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We study collections of Message Sequence Charts (MSCs) defined by
High-level MSCs (HMSCs) under a new type of concatenation operation
called anchored concatenation. We show that there is no decision proce-
dure for determining if the MSC language defined by an HMSC is regular
and that it is undecidable if an HMSC admits an implied scenario. Fur-
ther, the languages defined by locally synchronized HMSCs are precisely
the finitely generated regular MSC languages. These results mirror the
ones for the asynchronous concatenation case. On the other hand, the
MSC language obtained by closing under implied scenarios is regular for
every HMSC. Secondly, one can effectively determine whether a locally
synchronized HMSC admits an implied scenario. Neither of these results
hold in the asynchronous concatenation case.

1. Introduction

Message Sequence Charts (MSCs) are an appealing visual formalism that
is suitable for modelling telecommunication software 12. They are used in
a number of software engineering notational frameworks such as SDL 18

and UML 5,7. A collection of MSCs is used to capture the scenarios that a
designer might want the system to exhibit (or avoid). Hence it is fruitful to
have suitable mechanisms to specify a collection of MSCs.

A common way to specify a collection of MSCs is to use a High-level (or
Hierarchical) Message Sequence Chart (HMSC) 14. An HMSC is a directed
graph where each node is labelled an HMSC or an MSC. The HMSCs la-
belling the nodes are not allowed to reference each other. Hence, without
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loss of expressiveness, we shall conveniently assume that each node is la-
belled by just an MSC. From an HMSC one obtains MSCs by walking from
an initial vertex to a terminal one, while concatenating the MSCs at the
vertices visited. The collection of MSCs thus obtained is defined to be the
MSC language of the HMSC.

In the literature, one encounters two extreme types of MSC concatena-
tion, asynchronous and synchronous concatenation. In asynchronous con-
catenation the MSCs are concatenated along lifelines. If M = M1 ◦M2,
then no event of an instance in M2 may execute until all the events of the
same instance in M1 have finished executing. In synchronous concatenation
one demands that all the events of M1 must be executed before any event in
M2 can be executed. Asynchronous concatenation leads to a very expressive
class of HMSC-definable MSC collections while synchronous concatenation
gives rise to very restricted and impractical MSC collections.

We propose here a new and natural MSC concatenation termed anchored
concatenation. In this operation, we demand that an agent which is active in
both M1 and M2 can start executing in M2 only after all the events in M1

have finished executing; in effect, all—and only—the agents participating in
M1 must synchronize before any agent of M2 that was also active in M1 can
start executing again. This is a weaker form of synchronous concatenation
since we impose no restrictions on the agents of M2 that do not participate
in M1.

We present here the resulting theory of MSC languages generated by
HMSCs. We pay particular attention to their closures with respect to im-
plied scenarios 1,2,20. Briefly, implied scenarios arise naturally when one
implements a collection of MSCs in a distributed setting. One of our main
results is that the closure (with respect to implied scenarios) of every HMSC
is a regular MSC language. This establishes that HMSCs can be a fruitful
specification formalism if we interpret the set of scenarios defined by an
HMSC to be its implied scenarios-closure under anchored concatenation.
Such collections can be easily realized as a network of finite state automata
with local acceptance conditions; they will communicate with each other via
bounded fifoes as well as by performing common synchronization actions.

In common with the theory under asynchronous concatenation, there is
no decision procedure for determining if the MSC language defined by an
HMSC is regular or for determining if an HMSC admits an implied scenario.
It turns out that the languages defined by HMSCs that satisfy the syntactic
condition of being locally synchronized are precisely the finitely generated
regular languages.
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On the other hand, the language of MSCs obtained by closing under
implied scenarios is both regular and finitely generated for every HMSC.
Moreover, one can decide whether a locally synchronized HMSC admits an
implied scenario. None of these results holds in the case of asynchronous
concatenation.

There is a substantial theory of the MSC languages defined by HMSCs
under asynchronous concatenation 1,2,3,9,10,11,13,16. Synchronous concatena-
tion of MSCs is informally defined and some related verification problems
and their complexities are discussed in 3. In the framework of Live Sequence
Charts 8, a restricted type of concatenation that is much closer to anchored
and not synchronous concatenation is implicitly assumed.

