
On Verifying TSO Robustness for Event-Driven
Asynchronous Programs ?

Ahmed Bouajjani1, Constantin Enea1, Madhavan Mukund2, and Rajarshi Roy2

1 IRIF, University Paris Diderot, France
2 Chennai Mathematical Institute, India

Abstract. We present a method for checking whether an event-driven
asynchronous program running under the Total Store Ordering (TSO)
memory model is robust, i.e., all its TSO computations are equivalent
to computations under the Sequential Consistency (SC) semantics. We
show that this verification problem can be reduced in polynomial time to
a reachability problem in a program with two threads, provided that the
original program satisfies a criterion called robustness against concurrency,
introduced recently in the literature. This result allows to avoid explicit
handling of all concurrent executions in the analysis, which leads to an
important gain in complexity.

1 Introduction

Asynchronous event-driven programming allows procedures to be executed asyn-
chronously (after their invocation), e.g., as callbacks handling the occurrences of
external events. In particular, modern user interface (UI) frameworks in Android,
iOS, and Javascript, are instances of asynchronous event-driven programming.
These frameworks dedicate a distinguished main thread, called UI thread, to
handling user interface events. Since responsiveness to user events is a key concern,
common practice is to let the UI thread perform only short-running work in re-
sponse to each event, delegating to asynchronous tasks the more computationally
demanding part of the work. These asynchronous tasks are in general executed
in parallel on different background threads, depending on the computational
resources offered by the execution platform. The apparent simplicity of UI pro-
gramming models is somewhat deceptive. The difficulty of writing safe programs
given the concurrency of the underlying execution platform is still all there.

Bouajjani et al. [6] have proposed a correctness criterion for such programs
which requires that their standard (multi-thread) semantics is a refinement of
a single-thread semantics where user events are executed until completion in
a serial manner, one after the other, and the asynchronous tasks created by
an event handler (and recursively, by its callee) are executed asynchronously

? This work is supported in part by the European Research Council (ERC) under the
European Union’s Horizon 2020 research and innovation programme (grant agreement
No 678177), and the Franco-Indian CNRS-DST/CEFIPRA collaborative project
AVECSO.

(once the execution of the creator finishes), but serially and in the order of their
invocation. The multi-thread semantics being a refinement of the single-thread
implies that the sets of observable reachable states of the program w.r.t. both
semantics are exactly the same (see Section 4 for the exact definition). While
the multi-thread semantics provides greater performance and responsiveness, the
single-thread semantics is simpler to apprehend. The inherent non-determinism
due to concurrency and asynchronous task dispatching from the multi-thread
semantics is not present in the context of the single-thread one. A program that
satisfies this refinement condition is said to be robust against concurrency. The
same work has shown that violations of this criterion correspond in practice
to undesirable behaviors, and that this criterion can be checked efficiently (in
polynomial time for Boolean programs), using a linear time reduction to the
state reachability problem in sequential programs.

Robustness against concurrency assumes that the programs are executed
under Sequential Consistency [15] (SC), where the actions of different threads are
interleaved while the program order between actions of each thread is preserved.
For performance reasons, modern multiprocessors implement weaker memory
models, e.g., Total Store Ordering (TSO) [18] in x86 machines, which relax
the program order. For instance, the main feature of TSO is the write-to-read
relaxation, which allows reads to overtake writes. This relaxation reflects the fact
that writes are buffered before being flushed non-deterministically to the main
memory. In this work, we consider asynchronous event-driven programs that are
executed under TSO, and investigate the relationship between robustness against
concurrency and robustness against TSO [3, 7, 8, 9], which requires that a TSO
program admits the same behaviors as if it was run under SC.

We first show that robustness against concurrency (which concerns only the
SC semantics) doesn’t imply robustness against TSO (see Section 2), i.e., even if
the SC semantics doesn’t allow interference between events and asynchronous
invocations (they can be seen as atomic), the TSO semantics can still introduce
new behaviors which are not possible under SC (therefore, breaking the atomicity
of the events and asynchronous invocations). However, we show that checking
robustness against TSO for programs satisfying robustness against concurrency
is more efficient than in the general case. Using the approach in [5], we show that
such a program is not robust against TSO iff it admits a robustness violation
which can be simulated using just two threads. This implies that checking
robustness against TSO for a program with an unbounded number of threads
(that is robust against concurrency) can be reduced in polynomial time to the
problem of checking TSO robustness for a program with just two threads. The
latter has been proved to be polynomial time for Boolean programs in [5].

Our work leads in particular to an efficient approach for the verification of
functional correctness of event-driven asynchronous programs running under TSO
that consists in solving three separate problems: (1) showing that the program
is functionally correct w.r.t the single-thread semantics, (2) showing that the
program is robust against concurrency, and (3) showing that the program is

// Event 1
void searchForNews(String key) {

new SearchTask.execute(key);
new SaveTask.execute(key); }

// Event 2
void showDetail(int id) {

// show detail of the idth news
new DownloadTask.execute(id); }

class SaveTask extends AsyncTask {
void doInBackground(String key) {

// write key to the database } }

class SearchTask extends AsyncTask {
List result = null;
void doInBackground(String key) {

result = ...
// get from the network

}
void onPostExecute () {

list = result;
// display the list of titles } }

class DownloadTask extends AsyncTask {
String content = null;
void doInBackground(int id) {

content = ... // get from the network
}
void onPostExecute () {

// display the content } }

Fig. 1: A program which is robust against concurrency.

robust against TSO. These problems can be solved efficiently by considering only
particular types of computations captured by sequential or two thread programs.

