
Tagging make local testing of message-passing systems feasible∗

Puneet Bhateja and Madhavan Mukund

Chennai Mathematical Institute, Chennai, India

E-mail: {puneet,madhavan}@cmi.ac.in

Abstract

The only practical way to test distributed message-
passing systems is to use local testing. In this approach,
used in formalisms such as concurrent TTCN-3, some
components are replaced by test processes. Local testing
consists of monitoring the interactions between these
test processes and the rest of the system and comparing
these observations with the specification, typically de-
scribed in terms of message sequence charts. The main
difficulty with this approach is that local observations
can combine in unexpected ways to define implied sce-
narios not present in the original specification. Check-
ing for implied scenarios is known to be undecidable for
regular specifications, even if observations are made for
all but one process at a time. We propose an approach
where we append tags to the messages generated by the
system under test. Our tags are generated in a uniform
manner, without referring to or influencing the inter-
nal details of the underlying system. These enriched
behaviours are then compared against a tagged version
of the specification. Our main result is that detecting
implied scenarios becomes decidable in the presence of
tagging.

1 Introduction

We consider the problem of testing whether a
message-passing system conforms to its specification.
Our focus is to check the patterns of communication
that arise between the different components of the sys-
tem. These interaction scenarios are typically specified
using Message Sequence Charts.

Message Sequence Charts (MSCs) [9] are an ap-
pealing visual formalism that are used in a number
of software engineering notational frameworks such as
SDL [14] and UML [6]. A collection of MSCs is used to

∗Partially supported by Timed-DISCOVERI, a project under

the Indo-French Networking Programme, as well as by a grant

from Tata Consultancy Services.

capture the scenarios that a designer might want the
system to exhibit (or avoid).

A standard way to generate a set of MSCs is via
Hierarchical (or High-level) Message Sequence Charts
(HMSCs) [11]. Without losing expressiveness, we con-
sider only a subclass of HMSCs called Message Se-
quence Graphs (MSGs). An MSG is a finite directed
graph in which each node is labeled by an MSC. An
MSG defines a collection of MSCs by concatenating
the MSCs labeling each path from an initial vertex to
a terminal vertex.

A natural way to test a distributed implementation
against an MSG specification is to substitute test pro-
cesses for one or more components and record the in-
teractions between the test process(es) and the rest
of the system. We refer to this form of testing dis-
tributed message-passing systems as local testing. The
implementation is said to pass a local test if the ob-
servations at the test process(es) are consistent with
the MSG specification. Local testing is the methodol-
ogy adopted in formalisms such as concurrent TTCN-3
[16] that are used to specify test suites for telecommu-
nication applications.

An important impediment to local testing is the pos-
sibility of implied scenarios. Let T = {P1, P2, . . . , Pk}
be a collection of subsets of processes. We say that
an MSC M is T -implied by an MSC language L if the
projections of M onto each subset Pi ∈ T agree with
the projections onto Pi of some good MSC MPi

∈ L.
Implied scenarios have been studied in [3, 4], where
the observations are restricted to individual processes
rather than arbitrary subsets.

Let Tk denote the set of all subsets of processes of
size k. We say that an MSC language L is k-testable
if every Tk-implied scenario is already present in L. In
other words, if a specification is k-testable, it is possible
to accurately test an implementation by performing a
collection of local tests with respect to Tk. On the
other hand, if L is not k-testable, even an exhaustive
set of local tests with respect to Tk cannot rule out an
undesirable implied scenario.

p qm

⇓

p q

tp tq
(m, t)

m m

Figure 1. Adding a transport layer to tag mes-
sages

It has been shown in [3] that 1-testability is undecid-
able, even for regular MSG specifications. This result
has been extended in [5] to show that for any n, k-
testability of an MSG specification with n processes is
undecidable, for all k ∈ {1, 2, . . . , n−1}.

To get around this negative result, we propose a
framework where the system behaviour is augmented
using tags. The tagging mechanism is intended to run
in parallel with the system under test. This can be
implemented as an additional transport layer in the
network that encapsulates all communication between
the components in the system under test, as shown in
Figure 1.

The observed behaviours of the tagged system are
compared to an enhanced specification that incorpo-
rates the same set of tags. Our main result is that
tagging using local time-stamps of the type described
in [12] makes 1-testability (and hence k-testability for
any k) decidable. Moreover these time-stamps can be
generated deterministically and locally on-the-fly, mak-
ing it easy to construct a test environment into which
the system under test can be embedded.

The local time-stamping algorithm proposed in [12]
has been applied to construct effective algorithms for
message-passing systems in other contexts [1, 8]. How-
ever, the important distinction between our use of time-
stamps for tagging and these earlier applications is that
our tagging mechanism runs independently of the sys-
tem being tested. In these earlier applications of time-
stamping, the time-stamping mechanism is tightly cou-
pled with the original system so that state information
is incorporated into the time-stamps and, at the same
time, time-stamps are used to constrain the behaviour
of the system. In contrast, our tagging protocol is only

loosely coupled with the system under test and does
not refer to or modify in any way the underlying be-
haviour.

