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t. We study the problem of synthesizing distributed implemen-tations from global spe
i�
ations. In parti
ular, we 
hara
terize when aglobal transition system 
an be implemented as a syn
hronized produ
tof lo
al transition systems. Our work extends a number of previous stud-ies in this area whi
h have tended to make strong assumptions about thespe
i�
ation|either in terms of determina
y or in terms of information
on
erning 
on
urren
y.We also examine the more diÆ
ult problem where the 
orre
tness ofthe implementation in relation to the spe
i�
ation is stated in terms ofbisimulation rather than isomorphism. As an important �rst step, weshow how the synthesis problem 
an be solved in this setting when theimplementation is required to be deterministi
.1 Introdu
tionDesigning distributed systems has always been a 
hallenging task. Intera
tionsbetween the pro
esses 
an introdu
e subtle errors in the system's overall be-haviour whi
h may pass undete
ted even after rigorous testing. A fruitful ap-proa
h in re
ent years has been to spe
ify the behaviour of the overall system ina global manner and then automati
ally synthesize a distributed implementationfrom the spe
i�
ation.The question of identifying when a sequential spe
i�
ation has an implemen-tation in terms of a desired distributed ar
hite
ture was �rst raised in the 
on-text of Petri nets. Ehrenfeu
ht and Rozenberg [ER90℄ introdu
ed the 
on
eptof regions to des
ribe how to asso
iate pla
es of nets with states of a transi-tion system. In [NRT92℄, Nielsen, Rozenberg and Thiagarajan use regions to
hara
terize the 
lass of transition systems whi
h arise from elementary net sys-tems. Subsequently, several authors have extended this 
hara
terization to larger
lasses of nets (for a sample of the literature, see [BD98,Muk92,WN95℄).Here, we fo
us on produ
t transition systems|networks of transition sys-tems whi
h 
oordinate by syn
hronizing on 
ommon a
tions [Arn94℄. This model? This work has been sponsored by IFCPAR Proje
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omes with a natural notion of 
omponent and indu
ed notions of 
on
urren
yand 
ausality. It has a well-understood theory, at least in the linear-time set-ting [Thi95℄. This model is also the basis for system des
riptions in a number ofmodel-
he
king tools [Kur94,Hol97℄.We establish two main sets of results in this paper. First, we 
hara
terizewhen an arbitrary transition system is isomorphi
 to a produ
t transition sys-tem with a spe
i�ed distribution of a
tions. Our 
hara
terization is e�e
tive|for �nite-state spe
i�
ations, we 
an synthesize a �nite-state implementation.We then show how to obtain implementations when 
on
urren
y is spe
i�ed interms of an abstra
t independen
e relation, in the sense of Mazurkiewi
z tra
etheory [Maz89℄. We also present realizability relationships between produ
t tran-sition systems in terms of a natural preorder over the distribution of a
tionsa
ross agents. Our result subsumes the work of Morin [Mor98℄ on synthesizingprodu
t systems from deterministi
 spe
i�
ations.Our se
ond result deals with the situation when we have global spe
i�
ationswhi
h are behaviourally equivalent to, but not ne
essarily isomorphi
 to, produ
tsystems. The notion of behavioural equivalen
e whi
h we use is strong bisimu-lation [Mil89℄. The synthesis problem here is to implement a global transitionsystem TS as a produ
t transition system fTS su
h that TS and fTS are bisimilarto ea
h other. We show how to solve this problem when the implementation isdeterministi
. Noti
e that the spe
i�
ation itself may be nondeterministi
. Sin
edistributed systems implemented in hardware, su
h as digital 
ontrollers, are de-terministi
, the determina
y assumption is a natural one. Solving the synthesisproblem modulo bisimulation in the general 
ase where the implementation maybe nondeterministi
 appears to be hard.The problem of expressing a global transition system as a produ
t of 
om-ponent transition systems modulo bisimilarity has also been investigated in the
ontext of pro
ess algebras in [Mol89,MM93℄. In [GM92℄, Groote and Mollerexamine the use of de
omposition te
hniques for the veri�
ation of parallel sys-tems. These results are established in the 
ontext of transition systems whi
hare generated using pro
ess algebra expressions. Generalizing these results toarbitrary, unstru
tured, �nite-state systems appears hard.The paper is organized as follows. In the next se
tion we formally introdu
eprodu
t transition systems and formulate the synthesis problem. In Se
tion 3,we 
hara
terize the 
lass of transition systems whi
h are isomorphi
 to produ
ttransition systems. The subsequent se
tion extends these results to the 
ontextwhere the distributed implementation is des
ribed using an independen
e rela-tion. Next, we show that deterministi
 systems admit 
anoni
al minimal imple-mentations. In Se
tion 6, we present our se
ond main result, 
hara
terizing the
lass of transition systems whi
h are bisimilar to deterministi
 produ
t systems.2 The synthesis problem for produ
t transition systemsLabelled transition systems provide a general framework for modelling 
omput-ing systems. A labelled transition system is de�ned as follows.