Related Work. The weakest correctness criterion that enables SC reasoning for
proving invariants of programs running under TSO is state-robustness against
TSO i.e., the reachable set of states is the same under both SC and TSO. However,
this problem has high complexity (at least non-primitive recursive for programs
with a finite number of threads and a finite data domain [4]). Therefore, it is
difficult to come up with an efficient and precise solution. A symbolic decision
procedure is presented in [1] and over-approximate analyses are proposed in
[13, 14]. Due to the high complexity of state-robustness, stronger correctness
criteria with lower complexity have been proposed. Trace-robustness (that we call
simply robustness against TSO in our paper) is one of the most studied criteria
in the literature. Trace-robustness is PSpace-complete for a finite number of
threads and a finite data domain [7] and EXPSpace-complete for an unbounded
number of threads. Besides trace-robustness, there are other correctness criteria
like triangular race freedom (Trf) and persistence that are stronger than state-
robustness. Persistence ([2]) is incomparable to trace-robustness and Trf [16]
is stronger than both trace-robustness and persistence. Our work considers the
specific case of event-driven asynchronous programs and shows that checking
trace-robustness has a much lower complexity (polynomial time), provided the
programs are robust against concurrency.

The works in [10, 12, 11, 17] target exploring interesting subsets of executions
and schedules for asynchronous programs running under SC, that offer a large
coverage of the execution space. This is orthogonal to the focus of our paper
which is to analyze behaviors of these programs running under TSO.

2 Motivation

We briefly discuss the relevance of robustness against concurrency using the
program in Figure 1, which is extracted from an Android application (we assume
it is executed under SC). This program has two event handlers searchForNews

and showDetail which can be invoked by the user to search for news containing
a keyword and to display the details of a selected news respectively. Robustness
against concurrency can be characterized as the conjunction of event-serializability
and event determinism, which are variants of the classical notions of serializability
and determinism, adapted to our context. Intuitively, since the single-thread
semantics defines a unique execution, given a set of external events (partially
ordered w.r.t. some causality relation imposed by the environment), then (1) the
executions of the event handlers must be serializable (to an order compatible
with their causality relation), i.e., the execution of each event handler and its
subtasks can be seen as an atomic transaction, and (2) the execution of each
event handler is deterministic, i.e., it always leads to the same state, for any
possible scheduling of its parallel subtasks.

The procedure searchForNews creates two AsyncTask objects SearchTask and
SaveTask whose execute method will invoke asynchronously doInBackground fol-
lowed by onPostExecute, in the case of the former. Under the multi-thread
semantics, doInBackground is invoked on a new thread and onPostExecute is
invoked on the main thread. When the user input to search for news is trig-
gered, the invocation doInBackground of searchTask connects to the network,
searches for the keyword and fetches the list of resulting news titles. Then, the
invocation onPostExecute displays the list of titles to the user. SaveTask saves
the keyword to a database representing the search history in the background.
The background tasks SearchTask.doInBackground and SaveTask.doInBackground

might interfere but any interleaving produces the same result, i.e., it can be
assumed searchForNews is deterministic.

The second event, to show the details of a title, can be triggered once the list
of titles are displayed on the screen. It invokes an asynchronous task to download
the contents of the news in the background and then displays it. In this case, the
tasks are executed in a fixed order and the event is trivially deterministic.

Concerning serializability, the invocation of SaveTask in the first event and
the second event might interleave (under the concrete semantics). However,
assuming that the second event is triggered once the results are displayed, any
such interleaving results in the same state as a serial execution of these events.

To show that robustness against concurrency doesn’t imply robustness against
TSO consider the two programs in Figure 2. The program on the left of Figure 2
consists of a single event which is deterministic, but it is not robust against TSO.
The TSO memory model admits a computation where both a and b are 0 at the
end of the program which is not possible under SC. The program on the right
of Figure 2 consists of n events ei with 1 ≤ i ≤ n, which are all deterministic
and serializable (therefore the program is robust against concurrency) but its
semantics under TSO admits a computation where all the ai variables are 0 at
the end of the program (which is again not possible under SC).

procedure e1() {
x:=1;
a:=y;
async[any] p();

}
procedure p() {

y:=1;
b:=x;

}

// for every 1 ≤ i ≤ n
procedure ei() {

if(yi−1=1)
async[any] pi();

}
procedure pi() {

xi:=1;
ai:=x(i+1)modn;

async[any] qi();
}
procedure qi() {

yi:=1;
}

Fig. 2: Asynchronous programs which are not robust against TSO. All variables
are initially set to 0 except for y0 in the second program which is set to 1.

3 Programs

In order to give a generic definition of robustness, which doesn’t depend on any
particular asynchronous-programming platform or syntax, we frame our discussion
around the abstract notion of programs defined in § 3.1. Two alternative multi-
thread and single-thread semantics to programs under the SC memory model are
given in § 3.2 and § 3.4. A version of the multi-threaded semantics under the
TSO memory model is given in §3.3.