As mentioned earlier, the problem of implied scenar-
ios was first identified in [3]. Their aim was to look for
simple realizations of MSC specifications in terms of
communicating finite-state machines, by constructing
each component as a projection of the corresponding
line in the MSC. The realizability problem corresponds
to 1-testability in our framework and was shown to
be undecidable for regular MSG specifications in [4].
However, the safe realizability problem, which asks for
deadlock-free implementations, was shown to be de-
cidable for regular MSG specifications in [4]. Our re-
sult in this paper can also be viewed as a solution to
the realizability problem that lies in between the näıve
approach of [3] and the fully general construction for
regular MSC languages described in [8]. In particular,
our construction can be viewed as a variant of causal
realizability, studied in [1].

The paper is organized as follows. We begin with
preliminaries about MSCs, before we formally define
k-testability in Section 3. The next section establishes
our main result about the decidability of 1-testability in
the presence of bounded time-stamping. In Section 5,
we describe how to interpret our results in the context
of realizability. We conclude with a brief discussion.

2 Preliminaries

2.1 Message sequence charts

Let P = {p, q, r, . . .} be a finite set of processes
(agents) that communicate with each other through
messages via reliable FIFO channels using a finite
set of message types M. For p ∈ P , let Σp =
{p!q(m), p?q(m) | p 6= q ∈ P , m ∈ M} be the set of
communication actions in which p participates. The
action p!q(m) is read as p sends the message m to q

and the action p?q(m) is read as p receives the mes-
sage m from q. We set Σ =

⋃
p∈P

Σp. We also denote

the set of channels by Ch = {(p, q) ∈ P2 | p 6= q}.

Labelled posets A Σ-labelled poset is a structure
M = (E,≤, λ) where (E,≤) is a partially ordered set
and λ : E → Σ is a labelling function that extends, as
usual, to sequences of events. For e ∈ E, let ↓e = {e′ |
e′ ≤ e}. We refer to ↓e as the causal past of e. For
p ∈ P and a ∈ Σ, we set Ep = {e | λ(e) ∈ Σp} and
Ea = {e | λ(e) = a}, respectively. For (p, q) ∈ Ch, we

p q r

e1

e′1

e2

e′2 e3

e′3

m1

m2

m3

Figure 2. An MSC

define the relation <pq:

e <pq e′
def
= ∃m ∈ M such that

λ(e) = p!q(m), λ(e′) = q?p(m) and

|↓e ∩ Ep!q(m)| = |↓e′ ∩ Eq?p(m)|

The relation e <pq e′ says that channels are FIFO with
respect to each message—if e <pq e′, the message m

read by q at e′ is the one sent by p at e.
Finally, for each p ∈ P , we define the relation

≤pp= (Ep ×Ep)∩≤, with <pp standing for the largest
irreflexive subset of ≤pp.

Definition 1 An MSC over P is a finite Σ-labelled
poset M = (E,≤, λ) where:

1. Each relation ≤pp is a linear (total) order.

2. If p 6= q then for each m ∈ M, |Ep!q(m)| =
|Eq?p(m)|.

3. If e <pq e′, then |↓e ∩
(⋃

m∈M
Ep!q(m)

)
| = |↓e′ ∩(⋃

m∈M
Eq?p(m)

)
|.

4. The partial order ≤ is the reflexive, transitive clo-
sure of

⋃
p,q∈P

<pq.

The second condition ensures that every message
sent along a channel is received. The third condition
says that every channel is FIFO across all messages.

In diagrams, the events of an MSC are presented in
visual order. The events of each process are arranged in
a vertical line and messages are displayed as horizontal
or downward-sloping directed edges. Figure 2 shows
an example with three processes {p, q, r} and six events
{e1, e

′
1, e2, e

′
2, e3, e

′
3} corresponding to three messages—

m1 from p to q, m2 from q to r and m3 from p to r.
For an MSC M = (E,≤, λ), we let lin(M) =

{λ(π) | π is a linearization of (E,≤)}. For instance,
p!q(m1) q?p(m1) q!r(m2) p!r(m3) r?q(m2) r?p(m3) is
one linearization of the MSC in Figure 2.

MSC languages An MSC language is a set of MSCs.
We can also regard an MSC language L as a word lan-
guage over Σ given by lin(L) =

⋃
{lin(M) | M ∈ L}.

⇒M1 M2

p q r s

M1

m

m

p q r s

M2

m

m

p q

r s

CGM1◦M2

Figure 3. A message sequence graph

Definition 2 An MSC language L is said to be a reg-
ular MSC language if the word language lin(L) is a
regular language over Σ.

Let M be an MSC and B ∈ N. We say that
w ∈ lin(M) is B-bounded if for every prefix v of w and
for every channel (p, q) ∈ Ch,

∑
m∈M

|πp!q(m)(v)| −∑
m∈M

|πq?p(m)(v)| ≤ B, where πΓ(v) denotes the pro-
jection of v on Γ ⊆ Σ. This means that along the exe-
cution of M described by w, no channel ever contains
more than B messages. We say that M is (univer-
sally) B-bounded if every w ∈ lin(M) is B-bounded.
An MSC language L is B-bounded if every M ∈ L is
B-bounded. Finally, L is bounded if it is B-bounded
for some B.

