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Abstract. Networks of communicating finite-state machines equipped
with local clocks generate timed MSCs. We consider the problem of
checking whether these timed MSCs are “consistent” with those pro-
vided in a timed MSC specification. In general, the specification may be
both positive and negative. The system should execute all positive sce-
narios “sensibly”. On the other hand, negative scenarios rule out some
behaviours as illegal. This is more complicated than the corresponding
problem in the untimed case because even a single timed MSC specifica-
tion implicitly describes an infinite family of timed scenarios. We outline
an approach to solve this problem that can be automated using Uppaal.

1 Introduction

In a distributed system, several agents interact with each other to generate a
global behaviour. The interaction between these agents is usually described in
terms of scenarios, using mechanisms such as use-cases and message sequence
charts (MSCs) [8].

In general, scenarios could be of two types, positive and negative. Positive
scenarios are those that the system is designed to execute—for instance, these
may describe a handshaking protocol to set up a reliable communication chan-
nel between two hosts on a network. Negative scenarios indicate undesirable
behaviours, such as a situation when both hosts independently initiate the ac-
tivity of setting up a channel, leading to a collision.

This leads to a natural verification problem: given a distributed system and
a scenario, does the system exhibit the scenario? In the context of message
sequence charts, this is referred to as the scenario matching problem, for which
efficient algorithms have been identified [10]. An approach to solve this problem
using the modelchecker Spin was proposed in [4].

In this paper, we extend the study of scenario matching to timed systems. We
consider communicating finite-state machines equipped with local clocks. Clock
constraints are used to guard transitions and specify location invariants, as in
other models of timed automata [3]. Just as the runs of timed automata can be
described in terms of timed words, the interactions exhibited by communicating
finite-state machines with clocks can be described using timed MSCs.

⋆ Partially supported by Timed-DISCOVERI, a project under the Indo-French Net-
working Programme.
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We define a version of scenarios with timing constraints that we call timed
MSC templates. These templates are built from fixed underlying MSCs by as-
sociating a lower and upper bound on the time interval between certain pairs of
events. Timed MSC templates are a natural and useful extension of the untimed
notation for scenarios, because protocol specifications typically include timing
requirements for message exchanges, as well as descriptions of how to recover
from timeouts.

In general, a timed MSC template is compatible with infinitely many timed
MSCs. Thus, the scenario matching problem is already more complicated than
in the untimed case, where a single scenario describes exactly one pattern of
interaction. In our setting, the scenario matching problem can be reformulated
in terms of checking whether the intersection of two collections of timed MSCs
is nonempty.

We propose an approach to tackle this problem using the modelchecking tool
Uppaal, which is designed to verify properties of timed systems. Unfortunately,
the basic system model of Uppaal consists of a network of timed automata
that communicate via synchronous handshakes, rather than message-passing. We
thus need to code up message-passing channels by creating special processes to
model buffers. However, we can exploit the handshake mechanism to synchronize
the system with the template to be verified. This automatically reduces the
behaviours of the system to those that are consistent with the template. The
scenario matching problem can then be easily transformed into a modelchecking
question for Uppaal to verify on the composite system.

The paper is organized as follows. In the next two sections, we formally define
timed MSCs and timed message-passing automata. This enables us to precisely
define the scenario matching problem for timed systems in Section 4. In Section 5,
we describe our approach to address the scenario matching problem in Uppaal.
Next, we look at issues related to the expressiveness of our timed message-
passing automaton model. In Section 7, we examine some optimizations that
can be introduced when translating the scenario matching problem to Uppaal,
to improve the efficiency of verification. We conclude with a brief discussion.

2 Timed MSCs

2.1 Message sequence charts

Let P = {p, q, r, . . .} be a finite set of processes (agents) that communicate with
each other through messages via reliable FIFO channels using a finite set of
message typesM. For p ∈ P , let Σp = {p!q(m), p?q(m) | p 6= q ∈ P , m ∈ M} be
the set of communication actions in which p participates. The action p!q(m) is
read as p sends the message m to q and the action p?q(m) is read as p receives
the message m from q. We set Σ =

⋃

p∈P Σp. We also denote the set of channels
by Ch = {(p, q) | p 6= q}.