De�nition 2.1. Let � be a �nite nonempty set of a
tions. A labelled transitionsystem over � is a stru
ture TS = (Q;!; qin), where Q is a set of states,qin 2 Q is the initial state and !� Q�� �Q is the transition relation.We abbreviate a transition sequen
e of the form q0 a1�! q1 � � � an�! qn asq0 a1���an�! qn. In every transition system TS = (Q;!; qin) whi
h we en
ounter,we assume that ea
h state in Q is rea
hable from the initial state|that is, forea
h q 2 Q there exists a transition sequen
e qin = q0 a1���an�! qn = q.A large 
lass of distributed systems 
an be fruitfully modelled as networks oflo
al transition systems whose moves are globally syn
hronized through 
ommona
tions. To formalize this, we begin with the notion of a distributed alphabet.De�nition 2.2. A distributed alphabet over �, or a distribution of �, is a tupleof nonempty sets e� = h�1; : : : ; �ki su
h that S1�i�k �i = �. For ea
h a
tiona 2 �, the lo
ations of a are given by the set lo
 e�(a) = fi j a 2 �ig. If e� is
lear from the 
ontext, we write just lo
(a) to denote lo
 e�(a).We 
onsider two distributions to be the same if they di�er only in the order oftheir 
omponents.Hen
eforth, for any natural number k, [1::k℄ denotes the set f1; 2; : : : ; kg.De�nition 2.3. Let h�1; : : : ; �ki be a distribution of �. For ea
h i 2 [1::k℄, letTSi = (Qi;!i; qiin) be a transition system over �i. The produ
t (TS1 k � � � kTSk) is the transition system TS = (Q;!; qin) over � = S1�i�k �i, where:{ qin = (q1in; : : : ; qkin).{ Q � (Q1 � � � � �Qk) and !� Q�� �Q are de�ned indu
tively by:� qin 2 Q.� Let q 2 Q and a 2 �. For i 2 [1::k℄, let q[i℄ denote the ith 
omponent ofq. If for ea
h i 2 lo
(a), TSi has a transition q[i℄ a�!i q0i, then q a�! q0and q0 2 Q where q0[i℄ = q0i for i 2 lo
(a) and q0[j℄ = q[j℄ for j =2 lo
(a).We often abbreviate the produ
t (TS1 k � � � k TSk) by ki2[1::k℄ TSi.The synthesis problemThe synthesis problem 
an now be formulated as follows. If TS =(Q;!; qin) is a transition system over �, and e� = h�1; : : : ; �ki is a distri-bution of �, does there exist a e�-implementation of TS|that is, a tuple oftransition systems hTS1; : : : ; TSki su
h that TSi is a transition system over �iand the produ
t ki2[1::k℄ TSi is isomorphi
 to TS?Example 2.4. Let e� = hfa; 
g; fb; 
gi be a distribution of fa; b; 
g. The �rst tran-sition system below is e�-implementable|using expressions in the style of pro
essalgebra, we 
an write the produ
t as (a+ 
) k (b
+ 
). Similarly, the se
ond tran-sition system may be implemented as (a
+ 
) k (b
+ 
).



ab baab b 

ab baa
 
 
 
 