We then have the following result [8].

Theorem 3 If an MSC language L is regular then it
is bounded.

2.2 Message sequence graphs

Message sequence graphs (MSGs) are finite directed
graphs with designated initial and terminal vertices.
Each vertex in an MSG is labelled by an MSC. The
edges represent (asynchronous) MSC concatenation,
defined as follows.

Let M1 = (E1,≤1, λ1) and M2 = (E2,≤2, λ2) be a
pair of MSCs such that E1 and E2 are disjoint. The
(asynchronous) concatenation of M1 and M2 yields
the MSC M1 ◦ M2 = (E,≤, λ) where E = E1 ∪ E2,
λ(e) = λi(e) if e ∈ Ei, i ∈ {1, 2}, and ≤ = (≤1 ∪ ≤2 ∪⋃

p∈P
E1

p × E2
p)∗.

A Message Sequence Graph is a structure G = (Q,→
, Qin, F, Φ), where Q is a finite and nonempty set of
states, → ⊆ Q × Q, Qin ⊆ Q is a set of initial states,
F ⊆ Q is a set of final states and Φ labels each state
with an MSC.

A path π through an MSG G is a sequence q0 →
q1 → · · · → qn such that (qi−1, qi) ∈ → for i ∈

{1, 2, . . . , n}. The MSC generated by π is Φ(π) =
M0 ◦ M1 ◦ M2 ◦ · · · ◦ Mn, where Mi = Φ(qi). A path
π = q0 → q1 → · · · → qn is a run if q0 ∈ Qin and
qn ∈ F . The language of MSCs accepted by G is
L(G) = {Φ(π) | π is a run through G}. We say that
an MSC language L is MSG-definable if there exists an
MSG G such that L = L(G).

An example of an MSG is depicted in Figure 3.
The initial state is marked ⇒ and the final state has
a double line. The language L defined by this MSG
is not regular: L projected to {p!q(m), r!s(m)}∗ con-
sists of σ ∈ {p!q(m), r!s(m)}∗ such that |σ↾p!q(m)| =
|σ↾r!s(m)| ≥ 1, which is not a regular string language.

In general, it is undecidable whether an MSG de-
scribes a regular MSC language [8]. However, a suffi-
cient condition for the MSC language of an MSG to be
regular is that the MSG be locally synchronized.

Communication graph For an MSC M = (E,≤, λ),
let CGM , the communication graph of M , be the di-
rected graph (P , 7→) where:

• P is the set of processes of the system.

• (p, q) ∈ 7→ iff there exists an e ∈ E with λ(e) =
p!q(m).

M is said to be com-connected if CGM consists of one
nontrivial strongly connected component and isolated
vertices.

Locally synchronized MSGs The MSG G is locally
synchronized [13] (or bounded [2]) if for every loop π =
q → q1 → · · · → qn → q, the MSC Φ(π) is com-
connected. In Figure 3, M1 ◦M2 is not com-connected,
so the MSG is not locally synchronized. We have the
following result for MSGs [2].

Theorem 4 If G is locally synchronized, L(G) is a reg-
ular MSC language.

3 Locally testable MSC languages

In local testing, we substitute test process(es) for
one or more components and record the interactions
between the test process(es) and the rest of the system.
The implementation is said to pass a local test if the
observations at the test process(es) are consistent with
the MSG specification. An important impediment to
local testing is the possibility of implied scenarios.

Definition 5 Let M = (E,≤, λ) be an MSC and P ⊆
P a set of processes. The P -observation of M , M↾P ,
is the collection of local observations {(Ep,≤pp)}p∈P —
recall that ≤pp= ≤ ∩ (Ep × Ep). The collection

p q r s

M1

m

m

p q r s

M2

m

m

p q r s

M ′

m m

m

Figure 4. An example of implied scenarios

{(Ep,≤pp)}p∈P can also be viewed as a labelled par-
tial order (EP ,≤P) where EP =

⋃
p∈P Ep and ≤P =(⋃

p,q∈P <pq

)∗

.

Let T ⊆ 2P be a family of subsets of processes. An
MSC M is said to be T -implied by an MSC-language
L if for every subset P ∈ T there is an MSC MP ∈ L
such that MP ↾P = M↾P .

We denote by Tk the set {P ⊆ P | |P | = k} of
all subsets of P of size k and we say that an MSC is
k-implied if it is Tk-implied.

Figure 4 illustrates the idea of implied scenarios.
The MSC M ′ is 1-implied by {M1, M2}. However,
M ′ is not 2-implied by {M1, M2} because the {p, s}-
observation of M ′ does not match either M1 or M2.

We are interested in checking the global behaviour
of a distributed implementation by testing it locally
against an MSG specification. For this to be meaning-
ful, the MSG should be closed with respect to implied
scenarios generated by the test observations. This leads
to the following definition.