Labelled posets A Σ-labelled poset is a structure M = (E,≤, λ) where (E,≤)
is a poset and λ : E → Σ is a labelling function. For e ∈ E, let ↓e = {e′ | e′ ≤ e}.
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Fig. 1. An MSC over {p, q, r}.

For p ∈ P and a ∈ Σ, we set Ep = {e | λ(e) ∈ Σp} and Ea = {e | λ(e) = a},
respectively. For each (p, q) ∈ Ch, we define the relation <pq as follows:

e <pq e′ ⇐⇒ λ(e) = p!q(m), λ(e′) = q?p(m) and |↓e∩Ep!q(m)| = |↓e
′∩Eq?p(m)|

The relation e <pq e′ says that channels are FIFO with respect to each message—
if e <pq e′, the message m read by q at e′ is the one sent by p at e.

Finally, for each p ∈ P , we define the relation ≤pp= (Ep×Ep)∩≤, with <pp

standing for the largest irreflexive subset of ≤pp.

Definition 1. An MSC (over P) is a finite Σ-labelled poset M = (E,≤, λ) that
satisfies the following conditions.

1. Each relation ≤pp is a linear order.
2. If p 6= q then for each m ∈ M, |Ep!q(m)| = |Eq?p(m)|.

3. If e <pq e′, then |↓e ∩
(
⋃

m∈M Ep!q(m)

)

| = |↓e′ ∩
(
⋃

m∈M Eq?p(m)

)

|.
4. The partial order ≤ is the reflexive, transitive closure of the relation

⋃

p,q∈P <pq.

The second condition ensures that every message sent along a channel is
received. The third condition says that every channel is FIFO across all messages.

In diagrams, the events of an MSC are presented in visual order. The events
of each process are arranged in a vertical line and messages are displayed as
horizontal or downward-sloping directed edges. Figure 1 shows an example with
three processes {p, q, r} and six events {e1, e

′
1, e2, e

′
2, e3, e

′
3} corresponding to

three messages—m1 from p to q, m2 from q to r and m3 from p to r.
For an MSC M = (E,≤, λ), we let lin(M) = {λ(π) | π is a linearization of

(E,≤)}. For instance, p!q(m1) q?p(m1) q!r(m2) p!r(m3) r?q(m2) r?p(m3) is one
linearization of the MSC in Figure 1.

2.2 Timed MSC templates

A timed MSC template is an MSC annotated with time intervals between pairs
of events along a process line. For instance, consider the interaction between a
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Fig. 2. A timed MSC template describing interaction with an ATM.

user, an ATM and a server depicted in Figure 2. This MSC has sixteen events
generated by eight messages. The events u2 and u3 are linked by a time interval
(0, 2), as are the events s2 and s3. These time intervals represent constraints on
the delay between the occurrences of the events. Thus, this template specifies
that the server is expected to respond to a request to authenticate an ATM card
within 2 units of time. Similarly, a user has to type in his PIN within 3 units of
time of the ATM requesting the PIN.

For simplicity, we assume that time intervals are bounded by natural num-
bers. A pair of time points (m, n), m, n ∈ N, m ≤ n, denotes the time interval
{x ∈ R≥0 | m ≤ x ≤ n}.

Definition 2. Let M = (E,≤, λ) be an MSC. An interval constraint is a tuple
〈(e1, e2), (t1, t2)〉, where:

– e1, e2 ∈ E with e1 ≤pp e2 for some p ∈ P.
– t1, t2 ∈ N with t1 ≤ t2.

The restriction on the relationship between e1 and e2 ensures that an interval
constraint is local to a process.