3.1 Asynchronous Event-Driven Programs

We define an event handler as a procedure which is invoked in response to a user
or a system input. For simplicity, we assume that inputs can arrive in any order.
Event handlers may have some asynchronous invocations of other procedures, to
be executed later on the same thread or on a background thread.

We fix sets G and L of global and local program states. Local states ` ∈ L
represent the code and data of an asynchronous procedure or event-handler
invocation, including the code and data of all nested synchronous procedure
calls. A program is defined as a mapping between pairs of global and local states
which gives the semantics of each statement in the code of a procedure (the
association between threads, local states, and procedure invocations is defined in
§ 3.2 and § 3.4). To formalize the notions of robustness, this mapping associates
with each statement a label called program action that records the set of accessed
global variables and the asynchronous invocations in that statement. An event
set E ⊂ L is a set of local states; each e ∈ E represents the code and data for a
single event handler invocation (called event for short).

Formally, a program P : G× L→ G× L×B maps global states g ∈ G and
local states ` ∈ L to new states and program actions; each P (g, `) represents
a single program transition. Supposing that the global states g ∈ G are maps
from program variables x to values g(x), and that local states ` ∈ L map
program variables a to values `(a) and a program counter variable pc to program

x := a a := x a := expr call p(y) async[w] p(y) return

Fig. 3: Basic statements. The metavariables x and a range over global and local
variable names, respectively, expr is an expression over local variables, p ranges
over procedure names, and w over the symbols “main” and “any.”

statements `(pc), we give an interpretation to the standard program syntax listed
in Figure 3. Besides assignments and synchronous procedure calls, async[w] p(y)
represents an asynchronous invocation of p(y) run on a distinguished main thread
when w = main, and on an arbitrary thread when w = any. For instance, writing
`+ to denote `[pc 7→ `(pc)+1], then P (g, `) is

– 〈g[x 7→`(a)], `+,wr(x, `(a))〉 when `(pc) is a global-variable write x := a,
– 〈g, `+[a7→g(x)], rd(x, g(x))〉 when `(pc) is a global-variable read a := x,
– 〈g, `+[a7→`(expr)], ε〉 when `(pc) is a local computation a := expr (here,
`(expr) is the standard extension of ` to expressions expr over local variables),

– 〈g, `+, invoke(`′, w)〉 when `(pc) is an asynchronous invocation async[w]
p(y), where `′ maps the parameters of procedure p to the invocation argu-
ments y and pc to the initial statement of p, and

– 〈g, `, return〉 when `(pc) is the return statement.

The semantics of other statements, including synchronous procedure calls call

p(y), if-then-else conditionals, while loops, or goto statements, etc., is standard,
and yield the empty program action ε.

An event is called sequential when its code doesn’t contain asynchronous invo-
cations async[w] p(y). Also, a program P with event set E is called sequential
when every event e ∈ E is sequential. Otherwise, P is called concurrent.

3.2 SC Multi-thread Asynchronous Semantics

A task u = 〈`, i, j, k〉 is a local state ` ∈ L along with invocation, event and thread
identifiers i, j, k ∈ N, and U denotes the set of tasks. We write invoc(u), event(u),
and thread(u) to refer to i, j, and k, respectively. A configuration c = 〈g, t, q〉 is a
global state g ∈ G along with sets t, q ⊆ U of running and waiting tasks such that:
(1) invocation identifiers are unique, i.e., invoc(u1) 6= invoc(u2) for all u1 6= u2 ∈
t∪ q, and (2) threads run one task at a time, i.e., thread(u1) 6= thread(u2) for all
u1 6= u2 ∈ t. The set of configurations is denoted by Cm. We say that a thread
k is idle in c when k 6∈ {thread(u) : u ∈ t}, and that an identifier i, j, k is fresh
when i, j, k 6∈ {α(u) : u ∈ (t ∪ q)} for α ∈ {invoc, event, thread}, respectively. A
configuration is idle when all threads are idle.

To define robustness against concurrency, we expose the following set A of
actions in execution traces:

A ={start(j), end(j) : j ∈ N} ∪B ∪ {invoke(i),begin(i), return(i) : i ∈ N}
By convention, we denote asynchronous procedure invocation, event, and thread
identifiers, respectively, with the symbols i, j, k. The start(j) and end(j) actions
represent the start and end of event j; the invoke(i), begin(i), and return(i)

event
e ∈ E i, j are fresh

g, t, q
〈0, ,j,start(j)〉
−−−−−−−−−−−→ g, t, q ∪ {〈e, i, j, 0〉}

async
P (g, `1) = 〈 , `′1, invoke(`2, w)〉 u2 = 〈`2, i2, j, k2〉
i2 is fresh k2 is 0 if w = main or fresh otherwise

g, t ∪ {〈`1, i, j, k〉}, q
〈k,i,j,invoke(i2)〉
−−−−−−−−−−−−−→ g, t ∪ {〈`′1, i, j, k〉}, q ∪ {u2}