Definition 6 Let |P| = n. For k < n, an MSG G
is said to be k-testable if every scenario M that is k-
implied by L(G) is already a member of L(G).

We have the following negative result from [4, 5].

Theorem 7 Let G be a locally-synchronized MSG, so
that L(G) is a regular MSC language over n processes.
For any k < n, it is undecidable whether L(G) is k-
testable.

The root cause of this undecidability is the fact that
even when a MSC language L is regular, and hence
B-bounded for some B, the set of scenarios k-implied
by L may not be bounded. An example when k is 1
is shown in Figure 5—all messages are labelled m and
labels are omitted.

Since M1 and M2 are both com-connected, the lan-
guage (M1+M2)

∗ is a regular MSG-definable language.

p M1 q

p M2 q

M1

M1

M1

M1

M2

M2

M2

M2

M1

M1

M1

M1

Figure 5.

p q r s

M1

(m,1)

(m,1)

p q r s

M2

(m,2)

(m,2)

p q r s

M ′

(m,1) (m,2)

(m,?)

Figure 6. A simple tagging scheme

On the other hand, for each k ∈ N, the MSC in
which the p-observation matches M2k

1 Mk
2 and the q-

observation matches Mk
2 M2k

1 has a global cut where
the channel (p, q) has capacity k + 1. The figure shows
the case k = 2. The dotted line marks the global cut
where the channel (p, q) has maximum capacity.

4 Local testing with tagging

Our proposal for getting around the negative results
from [4, 5] is to tag the messages generated by the MSG
specification. Tagging can be done in many different
ways. The simplest is to append a label to each mes-
sage identifying the node in the MSG to which it be-
longs. For instance, the implied scenario in the exam-
ple shown in Figure 4 disappears with such a tagging
scheme, as shown in Figure 6. In the tagged setting,
we cannot assign a tag to the message sent from p to s

in M ′ that is consistent with both M1 and M2.

This kind of tagging does not completely eliminate
implied scenarios, as shown in Figure 7. In this exam-
ple, an implied scenario arises because processes p and
q traverse the left loop while r and s independently
traverse the right loop.

A serious shortcoming of the simple tagging scheme
is that it cannot be easily implemented to run alongside
the system under test. To generate node based tags on
the fly, we have to implicitly simulate the MSG while
running the implementation and nondeterministically

⇒

p q r s

(m,1)
(m,1)

(m,1)
(m,1)

p q

(m,2)

r s

(m,3)

p q r s

(m,1)
(m,1)

(m,1)
(m,1)

(m,2) (m,3)

Figure 7. Implied scenario with simple tags

guess when to switch labels. As we shall see, it is im-
portant that the tagging scheme used during testing is
local and deterministic.

Instead, we propose a more elaborate tag-
ging scheme that uses a (bounded) time-stamping
mechanism—for example, the algorithm described in
[12]. Let G be an MSG and M ∈ L(G). We append to
each message m that is sent in M a time-stamp t gener-
ated according to the bounded time-stamping protocol
described in [12]. This time-stamp assigns a new label
to the current send event and records a finite amount
of information about its causal past. Using these time-
stamps, we can disambiguate copies of m sent in differ-
ent contexts which would otherwise lead to implied sce-
narios. Though, again, this does not completely elim-
inate the possibility of implied scenarios, it does make
the problem of detecting implied scenarios decidable.
Also, using time-stamping, we can implement an effec-
tive procedure for local testing of an implementation
against the MSG specification. We begin by recalling
the salient features of the bounded time-stamping pro-
tocol described in [12].

4.1 Bounded time-stamping

Let M = (E,≤, λ) be an MSC and e an event in E.
We say that a send event e′ is unacknowledged at e if
e′ ∈ ↓e is a send event for some message m but the
matching receive event for m lies outside ↓e. We also
say that m is an unacknowledged message at e. Note
that this definition does not require m to be sent by
the same process that executes e.

Proposition 8 An MSC M = (E,≤, λ) is B-bounded

if and only if there can never be more than B unac-
knowledged messages from p to q in ↓e, for any p, q ∈ P
and e ∈ E.

Proof: Suppose the channel (p, q) can contain B+1-
messages. We can identify a prefix of M in which these
B+1 messages have been sent but not received. In this
prefix, there are B+1 unacknowledged messages from
p to q.

Conversely, suppose there is a prefix of M with B+1
unackowledged messages from p to q. Let ep be the
maximum p-event in this prefix. In the partial com-
putation ↓ep, there are B+1 messages in the channel
from p to q. 2

The time-stamping protocol in [12] is described in
terms of a deterministic message-passing automaton
(MPA). An MPA A = {Ap}p∈P consists of a collection
of automata. Each component is a finite state automa-
ton Ap = (Sp, Σp,→p, S

in
p , Sf

p). The local transitions

of Ap are of the form s
a
−→ s′ where a is either a send

action p!q(m) or a receive action p?q(m). To describe
the behaviour of an MPA, we associate a FIFO channel
(p, q) with each pair of distinct processes p, q ∈ P . A
send action p!q(m) appends m to the channel (p, q)
whereas a receive action p?q(m) consumes the mes-
sage at the head of the channel (p, q), if the channel
is nonempty, and blocks otherwise. A more formal de-
scription of MPAs can be found in [8].