Definition 3. A timed MSC template is pair T = (M, I) where M = (E,≤, λ)
is an MSC and I ⊆ (E × E)× (N× N) is a set of interval constraints.

2.3 Timed MSCs

In a timed MSC, events are explicitly time-stamped so that the ordering on the
time-stamps respects the partial order on the events.

Definition 4. A timed MSC is pair (M, τ) where M = (E,≤, λ) is an MSC
and τ : E → R≥0 assigns a nonnegative time-stamp to each event, such that for
all e1, e2 ∈ E, if e1 ≤ e2 then τ(e1) ≤ τ(e2).
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Fig. 3. A timed MSC instance describing interaction with an ATM.

A timed MSC satisfies a timed MSC template if the time-stamps assigned to
events respect the interval constraints specified in the template.

Definition 5. Let M = (E,≤, λ) be an MSC, T = (M, I) a timed template and
Mτ = (M, τ) a timed MSC. Mτ is said to satisfy T if the following holds

For each 〈(e1, e2), (t1, t2)〉 ∈ I, t1 ≤ τ(e2)− τ(e1) ≤ t2.

Definition 6. Let T be a timed MSC template. We denote by L(T ) the set of
timed MSCs that satisfy T .

Figure 3 shows a timed MSC that satisfies the template in Figure 2.
Let Mτ = (M, τ) be a timed MSC, where M = (E,≤, λ), and let π =

e0e1 . . . em be a linearization of (E,≤). By labelling each event with its times-
tamp, this linearization gives rise to a timed linearization (e0, τ(e0))(e1, τ(e1))
· · · (en, τ(en)). As is the case with untimed MSCs, under the FIFO assumption
for channels, a timed MSC can be faithfully reconstructed from any one of its
timed linearizations.

3 Timed Message-Passing Automata

Message-passing automata are a natural machine model for generating MSCs.
We extend the definition used in [6] to include clocks.

Definition 7. Let C denote a finite-set of real-valued variables called clocks.
A clock constraint is a conjunctive formula of the form x ∼ n or x − y ∼ n

for x, y ∈ C, n ∈ N and ∼ ∈ {≤, <, =, >,≥}. Let Φ(C) denote the set of clock
constraints over the set of clocks C.

Clock constraints will be used as guards and location invariants in timed
message-passing automata.
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Definition 8. A clock assignment for a set of clocks C is a function v : C → R≥0

that assigns a nonnegative real value to each clock in C.
A clock assignment v is said to satisfy a clock constraint ϕ if ϕ evaluates to

true when we substitute for each clock c mentioned in ϕ the corresponding value
v(c).

Let v : C → R≥0 be a clock assignment. For d ∈ R≥0, we write v + d to
denote the clock assignment that maps each x ∈ C to v(x) + d. For X ⊆ C, we
write v[X ← 0] to denote the clock assignment that agrees with v for all clocks
in C \X and maps all clocks in X to 0.

Definition 9. A timed message-passing automaton (timed MPA) over Σ with
a set of clocks C is a structure A = ({Ap}p∈P , Σ, C). Each component Ap is of
the form (Sp, S

p
in,→p, Ip), where:

– Sp is a finite set of p-local states.
– S

p
in ⊆ Sp, is a set of initial states for p.

– →p ⊆ Sp × Φ(C)×Σp × 2C × Sp is the p-local transition relation.
– Ip : S → Φ(C) assigns an invariant to each state.

The local transition relation→p specifies how the process p sends and receives
messages.

The transition (s, ϕ, p!q(m), X, s′) says that in state s, p can send the message
m to q and move to state s′. This transition is guarded by the clock constraint
ϕ—the transition is enabled only when the current values of all the clocks satisfy
ϕ. The set X specfies the clocks whose values are reset to 0 when this transition
is taken.

Similarly, the transition (s, ϕ, p?q(m), X, s′) signifies that at state s, p can
receive the message m from q and move to state s′ provided the current clock
values satisfy ϕ. Once again, all clocks in X are reset to 0.

