) be a distribution of {a,b,c}. The first tran-
sition system below is X'-implementable—using expressions in the style of process
algebra, we can write the product as (a+c) || (bc+c). Similarly, the second tran-

sition system may be implemented as (ac + ¢) || (bc + c¢).

On the other hand, the system on the right is not g’—implementable. Intuitively,
the argument is as follows. If it were implementable in two components with
alphabets {a,c} and {b,c}, c would be enabled at the initial state in both com-
ponents. But ¢ can also occur after both actions a and b have occurred. So, ¢ is
possible after a in the first component and after b in the second component. Thus,
there are two c transitions in both components and the product should exhibit all
their combinations, giving rise to the system in the centre. We can formalize this
argument once we have proved the results in the next section.

3 A characterization of implementable systems

We now characterize ¥ -implementable systems. In this section, unless otherwise
specified, we assume that ¥ = (X,..., X)), with X' = Uie[l..k] 2.

The basic idea is to label each state of the given system by a k-tuple of
local states (corresponding to a global state of a product system) such that
the labelling function satisfies some consistency conditions. We formulate this
labelling function in terms of local equivalence relations on the states of the
original system—for each i € [1..k], if two states ¢; and ¢o of the original system
are i-equivalent, the interpretation is that the global states assigned to ¢; and ¢,
by the labelling function agree on the i* component. Our technique is similar
to the one developed independently by Morin for the more restrictive class of
deterministic transition system specifications [Mor98].

Theorem 3.1. A transition system TS = (Q,—, ¢in) i Y-implementable with
respect to a distribution ¥ = (X1,..., Xk} if and only if for each i € [1..k] there
exists an equivalence relation =; C (Q x Q) such that the following conditions
are satisfied:

(i) If ¢ = ¢ and a ¢ X;, then ¢ =; q'.
(ii) If g =; q' for every i, then ¢ = ¢'.
(i1i) Let ¢ € Q and a € X. If for each i € loc(a), there exist s;,s; € Q) such that
si =i q, and s; —— s}, then for each choice of such s;’s and s}’s there exists
q' € Q such that ¢ — ¢' and for each i € loc(a), ¢' =; s'.

Proof. (=) : Suppose |[c[1.,) T'S; is a f—implementation of T'S. We must exhibit
k equivalence relations {=;};c[1..4], such that conditions (i)—(%ii) are satisfied.
Assume, without loss of generality, that T'S is not just isomorphic to [|;e[1..k) T'Ss
but is in fact equal to [|;e[1..k) T'Ss-

For i € [1..k], let T'S; = (Qi, —i, ¢). We then have @ C (Q1 X -+ x Q) and
Gin = (g, .-, qF). Define =;,C (Q x Q) as follows: ¢ =; ¢' iff ¢[i] = ¢'[i].

Since T'S is a product transition system, it is clear that conditions (i) and
(i) are satisfied. To establish condition (i), fix ¢ € @ and a € X'. Suppose that
for each i € loc(a) there is a transition s; —— s. such that s; =; q. Clearly, for
each i € loc(a), s; — s, implies s;[i] —=; s.[i]. Moreover s;[i] = q[i] by the
definition of =;. Since T'S is a product transition system, this implies ¢ —— ¢/,
where ¢'[i] = s[i] for i € loc(a) and ¢'[i] = ¢[i] otherwise.

(<) : Suppose we are given equivalence relations {=; C (Q X Q) }ie[1..k) Which

satisfy conditions (i)—(iii). For each ¢ € @ and i € [1..k], let [g]; def {s|s=iq}
For i € [1..k], define the transition system T'S; = (Q;, —, ¢',) over X; as follows:

— Qi ={[gli | ¢ € Q}, with ¢/, = [ginl:-
— [ql: LI [¢']; iff @ € X; and there exists s -5 s with s =; ¢ and s’ =; ¢'.