dispatch
u = 〈`, i, j, k〉 k is idle

g, t, q ∪ {u}
〈k,i,j,begin(i)〉
−−−−−−−−−−−−→ g, t ∪ {u}, q

return
P (g, `) = 〈 , , return〉 j ∈ {event(u) : u ∈ t ∪ q}

g, t ∪ {〈`, i, j, k〉}, q
〈k,i,j,return(i)〉
−−−−−−−−−−−−→ g, t, q

end event
P (g, `) = 〈 , , return〉 j 6∈ {event(u) : u ∈ t ∪ q}

g, t ∪ {〈`, i, j, k〉}, q
〈k,i,j,return(i)〉 k,〈i,j,end(j)〉
−−−−−−−−−−−−−−−−−−−−−−−−→ g, t, q

local
P (g, `) = 〈g′, `′, a〉 a ∈ {ε, rd(x),wr(x)}

g, t ∪ {〈`, i, j, k〉}, q
〈k,i,j,a〉
−−−−−−−→ g

′
, t ∪ {〈`′, i, j, k〉}, q

Fig. 4: The multi-thread transition function → for a program P with event set E.

actions represent an asynchronous procedure invocation (when it is added to
the queue of pending invocations), the start of i’s execution (when it is removed
from the queue), and return of i, respectively. The set X of memory accesses is
defined as in the program actions of Section 3.1.

The transition function → in Figure 4 is determined by a program P and
event set E, and maps a configuration c1 ∈ Cm and thread identifier k ∈ N
to another configuration c2 ∈ Cm and label λ = 〈k, i, j, a〉 where i and j are
invocation and event identifiers, and a ∈ A is an action — we write thread(λ),
invoc(λ), event(λ), and act(λ) to refer to k, i, j, and a, respectively. Let ΛSC
denote the set of such transition labels λ. event transitions mark the beginnings
of events. We assume that all events are initiated on thread 0, which is also
referred to as the main thread. Also, for simplicity, we assume that events can
be initiated arbitrarily at any time. Adding causality constraints between events,
e.g., one event can be initiated only when a certain action has been executed, is
possible but tedious. async transitions create pending asynchronous invocations,
dispatch transitions begin the execution of pending invocations, and return
transitions signal their end (the condition in the right ensures that this is not a
return from an event). end event transitions mark the end of an event and by
an abuse of notation, they map c1 and k to a configuration c2 and two labels,
return(i) denoting the end of the asynchronous invocation and end(j) denoting
the end of the event. All other transitions are local.

An execution of a program P under the SC multi-thread semantics with
event set E to configuration cn is a configuration sequence c0c1 . . . cn such that

cm
λm+1−−−→ cm+1 for 0 ≤ m < n. We call the sequence λ1 . . . λn the trace of

c0c1 . . . cn. The set of traces of P with E under the SC multi-thread semantics is
denoted by JP,EKSCm . We may omit P when it is understood from the context.

The call tree of a trace τ is a ranked tree CallTreeτ = 〈V,E,O〉 where V are
the invocation identifiers in τ , and the set of edges E contains an edge from i1
to i2 whenever i2 is invoked by i1, i.e., τ contains a label 〈i1, , invoke(i2)〉. The
function O : E → N labels each edge (i1, i2) with an integer n whenever i2 is
the nth invocation made by i1, i.e., 〈i1, , invoke(i2)〉 is the nth label of the form
〈i1, , invoke()〉 occurring in τ (reading τ from left to right).

write issue
P (g, `) = 〈g′, `′,wr(x)〉

g, t ∪ {〈`, i, j, k〉}, q, b
〈k,i,j,issue(x,g′(x))〉
−−−−−−−−−−−−−−−−→ g, t ∪ {〈`′, i, j, k〉}, q, b[k 7→ b[k] · wr(x, g

′
(x))]

write commit

g, t, q, b[k 7→ wr(x, v) · σ]
〈k,i,j,wr(x,v)〉
−−−−−−−−−−−→ g[x 7→ v], t, q, b[k 7→ σ]

fence
b[k] = ε

g, t, q, b
〈k,i,j,fence〉
−−−−−−−−−→ g, t, q, b

read
P (g
′
, `) = 〈g′, `′, rd(x)〉

g
′
= g[x 7→ v] if the latest write on x in b[k] is wr(x, v), and g

′
= g, otherwise

g, t ∪ {〈`, i, j, k〉}, q, b
〈k,i,j,rd(x,v)〉
−−−−−−−−−−−→ g, t ∪ {〈`′, i, j, k〉}, q, b

Fig. 5: The TSO multi-thread transition function → for a program P with event
set E.

3.3 TSO Multi-thread Asynchronous Semantics

The extension of the SC multi-thread semantics of Section 3.2 to the TSO
memory model is obtained by adding write buffers to each thread, such that each
write on a global variable is first stored in a write buffer before being flushed
non-deterministically to the global memory, and each read takes a value from
the write buffer, if a write on the corresponding global variable exists, or the
global memory, otherwise. To deal with TSO memory effects, we also extend the
program syntax of Section3.1 by adding a statement fence which ensures that
all the writes in the buffer have been flushed to the global memory.