A process can remain in a state s only if the current values of all the clocks sat-
isfy the invariant I(s). To make our model amenable for automated verification,
we restrict location invariants to constraints that are downward closed—that is,
constraints of the form x ≤ n or x < n, where x is a clock and n is a natural
number.

As is customary with timed automata, we allow timed MPA to perform two
types of moves: moves where the automaton does not change state and time
elapses, and moves where some local component p changes state instantaneously
as permitted by →p.

A global state of A is an element of
∏

p∈P Sp. For a global state s, sp denotes
the pth component of s. A configuration is a triple (s, χ, v) where s is a global
state, χ : Ch → M∗ is the channel state describing the message queue in each
channel c and v : C → R≥0 is a clock assignment. An initial configuration of A
is of the form (sin, χε, v0) where sin ∈

∏

p∈P S
p
in, χε(c) is the empty string ε for

every channel c and v0(x) = 0 for every x ∈ C.
The set of reachable configurations of A, ConfA, is defined inductively, to-

gether with a transition relation =⇒ ⊆ ConfA × (Σ ∪ R≥0)× ConfA.
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Fig. 4. A timed MPA: producer-consumer

– Every initial configuration (sin, χε, v0) is in ConfA.
– If (s, χ, v) ∈ ConfA and d ∈ R≥0 such that v and v + d satisfy the invari-

ants {Ip(sp)}p∈P , then there is a global move (s, χ, v)
d

=⇒ (s, χ, v + d) and
(s, χ, v + d) ∈ ConfA.

– If (s, χ, v) ∈ ConfA and (sp, ϕ, p!q(m), X, s′p) ∈ →p such that v satsfies ϕ,

there is a global move (s, χ, v)
p!q(m)
=⇒ (s′, χ′, v[X ← 0]) with (s′, χ′, v[X ←

0]) ∈ ConfA, where, for r 6= p, sr = s′r, χ′((p, q)) = χ((p, q)) · m, and for
c 6= (p, q), χ′(c) = χ(c).

– Similarly, if (s, χ, v) ∈ ConfA and (sp, ϕ, p?q(m), X, s′p) ∈ →p such that v

satisfies ϕ, there is a global move (s, χ, v)
p?q(m)
=⇒ (s′, χ′, v[X ← 0]) with

(s′, χ′, v[X ← 0]) ∈ ConfA, where, for r 6= p, sr = s′r, χ((q, p)) = m ·
χ′((q, p)), and for c 6= (q, p), χ′(c) = χ(c).

Let prf(σ) denote the set of prefixes of a timed word σ = (a1, t1)(a2, t2) . . .

(ak, tk) ∈ (Σ×R≥0)
∗. A run of A over σ is a map ρ : prf(σ)→ ConfA such that

ρ(ε) is assigned an initial configuration (sin, χε, v0) and for each σ′ · (ai, ti) ∈

prf(σ), ρ(σ′)
di=⇒

ai=⇒ ρ(σ′ · (ai, ti)) with ti = ti−1 + di and t0 implicitly set to 0.
The run ρ is complete if ρ(σ) = (s, χε, v) is a configuration in which all

channels are empty. When a run on σ is complete, σ is a timed linearization of a
timed MSC. We define L(A) = {σ | A has a complete run over σ}. Thus, L(A)
corresponds to the set of timed linearizations of a collection of timed MSCs.

Figure 4 is a simple example of a timed MPA. Here, the traditional producer-
consumer system is augmented with a clock c in the producer process. The
constraint c ≥ 1 on the transition ensures that each new message is generated
by the producer at least one unit of time after the previous one. The location
invariant c ≤ 2 forces the producer to generate a new message no later than
two units of time after the previous one. The consumer process has no timing
constraints. Figure 5 shows a typical timed MSC generated by the timed MPA
in Figure 4.