In the next section we extend the usual notion of MSCs in order to
admit synchronizations. This gives a convenient handle on the anchored
concatenation operation. We then use a restricted type of these enriched
MSCs to define the MSC languages generated by HMSCs under anchored
concatenation. In Section 3, we present the related automaton model called
product Message Passing Automata. In the subsequent two sections we es-
tablish our main results. In the final section, we briefly discuss the prospects
for future work.

2. Message Sequence Charts

Let P = {p, q, r, . . .} be a finite set of agents (processes). These agents
communicate with each other via fifo channels as well as multi-way syn-
chronizations. The set of channels is Ch = {(p, q) ∈ P × P | p $= q}. Let ∆
be a finite alphabet of messages. We define the communication alphabet to
be Σcom = {p!q(m), p?q(m) | (p, q) ∈ Ch, m ∈ ∆} and the synchronization
alphabet to be Σsyn = {P ⊆ P | |P | > 0}. We set Σ = Σcom ∪ Σsyn . The
action p!q(m) denotes p sending a message m to q, while the action p?q(m)
denotes p receiving a message m from q. The action P ∈ Σsyn represents
the processes in P performing a multi-way synchronization. We do not ex-
plicitly model the exchange of information that takes place during such a
synchronization. A singleton synchronization {p} represents an internal ac-
tion performed by p. Henceforth, we fix P , ∆, Ch, Σ and let p, q range over
P , m over ∆ and P over Σsyn .

For a ∈ Σ, we define loc(a), the locations of a, as follows: loc(p!q(m)) =
loc(p?q(m)) = {p} and loc(P ) = P . Thus loc(a) is the set of processes that
take part in a. For p ∈ P , we define Σp = {a ∈ Σ | p ∈ loc(a)}.

Message sequence charts (MSCs) are restricted Σ-labelled posets. A
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Σ-labelled poset is a structure M = (E,≤,λ) where (E,≤) is a poset and
λ : E → Σ a labelling function. For e ∈ E, we define ↓e = {e′ ∈ E | e′ ≤ e}.
For p ∈ P , we define Ep = {e ∈ E | p ∈ loc(λ(e))}. Also, for a ∈ Σ, we
let Ea = {e ∈ E | λ(e) = a}. We set Ecom = {e ∈ E | λ(e) ∈ Σcom} and
Esyn = {e ∈ E | λ(e) ∈ Σsyn}.

For (p, q) ∈ Ch and m ∈ ∆, we define the relation <pqm ⊆ E × E to
capture the causal relationship between the send and receive actions of each
message. For e, e′ ∈ E, e <pqm e′ iff λ(e) = p!q(m), λ(e′) = q?p(m) and
|↓e ∩ Ep!q(m)| = |↓e′ ∩ Eq?p(m)|.

For (p, q) ∈ Ch, define <pq =
⋃

m∈∆ <pqm. For p ∈ P , define ≤pp=
(Ep × Ep) ∩ ≤, with <pp standing for the largest irreflexive subset of ≤pp.
An event e is classified as a send, receive or synchronization event in the
obvious way.

We are now ready to define MSCs.
An MSC (over P) is a finite Σ-labelled poset M = (E,≤,λ) which

satisfies the following conditions:

• ≤pp is a linear order for each p.
• For each (p, q) ∈ Ch and m ∈ ∆, |Ep!q(m)| = |Eq?p(m)|.
• ≤ is the reflexive, transitive closure of

⋃
p,q∈P <pq.

• If e1 <pqm e2 and f1 <pqm′ f2 where m $= m′, then e1 <pp f1 iff
e2 <qq f2.

• If e1, e2 ∈ Ecom , e ∈ Esyn such that e1 <pq e2, p $= q, and {p, q} ⊆
λ(e), then either e < e1 < e2 or e1 < e2 < e.