We wish to show that 7'S is isomorphic to ||;ef1..4) T'Ss- Let ||ie..i) T'Si =
(Q,~, Gin). We claim that the required isomorphism is given by the function

f:Q— Q, where f(q) = ([, -, [ale)-

— We can show that f is well-defined—that is f(q) € Q) for each ¢—by induc-
tion on the length of the shortest path from ¢, to ¢. We omit the details.
— We next establish that f is a bijection. Clearly condition (#) implies that f
is injective. To argue that f is onto, let ([si],...,[st]r) € Q be reachable
from ¢i, in n steps. We proceed by induction on 7.
e Basis: If n =0, ([s1]1,.--,[Sklk) = ¢in = f(qin)-
e Induction step:
Let ([r1]1, ..., [rk]x) be reachable from g, in n—1 steps. Consider a move
([ri]i, - [rele) ~ ([s1]1,- -, [Sk]k). By the induction hypothesis there
exists ¢ € @ such that f(q) = ([¢]1,---,[¢lx) = ([r1)1,---, [r&]x). Now,
(fr]e, - [rele) ~ ([s1]1,- .-, [Sk]x) implies that [r;]; —; [s;]; for each
i € loc(a). Hence, for each i € loc(a), there exist r}, s} such that r} =; ry,
st =; s; and r, - s!. By condition (iii), since ¢ =; r;, for any choice
of such 7/’s and s/’s there exists ¢’ such that ¢ — ¢’ and ¢’ =; s for
each i € loc(a). We want to show that f(q') = ([s1]1,...,[sk]x). For
i € loc(a) we already know that ¢' =; s} =; s;. So suppose i ¢ loc(a). In
this case ¢ — ¢’ implies [¢']; = [q]i, by condition (i). From [g]; = [ri]:
and [’I"i],' = [S,‘]i it follows that [q']i = [S,'],'.
— It is now easy to argue that f is an isomorphism—we omit the details.

An effective synthesis procedure

Observe that Theorem 3.1 yields an effective synthesis procedure for finite-
state specifications which is exponential in the size of the original transition
system and the number of components in the distributed alphabet. The number
of ways of partitioning a finite-state space using equivalence relations is bounded
and we can exhaustively check each choice to see if it meets criteria (i)—(7i) in
the statement of the theorem.

4 Synthesis and independence relations

An abstract way of enriching a labelled transition system with information about
concurrency is to equip the underlying alphabet with an independence relation—
intuitively, this relation specifies which pairs of actions in the system can be
executed independent of each other.

Definition 4.1. An independence relation over X is a symmetric, irreflexive
relation I C X x Y.

Each distribution ¥ = (X4,...,Xk) induces a natural independence relation
I over Y—two actions are independent if they are performed at nonoverlapping
sets of locations across the system. Formally, for a,b € X, a I b < loc(a) N
loc(b) = 0. The following example shows that different distributions may yield
the same independence relation.

@mmple 4.2. If ¥ = {a,g, ¢,d} and I = {(a,b),(b,a)}, thfn the distributions
= <{aaca d}a{bv G, d}>7 Y= ({a,c, d},{b,c},{b,d}) and X" = Gaac}v{aad}a
{b,c},{b,d},{c,d}) all give rise to the independence relation I.

However for each independence relation I there is a standard distribution induc-
ing I, whose components are the maximal cliques of the dependency relation
D = (¥ x X) — I. In the example above, the standard distribution is the one
denoted X. Henceforth, we will denote the standard distribution for T by 2.

The synthesis problem with respect to an independence relation

We can phrase the synthesis problem in terms of independence relations as
follows. Given a transition system 7'S = (@), —,qin) and a nonempty indepen-
dence relation I over X, does there exist an [-implementation of T'S, that is a
X-implementation of T'S such that X' induces I7 _

We show that if a transition system admits a X-implementation then it also
admits a Xy _-implementation. Thus the synthesis problem with respect to inde-
pendence relations reduces to the synthesis problem for standard distributions.

We begin by showing that a system that has an implementation over a distri-
bution X' also has an implementation over any coarser distribution I', obtained
by merging some components of X' and possibly adding some new ones.

Definition 4.3. Let ¥ = (X1,..., %) and I = (I'y, ..., I}) be distributions of
Y. Then X < I if for each i € [1..k], there exists j € [1..] such that X; C Ij.
If ¥ < I' we say that X is finer than I', or I' is coarser than X.