On the other hand, the system on the right is not e�-implementable. Intuitively,the argument is as follows. If it were implementable in two 
omponents withalphabets fa; 
g and fb; 
g, 
 would be enabled at the initial state in both 
om-ponents. But 
 
an also o

ur after both a
tions a and b have o

urred. So, 
 ispossible after a in the �rst 
omponent and after b in the se
ond 
omponent. Thus,there are two 
 transitions in both 
omponents and the produ
t should exhibit alltheir 
ombinations, giving rise to the system in the 
entre. We 
an formalize thisargument on
e we have proved the results in the next se
tion.3 A 
hara
terization of implementable systemsWe now 
hara
terize e�-implementable systems. In this se
tion, unless otherwisespe
i�ed, we assume that e� = h�1; : : : ; �ki, with � = Si2[1::k℄�i.The basi
 idea is to label ea
h state of the given system by a k-tuple oflo
al states (
orresponding to a global state of a produ
t system) su
h thatthe labelling fun
tion satis�es some 
onsisten
y 
onditions. We formulate thislabelling fun
tion in terms of lo
al equivalen
e relations on the states of theoriginal system|for ea
h i 2 [1::k℄, if two states q1 and q2 of the original systemare i-equivalent, the interpretation is that the global states assigned to q1 and q2by the labelling fun
tion agree on the ith 
omponent. Our te
hnique is similarto the one developed independently by Morin for the more restri
tive 
lass ofdeterministi
 transition system spe
i�
ations [Mor98℄.Theorem 3.1. A transition system TS = (Q;!; qin) is e�-implementable withrespe
t to a distribution e� = h�1; : : : ; �ki if and only if for ea
h i 2 [1::k℄ thereexists an equivalen
e relation �i � (Q � Q) su
h that the following 
onditionsare satis�ed:(i) If q a�! q0 and a =2 �i, then q �i q0.(ii) If q �i q0 for every i, then q = q0.(iii) Let q 2 Q and a 2 �. If for ea
h i 2 lo
(a), there exist si; s0i 2 Q su
h thatsi �i q, and si a�! s0i, then for ea
h 
hoi
e of su
h si's and s0i's there existsq0 2 Q su
h that q a�! q0 and for ea
h i 2 lo
(a), q0 �i s0i.Proof. ()) : Suppose ki2[1::k℄ TSi is a e�-implementation of TS. We must exhibitk equivalen
e relations f�igi2[1::k℄, su
h that 
onditions (i)|(iii) are satis�ed.Assume, without loss of generality, that TS is not just isomorphi
 to ki2[1::k℄ TSibut is in fa
t equal to ki2[1::k℄ TSi.