The fourth clause ensures that each channel (p, q) is fifo. The last clause
ensures that no message from p to q crosses a synchronization involving p
and q.

Figure 1 shows an MSC. We depict the events of the MSC in visual order.
The communication actions of each process are arranged in a vertical line.
Members of <pq are shown with horizontal or downward-sloping arrows
from the vertical line of p to that of q. The labels on these arrows indicate
the message transmitted. A synchronization action is drawn as a rectangle
that disconnects the vertical lines of the processes participating in this
synchronization. In what follows, unless stated otherwise, by an “MSC” we
shall mean an object defined as above.

We identify an MSC with its isomorphism class. Let MP be the set of
MSCs over P . The subscript P will often be dropped. Let M = (E,≤,λ) ∈
M. Set loc(e) = loc(λ(e)) for e ∈ E and loc(M) =

⋃
{loc(e) | e ∈ E}.

The processes in loc(M) are said to be active in M . We refer to the set of
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Fig. 1. A simple MSC over {p, q, r, s}

linearizations of M as lin(M)—that is, σ ∈ lin(M) iff σ = λ(e1) . . .λ(en),
E = {e1, . . . , en} and for each pair ei, ej with i < j, ej $≤ ei.

An MSC language (over P) is a subset of M. Let L be an MSC language.
Set lin(L) =

⋃
{lin(M) | M ∈ L}. We say L is regular iff lin(L) is a regular

subset of Σ∗.

Concatenation of MSCs

Let M1 = (E1,≤1,λ1) and M2 = (E2,≤2,λ2) be MSCs. The concatenation
M1 ◦M2 of M1 and M2 is the MSC M = (E,≤,λ) defined as follows:

• E is the disjoint union of E1 and E2.
• ≤ is the reflexive, transitive closure of ≤1 ∪ ≤2 ∪ !, where ! =
{(e1, e2) | e1 ∈ E1, e2 ∈ E2, loc(e1) ∩ loc(e2) $= ∅}.

We note that M1 ◦M2 is also an MSC. In what follows, by “concatena-
tion” we shall always mean the operation ◦ defined above.

Let M = (E,≤,λ) be an MSC. We say that M is plain iff Esyn = ∅.
Plain MSCs correspond to the standard definition of MSCs in the litera-
ture 12. For plain MSCs, the operation defined above corresponds to the
usual definition of asynchronous concatenation.

Let Mi = (Ei,≤i,λi), i = 1, 2, be a pair of plain MSCs. The syn-
chronous concatenation of M1 and M2 is the MSC M = (E,≤,λ) where E
is the disjoint union of E1 and E2 and ≤ is the reflexive, transitive closure of
≤1 ∪ ≤2 ∪ (E1 × E2) (see, for instance, 3). Thus synchronous concatena-
tion for plain MSCs requires all events in M1 be completed before any
event in M2 is executed. This can be captured in our setting by inserting a
synchronous event involving the entire set of processes P between M1 and
M2.

Synchronous concatenation is often the intended interpretation when
describing a communication protocol as a sequence of phases, with a com-
mon set of participating agents across the different phases. However, if M1
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and M2 are phases involving disjoint sets of agents, it is unnatural to force
all events in M1 to occur before those of M2. A more natural version of
synchronous concatenation is the anchored version.

Let Mi = (Ei,≤i,λi) with i = 1, 2 be plain MSCs. The anchored con-
catenation M1 " M2 of M1 and M2 is the MSC M = (E,≤,λ) where E is
the disjoint union of E1 and E2 and ≤ is the reflexive, transitive closure of
≤1 ∪ ≤2 ∪ ≺, where ≺ = {(e1, e2) | e1 ∈ E1, e2 ∈ E2, loc(e2) ⊆ loc(M1)}.

To study anchored concatenation, we shall work with a specific subclass
of our MSCs called episodes. An episode is an MSC M = (E,≤,λ) which
contains a synchronization event e such that Esyn = {e}, ↓e = E and
λ(e) = loc(E\{e}). In other words, an episode is a plain MSC equipped with
a terminal synchronization event involving all the processes that participate
in the “body” of the MSC. The requirement that the body of an episode
should be a plain MSC is only for technical ease and is not an essential
restriction.