4 Verifying timed scenarios

Given a timed MSC template T and a timed MPA A, the verification question
that we address is whether A exhibits any timed scenario that is consistent with
T . In other words, we would like to check that L(T ) ∩ L(A) is nonempty.
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Fig. 5. A timed MSC generated by the producer-consumer system.

More generally, we identify a state property α that we would like the system
to satisfy at the end of the template. We would then like to check that every
timed MSC Mτ ∈ L(T ) ∩ L(A) satisfies α.

For instance, in the ATM example, suppose the template to be verified is the
one in Figure 2. We could associate with this template the condition that the
User is in a state where it can select an item from the menu. We would then
insist that every timed MSC that satisfies this template leaves the User in the
appropriate state.

Sometimes, it is fruitful to describe forbidden scenarios as timed templates.
Let T be such a negative template. We then want to check that a timed MPA A
does not exhibit a timed scenario consistent with T . In other words, we would
like L(T ) ∩ L(A) to be empty.

Instead of looking for exact matches, we can also consider the scenario ver-
ification problem modulo embedding. The notion of one MSC being embedded
in another is the usual one—there is an injective function mapping the messages
in the first MSC into the messages in the second MSC that preserves the par-
tial order between the events of the first MSC. Checking for patterns modulo
embedding is useful, for instance, when a system introduces auxiliary messages
to implement a protocol. For instance, most implementations of the standard
telnet protocol exchange additional messages to verify operating system details,
even though this is not part of the telnet protocol specification.

When checking for scenarios modulo embedding, we could constrain the na-
ture of the embedding. A strict embedding is one in which all additional mes-
sages in the target MSC carry labels that are disjoint from those in the source.
In other words, if we restrict the target MSC to the message alphabet of the
source MSC, we obtain an exact match. In a weak embedding, we do not impose
this restriction.

For timed MSCs, it seems important to work with weak embeddings. Consider
the example in Figure 6. The template we are looking for is a simple message
followed by an acknowledgment within 2 units of time, shown on the left. The
implementation is designed to resend the message if the acknowledgment does
not arrive within the specified time of 2 units. Thus, the implementation may



106

Client Server

msg

ack
(0, 2)

Client Server

(c1, 0)

(c2, 2.2)

(c3, 2.5)

(c4, 4)

(s1, 1)

(s2, 1.5)

(s3, 3)

(s4, 3.5)

msg

msg ack

ack

Fig. 6. Weak embedding is required for timed MSCs.

generate a timed MSC such as the one on the right, where the message is sent
twice. Nevertheless, it seems reasonable to argue that this system does exhibit
a scenario consistent with the timed template.

In the untimed setting, the problem of matching MSCs upto embedding was
considered in [10], where it was shown that a straightforward greedy algorithm
works under an interpretation in which MSCs are closed with respect to race
conditions [1], which permits the reordering along a process line of some pairs
of events that are not explicitly causally ordered. If one does not assume closure
with respect to race conditions, backtracking seems unavoidable in solving the
problem [4].

The scenario matching problem for timed MSCs is more complicated than
the same problem for untimed MSCs in one obvious way. Even though a timed
template is defined with respect to a single underlying MSC, the set of timed
MSCs that satisfy a given template is in general infinite. Thus, even with a
single template, the matching problem comes down to one of comparing infinite
collections of (timed) MSCs.

5 Using Uppaal for scenario verification

In [4], an approach is presented for solving the embedding problem for untimed
MSCs using the modelchecker Spin [7]. Message-passing automata are naturally
represented in Spin. The strategy suggested by [4] is to augment the underlying
system with an auxiliary monitor process. Each send and receive action in the
system is accompanied by a synchronization action with the monitor process.
In this way, the monitor process builds up a global picture of the MSC being
generated by the system. When the monitor detects that the given scenario
has been embedded, it enters a good state. The scenario embedding problem
can then be translated into a standard LTL model-checking problem for the
composite system, where the property to be checked includes the condition that
the monitor enters a good state.