For i 2 [1::k℄, let TSi = (Qi;!i; qiin). We then have Q � (Q1�� � ��Qk) andqin = (q1in; : : : ; qkin). De�ne �i� (Q�Q) as follows: q �i q0 i� q[i℄ = q0[i℄.Sin
e TS is a produ
t transition system, it is 
lear that 
onditions (i) and(ii) are satis�ed. To establish 
ondition (iii), �x q 2 Q and a 2 �. Suppose thatfor ea
h i 2 lo
(a) there is a transition si a�! s0i su
h that si �i q. Clearly, forea
h i 2 lo
(a), si a�! s0i implies si[i℄ a�!i s0i[i℄. Moreover si[i℄ = q[i℄ by thede�nition of �i. Sin
e TS is a produ
t transition system, this implies q a�! q0,where q0[i℄ = s0i[i℄ for i 2 lo
(a) and q0[i℄ = q[i℄ otherwise.(() : Suppose we are given equivalen
e relations f�i � (Q � Q)gi2[1::k℄ whi
hsatisfy 
onditions (i)|(iii). For ea
h q 2 Q and i 2 [1::k℄, let [q℄i def= fs j s �i qg.For i 2 [1::k℄, de�ne the transition system TSi = (Qi;!i; qiin) over �i as follows:{ Qi = f[q℄i j q 2 Qg, with qiin = [qin℄i.{ [q℄i a�!i [q0℄i i� a 2 �i and there exists s a�! s0 with s �i q and s0 �i q0.We wish to show that TS is isomorphi
 to ki2[1::k℄ TSi. Let ki2[1::k℄ TSi =( bQ; ; q̂in). We 
laim that the required isomorphism is given by the fun
tionf : Q! bQ, where f(q) = ([q℄1; : : : ; [q℄k).{ We 
an show that f is well-de�ned|that is f(q) 2 bQ for ea
h q|by indu
-tion on the length of the shortest path from qin to q. We omit the details.{ We next establish that f is a bije
tion. Clearly 
ondition (ii) implies that fis inje
tive. To argue that f is onto, let ([s1℄1; : : : ; [sk℄k) 2 bQ be rea
hablefrom q̂in in n steps. We pro
eed by indu
tion on n.� Basis: If n = 0, ([s1℄1; : : : ; [sk℄k) = q̂in = f(qin).� Indu
tion step:Let ([r1℄1; : : : ; [rk℄k) be rea
hable from q̂in in n�1 steps. Consider a move([r1℄1; : : : ; [rk ℄k) a ([s1℄1; : : : ; [sk℄k). By the indu
tion hypothesis thereexists q 2 Q su
h that f(q) = ([q℄1; : : : ; [q℄k) = ([r1℄1; : : : ; [rk℄k). Now,([r1℄1; : : : ; [rk ℄k) a ([s1℄1; : : : ; [sk℄k) implies that [ri℄i a�!i [si℄i for ea
hi 2 lo
(a). Hen
e, for ea
h i 2 lo
(a), there exist r0i; s0i su
h that r0i �i ri,s0i �i si and r0i a�! s0i. By 
ondition (iii), sin
e q �i ri, for any 
hoi
eof su
h r0i's and s0i's there exists q0 su
h that q a�! q0 and q0 �i s0i forea
h i 2 lo
(a). We want to show that f(q0) = ([s1℄1; : : : ; [sk℄k). Fori 2 lo
(a) we already know that q0 �i s0i �i si. So suppose i =2 lo
(a). Inthis 
ase q a�! q0 implies [q0℄i = [q℄i, by 
ondition (i). From [q℄i = [ri℄iand [ri℄i = [si℄i it follows that [q0℄i = [si℄i.{ It is now easy to argue that f is an isomorphism|we omit the details.An e�e
tive synthesis pro
edureObserve that Theorem 3.1 yields an e�e
tive synthesis pro
edure for �nite-state spe
i�
ations whi
h is exponential in the size of the original transitionsystem and the number of 
omponents in the distributed alphabet. The numberof ways of partitioning a �nite-state spa
e using equivalen
e relations is boundedand we 
an exhaustively 
he
k ea
h 
hoi
e to see if it meets 
riteria (i){(iii) inthe statement of the theorem.



4 Synthesis and independen
e relationsAn abstra
t way of enri
hing a labelled transition system with information about
on
urren
y is to equip the underlying alphabet with an independen
e relation|intuitively, this relation spe
i�es whi
h pairs of a
tions in the system 
an beexe
uted independent of ea
h other.De�nition 4.1. An independen
e relation over � is a symmetri
, irre
exiverelation I � � ��.Ea
h distribution e� = h�1; : : : ; �ki indu
es a natural independen
e relationI e� over�|two a
tions are independent if they are performed at nonoverlappingsets of lo
ations a
ross the system. Formally, for a; b 2 �, a I e� b , lo
(a) \lo
(b) = ;. The following example shows that di�erent distributions may yieldthe same independen
e relation.Example 4.2. If � = fa; b; 
; dg and I = f(a; b); (b; a)g, then the distributionse� = hfa; 
; dg; fb; 
; dgi, e�0 = hfa; 
; dg; fb; 
g; fb; dgi and e�00 = hfa; 
g; fa; dg;fb; 
g; fb; dg; f
; dgi all give rise to the independen
e relation I.However for ea
h independen
e relation I there is a standard distribution indu
-ing I , whose 
omponents are the maximal 
liques of the dependen
y relationD = (� � �) � I . In the example above, the standard distribution is the onedenoted e�. Hen
eforth, we will denote the standard distribution for I by e�I .The synthesis problem with respe
t to an independen
e relationWe 
an phrase the synthesis problem in terms of independen
e relations asfollows. Given a transition system TS = (Q;!; qin) and a nonempty indepen-den
e relation I over �, does there exist an I-implementation of TS, that is ae�-implementation of TS su
h that e� indu
es I?We show that if a transition system admits a e�-implementation then it alsoadmits a e�I e� -implementation. Thus the synthesis problem with respe
t to inde-penden
e relations redu
es to the synthesis problem for standard distributions.We begin by showing that a system that has an implementation over a distri-bution e� also has an implementation over any 
oarser distribution e� , obtainedby merging some 
omponents of e� and possibly adding some new ones.De�nition 4.3. Let e� = h�1; : : : ; �ki and e� = h�1; : : : ; �`i be distributions of�. Then e� . e� if for ea
h i 2 [1::k℄, there exists j 2 [1::`℄ su
h that �i � �j .If e� . e� we say that e� is �ner than e� , or e� is 
oarser than e�.We then have the following simple observation.Proposition 4.4. If e� . e� then Ie� � I e�.Note that . is not a preorder in general. In fa
t e� . e� means that the maximalelements of e� are in
luded in those of e� . Let us denote by ' the relation . \ &.Then, e� ' e� just means that e� and e� have the same maximal elements|ingeneral, it does not guarantee that they are identi
al. However, when restri
tedto distributions \without redundan
ies", . be
omes a preorder.