Observe that for episodes, concatenation coincides with anchored con-
catenation. Hence, while working with episodes, we dispense with " and
just use ◦ to denote (anchored) concatenation.

We are now ready to define the main objects of our study in this new
setting, namely, HMSCs.

HMSCs

An HMSC (over X ) is a structure G = (Q,→, Qin, F,X , Φ) where

• Q is a finite and nonempty set of states.
• → ⊆ Q × Q.
• Qin ⊆ Q is a set of initial states.
• F ⊆ Q is a set of final states.
• X is a finite set of episodes.
• Φ : Q → X is a labelling function.

A path π through an HMSC G is a sequence q0 → q1 → · · · → qn such that
(qi−1, qi) ∈ → for i ∈ {1, 2, . . . , n}. The MSC generated by π is M(π) =
M0 ◦M1 ◦ . . . ◦Mn where Mi = Φ(qi). We say π is a run iff q0 ∈ Qin and
qn ∈ F . The MSC language of G is L(G) = {M(π) | π is a run through G}.

For an MSC M , we define the communication graph CGM of M to
be the undirected graph (P , -→), where (p, q) ∈ -→ iff there exists e ∈ E
with λ(e) = p!q(m) or λ(e) = p?q(m) or {p, q} ⊆ λ(e). Note that this
definition of CGM is slightly different from the one used for asynchronous
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concatenation 3,9, where a directed graph is constructed reflecting the flow
of information through messages between processes. We say an HMSC G is
locally synchronized iff for every cycle π = q → q1 → q2 → · · · → qn → q,
the communication graph of M(π) consists of a single connected component
(and isolated vertices).

We extend the concatenation operation ◦ to MSC languages in the ob-
vious way. That is, for L1,L2 ⊆ M, L1 ◦L2 = {M1 ◦M2 | M1 ∈ L1, M2 ∈
L2}. Let X be a set of episodes. Define X 1 = X and Xn+1 = Xn ◦X . The
MSC language X! = ∪n≥1Xn is the iteration of X . An MSC language L
is said to be finitely generated iff L ⊆ X! for some finite set X of episodes.

Implied scenarios

For σ ∈ A∗ and B ⊆ A, let σ #B denote the projection of σ onto B—that is,
the string obtained from σ by erasing letters not in B. Let M = (E,≤,λ)
be an MSC. For p ∈ P , ≤pp is a linear order. Hence, all linearizations
σ ∈ lin(M) generate the same sequence σ # Σp. We denote this sequence by
M # p. We say that an MSC M is implied by the MSC language L iff for
each p ∈ P , there exists Mp ∈ L with M # p = Mp # p. The MSC language
L is closed with respect to implied scenarios iff every MSC implied by L is
in L. The closure of L is the smallest closed set of MSCs which contains
L. For an HMSC G, we denote the closure of L(G) by L̂(G) and call it the
closure of G. The MSCs in L̂(G) \ L(G) are called implied scenarios of G.
Figure 2 shows an HMSC with an implied scenario.
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Fig. 2. An implied scenario

3. Preliminaries

To avoid tedious repetition, we adopt the following linguistic convention for
the rest of the paper.

• By “our setting”, we mean the framework in which all HMSC
nodes are labelled by episodes and all MSCs are concatenations
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of episodes. Further, unless stated otherwise, we assume we are in
our setting.

• By “conventional setting”, we mean the framework where the nodes
of HMSCs are labelled by plain MSCs and all the MSCs are asyn-
chronous concatenations of plain MSCs (and are hence themselves
plain MSCs.)

