
Knowledge transfer and information leakage in
protocols

Abdullah Abdul Khadir, Madhavan Mukund, and S.P. Suresh

Chennai Mathematical Institute and UMI RELAX, Chennai, India.
{abdullah, madhavan, spsuresh}@cmi.ac.in

Abstract. A protocol defines a structured conversation aimed at ex-
changing information between two or more parties. Complete confiden-
tiality is virtually impossible so long as useful information needs to be
transmitted. A more useful approach is to quantify the amount of infor-
mation that is leaked. Traditionally, information flow in protocols has
been analyzed using notions of entropy. We move to a discrete approach
where information is measured in terms of propositional facts. We con-
sider protocols involving agents holding numbered cards who exchange
information to discover each others’ private hands. We define a transition
system that searches the space of all possible announcement sequences
made by such a set of agents and tries to identify a subset of announce-
ments that constitutes an informative yet safe protocol.

1 Introduction

A protocol defines a structured conversation aimed at exchanging information
between two or more parties. In a computational setting, there is a natural ten-
sion between transmitting relevant information to a trusted partner and leaking
confidential data to an intruder.

This has led to the study of security in protocols from the perspective of in-
formation flow. Complete confidentiality is virtually impossible so long as useful
information needs to be transmitted. For instance, rejecting an invalid password
reveals indirectly what the password is not. Hence, a more useful approach is to
quantify the amount of information that is made available to an eavesdropper
and use this as a basis for evaluating the security of protocols.

Several proposals have been made over the past decade to model quantitative
information flow [1–4, 6–8]. The general consensus has been to use ideas from
information theory, primarily the notion of entropy, as a basis for measuring
information leakage. Starting with the classical notion of entropy proposed by
Shannon, some of this work has moved towards analyzing alternative notions of
entropy. These choices are often motivated by ad hoc synthetic scenarios that
bear no clear relationship to protocols in actual use.

We move away from this continuous measurement of information content to a
discrete approach in terms of knowledge. To start with, we regard information as
consisting of propositional facts, representing knowledge that has to be shared
amongst agents. Initially, the eavesdropper does not know any of these facts.

As the protocol evolves and the honest agents participating in the conversation
learn facts about each other, the eavesdropper also comes to know certain facts
about the system. The goal is to have informative protocols that share knowledge
effectively, but are still safe in terms of leaking this knowledge to an intruder.

Concretely, we focus on problems involving sets of agents holding cards on
which distinct numbers are written. Each hand is initially known only to the
agent who holds it. The agents’ aim is to learn about each others’ hands through
public announcements, while revealing as little as possible to an eavesdropper.

An example is the Russian Cards problem with distribution 〈k1|k2|k3〉, de-
noting that A and B get k1, k2 cards respectively while the third player C gets
k3 cards. The objective of A and B is to communicate with each other so that
they both eventually learn each other’s cards, while C remains ignorant of ev-
ery card. An in-depth analysis of this problem in terms of the logic of public
announcements can be found in [9].

One generalization of the Russian Cards setting is the Secure Aggregation
of Distributed Information (SADI) problem, where there are k agents and an
eavesdropper E . The distribution of cards is then given by 〈n1| . . . |nk〉, with ni
denoting the number of cards that honest agent i holds. The eavesdropper E
does not receive any cards. The objective is to come up with protocols such that
all the honest agents learn each others’ cards while E remains ignorant of the
location of at least some, if not all, cards. The SADI problem is analyzed in [5].

We present an approach to the SADI problem based on searching through the
state space of a transition system. Each state of the transition system describes
the knowledge of the individual agents, in terms of atomic propositions of the
form A knows that B has card i and A knows that B does not have card i. Each
announcement updates these knowledge propositions. To effect this update, we
set up rules linking the propositions and use a SAT solver to compute the set of
possible states after each announcement.

The updates we compute are first order—that is, they calculate the knowl-
edge that has been revealed through the current sequence of announcements.
However, we also need to capture second order knowledge—for instance, the
given sequence should be compatible with more than one starting distribution
of cards to prevent the eavesdropper from indirectly inferring the cards held
by the honest agents from the choice of the announcement sequence. Using the
formulation from [5], we show that such second order knowledge can also be
captured using our transition system framework.

The paper is organized as follows. We set the framework for the SADI prob-
lem in Section 2. In the next section, we describe how we set up a transition
system to analyze this problem. Section 4 describes how we can formulate and
answer questions about information flow using our transition system. In Sec-
tion 5 we describe some experimental results. We conclude with a discussion of
future directions.

2 Preliminaries

Recalling the definitions from [5], the setting we consider involves a finite set of
agents, Ag , with information distributed amongst them. Apart from the (honest)
agents in Ag , there is also the eavesdropper. For convenience, if Ag consists of k
honest agents, we assume that they are named {0, 1, . . . , k−1}.

For our purposes, the information that the agents hold consists of a set of
cards numbered 0, 1, . . . , n−1. These cards are distributed amongst the honest
agents. In what follows, if X is a set and m is a natural number, then

(
X
m

)
denotes

the subsets of X of cardinality m. The cardinality of X is denoted by #X.
It is assumed that there is a mechanism to distribute the cards initially,

at the end of which each agent knows his own hand and the number of cards
that everyone has been dealt, but nothing more. The problem is for the honest
agents to learn each other’s hands via public announcements without leaking
information to the eavesdropper.

Definition 1. The distribution type is a vector s̄ = (sp)p∈Ag of natural numbers,
where sp denotes the number of cards dealt initially to agent p. We denote by |s̄|
the total number of cards, Σp∈Agsp.