We then have the following simple observation.
Proposition 4.4. If x < I then Iz Cls.

Note that < is not a preorder in general. In fact ¥ < I' means that the maximal
elements of ¥ are included in those of I'. Let us denote by ~ the relation NI
Then, Y~T just means that Y and I have the same maximal elements—in
general, it does not guarantee that they are identical. However, when restricted
to distributions “without redundancies”, < becomes a preorder.

Definition 4.5. A distribution ¥ = (X1,..., X)) of X is said to be simple if
for each i,j € [1..k], i # j implies that X; € X;.

Proposition 4.6. Let Y and I be simple distributions of X. If Y ~ T then
Yy=r.

For any independence relation I over X', the associated standard distribution 2'1
is a simple distribution, and is the coarsest distribution inducing I. At the other
end of the spectrum, we can define the finest distribution inducing I as follows:

Definition 4.7. Let I be an independence relation over X', and D = (X' x X)—1I.
The distribution Ay over X is defined by:

ANI ={{z,y} | (z,y) € D,x Ay} U{{z} |z I y for each y # x}

Proposition 4.8. Let I be an independence relation over X'. Then the distri-
bution Ay is the finest simple distribution over X that induces I.

A finer distribution can be faithfully implemented by a coarser distribution.

Lemma 4.9. Let ¥ = (Xy,..., %) and I' = (I, ..., I}) be distributions of ¥
such that ¥ < I. Then, for each product transition system ||ze[1 &) T'S; over E

there exists an isomorphic product transition system ||;c[1..¢ TS over I'.

Proof. For each i € [1..k] let f(i) denote the least index j in [1..f] such that
XY; C I}. For each j € [1..4], define T'S; = (Qj,~, ¢, as follows.

— If j is not in the range of f, then @j = {(jijn}, and (jijn 3~>j (jijn for each a € Xj.
— If j is in the range of f, let f='(j) = {i1,42,...,im}. Set T'S; = (T'S;, ||
N TS;,,)-

It is then straightforward to verify that ||;cf1. 5 7'S; is isomorphic to [,
TS;. We omit the details.

Corollary 4.10. Let TS = (Q,—,qin) be a transition system over X, and x
and I be two distributions of X such that x < I. IfTS is x- implementable it
is also I'- implementable.

Let I be an independence relation over X'. We have already observed that s
the coarsest distribution of X’ whose induced independence relation is I. Coupling
this remark with the preceding corollary, we can now settle the synthesis problem
with respect to independence relations.

Corollary 4.11. Let TS = (Q, —,qin) be a transition system over X, and x
be a distribution of X inducing the independence relation I. Then if T'S is x-
implementable it is also Yi-implementable. Moreover T'S is I-implementable if
and only if it is Xr-implementable.

We remark that the converse of Lemma, 4.9 is not true—if ¥ < I, it may be

the case that T'S is f‘—implementable but not f—implementable. Details can be
found in the full paper [CMT99].

5 Canonical implementations and determinacy

A system may have more than one S’—implementation for a fixed distribution X.
For instance, the system

has two implementations with respect to the distributed alphabet ¥ = ({a, ¢, d},
{b, c,d}), namely ca + c(a + d) || ¢(b + d) and c(a + d) || cb + ¢(b + d).
One question that naturally arises is whether there exists a unique minimal

or maximal family of equivalence relations {=i,...,=j} on states that makes
Theorem 3.1 go through. We say that a family {=1, ..., =} is minimal (respec-
tively, mazimal) if there is no other family {=},..., =]} with respect to which

TS is Y-implementable with =] C =; (respectively, =; C =}) for each i € [1..k].

It turns out that for deterministic systems, we can find unique minimal im-
plementations. A transition system T'S = (Q, —, ¢in) is deterministic if ¢ - ¢'
and ¢ — ¢" imply that ¢’ = ¢".

Theorem 5.1. Suppose T'S = (Q, —, ¢in) is deterministic and Y -implementable.
Then there exists a unique minimal family { =1,...,=¢} of equivalence relations
on states with respect to which T'S is X-implementable.