De�nition 4.5. A distribution e� = h�1; : : : ; �ki of � is said to be simple iffor ea
h i; j 2 [1::k℄, i 6= j implies that �i 6� �j .Proposition 4.6. Let e� and e� be simple distributions of �. If e� ' e� thene� = e� .For any independen
e relation I over �, the asso
iated standard distribution e�Iis a simple distribution, and is the 
oarsest distribution indu
ing I . At the otherend of the spe
trum, we 
an de�ne the �nest distribution indu
ing I as follows:De�nition 4.7. Let I be an independen
e relation over �, and D = (���)�I.The distribution e�I over � is de�ned by:e�I = ffx; yg j (x; y) 2 D; x 6= yg [ ffxg j x I y for ea
h y 6= xgProposition 4.8. Let I be an independen
e relation over �. Then the distri-bution e�I is the �nest simple distribution over � that indu
es I.A �ner distribution 
an be faithfully implemented by a 
oarser distribution.Lemma 4.9. Let e� = h�1; : : : ; �ki and e� = h�1; : : : ; �`i be distributions of �su
h that e� . e� . Then, for ea
h produ
t transition system ki2[1::k℄ TSi over e�,there exists an isomorphi
 produ
t transition system ki2[1::`℄ 
TSi over e� .Proof. For ea
h i 2 [1::k℄ let f(i) denote the least index j in [1::`℄ su
h that�i � �j . For ea
h j 2 [1::`℄, de�ne 
TSj = ( bQj ; j ; q̂jin) as follows.{ If j is not in the range of f , then bQj = fq̂jing, and q̂jin a j q̂jin for ea
h a 2 �j .{ If j is in the range of f , let f�1(j) = fi1; i2; : : : ; img. Set 
TSj = (TSi1 k� � � k TSim).It is then straightforward to verify that ki2[1::k℄ TSi is isomorphi
 to ki2[1::`℄
TSi. We omit the details.Corollary 4.10. Let TS = (Q;!; qin) be a transition system over �, and e�and e� be two distributions of � su
h that e� . e� . If TS is e�-implementable itis also e� -implementable.Let I be an independen
e relation over �. We have already observed that e�I isthe 
oarsest distribution of� whose indu
ed independen
e relation is I . Couplingthis remark with the pre
eding 
orollary, we 
an now settle the synthesis problemwith respe
t to independen
e relations.Corollary 4.11. Let TS = (Q;!; qin) be a transition system over �, and e�be a distribution of � indu
ing the independen
e relation I. Then if TS is e�-implementable it is also e�I -implementable. Moreover TS is I-implementable ifand only if it is e�I -implementable.We remark that the 
onverse of Lemma 4.9 is not true|if e� . e� , it may bethe 
ase that TS is e� -implementable but not e�-implementable. Details 
an befound in the full paper [CMT99℄.