Let AT be the MPA corresponding to the time-
stamping protocol in [12]. The automaton AT has the
following properties.

• Every send event e is assigned a label ℓe from a
set of labels whose size is bounded. This bound
depends only on the number of processes in the
system and the bound on the channel size and is
independent of the length of the computation. The
label ℓe forms part of the time-stamp te sent at e.

• The time-stamp te sent at any event e includes the
labels of all the unacknowledged send events in ↓e.
Note that this set is bounded if the channels are
B-bounded.

• The time-stamp te sent at any event e additionally
includes the labels of a bounded set of send events
in ↓e. These extra labels are used by the receiving
process to decide whether the information in te
is “fresher” than its existing knowledge, in which
case it updates its local state with the information
in te.

• The automaton AT is deterministic.

– If the p-component AT
p of AT is in state s

and it receives a time-stamp t, the new state
s′ assumed by AT

p is uniquely determined by
s and t.

– If the p-component AT
p of AT is in state s

and it sends a time-stamp t, the content of t

is uniquely determined by s. Moreover, AT
p

moves to a new state s′ that is also uniquely
determined by s.

4.2 Time-Stamped unfolding of an MSG

Given an MSG G = (Q,→, Qin, F, Φ), we construct
a time-stamped MSG GT = (QT ,→T , QT

in, FT , ΦT)
by unfolding G so that each message is tagged with
the appropriate time-stamp, as generated by the time-
stamping automaton AT . Each state q̄ ∈ QT is a path
over Q in G. The MSC associated with q0q1 . . . qj in
GT is a time-stamped version of the MSC associated
with qj in G, with time-stamps as generated by AT af-
ter the sequence q0q1 . . . qj−1. We cut off a path in the
unfolding whenever we generate two copies of an MSC
corresponding to the same node q in G with identical
time-stamps. Formally, we construct GT inductively.

• QT
in = {q | q ∈ Qin}. For each q ∈ QT

in,
ΦT (q) = Φ(q)T , where Φ(q)T is a time-stamped
version of Φ(q) in which the time-stamps are gen-
erated assuming that the time-stamping automa-
ton AT was in its initial state at the beginning of
Φ(q).

• Let q̄ = q0q1 . . . qj ∈ QT and let qj → q̂ in G, with

M̂ = Φ(q̂).

Define M̂T to be the time-stamped version of M̂ ,
assuming that AT begins assigning time-stamps to
M̂ starting from the global state {sp}p∈P after the
MSC ΦT (q0)◦ΦT (q1)◦ · · · ◦ΦT (qj). (Note that af-
ter any sequence of complete MSCs, all messages
that have been sent have been received, so the con-
figuration reached by AT will have all channels
empty.)

If q̂ = qi for some i ∈ {0, 1, . . . , j} and M̂T =
ΦT (q0q1 . . . qi), then add the edge q0q1 . . . qj →T

q0q1 . . . qi in GT . This corresponds to cutting off
the current path.

Otherwise, add a new node q0q1 . . . qj q̂ to GT ,
add an edge q0q1 . . . qj →T q0q1 . . . qj q̂ and set

ΦT (q0q1 . . . qj q̂) = M̂T .

Since AT uses a bounded set of time-stamps, we
can only generate a bounded number of distinct time-
stamped copies of any MSC M that appears in G.

Hence, every path in GT will be cut off at a finite
depth, so GT is a finite MSG. Moreover, any loop π̂

in the unfolded MSG GT also corresponds to a loop
π in the original MSG G. The communication graphs
CGΦT (π̂) and CGΦ(π) are identical, so GT is also locally

synchronized and L(GT) is a regular MSC language.
In many cases, time-stamps directly rule out implied

scenarios—for instance, the example shown in Figure 4
no longer constitutes an implied scenario. The time-
stamps generated for the two instances of the message
p!s(m) in M1 and M2 are different, and this will result
in an inconsistent view for s in M ′.

The time-stamp generated at a send event e is de-
termined by its causal past ↓e. For an MSC M and a
process p, p’s causal view of M is ↓ep, where ep is p’s
last event in M . An MSC M is causally implied by an
MSC language L if for every procees p, p’s causal view
of M matches p’s causal view of some MSC Mp in L.
Any causally implied scenario is also an implied sce-
nario in our setting. However, since time-stamps are
generated only at send events and not at receive events,
a scenario may be implied in our setting without being
causally implied.

p q r s p q r s p q r s

α

β

γ

β

α

δ

γ

α

β

γ

M1 M2 M ′

Figure 8. An implied scenario with time-
stamps

In the example shown in Figure 8, all messages are
implicitly labelled m. The messages from r to q and s

to q have the same time-stamps in M1 and M2 because
they constitute the first messages sent by r and s. To
see why the message from q to p is labelled γ in both
M1 and M2, we note that the time-stamping protocol
in [12] only records information about the relative or-
dering of time-stamped events. Thus, the time-stamp
generated by q only depends on the fact that q has
received two messages labelled α and β sent indepen-
dently, and not on the order in which these messages
were received. From this, it follows that the MSC M ′ is
implied by M1 and M2. For p and s, M ′ looks like M1

while for q, M ′ looks like M2, and for r both M1 and
M2 are compatible with M ′. We can enhance the time-
stamping protocol to also record the order in which
messages are received, which will rule out this implied
scenario.