A configuration c = 〈g, t, q, b〉 extends an SC configuration 〈g, t, q〉 with a set
b of write buffers, one for each thread. The write buffer of a thread k is denoted
by b[k]. The transition function → for local actions that access global variables
is given in Figure 5 (the transitions corresponding to the rest of the actions are
defined exactly as in the SC case). write issue adds a global variable write to a
write buffer, write commit executes the oldest write in a buffer on the global
memory, read and fence give the semantics of global variable read and fence
statements. Let ΛTSO be the set of transition labels in the TSO semantics, i.e.,
the union of ΛSC and all labels 〈k, i, j, issue(x, v)〉 and 〈k, i, j, fence〉 representing
write issue and fence transitions, respectively.

The set of traces of P with E under the TSO multi-thread semantics is
denoted by JP,EKTSO

m .

3.4 Single-thread Asynchronous Semantics

Conversely to the multi-thread semantics of Section 3.2, our single-thread se-
mantics minimizes the set of possible program behaviors by executing all events
and asynchronous invocations on the main thread, the asynchronous procedure
invocations being executed in a fixed order (in this context, the memory model is
not important since SC and TSO produce the same behaviors on a single thread).

We explain the order in which asynchronous invocations are executed using
the event handler searchForNews in Figure 1. This event handler is supposed
to add the keyword to the search history only after the fetching of the news
containing that keyword succeeds. This expectation corresponds to executing
the asynchronous procedures according to the DFS traversal of the call tree.

event
e ∈ E i, j are fresh

g,⊥, ε
〈0, ,j,start(j)〉
============⇒ g,⊥, 〈e, i, j, 0〉

end event
P (g, `) = 〈 , , return〉

g, 〈`, i, j, k〉, ε
〈0,i,j,return(i)〉 k,〈i,j,end(j)〉
=========================⇒ g,⊥, ε

async
P (g, `1) = 〈 , `′1, invoke(`2, w)〉 u2 = 〈`2, i2, j, 0〉 i2 is fresh

g, 〈`1, i, j, k〉, q · f
〈0,i,j,invoke(i2)〉
==============⇒ g, 〈`′1, i, j, k〉, q · (f ◦ i2)

dispatch
u = 〈`, i, j, k〉 f = u ◦ f ′ q

′
is 〈〉 if f

′
= 〈〉 or f

′ · 〈〉, otherwise

g,⊥, q · f
〈0,i,j,begin(i)〉
============⇒ g, u, q · q′

return
P (g, `) = 〈 , , return〉 j ∈ {event(u) : u ∈ q}

g, 〈`, i, j, k〉, q
〈0,i,j,return(i)〉
=============⇒ g,⊥, q

local
P (g, `) = 〈g′, `′, a〉 a ∈ {ε, rd(x),wr(x)}

g, 〈`, i, j, k〉, q
〈0,i,j,a〉
=======⇒ g

′
, 〈`′, i, j, k〉, q

Fig. 6: The single-thread transition function ⇒ for a program P with events E (ε
and 〈〉 are the empty sequence and tuple, resp.,). Also, f and f ′ are tuples, and q
is obtained by popping a queue from q if this queue is empty, or q = q, otherwise.

In general, this traversal is relevant because it preserves causality constraints
which are imprinted in the structure of the code, like in the case of standard
synchronous procedure calls. Note however that this semantics is not equivalent
to interpreting asynchronous invocations as synchronous, since the caller finishes
before the callee starts. In the formalization of this semantics, the DFS traversal
is modeled using a stack of FIFO queues for storing the pending invocations.

The formalization of the single-thread semantics reuses the notions of task
and label in §3.2. Let U0 be the set of tasks u = 〈`, i, j, 0〉 executing on thread 0.
We overload the term configuration which in this context is a tuple c = 〈g, u, q〉
where g ∈ G, u ∈ (U0 ∪ {⊥}) is a possibly-empty task placeholder (at most one
task is running at any moment), and q ∈ (Tuples(U0))∗ is a sequence of tuples of
tasks (a tuple, resp., a sequence, denotes a FIFO queue, resp., a stack). Cs is the
set of configurations of the single-thread semantics. We call c ∈ Cs idle if u = ⊥.

The transition function ⇒ in Fig. 6 is essentially a restriction of → where
all the procedures run on the main thread, an event begins when there are no
pending invocations, and the rules async and dispatch use a stack of FIFO
queues for storing pending invocations. The effect of pushing/popping a queue
to the stack or enqueuing/dequeueing a task to a queue is represented using the
concatenation operation ·, resp.,◦, for sequences, resp., tuples. Every task created
by async is posted to the main thread and it is enqueued in the queue on the
top of the stack q. dispatch dequeues a pending task from the queue f on the
top of q, and pushes a new empty queue to q (for storing the tasks created during
the newly started invocation) if f doesn’t become empty. Moreover, the rules
return and end event pop the queue on the top of q if it is empty.

An execution of a program P under the single-thread semantics with event set

E to configuration cn is a sequence c0c1 . . . cn s.t. cm
0,λm+1−−−−−→ cm+1 for 0 ≤ m < n.

We call the sequence λ1 . . . λn the trace of c0c1 . . . cn.

The set of traces of P with E under the single-thread semantics is denoted
by JP,EKs (P may be omitted when it is understood from the context).