5 Canoni
al implementations and determina
yA system may have more than one e�-implementation for a �xed distribution e�.For instan
e, the system d
 
b aba b aa bhas two implementations with respe
t to the distributed alphabet e� = hfa; 
; dg;fb; 
; dgi, namely 
a+ 
(a+ d) k 
(b+ d) and 
(a+ d) k 
b+ 
(b+ d).One question that naturally arises is whether there exists a unique minimalor maximal family of equivalen
e relations f�1; : : : ;�kg on states that makesTheorem 3.1 go through. We say that a family f�1; : : : ;�kg is minimal (respe
-tively, maximal) if there is no other family f�01; : : : ;�0kg with respe
t to whi
hTS is e�-implementable with �0i � �i (respe
tively, �i � �0i) for ea
h i 2 [1::k℄.It turns out that for deterministi
 systems, we 
an �nd unique minimal im-plementations. A transition system TS = (Q;!; qin) is deterministi
 if q a�! q0and q a�! q00 imply that q0 = q00.Theorem 5.1. Suppose TS = (Q;!; qin) is deterministi
 and e�-implementable.Then there exists a unique minimal family f�1; : : : ;�kg of equivalen
e relationson states with respe
t to whi
h TS is e�-implementable.Proof. Suppose that f�1; : : : ;�kg and f�01; : : : ;�0kg are two families whi
h rep-resent e�-implementations of TS. Let fb�1; : : : ; b�kg be the interse
tion family,given by q b�i q0 , q �i q0 ^ q �0i q0.By de�nition, b�i ��i and b�i ��0i. Thus, it suÆ
es to show that fb�1; : : : ; b�kgrepresents a e�-implementation of TS. From the de�nition of the relationsfb�1; : : : ; b�kg, it is obvious that both 
onditions (i) and (ii) of Theorem 3.1 aresatis�ed. Now suppose that q 2 Q and a 2 �. For every i 2 lo
(a), let si; s0i 2 Qbe su
h that si b�i q and si a�! s0i. This means that for every i 2 lo
(a), bothsi �i q and si �0i q. Hen
e by 
ondition (iii) there exists q0 su
h that q a�! q0and q0 �i s0i for every i 2 lo
(a). Similarly, there exists q00 su
h that q a�! q00and q00 �i s0i for every i 2 lo
(a). Sin
e TS is deterministi
, it must be q0 = q00.Thus, q0 = q00 is su
h that q0 b�i s0i for ea
h i 2 lo
(a).This result leads us to 
onje
ture that the synthesis problem for deterministi
systems is mu
h less expensive 
omputationally than the synthesis problem in thegeneral 
ase, sin
e it suÆ
es to look for the unique minimal family of equivalen
erelations whi
h des
ribe the implementation.
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We 
on
lude this se
tion by observing that a de-terministi
 system may have more than one maximalfamily f�1; : : : ;�kg for whi
h it is e�-implementable.For instan
e the system on the left has two distin
tmaximal implementations with respe
t to the distri-bution hfa; 
g; fb; 
gi, namely (�x X: a+ 
X) k b+ 
band a + 
a k (�x Y: b + 
Y ), whose 
omponents arenot even language equivalent.6 Synthesis modulo bisimulationIn the 
ourse of spe
ifying a system, we may a