Note that, in practice, we do not actually have to
explicitly construct GT in order to perform local test-
ing using time-stamps as tags. Also, we do not need
to explicitly compute the upper bound B on the chan-
nel capacities, even though this can be done. We will
address these points in Section 4.4.

4.3 Checking 1-testability of GT

We now consider the problem of determining
whether GT , the time-stamped version of G, is 1-
testable. In other words, given a time-stamped MSG
GT , is every MSC MT that is 1-implied by L(GT) al-
ready present in L(GT)? Henceforth, we just write im-
plied scenario to mean a 1-implied scenario.

Our first observation is that the time-stamps that
appear in an implied scenario are, in fact, consistent
with the underlying MSC without time-stamps.

Lemma 9 Let M be an implied scenario for GT . Let
M̂ be the corresponding MSC in which the time-stamps
have been stripped and let M̂T be the version of M̂ af-
ter adding time-stamps according to the time-stamping
protocol of [12]. Then, M is identical to M̂T .

Proof: The result follows from the fact that the time-
stamping MPA AT is deterministic. For each p, let
Mp be the witnessing MSC in L(GT) such that M↾p =

Mp↾p. Let M̂T = (ET ,≤T , λT), with e ∈ ET a p-event.
Then, e corresponds to a p-event ep in Mp. We show by
induction on the size of ↓e that the state of AT

p , the p-

component of AT , before and after e in M̂T is the same
as the state of AT

p before and after ep in Mp. Since AT

is deterministic, this also implies that the time-stamp
generated with each message is the same in M̂T as in
Mp, and hence the same as in M .

If ↓e = {e}, then ↓ep = {ep} as well, and both must
be send events with the same label λT (e). In both
cases, AT

p is in its initial state before the event, so the
time-stamp generated for the message sent at e and ep

is the one determined by this initial state, and the new
state after the event is uniquely specified.

Let e be a p-event such that |↓e| = k+1, where the
induction hypothesis holds for all events e′ such that
|↓e′| ≤ k.

If e is a send event, let e− be the previous p event.
(There must be such an event, otherwise ↓e = {e}.)

Inductively, the state of AT
p after e− in M̂T is the same

as the state of AT
p after the corresponding event e−p in

Mp. Since AT is deterministic, it is clear that the time-

stamp and state change in M̂T will be the same as in
Mp.

If e is a receive event, we can again use the induction
hypothesis to argue that the state of AT

p is the same
before e as it is before the corresponding event ep in
Mp. Let f be the send event on some process q corre-
sponding to the message received at e. Since ↓f (↓e,
we can apply the induction hypothesis to conclude that
the time-stamp generated at f is the same as the one
generated at the corresponding event fq in Mq. Thus,

the time-stamp received by p in M̂T is the same as the
one received in M and hence the same as the time-
stamp received in Mp. This means that the new state

of AT
p after e in M̂T is the same as the state of AT

p

after ep in Mp.

2

A corollary of this lemma is that in any implied sce-
nario MT generated by GT , no channel exceeds the
bound B associated with G.

Corollary 10 All implied scenarios of GT are B-
bounded, where B is the bound associated with the lo-
cally synchronized MSG G.

Proof: Suppose MT is an implied scenario in which
there are more than B messages in some channel, say
(p, q). When p sends message B+1 in this sequence,
the time-stamp associated with this message will in-
dicate that there are B+1 unacknowledged messages
on this channel. This time-stamp cannot be consistent
with any time-stamp in GT since GT never has more
than B unacknowledged messages, which contradicts
the assumption that MT is an implied scenario. 2

The key feature that makes the preceding Lemma
and Corollary go through is that the time-stamping
scheme of [12] is local and deterministic. Locally deter-
ministic components can combine together in only one
way. It is clearly not essential that we use exactly the
same time-stamping scheme as [12]—we just need a lo-
cal, deterministic tagging mechanism that also reflects,
directly or indirectly, the capacities of the channels.

Following [3, 4], we can construct an MPA {AP }p∈P

that accepts all the implied scenarios of GT as follows:
each process Ap is constructed by projecting GT onto p

and creating a new state between each pair of consecu-
tive events along p. Let L′ be the language of implied
scenarios accepted by this automaton. From Corol-
lary 10, it follows that L′ is B-bounded for some B, so
L′ is in fact a regular MSC language. This immediately
gives us the following theorem.