We begin by characterizing the linearizations of our MSCs, using a
straightforward extension of the results in 9. For a word σ and a letter
a, let |σ|a denote the number of occurences of a in σ. Recall that Σ de-
notes our alphabet of communication and synchronization actions. A word
σ = a1 . . . an ∈ Σ∗ is proper iff for every k ∈ {1, . . . , n}, if ak = p?q(m),
then there exists j < k such that aj = q!p(m) and

∑
m′∈∆ |a1 . . . aj|q!p(m′) =∑

m′∈∆ |a1 . . . aj . . . ak|p?q(m′). And further, if ak = P ∈ Σsyn , then for ev-
ery {r, s} ⊆ P , m′ ∈ ∆, we have |a1 . . . ak|r!s(m′) = |a1 . . . ak|s?r(m′). We say
σ is complete iff it is proper and |σ|p!q(m) = |σ|q?p(m) for (p, q) ∈ Ch, m ∈ ∆.
Let Σ◦ denote the set of complete words over Σ.

Define a context-sensitive independence relation I ⊆ Σ∗ × (Σ × Σ) as
follows: (σ, a, b) ∈ I iff σab is proper, loc(a) ∩ loc(b) = ∅, and |σ|p!q(m) >
|σ|q?p(m) whenever a = p!q(m), b = q?p(m). Note that if (σ, a, b) ∈ I, then
(σ, b, a) ∈ I. Define ≈ ⊆ Σ◦ × Σ◦ to be the least equivalence relation such
that σabσ′ ≈ σbaσ′ whenever σabσ′,σbaσ′ ∈ Σ◦ and (σ, a, b) ∈ I. It is
straightforward to establish that M and Σ◦/≈ are in one-to-one correspon-
dence via the mapping M -→ lin(M). Thus MSCs can be identified with
equivalence classes in Σ◦/≈.

In the conventional setting, the machine model for recognizing a set of
MSCs is a message-passing automaton (MPA)9. We modify this model to
handle multi-way synchronization actions and local acceptance conditions.
A product MPA (over Σ) is a structure A = {Ap = (Sp, Sin

p ,→p, Fp) | p ∈
P} where for each p, Sp is a finite set of local states, Sin

p ⊆ Sp a finite set
of local initial states, →p ⊆ Sp × Σp × Sp the p-local transition relation,
and Fp ⊆ Sp a finite set of local final states.

The set of global states of A is Πp∈PSp. For a global state s, we let sp

denote the local state of p in s. A configuration is a pair (s,χ) where s ∈
Πp∈PSp and χ : Ch → ∆∗ specifies the queue of messages currently residing
in each channel. The set of initial configurations is Conf in

A = {(s,χε) | s ∈
Πp∈PSin

p }, where χε : (p, q) -→ ε assigns every channel an empty queue.
The set of final configurations is {(s,χε) | s ∈ Πp∈PFp}. The product
MPA A defines a transition system (Conf A, Σ,Conf in

A , =⇒A) where the
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set of reachable configurations Conf A and the transition relation =⇒A ⊆
Conf A × Σ × Conf A are defined inductively as follows.

• Conf in
A ⊆ Conf A.

• Suppose (s,χ) ∈ Conf A, (s′,χ′) is a configuration and p!q(m) ∈ Σ
such that (sp, p!q(m), s′p) ∈ →p, sr = s′r for r $= p, χ′((p, q)) =
χ((p, q)) · m and χ′(c) = χ(c) for c $= (p, q). Then (s′,χ′) ∈ Conf A

and (s,χ)
p!q(m)
=⇒ A (s′,χ′).

• Suppose (s,χ) ∈ Conf A, (s′,χ′) is a configuration and p?q(m) ∈ Σ
such that (sp, p?q(m), s′p) ∈ →p, sr = s′r for r $= p, χ((q, p)) =
m ·χ′((q, p)) and χ′(c) = χ(c) for c $= (q, p). Then (s′,χ′) ∈ Conf A

and (s,χ)
p?q(m)
=⇒ A (s′,χ′).

• Suppose (s,χ) ∈ Conf A, (s′,χ′) is a configuration and P ∈ Σsyn

such that (sp, P, s′p) ∈ →p for p ∈ P , sr = s′r for r /∈ P , χ = χ′,
and further, for c ∈ Ch ∩ (P ×P ), χ(c) = ε. Then (s′,χ′) ∈ Conf A

and (s,χ)
P

=⇒A (s′,χ′).