This approach is not suitable in our setting for two reasons. The first is that
Spin has no way of dealing with time. Another complication is that timed MSC
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templates generate infinite families of timed MSCs. This makes the design of a
monitor process more complicated.

Instead, we move over to Uppaal, a modelchecker for timed systems [2]. Up-

paal supports the analysis of networks of timed automata for timing properties.
Unfortunately, unlike Spin, Uppaal does not have a direct way of modelling
asynchronous communication. However, we can simulate asynchronous commu-
nication by creating explicit buffer processes. Moreover, we can exploit the syn-
chronous communication paradigm built-in to Uppaal to get around the prob-
lem of having a separate process to monitor the communication patterns of the
system. Instead, we synchronize the system with the template at each commu-
nication action. This allows the system to evolve only along trajectories that are
consistent with the template, thus automatically restricting the behaviours of
the composite system to those that are of interest.

5.1 Modelling channels in Uppaal

Since Uppaal has no notion of buffered communication, we construct an explicit
buffer process for each channel between processes. Message passing is simulated
by a combination of shared memory and binary synchronization. Let p and q be
processes and let c be the channel between p and q. We create a separate process
c which maintains, internally, an array of messages Mpq whose size corresponds
to the capacity of c. This array is used by c as a circular buffer to store the state
of the channel. The process c maintains two pointers into the array: the next
free slot into which p can write and the slot at the head of the queue from which
q will next read a message.

The channel c shares two variables spc and rcq with p and q, respectively.
These are used to transfer information about the actual message between the
processes and the channel. The channel c also uses two special actions apc and
acq to synchronize with p and q, respectively. These synchronizations represent
the actual insertions and deletions of messages into and from the channel.

When p sends a message m to q, it sets the shared variable spc to m and
synchronizes with c on apc. When c synchronizes with p, it copies the message
from spc into the array slot that currently corresponds to the end of the queue
and then increments the free slot pointer to point to the next position in the
array.

Symmetrically, when q wants to read a message m from p, it sets the shared
variable rcq to m and then synchronizes with c on action acq. In c, this synchro-
nization is guarded by conditions that check that there is at least one message
in the queue and that the message at the head of the queue matches the one q

is looking for, as recorded in the shared variable rcq.

5.2 Handling timed MSC templates

To verify timed MSC templates, the first step is to convert such a template into a
timed MPA whose language of timed MSCs corresponds to that of the template.
Since the template is built from a single MSC, the communication structure of
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the MPA is fixed and can be computed easily, as explained in [4]. Each time
constraint in an MSC template is local to a process. We introduce a new clock
for each constraint and add clock constraints using these clocks to guard the
actions of the MPA so that it respects the timed template.

5.3 Computing L(T ) ∩ L(A)

We can now augment the system description in Uppaal so that the evolution
of the system to be verified is controlled by the external template specification.
Recall that each action corresponding to sending or receiving a message by a local
process is broken up into two steps in the Uppaal implementation, one which
sets the value of a shared variable spc and another which communicates with
the buffer process via a shared action apc. We extend this sequence to a third
action, bpc, by which the system synchronizes with the specification. A move of

the form s
p!q(m)
=⇒ s′ in the original timed MPA now breaks up, in the Uppaal

implementation, into a sequence of three moves s
spc=m
=⇒ s1

apc

=⇒ s2
bpc

=⇒ s′. The
third action, bpc synchronizes with the corresponding process p in the timed
MPA derived from the timed template that is being verified. Thus, the system
can progress via this action only if it is consistent with the constraints specified
by the template.

Symmetrically, for a receive action of the form s
p?q(m)
=⇒ s′, the Uppaal imple-

mentation would execute a sequence of the form s
rpc=m
=⇒ s1

ācp

=⇒ s2
b̄cp

=⇒ s′, where
we use the convention that an action a synchronizes with a matching action ā.