Theorem 11 Given any locally synchronized MSG G,
it is decidable whether GT , the time-stamped version of
G, is 1-testable.

Proof: We know that the MSC language L(GT) is
regular. On the other hand, from the preceding ob-
servations, the MSC language L′ of implied scenarios
generated by GT is also regular. To check if GT is 1-
testable, we just have to check whether L′ \ L(GT) is
empty, which can be done since both are regular MSC
languages. 2

4.4 Implementing local testing using
time-stamps

To locally test a message-passing system (system un-
der test, or SUT) AI , we can run the SUT in parallel
with the time-stamping automaton AT . Let us denote
this compound system AI ‖ AT . The state of each
process p in AI ‖ AT is a pair 〈sI , sT 〉 where sI is the
current local state of p in AI and sT is the current local
state of p in AT . If the implementation has a transition
sI

a
−→ s′I where a = p!q(m), the compound system sends

a message of the form 〈m, t〉, where sT
p!q(t)
−−−→ s′T is the

time-stamping move for AT
p in state sT . This takes the

compound system to a new local state 〈s′I , s
′
T 〉. Sym-

metrically, if the compound system receives a message
〈m, t〉 from q in state 〈sI , sT 〉, the new state of the sys-

tem will be 〈s′I , s
′
T 〉 where sI

p?q(m)
−−−−→ s′I is a local move

for p in the SUT and sT
p?q(t)
−−−−→ s′T is the move dictated

by AT
p .

Local testing will observe the behaviour of the com-
pound system at the interface of each process and com-
pare this with the specification GT . Note that we do
not have to explicitly construct GT in order to perform
the test. We can trace out a path through GT by gen-
erating time-stamps on the fly, just as we do for the
SUT.

We also do need to explicitly compute the precise
upper bound B on the channel capacity that is enforced
by the fact that the MSG G is locally synchronized.
Given that such a bound B exists, we know that GT

is bounded. Hence, any local observation of AI ‖ AT

will, after a bounded number of steps, either diverge
from the specification or hit a loop in GT . We do not
need the value of B to determine when to terminate a
test.

As we have emphasized, earlier, we can think of AT

as a transport layer sitting above AI to make local test-
ing possible. The important point is that this transport
layer is independent of the SUT and does not require
any modifications to be made in the structure of the
SUT itself. Also, while it tags the behaviour of the
SUT in a deterministic fashion, it does not interfere
with the SUT in any way. This is a crucial feature of
our approach, since it is not reasonable to expect the

implementation to offer any specific facility for testing,
nor it is acceptable to test a restricted system whose
behaviour does not match that of the original SUT.

The number of bits in each time-stamp generated
by the protocol of [12] is bounded by O(B2N2(log B +
log N)), where B is the channel bound and N is the
number of processes. This means that the transport
layer used to implement local testing adds only poly-
nomially many bits to each message.

5 Realizability

The problem of implied scenarios was first identified
in [3] in the context of a problem called called weak
realizability. Their aim was to look for simple realiza-
tions of MSC specifications in terms of communicating
finite-state machines, by constructing each component
as a projection of the corresponding line in the MSC.
Clearly, such an implementation is faithful to the spec-
ification if and only if the specification does not admit
any implied scenarios. Thus realizability corresponds
to 1-testability in our framework and was shown to be
undecidable for regular MSG specifications in [4].

The corresponding question for synchronous
communication—MSCs in which each message ex-
change is a handshake—has been considered in [15].
In this setting, it is shown that one can construct
an implementation that covers the specification and
includes the minimum number of implied scenarios in
doing so.

On the other hand, arbitrary regular MSC specifi-
cations can be implemented faithfully using message-
passing automata with bounded channels if we are al-
lowed to add additional control information to mes-
sages [8]. These control messages piggyback on existing
system messages and use the time-stamping protocol
of [12] to transfer information about the global state of
the sytem to each process. However, this construction
is rather complex and impractical. Moreover, the sys-
tems synthesized in this manner may have deadlocks.

We can view our results as providing a solution to
the realizability problem that lies between these two
extremes. Given an MSG G, we obtain each compo-
nent as local projection, as in weak realizability, but
also run a tagging protocol in parallel to enforce ad-
ditional coordination. Our results show that we can
check whether such an implementation is faithful to
G. The tagging protocol is independent of G and quite
efficient to construct on the fly, so this provides a sig-
nificantly simpler synthesis algorithm than the one in
[8] that avoids the negative features of the very näıve
approach of weak realizability.

A related question is that of deadlock free, or safe,

realizability. In [4], this question is shown to be decid-
able for regular MSG specifications. The precise com-
plexity of the construction is computed in [10], where
it is also shown that safe realizability is undecidable
for arbitrary MSG specifications. In our setting, the
only additional machinery we introduce is the tagging
automaton that runs in parallel with the implementa-
tion. Since this automaton is local and deterministic,
it does not introduce any deadlocks, so our approach
will produce a deadlock-free implementation whenever
the approach of [4] does.