A run of A over σ ∈ Σ∗ is a map ρ from the set of prefixes of σ to the
reachable configurations of A such that ρ(ε) ∈ Conf in

A and for each prefix
τa of σ, ρ(τ)

a
=⇒A ρ(τa). We say that ρ is accepting iff ρ(σ) is a final

configuration. The language L(A) accepted by A is the set of words in Σ∗

which have an accepting run. It is easy to observe that L(A) is a ≈-closed
subset of Σ◦ and hence can be viewed as an MSC language. For an integer
B, we say that A is B-bounded iff for every channel c ∈ Ch and for every
reachable configuration (s,χ) of A, it is the case that |χ(c)| ≤ B. It is clear
that if A is B-bounded, then L(A) is a regular subset of Σ◦. It is also easy
to see that the following holds.

Proposition 1: The MSC language accepted by a product MPA is closed
(under implied scenarios).

4. MSC Languages of HMSCs

We shall show that it is undecidable whether the MSC language of an HMSC
is regular whereas the MSC language of a locally synchronized HMSC is al-
ways regular. We shall also show that locally synchronized HMSCs capture
exactly the class of finitely generated regular MSC languages.

Let G = (Q,→, Qin, F,X , Φ) be an HMSC over a set of episodes X .
We define an independence relation IX over X as follows: (X, Y ) ∈ IX iff
loc(X) ∩ loc(Y ) = ∅. We can then interpret (X , IX ) as a (Mazurkiewicz)
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trace alphabet. Let ∼X ⊆ X ∗×X ∗ be the trace equivalence relation induced
by (X , IX ). For L ⊆ X ∗, the trace closure of L with respect to IX is denoted
by [L]IX .

It will be convenient to work with the strings of MSCs generated by an
HMSC. To distinguish this language from the language of all linearizations
of the MSCs generated by the HMSC, we use the term “episodic-string
language” or “e-string language” for short. We define the e-string language
of G, Le(G), to be the set of strings M0M1 . . . Mn ∈ X ∗ for which there
exists a run q0 → q1 → · · · → qn with Mi = Φ(qi) for i ∈ {0, 1, . . . , n}.

Lemma 2: Let G be an HMSC over a set of episodes X . Its MSC language
L(G) is regular iff the trace closure of its e-string language Le(G) with
respect to IX is a regular subset of X ∗.

Proof: The proof is immediate from two basic observations.
Firstly, for M1M2 . . . Mn, M ′

1M
′
2 . . .M ′

n ∈ X ∗, M1M2 . . . Mn ∼X

M ′
1M

′
2 . . . M ′

n iff M1 ◦M2 ◦ . . . ◦Mn = M ′
1 ◦M ′

2 ◦ . . . ◦M ′
n. It follows that

L(G) = {M1 ◦M2 . . . ◦Mn | M1M2 . . . Mn ∈ [Le(G)]IX }.
Secondly, we can effectively construct a finite transduction (21) ϕ :

lin(X!) → X ∗ such that for τ = b1 . . . bn ∈ lin(X!), ϕ(τ) = M1 . . . Mn ∈
X ∗ where τ ∈ lin(M1 ◦ . . . ◦Mn) and τ # Σsyn = P1 . . . Pn with Pi =
Mi # Σsyn for i ∈ {1, . . . , n}. It then follows that ϕ(lin(L(G))) = [Le(G)]IX .

In τ = b1 . . . bn, let j be the least index such that bj ∈ Σsyn . We can
effectively identify a unique episode X ∈ X such that lin(X) is a subse-
quence of b1 . . . bj. Further, for any action bi in b1 . . . bj that is not from X ,
we have loc(bi) ∩ loc(X) = ∅. Thus, we can reorder τ as wXw′bj+1 . . . bn

where wX ∈ lin(X) and w′ is the subsequence of b1 . . . bj obtained by eras-
ing all the actions from lin(X). For w′bj+1 . . . bn, we can inductively identify
a sequence M2 . . .Mn ∈ X ∗, as required. For τ , the corresponding sequence
is then XM2 . . .Mn.