Proof. Suppose that {=1,...,=x} and {=], ..., =]} are two families which rep-
resent Y-implementations of T'S. Let {Z4,...,Z} be the intersection family,
givenby g =, ¢ ©q = ¢ Nqg =} ¢
By definition, =; C =; and =; C =|. Thus, it suffices to show that {Z,,...,Z}

represents a S’—implementation of T'S. From the definition of the relations
{£1,...,Z}, it is obvious that both conditions (i) and (i) of Theorem 3.1 are
satisfied. Now suppose that ¢ € @ and a € X. For every i € loc(a), let s;, s} € Q
be such that s; =; ¢ and s; — s}. This means that for every i € loc(a), both
s; =; qands; =, ¢. Hence by condition (4ii) there exists ¢’ such that ¢ - ¢'
and ¢ =; s, for every i € loc(a). Similarly, there exists ¢" such that ¢ — ¢"
and ¢" =; s} for every i € loc(a). Since T'S is deterministic, it must be ¢' = ¢".
Thus, ¢' = ¢" is such that ¢ =; s} for each i € loc(a).

This result leads us to conjecture that the synthesis problem for deterministic
systems is much less expensive computationally than the synthesis problem in the
general case, since it suffices to look for the unique minimal family of equivalence
relations which describe the implementation.

We conclude this section by observing that a de-
terministic system may have more than one maximal
family {=1,...,=x} for which it is ¥-implementable.
For instance the system on the left has two distinct
maximal implementations with respect to the distri-
bution ({a,c}, {b,c}), namely (fix X. a+cX) || b+ cb
and a + ca || (fix Y. b+ ¢Y'), whose components are
not even language equivalent.

6 Synthesis modulo bisimulation

In the course of specifying a system, we may accidentally destroy its inherent
product structure. This may happen, for example, if we optimize the design
and eliminate redundant states. In such situations, we would like to be able to
reconstruct a product transition system from the reduced specification. Since the
synthesized system will not, in general, be isomorphic to the specification, we
need a criterion for ensuring that the two systems are behaviourally equivalent.
We use strong bisimulation [Mil89] for this purpose.

In general, synthesizing a behaviourally equivalent product implementation
from a reduced specification appears to be a hard problem. In this section, we
show how to solve the problem for reduced specifications which can be imple-
mented as deterministic product transition systems—that is, the global transi-
tion system generated by the implementation is deterministic. Notice that the
specification itself may be nondeterministic. Since many distributed systems im-
plemented in hardware, such as digital controllers, are actually deterministic,
our characterization yields a synthesis result for a large class of useful systems.

We begin by recalling the definition of bisimulation.

Definition 6.1. A bisimulation between a pair of transition systems T'S; =
(Q1,—1,4.) and TSy = (Q2,—2,¢2) is a relation R C (Q1 X Q2) such that:

B (q11n7q12n) € R. “ “
— If (¢1,92) € R and ¢ —1 qy, there exists ¢3, g2 —2 ¢ and (q,¢) € R.

!

— If (q1,¢2) € R and g2 —2» qh, there exists ¢}, ¢ 25 qy and (¢},q5) € R.

The synthesis problem modulo bisimilarity

The synthesis problem modulo bisimilarity can now be formulated as follows.
If TS = (Q,—,¢n) is a transition system over X, and X = (X,..., X)) is a
distribution of X, does there exist a product system |[[;c;;. 5 7'S; over ¥ such
that ||;e[1..x) T'S; is bisimilar to T'S?

To settle this question for deterministic implementations, we need to consider
product languages.

Languages Let T'S = (@, —, gin) be a transition system over X. The language
of T'S is the set L(T'S) C X* consisting of the labels along all runs of T'S. In
other words, L(T'S) = {w | ¢in — ¢,q € Q}.

Notice that L(T'S) is always prefix-closed and always contains the empty
word. Moreover, L(T'S) is regular whenever T'S is finite. For the rest of this
section, we assume all transition systems which we encounter are finite.