By construction, it now follows that the timed MSCs executed by the com-
posite system are those which are consistent with both the timed template and
with the underlying timed MPA being modelled in Uppaal. Thus, we have re-
stricted the behaviour of the system to L(T )∩L(A), for a given timed template
T and a given timed MPA A. From this, it is a simple matter of invoking the
Uppaal modelchecker to verify whether this set of behaviours is empty and
whether all behaviours in this set satify a given property. Hence, we get a direct
answer to the scenario verification problems posed in the previous section.

5.4 Matching modulo weak embedding

To match scenarios modulo weak embedding, the template has to be relaxed to
permit the system to exchange additional messages that are not present in the
scenario being verified. This is easily done by introducing a self loop at each
state of the template automaton. These self loops are labelled with additional
actions and have no timing constraint. For arbitrary weak embeddings, all pos-
sible actions are enabled at each self loop. For strict embeddings, only actions
that are not mentioned in the template are enabled. We can further tune the
nature of the embedding we are looking for by varying the choice of additional
actions from one self loop to the next.
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Fig. 7. The difficulty with existentially bounded channels.

6 Expressiveness issues

6.1 Bounded channels

Our implementation implicitly assumes that, in any run of the system, chan-
nels are uniformly bounded by the size of the queue that is maintained by the
channel process. Recent work on timed message-passing automata [9] shows that
checking whether channels are universally bounded is undecidable for in general
(in particular, it is undecidable with three components and two channels).

On the other hand, we can examine the structure of the underlying untimed
system, without timing constraints. It is clear that if the underlying untimed
automaton has universally bounded channels, then so will the corresponding
automaton with timing constraints. Message-passing automata with universally
bounded channels have a well understood theory [6], so this is a natural class of
systems to which we can restrict our attention.

In the untimed case, many of the characterizations and decidability results
for systems with universally bounded channels also go through for systems with
existentially bounded channels [5]. A collection of MSCs is said to be existentially
bounded if there is a bound B such that, for every MSC in the collection, there is
at least one interleaving in which no channel’s capacity exceeds B. Since, with the
FIFO assumption, we can reconstruct an MSC from even a single interleaving, an
existentially bounded collection of MSCs has a faithful sequential represention
as a regular language, which allows us to perform operations analogous to those
defined for systems with universally bounded channels.

Unfortunately, the existentially bounded linearization that one requires for
an MSC may be disallowed by timing constraints. Consider again the example
of a producer-consumer system, this time with local timing constraints on both
send and receive actions, as shown in Figure 7. The underlying untimed system
is 1-bounded and the corresponding linearization is p1 c1 p2 c2 · · · , where each
message is consumed as soon as it is sent. However, in the timed version shown
in the figure, receive events are forced to lag behind send events, so the only
timed linearizations are those in which the channel is unbounded.
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6.2 Imposing bounds on channels

We have assumed that all clocks used in constraints are local to a process.
Notice, however, that time itself is global, so all clocks proceed at a uniform
rate. This is more a simplifying assumption than a technical necessity, because
no comparisons are made across clocks.

One reason to introduce global clocks would be to specify bounds on chan-
nel delays. For instance, we could associate a clock with a channel that is set
when a message is sent and use a constraint on this clock’s value to impose a
bound on the delay before it is received. However, a näıve implementation of
this idea fails, as shown in Figure 8. Here, though the clock r seems to bound
the channel delay by 1, it is possible for the first message to be received after
more than 1 unit (2.5 units, in the example) because the clock r is reset by the
next send event. To faithfully model channel delays, we would have to associate
an array of clocks with each channel, one for each position in the queue. Even
with universally bounded channels, it is not clear how to use such an array of
clocks when specifying a timed MPA, because the transition associated with a
send action may generate messages at different depths in the queue, depending
on the history. We can unfold the MPA, keeping channel information as part of
the state, but this leads to a very verbose and cumbersome specification.