Theorem 3: There is no effective decision procedure to determine if the
MSC language of an HMSC is regular.

Proof: It is known (19) that it is undecidable if the trace closure of a
regular language L ⊆ A∗ with respect to a trace alphabet (A, I) is regular.
We reduce this problem to ours. Let (A1, . . . , An) be a distributed alphabet
implementing (A, I). Create a set of processes P = {pi, p′i | i ∈ {1, . . . , n}}
and a message alphabet ∆ = A. Encode each a ∈ A by an episode Ma

shown in Fig. 3, where Ai1 , Ai2 , . . . , Aik
are the components containing a.
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Construct an HMSC G over X = {Ma | a ∈ A} with Le(G) = L. It follows
that I = IX . By Lemma 2, [L]I is regular iff L(G) is regular.
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A
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A
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A
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a
!!• •

a
!!• . . . •

a
!!•

Fig. 3. The episode Ma

Theorem 4: The MSC language of a locally synchronized HMSC is regu-
lar.

Proof: Let G = (Q,→, Qin, F,X , Φ) be a locally synchronized HMSC.
By Lemma 2, it suffices to show that [L(G)]IX is regular. Observe that
the communication graph of every episode is a complete graph. Hence,
for σ = M1 . . . Mn ∈ X ∗, the communication graph of M1 ◦ . . . ◦Mn is
connected iff σ is a connected trace 6 . It is known that if L ⊆ X ∗ is regular
and every word in L is connected, then [L∗]IX is also regular 6 . The claim
then follows.

Theorem 5: Every finitely generated regular MSC language can be rep-
resented as the MSC language of a locally synchronized HMSC.

Proof: Let L ⊆ X! be a regular MSC language where X is a finite set
of episodes. Following the proof of Lemma 2, there exists a regular trace
language L ⊆ X ∗ such that L = {M1 ◦ . . . ◦Mn | M1 . . . Mn ∈ L}. Fix a
strict linear order on X , which then induces a lexicographic order 1 on
X ∗. Define LEX ⊆ X ∗ as follows: σ ∈ LEX iff σ is the 1-least element in
the trace containing σ. Set lex (L) = L ∩ LEX . Following 6 , we have the
following:

• lex (L) is a regular subset of X ∗ and L = [lex (L)]IX .
• If σ1σσ2 ∈ LEX , then σ ∈ LEX .
• If σ ∈ X ∗ is not connected, then σσ /∈ LEX .

Create an HMSC G such that L(G) = lex (L). It then follows that L = L(G)
and G is locally synchronized.
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5. Closure of HMSCs with respect to implied scenarios

In the conventional setting, it is easy to observe that the closure of an MSC
language defined by an HMSC is, in general, not regular. A trivial example
is the HMSC whose MSC language is {M}!, where M is the MSC whose
sole linearization is p!q(m) q?p(m). The closure of this language is itself and
it is obviously not regular. In fact, it is not difficult to show it is undecidable
if the closure of a (locally synchronized) HMSC is regular. However, in our
setting, the closure of an HMSC language is always regular.

Theorem 6: The closure of every HMSC language is regular.

Proof: Let G = (Q,→, Qin, F,X , Φ) be an HMSC. We construct a bounded
product MPA A = {Ap = (Sp, Sin

p ,→p, Fp) | p ∈ P} accepting L̂(G) as
follows. For p ∈ P , set Lp to be the projection of lin(L(G)) onto Σp. It is easy
to see that each Lp is regular. Set Ap to be the minimal deterministic finite
state automaton accepting Lp. It follows that A accepts L̂(G). It is easy to
observe that A is bounded by the maximum length of {X # p | X ∈ X}.

From the proof of Theorem 6, it follows that the closure of an HMSC
language can be effectively represented as a bounded product MPA. Hence
the set of linearizations of the MSCs in the closure of an HMSC language
can also be effectively computed. From Theorem 4 and the fact that the
equivalence of regular string languages can be effectively determined, the
next result is immediate.

Corollary 7: We can effectively decide whether a locally synchronized
HMSC admits an implied scenario.