4 Robustness Criteria

We introduce the notions of robustness against concurrency [6] and robustness
against TSO [3, 7, 8, 9] which imply that every “final” 3 state of a program P
reachable under a weak semantics, the SC multi-thread semantics and respectively,
the TSO multi-thread semantics, is also reachable in P under a strong semantics,
the single-thread semantics and respectively, the SC multi-thread semantics. Since
reasoning about sets of reachable states is difficult in general, these robustness
notions are defined on traces and require that roughly, every trace of the weak
semantics is ‘equivalent” to a trace of the same program under the strong
semantics. A trace is equivalent to another if it is a permutation that preserves
the order between “conflicting” labels, e.g., accesses to the same global variable.

Let ≺⊆ ΛTSO × ΛTSO be a conflict relation defined by

λ1 ≺ λ2 iff act(λ1), act(λ2) ∈ {wr(x, v), rd(x, v′)} for some x, v, v′, and

act(λ1) = wr(x, v) or act(λ2) = wr(x, v)

or

thread(λ1) = thread(λ2)

that relates any two labels accessing the same variable, one of them being a
write (commit), or any two labels associated to the same thread. Given a trace
τ = τ1 · λ1 · λ2 · τ2, we say that the trace τ ′ = τ1 · λ2 · λ1 · τ2 is derived from τ by
a ≺-valid swap iff λ1 6≺ λ2. A permutation τ ′ of a trace τ is conflict-preserving
when τ ′ can be derived from τ through a sequence of ≺-valid swaps.

Robustness against concurrency states that every trace of the SC multi-thread
semantics of a program P with event set E has a conflict-preserving permutation
where events and asynchronous invocations don’t interleave (they are executed
serially, but maybe not until completion) and asynchronous invocations execute
according to the DFS traversal of the call tree. Such conflict-preserving permu-
tations can be simulated by a sequential program seq(P) where asynchronous
invocations are rewritten to regular procedure calls which however, are not
necessarily executed until completion. Incomplete executions of the procedures
are simulated by adding a boolean flag skip to each procedure, which is non-
deterministically turned to false (it is initially true) and which guards every
statement in the original program (i.e., the statement can be executed only if
skip is true). Since asynchronous invocations are rewritten to regular procedure
calls, different events cannot interleave and invocations execute according to the
DFS traversal of the call tree exactly as in the single-thread semantics (the latter
requires that asynchronous invocations are not followed by accesses to global
variables; see Bouajjani et al. [6] for more details.). Therefore, the SC multi-thread
semantics of seq(P,E) coincides with its single-thread semantics. By an abuse
of terminology, we say that a trace τ belongs to the single-thread semantics
Jseq(P), EKs even if the trace τ involves multiple threads, but substituting every
thread id with 0 results in a trace in Jseq(P), EKs.
3 Here, “final” means that there are no pending invocations.

Definition 1. A program P with event set E is robust against concurrency
if there is a conflict preserving permutation τ ′ ∈ Jseq(P), EKs for every trace
τ ∈ JP,EKSCm .

The following theorem shows that the problem of checking robustness against
concurrency is polynomial time for boolean programs. It is a consequence of the
fact that this problem can be reduced in linear time to a reachability problem in
sequential programs (even for infinite-state programs).

Theorem 1 ([6]). Checking robustness against concurrency for a program P
with event set E, a fixed number of variables which are all boolean, and a fixed
number of procedures, each procedure containing a fixed number of asynchronous
invocations, is polynomial time decidable.

While robustness against concurrency shows that there is no interference
between events and asynchronous invocations under an SC semantics, robustness
against TSO holds when the non-atomic writes allowed by the TSO memory
model (that can be delayed and executed later on the global memory) introduce
no behavior which is not also possible under the SC semantics. To simplify the
exposition, we say that a trace τ ∈ JP,EKTSO

m (under the TSO memory model)
belongs to the SC semantics JP,EKSCm of a program P with event set E even if
the trace τ contains write issue and fence transition labels, but every write issue
〈k, i, j, issue(x, v)〉 is immediately followed by the corresponding write commit
〈k, i, j,wr(x, v)〉 and removing all the write issue and fence transition labels
results in a trace in JP,EKSCm .

Definition 2. A program P with event set E is robust against TSO if there is
a conflict preserving permutation τ ′ ∈ JP,EKSCm for every trace τ ∈ JP,EKTSO

m .

Bouajjani et al. [5] have shown that checking robustness against TSO is
EXPSPACE-complete. The upper bound relies on a polynomial time reduction
to a reachability problem in a concurrent program running under SC.

5 Checking Robustness Against TSO

While Section 2 shows that robustness against concurrency doesn’t imply robust-
ness against TSO, we show however that for programs which are robust against
concurrency, the problem of checking robustness against TSO can be solved more
efficiently than in the general case. More precisely, we show that the latter can
be reduced in polynomial time to the problem of checking robustness against
TSO for a program with only two threads, which is itself polynomial time for
boolean programs (since by the results of Bouajjani et al. [5], it can be reduced
to a reachability problem in a boolean program with 2 threads).

Let P be a program with event set E that is robust against concurrency. We
show that all its minimal TSO robustness violations, if any, can be simulated
by a program 2-threads(P) similar to seq(P) except that exactly one invocation

which was asynchronous in P remains asynchronous in 2-threads(P) as well (this
asynchronous invocation is chosen non-deterministically).