identally destroy its inherentprodu
t stru
ture. This may happen, for example, if we optimize the designand eliminate redundant states. In su
h situations, we would like to be able tore
onstru
t a produ
t transition system from the redu
ed spe
i�
ation. Sin
e thesynthesized system will not, in general, be isomorphi
 to the spe
i�
ation, weneed a 
riterion for ensuring that the two systems are behaviourally equivalent.We use strong bisimulation [Mil89℄ for this purpose.In general, synthesizing a behaviourally equivalent produ
t implementationfrom a redu
ed spe
i�
ation appears to be a hard problem. In this se
tion, weshow how to solve the problem for redu
ed spe
i�
ations whi
h 
an be imple-mented as deterministi
 produ
t transition systems|that is, the global transi-tion system generated by the implementation is deterministi
. Noti
e that thespe
i�
ation itself may be nondeterministi
. Sin
e many distributed systems im-plemented in hardware, su
h as digital 
ontrollers, are a
tually deterministi
,our 
hara
terization yields a synthesis result for a large 
lass of useful systems.We begin by re
alling the de�nition of bisimulation.De�nition 6.1. A bisimulation between a pair of transition systems TS1 =(Q1;!1; q1in) and TS2 = (Q2;!2; q2in) is a relation R � (Q1 �Q2) su
h that:{ (q1in; q2in) 2 R.{ If (q1; q2) 2 R and q1 a�!1 q01, there exists q02, q2 a�!2 q02 and (q01; q02) 2 R.{ If (q1; q2) 2 R and q2 a�!2 q02, there exists q01, q1 a�!1 q01 and (q01; q02) 2 R.The synthesis problem modulo bisimilarityThe synthesis problem modulo bisimilarity 
an now be formulated as follows.If TS = (Q;!; qin) is a transition system over �, and e� = h�1; : : : ; �ki is adistribution of �, does there exist a produ
t system ki2[1::k℄ TSi over e� su
hthat ki2[1::k℄ TSi is bisimilar to TS?To settle this question for deterministi
 implementations, we need to 
onsiderprodu
t languages.Languages Let TS = (Q;!; qin) be a transition system over �. The languageof TS is the set L(TS) � �� 
onsisting of the labels along all runs of TS. Inother words, L(TS) = fw j qin w�! q; q 2 Qg.



Noti
e that L(TS) is always pre�x-
losed and always 
ontains the emptyword. Moreover, L(TS) is regular whenever TS is �nite. For the rest of thisse
tion, we assume all transition systems whi
h we en
ounter are �nite.Produ
t languages Let L � �� and let e� = h�1; : : : ; �ki be a distributionof �. For w 2 ��, let w��i denote the proje
tion of w onto �i, obtained byerasing all letters in w whi
h do not belong to �i.The language L is a produ
t language over e� if for ea
h i 2 [1::k℄ there is alanguage Li � ��i su
h that L = fw j w��i 2 Li; i 2 [1::k℄g.For deterministi
 transition systems, bisimilarity 
oin
ides with languageequivalen
e. We next show that we 
an extend this result to get a simple 
har-a
terization of transition systems whi
h are bisimilar to deterministi
 produ
ttransition systems. We �rst re
all a basi
 de�nition.Bisimulation quotient Let TS = (Q;!; qin) be a transition system and let�TS be the largest bisimulation relation between TS and itself. The relation�TS de�nes an equivalen
e relation over Q. For q 2 Q, let [q℄ denote the �TS-equivalen
e 
lass 
ontaining q. The bisimulation quotient of TS is the transitionsystem TS=�TS = ( bQ; ; [qin℄) where{ bQ = f[q℄ j q 2 Qg.{ [q℄ a [q0℄ if there exist q1 2 [q℄ and q01 2 [q0℄ su
h that q1 a�! q01.The main result of this se
tion is the following.Theorem 6.2. Let TS be a transition system over � and let e� be a distributionof �. The system TS is bisimilar to a deterministi
 produ
t transition systemover e� i� TS satis�es the following two 
onditions.{ The bisimulation quotient TS=�TS is deterministi
.{ The language L(TS) is a produ
t language over e�.To prove this theorem, we �rst re
all the following basi
 
onne
tion betweenprodu
t languages and produ
t systems [Thi95℄.Lemma 6.3. L(ki2[1::i℄ TSi) = fw j w��i 2 L(TSi); i 2 [1::k℄g.We also need the useful fa
t that a produ
t language is always the produ
tof its proje
tions [Thi95℄.Lemma 6.4. Let L � �� and let e� = h�1; : : : ; �ki be a distribution of �.For i 2 [1::k℄, let Li = fw ��i j w 2 Lg. Then, L is a produ
t language i�L = fw j w��i 2 Li; i 2 [1::k℄g.Noti
e that Lemma 6.4 yields an e�e
tive pro
edure for 
he
king if a �nite-state transition system a

epts a produ
t language over a distribution h�1; : : : ; �ki.For i 2 [1::k℄, 
onstru
t the �nite-state system TSi su
h that L(TSi) = L��iand then verify that L(TS) = L(ki2[1::k℄ TSi).Next, we state without proof some elementary fa
ts about bisimulations.