In the conventional setting, it is easy to observe that the closure of an
HMSC language is in general not finitely generated. A simple example is
the HMSC whose MSC language is {M1, M2}!, where M1 (respectively
M2) is the MSC whose sole linearization is p!q(m) q?p(m) (respectively
q!p(m) p?q(m)). However, in our setting, the closure of an HMSC is always
finitely generated.

Theorem 8: The closure of every HMSC language is finitely generated.

Proof: Let G = (Q,→, Qin, F,X , Φ) be an HMSC. Let Y be the set of
episodes M such that for each p ∈ P , there exists Mp ∈ X with M # p =
Mp # p. Let H be an HMSC with L(H) = X ∗. Since L̂(G) ⊆ L̂(H), it suffices
to show that L̂(H) ⊆ Y!.
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Let M = (E,≤,λ) ∈ L̂(H). Note that for any M ′ ∈ L(H), all maximal
events in M ′ are synchronization events. Hence all maximal events in M are
synchronization events too. Pick e ∈ Esyn such that ↓e ∩ Esyn = {e}. We
shall show that Y = (↓e,≤↓e,λ↓e) ∈ Y, where, ≤↓e and λ↓e are, respectively,
the restrictions of ≤ and λ to ↓e. With this, we can remove Y from M , and
it is clear that inductively M ∈ Y!.

It remains to prove that Y is an episode. Set P = λ(e) and pick p ∈ P .
There must exist X ∈ X such that X # p = Y # p and loc(X) = P . Hence
for any e′ < e, if λ(e′) = p!q(m) or λ(e′) = p?q(m), then q ∈ P . It follows
that P = loc(Y ).

The proof above also yields the following useful observation.

Corollary 9: Let G be an HMSC over a set of episodes X such that
L(G) = X!. Then G admits no implied scenario iff X = {M |
M is an episode and ∀p ∃Xp ∈ X , Xp # p = M # p}.

The following result however mirrors the situation in the conventional
setting.

Theorem 10: It is undecidable whether an HMSC admits an implied sce-
nario.

Proof: We shall make use of the reduction from the Post Correspondence
Problem (PCP) in 17 for proving the undecidability of determining if the
trace closure of a star-free language remains star-free. An instance of PCP
consists of two morphisms g, h : K∗ → Γ∗ where K, Γ are disjoint finite
alphabets. A solution is a word w ∈ K+ such that g(w) = h(w).

We briefly describe the main ingredients of the reduction in 17. Create
a trace alphabet (A, I) where A = K ∪ Γ ∪ {c}, c /∈ K ∪ Γ and I =
{(x, c), (c, x) | x ∈ K ∪ Γ}. Define Wg to be the trace closure with respect
to I of {w·g(w)·c|g(w)| | w ∈ K+} and a regular language Lg ⊆ A∗ such that
[Lg]I = A∗ \Wg. Analogously define Wh and Lh. The construction has the
following property. If the PCP instance has no solution, then [Lg ∪ Lh]I =
A∗. Otherwise, [Lg ∪ Lh]I is not regular.

As in the proof of Theorem 3, we construct an HMSC G over X = {Ma |
a ∈ A} using the distributed alphabet (K ∪ Γ, {c}). If [Lg ∪ Lh]I = A∗,
then L(G) = X!, and L(G) is easily seen to admit no implied scenario by
Corollary 9. If not, then [Lg ∪ Lh]I is not regular and thus L(G) is not
regular. Consequently G must admit an implied scenario, by Theorem 6.
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Thus G admits an implied scenario iff the original instance of PCP has a
solution.

6. Conclusions

We have proposed here the notion of anchored concatenation and studied
MSC languages defined by HMSCs under this operation. Our results show
that the resulting theory is non-trivial and bears both commonalities and
differences with the corresponding theory in the conventional setting.

We have considered here only finite MSCs. It will be interesting to
explore our theory for infinite MSCs by adapting the techniques developed
in 13. It will also be worthwhile to consider realizations in the form of
netcharts 4,15 instead of product MPAs.
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