Following the results in [5], if P is not robust against TSO, then there exists
a minimal TSO robustness violation which is a trace of the form

τ = τ1 · 〈k, i, j, issue(x, v)〉 · τ2 · λ · 〈k, i, j,wr(x, v)〉 where

1. the writes of only one thread k are delayed (i.e., not flushed from the write
buffer immediately after the write issue) and all the other threads behave like
in the SC semantics (i.e., for all the other threads, the write issue is followed
immediately by the corresponding write commit),

2. 〈k, i, j,wr(x, v)〉 is the first write of thread k which is delayed, i.e., τ2 doesn’t
contain any write commit action of thread k,

3. τ2 contains a transition label λ1 which conflicts with 〈k, i, j, issue(x, v)〉
(necessarily, a read of thread k) such that every label following λ1 conflicts
with its predecessor and the last action of τ2 conflicts with λ, i.e., there
exists a suffix of τ2 of the form λ1 · . . . · λn such that 〈k, i, j, issue(x, v)〉 ≺ λ1,
λm ≺ λm+1 for every 1 ≤ m < n, and λn ≺ λ, and

4. the label λ conflicts with the last write commit in τ , i.e., λ ≺ 〈k, i, j,wr(x, v)〉
(which together with the above, implies that τ doesn’t have a conflict-
preserving permutation admitted by the SC semantics), and

5. the trace τ without the last write commit is a minimal trace satisfying the
above conditions, i.e., extending τ1 · 〈k, i, j, issue(x, v)〉 · τ2 with all the write
commits corresponding to write issues of thread k has a conflict-preserving
permutation admitted by the SC semantics.

We show that such a trace τ has a conflict-preserving permutation that is
admitted by a program with only two threads. For simplicity, assume that k is not
the main thread. By the minimality assumption (5) and since P is robust against
concurrency, the trace τ1 · 〈k, i, j, issue(x, v)〉 · τ2 · τ3, where τ3 contains a write
commit action for every write issue of thread k in τ2, has a conflict-preserving
permutation τ ′ which belongs to Jseq(P), EKs. Let τ ′′ be a trace obtained from
τ ′ by removing again all the write commit actions that were present in τ3. This
trace is admitted by the TSO multi-thread semantics since the values written
by the write-commits in τ3 are not read. Since τ ′′ preserves the order between
conflicting labels in the original trace τ , the trace τ ′′ · λ · 〈k, i, j,wr(x, v)〉 still
satisfies properties (1-5). Also, since τ ′ was a trace of the sequential program
seq(P), all the transitions which are not performed by thread k can be executed
by the main thread (they belong to events and invocations which don’t interleave).
The transitions of thread k, the reads in particular, cannot be executed on the
main thread since they can access the values of the writes of thread k which are
only issued but not committed. These values are not visible to other threads.
Therefore, the trace obtained from τ ′′ · λ · 〈k, i, j,wr(x, v)〉 by substituting every
thread id k′ 6= k with 0 (the id of the main thread) is admitted by the TSO multi-
thread semantics of P . This trace can be simulated by a program 2-threads(P)
obtained from P by replacing every asynchronous invocation async[any] p(y)
with the following code:

if (∗ & fork)
async[any] p(y);
fork = false;

else
if (PID == 0)
call p(y);

else
async[main] p(y);

where fork is a global boolean flag which is initially set to true. The code
above can invoke a procedure p(y) either asynchronously, provided that flag is
still true, or synchronously, or on the main thread if it is invoked from another
thread (the test PID == 0 checks whether the executing thread is the main
thread). Note that exactly one invocation of P is asynchronous (since after the
first asynchronous invocation, fork is turned to false) and that this invocation
is chosen non-deterministically (the expression * returns a randomly-chosen
Boolean value). Also, since any thread different from the main thread executes a
single invocation (in the multi-thread semantics), any invocation made during
the asynchronous invocation is on the main thread (it cannot be transformed to
a regular procedure call since it will be executed on the same thread).

The following theorem states the correctness of the construction.

Theorem 2. Let P be a program with event set E. If P is robust against con-
currency, then P is robust against TSO iff 2-threads(P) is robust against TSO.

As a corollary of the results in [5] which state that checking TSO robustness
for a program with N threads can be reduced to a reachability problem in a
program with N threads under the SC semantics, we get that checking TSO
robustness for Boolean programs which are already robust against concurrency
is polynomial time.

Corollary 1. Checking robustness against TSO for a program P with event set
E, a fixed number of variables which are all boolean, and a fixed number of
procedures, each procedure containing a fixed number of asynchronous invocations,
is polynomial time decidable, provided that P is robust against concurrency.

6 Conclusions

We have presented an approach for checking robustness against TSO for event-
driven asynchronous programs (with an unbounded number of threads), that
avoids explicit handling of all concurrent executions. This approach reduces TSO
robustness checking to a reachability problem in a program with only two threads,
provided that the original program is robust against concurrency. Besides yielding
an important gain in asymptotic complexity, leading to a polynomial-time TSO
robustness checking procedure (for boolean programs), our reduction enables the
use of existing safety-verification tools for TSO robustness checking.