Lemma 6.5. (i) Let TS be a deterministi
 transition system. Then, TS=�TSis also deterministi
.(ii) Let TS1 and TS2 be deterministi
 transition systems over �. If L(TS1) =L(TS2) then TS1 is bisimilar to TS2.(iii) Let TS1 and TS2 be bisimilar transition systems. Then TS1=�TS1 andTS2=�TS2 are isomorphi
. Further L(TS1) = L(TS2).We now prove both parts of Theorem 6.2.Lemma 6.6. Suppose that a transition system TS is bisimilar to a determin-isti
 produ
t transition system. Then, TS=�TS is deterministi
 and L(TS) is aprodu
t language.Proof. Let 
TS =ki2[1::i℄ 
TSi be a deterministi
 produ
t transition system su
hthat TS is bisimilar to 
TS.By Lemma 6.5 (iii), L(TS) = L(
TS). Sin
e L(
TS) is a produ
t language, itfollows that L(TS) is a produ
t language.To 
he
k that TS=�TS is deterministi
, we �rst observe that 
TS=�dTS is de-terministi
, by Lemma 6.5 (i). By part (iii) of the same lemma, TS=�TS mustbe isomorphi
 to 
TS=�dTS . Hen
e, TS=�TS is also deterministi
.Lemma 6.7. Let TS be a transition system over � and e� be a distribution of�, su
h that TS=�TS is deterministi
 and L(TS) is a produ
t language over e�.Then, TS is bisimilar to a deterministi
 produ
t transition system over e�.Proof. Let e� = h�1; : : : ; �ki. For i 2 [1::k℄, let Li = fw��i j w 2 L(TS)g. Weknow that ea
h Li is a regular pre�x-
losed language whi
h 
ontains the emptyword. Thus, we 
an 
onstru
t the minimal deterministi
 �nite-state automatonAi = (Qi;!i; qiin; Fi) re
ognizing Li. Sin
e Li 
ontains the empty word, qiin 2 Fi.Consider the restri
ted transition relation !0i=!i \(Fi �� � Fi). It is easy toverify that the transition system TSi = (Fi;!0i; qiin) is a deterministi
 transitionsystem su
h that L(TSi) = Li.Consider the produ
t 
TS =ki2[1::k℄ TSi. Lemma 6.3 tell us that L(
TS) =fw j w��i 2 Li; i 2 [1::k℄g. From Lemma 6.4, it follows that L(
TS) = L(TS).We 
laim that TS is bisimilar to 
TS. Consider the quotient TS=�TS . BothTS=�TS and 
TS are deterministi
 and L(TS=�TS ) = L(TS) = L(
TS). Thus,by Lemma 6.5 (ii), it must be the 
ase that TS=�TS is bisimilar to 
TS. Bytransitivity, TS is also bisimilar to 
TS.Using standard automata theory, we 
an derive the following result fromTheorem 6.2.Corollary 6.8. Given a �nite-state transition system TS = (Q;!; qin) and adistributed alphabet e�, we 
an e�e
tively de
ide whether TS is bisimilar to adeterministi
 produ
t system over e�.



The synthesis problem modulo bisimilarity appears to be quite a bit morediÆ
ult when the produ
t implementation is permitted to be nondeterminis-ti
. We have a 
hara
terization of the 
lass of systems whi
h are bisimilar tonondeterministi
 produ
t systems [CMT99℄. Our 
hara
terization is phrased interms of the stru
ture of the exe
ution tree obtained by unfolding the spe
i�
a-tion. Unfortunately, the exe
ution tree may be in�nite, so this 
hara
terizationis not e�e
tive, even if the initial spe
i�
ation is �nite-state. The diÆ
ulty liesin bounding the number of transitions in the produ
t implementation whi
h 
an
ollapse, via the bisimulation, to a single transition in the spe
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