Producer

s ≤ 2

s ≥ 1 ⇒ p!q(m), {s, r}

Consumer

r < 1 ⇒ q?p(m)

Producer Consumer

(p1, 0)

(p2, 1.5)

(p3, 3.4)

(p4, 4.4)

(c1, 2.5)

(c2, 3.5)

(c3, 3.6)

(c4, 5.0)

m

m

m

m

Fig. 8. Modelling channel delays

7 Optimizing the translation into Uppaal

We describe some optimizations that can be incorporated when translating the
scenario matching problem into Uppaal to enable more efficient modelchecking.

7.1 Controlling Interleavings with committed locations

Our implementation of buffered channels adds one new state to the Uppaal

system for each send or receive action in the original timed MPA. The intro-
duction of an extra synchronize action with the corresponding process in the
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specification adds one new state to the system for each communication in the
intersection of L(T ) ∩ L(A). These extra states introduce extra interleavings in
the execution of the system. In the worst case, when all the actions in the system
are communication events from the intersection, the total number of locations
in the system gets tripled.

Consider the three moves s
spc=m
=⇒ s1

apc

=⇒ s2
bpc

=⇒ s′. Here, the first transition
is always enabled, and can be taken at the earliest possible instant. We would
like the system to follow the specification, and hence the third transition should
ideally be enabled when we reach the state s2.

Uppaal allows locations be labelled committed. If any process is in a commit-
ted location, the next transition must involve an edge from one of the committed
locations, and time cannot progress while in that location.

Marking the location s as committed forces the system to move to s1 as soon
as it enters location s. The system waits in state s2 only if the corresponding
process in the specification is not ready to synchronize. This would mean that
the behaviour of the system is already deviating from the template. Since, we are
only interested in computing L(T )∩L(A), we mark location s2 as committed as
well. These committed locations remove the extra interleavings introduced into
the system by splitting up a single message send/receive action into a sequence
of actions and increases the efficiency of the model checker.

7.2 Guiding Uppaal using priorities

Uppaal also permits the allocation of priorities to channels and processes. A
higher priority transitions always blocks the lower priority one. Process priorities
can be used to guide the model checker, and get quicker results.

In the ATM example, the User process chooses from one of the many options
in the menu. The ATM process accepts the choice made by the User process.
In the Uppaal model, both the processes have choices regarding sending or
receiving the menu options. However, in reality, the choices of the ATM are
decided by the User process. We can inform Uppaal about this by declaring
the User process to be of higher priority than the ATM process. Similarly, since
the Server process needs to only service requests made by the ATM process, it
has a lower priority. In Uppaal, these priorities are specified by the directive
“system server < atm < user ;”.

7.3 Meta Variables

The Uppaal system allows some variables to be declared as meta variables.
Meta variables do not contribute to the state space. By declaring the global
arrays within the buffers as meta variables, we can cut down on significantly on
the overall set of configurations that the modelchecker has to explore.
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8 Discussion

We have considered a useful extension of the scenario matching problem to timed
systems. This allows us to specify and verify, more accurately, the interactions
associated with typical protocol specifications.

To the best of our knowledge, ours is the first attempt to connect message-
passing automata with timing constraints to timed MSCs. The problem of check-
ing whether an MSC with interval timing constraints admits a feasible schedule
has been discussed in [1], but this work studies MSCs in isolation, without ref-
erence to a system model. On the other hand, timed message-passing automata
very similar those defined in this paper have been very recently considered in
[9]. In this work, the emphasis is on proving (un)decidability results for simple
verification criteria such as reachability and channel boundedness. This paper
does not address the semantics of such automata in terms of (timed) MSCs.

Preliminary results show that our approach to solve the problem of sce-
nario matching in timed systems can be effectively automated using a tool like
Uppaal. We are working on more detailed examples to understand better the
practical issues involved with timed scenario verification. Another issue to be
explored is the extent to which we can enhance the expressive power of timed
MSC templates.
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