Bibliography

[1] Parosh Aziz Abdulla, Mohamed Faouzi Atig, Yu-Fang Chen, Carl Leonards-
son, and Ahmed Rezine. Counter-example guided fence insertion under tso.
In International Conference on Tools and Algorithms for the Construction
and Analysis of Systems, pages 204–219. Springer, 2012.

[2] Parosh Aziz Abdulla, Mohamed Faouzi Atig, and Tuan-Phong Ngo. The
best of both worlds: Trading efficiency and optimality in fence insertion
for tso. In European Symposium on Programming Languages and Systems,
pages 308–332. Springer, 2015.

[3] Jade Alglave and Luc Maranget. Stability in weak memory models. In
Computer Aided Verification, pages 50–66. Springer, 2011.

[4] Mohamed Faouzi Atig, Ahmed Bouajjani, Sebastian Burckhardt, and Madan-
lal Musuvathi. On the verification problem for weak memory models. ACM
Sigplan Notices, 45(1):7–18, 2010.

[5] Ahmed Bouajjani, Egor Derevenetc, and Roland Meyer. Checking and
enforcing robustness against TSO. In Matthias Felleisen and Philippa
Gardner, editors, Programming Languages and Systems - 22nd European
Symposium on Programming, ESOP 2013, Held as Part of the European
Joint Conferences on Theory and Practice of Software, ETAPS 2013, Rome,
Italy, March 16-24, 2013. Proceedings, volume 7792 of Lecture Notes in
Computer Science, pages 533–553. Springer, 2013.

[6] Ahmed Bouajjani, Michael Emmi, Constantin Enea, Burcu Kulahcioglu
Ozkan, and Serdar Tasiran. Verifying robustness of event-driven asyn-
chronous programs against concurrency. In Hongseok Yang, editor, Program-
ming Languages and Systems - 26th European Symposium on Programming,
ESOP 2017, Held as Part of the European Joint Conferences on Theory
and Practice of Software, ETAPS 2017, Uppsala, Sweden, April 22-29, 2017,
Proceedings, volume 10201 of Lecture Notes in Computer Science, pages
170–200. Springer, 2017.

[7] Ahmed Bouajjani, Roland Meyer, and Eike Möhlmann. Deciding robustness
against total store ordering. In Luca Aceto, Monika Henzinger, and Jiŕı
Sgall, editors, Automata, Languages and Programming - 38th International
Colloquium, ICALP 2011, Zurich, Switzerland, July 4-8, 2011, Proceedings,
Part II, volume 6756 of Lecture Notes in Computer Science, pages 428–440.
Springer, 2011.

[8] Sebastian Burckhardt and Madanlal Musuvathi. Effective program verifica-
tion for relaxed memory models. In International Conference on Computer
Aided Verification, pages 107–120. Springer, 2008.

[9] Jabob Burnim, Koushik Sen, and Christos Stergiou. Sound and complete
monitoring of sequential consistency for relaxed memory models. In In-
ternational Conference on Tools and Algorithms for the Construction and
Analysis of Systems, pages 11–25. Springer, 2011.

[10] Michael Emmi, Akash Lal, and Shaz Qadeer. Asynchronous programs
with prioritized task-buffers. In Proc. of the Int. Symp. on Foundations of
Software Engineering, FSE ’12, pages 48:1–48:11. ACM, 2012.

[11] Michael Emmi, Burcu Kulahcioglu Ozkan, and Serdar Tasiran. Exploiting
synchronization in the analysis of shared-memory asynchronous programs.
In Proc. of the Int. SPIN Symp. on Model Checking of Software, pages 20–29.
ACM, 2014.

[12] Michael Emmi, Shaz Qadeer, and Zvonimir Rakamarić. Delay-bounded
scheduling. SIGPLAN Not., 46(1):411–422, January 2011.

[13] Michael Kuperstein, Martin Vechev, and Eran Yahav. Partial-coherence
abstractions for relaxed memory models. In ACM SIGPLAN Notices, vol-
ume 46, pages 187–198. ACM, 2011.

[14] Michael Kuperstein, Martin Vechev, and Eran Yahav. Automatic inference
of memory fences. ACM SIGACT News, 43(2):108–123, 2012.

[15] Leslie Lamport. How to make a multiprocessor computer that correctly exe-
cutes multiprocess programs. Computers, IEEE Transactions on, 100(9):690–
691, 1979.

[16] Scott Owens. Reasoning about the implementation of concurrency abstrac-
tions on x86-tso. In ECOOP, volume 6183, pages 478–503. Springer, 2010.

[17] Burcu Kulahcioglu Ozkan, Michael Emmi, and Serdar Tasiran. Systematic
asynchrony bug exploration for android apps. In Computer Aided Verification
- 27th International Conference, CAV 2015, San Francisco, CA, USA, pages
455–461, 2015.

[18] Peter Sewell, Susmit Sarkar, Scott Owens, Francesco Zappa Nardelli, and
Magnus O. Myreen. x86-tso: a rigorous and usable programmer’s model for
x86 multiprocessors. Commun. ACM, 53(7):89–97, 2010.

	On Verifying TSO Robustness for Event-Driven Asynchronous Programs