Product languages Let L C X* and let Y= (X1,..., %) be a distribution
of ¥. For w € X*, let w[yx, denote the projection of w onto X;, obtained by
erasing all letters in w which do not belong to X;.

The language L is a product language over X if for each i € [1..k] there is a
language L; C X such that L = {w | w|x, € L;,i € [1..k]}.

For deterministic transition systems, bisimilarity coincides with language
equivalence. We next show that we can extend this result to get a simple char-
acterization of transition systems which are bisimilar to deterministic product
transition systems. We first recall a basic definition.

Bisimulation quotient Let T'S = (Q, —, ¢in) be a transition system and let
~7s be the largest bisimulation relation between 7T'S and itself. The relation
~7gs defines an equivalence relation over Q. For g € @, let [g] denote the ~pg-
equivalence class containing g. The bisimulation quotient of T'S is the transition
system TS/"’TS = (Q; ~ [qin]) where

- Q={ldqeQ}
- lq] N [¢'] if there exist ¢; € [¢] and ¢} € [¢'] such that ¢1 — ¢}.

The main result of this section is the following.

Theorem 6.2. LetT'S be a transition system over X and let Y be a distribution
of X¥. The system T'S is bisimilar to a deterministic product transition system
over X iff TS satisfies the following two conditions.

— The bisimulation quotient T'S/ ., is deterministic.
— The language L(TS) is a product language over X.

To prove this theorem, we first recall the following basic connection between
product languages and product systems [Thi95].

Lemma 6.3. L(|[jc;1..q T'Si) = {w | wlx, € L(T'S;),i € [1..k]}.

We also need the useful fact that a product language is always the product
of its projections [Thi95].

Lemma 6.4. Let L C X* and let ¥ = (X,..., X)) be a distribution of X.
For i € [1..k], let L; = {w|yx,| w € L}. Then, L is a product language iff
L={w]|wlx € L;,i € [1..k]}.

Notice that Lemma 6.4 yields an effective procedure for checking if a finite-
state transition system accepts a product language over a distribution (X, ..., X).
For i € [1..k], construct the finite-state system T'S; such that L(T'S;) = L[,
and then verify that L(TS) = L(||;e[1..x) T'S:)-

Next, we state without proof some elementary facts about bisimulations.

Lemma 6.5. (i) Let T'S be a deterministic transition system. Then, T'S/ .,
is also deterministic.

(ii) Let TSy and T'Sy be deterministic transition systems over X. If L(T'Sy) =
L(TSs) then T'S; is bisimilar to T'S>.

(i) Let TSy and TSy be bisimilar transition systems. Then T'Si/~,s and
T'S2/~rs, are isomorphic. Further L(T'S1) = L(T'S>).

We now prove both parts of Theorem 6.2.

Lemma 6.6. Suppose that a transition system TS is bisimilar to a determin-
istic product transition system. Then, TS/, is deterministic and L(TS) is a
product language.

Proof. Let TS =lieq1..q TTS'Z be a deterministic product transition system such
that TS is bisimilar to T'S. N N

By Lemma 6.5 (iii), L(T'S) = L(T'S). Since L(T'S) is a product language, it
follows that L(T'S) is a product language.

To check that T'S/ ., is deterministic, we first observe that ZI/“?S’/ ~o 18 de-
terministic, by Lemma 6.5 (i). By part (iii) of the same lemma, TS/, must
be isomorphic to T'S/ ~rs- Hence, 'S/, is also deterministic.

Lemma 6.7. Let T'S be a transition system over X and Y be a distribution of
XY, such that TS/, is deterministic and L(T'S) is a product language over X.
Then, T'S is bisimilar to a deterministic product transition system over X.

Proof. Let ¥ = (X1,...,%). For i € [1.k], let L; = {w|s,| w € L(TS)}. We
know that each L; is a regular prefix-closed language which contains the empty
word. Thus, we can construct the minimal deterministic finite-state automaton
A; =(Q4, =i, ¢, F;) recognizing L;. Since L; contains the empty word, ¢}, € F;.
Consider the restricted transition relation —{=—; N(F; x X' x F}). It is easy to
verify that the transition system T'S; = (F;, =%, ¢’) is a deterministic transition
system such that L(T'S;) = L;.