Another interesting connection is to causal realiz-
ability. Our approach is motivated by the fact that
checking for causally implied MSCs is decidable for reg-
ular MSC languages [1]. The causal closure of L is the
set of all MSCs that are causally implied by L. It turns
out that the causal closure of a regular MSC language
is always regular and can be constructed using bounded
time-stamps.

The time-stamping used to compute causal closure
is woven into the state space of the original system,
which is not desirable for testing, as we have already
pointed out. Nevertheless, it is natural to compare
our approach with causal realizability. As we observed
earlier, any causally implied scenario is also an implied
scenario in our setting. We do not know, however, how
close to causal closure we can get using our loosely
coupled timestamps.

6 Discussion

As we have observed, since we can tag the SUT and
the MSG specification on the fly, performing a local
test is relatively efficient. The main practical diffi-
culty with our proposal is the explosion in the length
of the tests to be performed. These are now pro-
portional to paths in GT . Let M be the number of
nodes in G and let K be the number of messages in
the largest MSC labelling any of the nodes in G. There
are O((B2N2(log B+log N))K) ways of assigning time-
stamps to this largest MSC, each of which could appear
as a separate node in GT . In general, this blowup could
occur for each node in G, so the size of GT could be as
large as O((B2N2(log B + log N))KM).

It would be interesting to find more efficient time-
stamping schemes that still guarantee that the testa-
bility problem is decidable. We saw a simple tagging
scheme in which we uniformly labelled messages in each
node with the name of the node as the time-stamp. We
can construct more elaborate tagging schemes in which
the tag structure depends on the MSG. However, as we
have seen, the key feature that we need from the tag-
ging scheme is that it is local and deterministic, which

is not easy to achieve if the tags refer to the structure
of the MSG.

Another, more theoretical, question is to explore the
expressive power of loosely coupled time-stamps. As we
observed in the context of the example in Figure 8, we
can enhance the time-stamping protocol of [12] to elim-
inate some implied scenarios. In the limit, we approach
causal closure, but how close can we get?

Acknowledgments We thank Philippe Darondeau,
Paul Gastin, Blaise Genest and K. Narayan Kumar for
their insightful comments on an earlier version of this
paper.

References

[1] Adsul, B., Mukund, M., Narayan Kumar, K.,
and Narayanan, V.: Causal closure for MSC
languages. Proc. FSTTCS 2005, Springer LNCS
3821 (2005) 335–347.

[2] Alur, R., and Yannakakis, M.: Model checking of
message sequence charts. Proc. CONCUR 1999,
Springer LNCS 1664 (1999) 114–129.

[3] Alur, R., Etessami, K.,and Yannakakis, M.: In-
ference of message sequence graphs. IEEE Trans.
Software Engg 29(7) (2003) 623–633.

[4] Alur, R., Etessami, K., and Yannakakis, M.: Real-
izability and Verification of MSC Graphs. Theor.
Comput. Sci. 331(1) (2005) 97–114.

[5] Bhateja, P., Gastin, P., Mukund, M., and Narayan
Kumar, K.: Local testing of message sequence
charts is difficult. Proc. FCT 2007, Springer LNCS
4639 (2007) 76–87.

[6] Booch, G., Jacobson, I., and Rumbaugh, J.:
Unified Modeling Language User Guide. Addison-
Wesley (1997).

[7] Harel, D., and Gery, E.: Executable object mod-
eling with statecharts. IEEE Computer, July 1997
(1997) 31–42.

[8] Henriksen, J.G., Mukund, M., Narayan Kumar,
K., Sohoni, M., and Thiagarajan, P.S.: A Theory
of Regular MSC Languages. Inf. Comp., 202(1)
(2005) 1–38.

[9] ITU-TS Recommendation Z.120: Message Se-
quence Chart (MSC). ITU-TS, Geneva (1997).

[10] Lohrey, M.: Realizability of high-level message se-
quence charts: closing the gaps. Theor. Comput.
Sci. 309(1–3) (2003), 529–554.

[11] Mauw, S., and Reniers, M. A.: High-level message
sequence charts, Proc SDL’97, Elsevier (1997)
291–306.

[12] Mukund, M., Narayan Kumar, K., and Sohoni,
M.: Bounded time-stamping in message-passing
systems. Theoretical Computer Science, 290(1)
(2003) 221–239.

[13] Muscholl, A., and Peled, D.: Message sequence
graphs and decision problems on Mazurkiewicz
traces. Proc. MFCS 1999, Springer LNCS 1672
(1999) 81–91.

[14] Rudolph, E., Graubmann, P., and Grabowski, J.:
Tutorial on message sequence charts. In Computer
Networks and ISDN Systems — SDL and MSC 28
(1996)

[15] Uchitel, S., Kramer, J., and Magee, J.: Detect-
ing implied scenarios in message sequence chart
specifications. Proc. ESEC/ SIGSOFT FSE, ACM
(2001) 74–82.

[16] Willcock, C., Deiß, T., Tobies, S., Keil, S., Engler,
F., and Schulz, S.: An Introduction to TTCN-3.
Wiley (2005).