Consider the product TS =licq1..k) T'Si- Lemma 6.3 tell us that L(T\S) =
{w | wls, € L;,i € [1..k]}. From Lemma 6.4, it follows that L(TS) = L(TS).

We claim that T'S is bisimilar to 7'S. Consider the quotient TS/~rs. Both
TS/.,. and TS are deterministic and L(T'S/.,.) = L(T'S) = L(TS). Thus,
by Lemma 6.5 (ii), it must be the case that T'S/.,, is bisimilar to TS. By
transitivity, 7'S is also bisimilar to TS.

Using standard automata theory, we can derive the following result from
Theorem 6.2.

Corollary 6.8. Given a finite-state transition system T'S = (Q, —,¢in) and a
distributed alphabet X, we can effectively decide whether T'S is bisimilar to a
deterministic product system over X.

The synthesis problem modulo bisimilarity appears to be quite a bit more
difficult when the product implementation is permitted to be nondeterminis-
tic. We have a characterization of the class of systems which are bisimilar to
nondeterministic product systems [CMT99]. Our characterization is phrased in
terms of the structure of the execution tree obtained by unfolding the specifica-
tion. Unfortunately, the execution tree may be infinite, so this characterization
is not effective, even if the initial specification is finite-state. The difficulty lies
in bounding the number of transitions in the product implementation which can
collapse, via the bisimulation, to a single transition in the specification.

References

[Arn94] A. Arnold: Finite transition systems and semantics of communicating
sytems, Prentice-Hall (1994).

[BD9S] E. Badouel and Ph. Darondeau: Theory of Regions. Lectures on Petri nets
I (Basic Models), LNCS 1491 (1998) 529-588.

[CMT99] I. Castellani, M. Mukund and P.S. Thiagarajan: Characterizing decompos-
able transition systems, Internal Report, Chennai Mathematical Institute
(1999).

[ER90] A. Ehrenfeucht and G. Rozenberg: Partial 2-structures; Part II, State spaces
of concurrent systems, Acta Inf. 27 (1990) 348-368.

[GM92] J.F. Groote and F. Moller: Verification of Parallel Systems via Decomposi-
tion, Proc. CONCUR’92, LNCS 630 (1992) 62-76.

[Hol97] G.J. Holzmann: The model checker SPIN, IEEE Trans. on Software Engi-
neering, 23, 5 (1997) 279-295.

[Kur94] R.P. Kurshan: Computer-Aided Verification of Coordinating Processes: The
Automata-Theoretic Approach, Princeton University Press (1994).

[Maz89] A. Mazurkiewicz: Basic notions of trace theory, in: J.W. de Bakker, W.-
P. de Roever, G. Rozenberg (eds.), Linear time, branching time and partial
order in logics and models for concurrency, LNCS 354 (1989) 285-363.

[Mil89] R. Milner: Communication and Concurrency, Prentice-Hall, London (1989).

[Mol89] F. Moller: Azioms for Concurrency, Ph.D. Thesis, University of Edinburgh
(1989).

[MM93] F. Moller and R. Milner: Unique decomposition of processes, Theor. Com-
put. Sci. 107 (1993) 357-363.

[Mor98] R. Morin: Decompositions of asynchronous systems, Proc. CONCUR’98,
LNCS 1466 (1998) 549-564.

[Muk92] M. Mukund: Petri Nets and Step Transition Systems, Int. J. Found. Com-
put. Sci. 3, 4 (1992) 443-478.

[NRT92] M. Nielsen, G. Rozenberg and P.S. Thiagarajan: Elementary transition sys-
tems, Theor. Comput. Sci. 96 (1992) 3-33.

[Thi95] P.S. Thiagarajan: A trace consistent subset of PTL, Proc. CONCUR’95,
LNCS 962 (1995) 438-452.

[WN95] G. Winskel and M. Nielsen: Models for concurrency, in S. Abramsky,
D. Gabbay and T.S.E. Maibaum, eds, Handbook of Logic in Computer Sci-
ence, Vol 4, Oxford (1995) 1-148.