A deal of type s̄ is a partition H = (Hp)p∈Ag of {0, . . . , |s̄| − 1} such that
#Hp = sp for each agent p. We say Hp is the hand of p. Further, we denote the
set of all deals over s̄ by Deals (̄s).

Given two deals H and H ′ of type s̄, and an agent p, we say that H and H ′

are indistinguishable for p (in symbols: H ∼p H ′) if Hp = H ′p.

The agents try to learn each other’s hand by publicly (and truthfully) an-
nouncing information about their own cards. Consider an agent A holding the
cards {1, 2, 3}. One announcement he might make is “My hand is either {1, 2, 3}
or {1, 4, 6} or {2, 3, 5}.” Any other agent who holds 4 and 5, on hearing this
announcement, will immediately know that A’s hand is {1, 2, 3}. But the eaves-
dropper still has uncertainty as to A’s hand, since he doesn’t have any cards of his
own. Another possible announcement is “My cards are all among {1, 2, 3, 4, 6, 7}.”
Yet another announcement is “The sum of the numbers on my cards is 6.” All
these announcements can be encoded as a disjunction of hands. For instance,
the last announcement above is the disjunction “My hand is either {1, 2, 3} or
{0, 2, 4}.”

Definition 2 (Actions). Fix a distribution type s̄, and let Cards = {0, . . . , |s̄|−
1}. An announcement by agent p is a disjunction of possible hands. Since he has
sp cards, the announcement can be thought of as a subset of

(
Cards
sp

)
. Thus we can

define Actp, the set of p-announcements to be P(
(
Cards
sp

)
), where P(X) denotes

the powerset of X. The set of actions is defined to be Act =
⋃
p∈Ag Actp.

We assume a situation in which agents take turns to make announcements,
starting from 0 and proceeding in cyclic order, till they achieve a certain goal.
This is formalized by the following definition.

Definition 3 (Runs). Fix a distribution type s̄ as before, with m agents. An
execution is a (finite or infinite) sequence of actions α0α1 · · · such that αi ∈ Actp
whenever i mod m = p. A finite execution is also called a run. Given a run ρ =
α0α1 . . . αn and two indices i ≤ j, α[i . . . j] denotes the segment αiαi+1 . . . αj.
We denote the length of a run ρ by |ρ|. The set of runs is denoted by Runs.

A protocol describes a strategy for each agent to make announcements given
the current history. We constrain each announcement to be truthful. We also
insist that a protocol depend only on the local information available to the
agent—any two situations that are the same from the agent’s point of view must
elicit the same response. In other words, if the agent holds the same hand in two
different deals and sees the same sequence of announcements, he must respond
identically in both situations.

Definition 4 (Protocol). Fix a distribution type s̄, with m agents. A protocol
(for s̄) is a function π assigning to every deal H ∈ Deals (̄s), and every run
ρ ∈ Runs with |ρ| mod m = p, a non-empty set of p-actions π(H, ρ) ⊆ Actp
such that:

– Hp ∈ α for all α ∈ π(H, ρ) (the announcement is truthful), and
– if H ∼p H ′, then π(H, ρ) = π(H ′, ρ) (the announcement is view-based).

A run of a protocol π is a pair (H, ρ) where H ∈ Deals (̄s) and ρ = α0α1 . . . αm
is a run such that αi+1 ∈ π(H, ρ[0 . . . i]) for every i < m. The set of runs of π
is denoted by Runs(π).

We are interested in protocols that are informative (all honest agents learn
the whole deal) and safe (the eavesdropper is uncertain about the deal even after
listening to all the announcements). We formalize these notions below.

Definition 5. A run (H, ρ) of a protocol π is informative for an agent p if there
is no execution (H ′, ρ) of π with H ∼p H ′ and H 6= H ′. (i.e., there is no other
starting deal that is consistent with p’s hand and the subsequent announcements.)

A protocol π is

– weakly informative (WI): if every run of π is informative for some agent.
– informative (I): if every run of π is informative for every agent.

The eavesdropper does not have any information about the deal to begin
with. Hence, the actual deal could be any deal of the correct distribution type.
As the honest agents communicate amongst themselves, the eavesdropper uses
the information in the announcements to eliminate various deals from contention.
At the end of a sequence of announcements, he will be left with a set of deals
that are consistent with this sequence. This set must have at least one element,
namely the actual deal. This set is formally defined below.

Definition 6. Given a protocol π and a run ρ, define the (eavesdropper’s) ig-
norance set Iπ(ρ) to be {H | (H, ρ) ∈ Runs(π)}.

Iπ(ρ) is can be used to determine what the eavesdropper knows at the end
of ρ.

Consider a situation where agent 0 holds the card 5 in every deal in Iπ(ρ).
This means that the eavesdropper has ruled out all deals where agent 0 does not
hold card 5 as being inconsistent with ρ. Hence, the run ρ has leaked information
about the location of card 5 to the eavesdropper.

Consider another situation involving card 5, where agent 1 holds card 5 in
some of the deals in Iπ(ρ), and agent 2 holds card 5 in the rest of the deals in
Iπ(ρ). Here, even though the eavesdropper does not know exactly who holds the
card 5, he is certain that no agent other than {1, 2} holds card 5.

This leads us to the following two notions of safety of a card (at the end of
a run).

Definition 7 (Safety of cards). A run (H, ρ) of a protocol π is safe for the
card c if for every agent p, there is a deal G ∈ Iπ(ρ) such that c 6∈ Gp.

A run (H, ρ) of a protocol π is strongly safe for the card c if for every agent
p, there are two deals F,G ∈ Iπ(ρ) such that c ∈ Fp and c 6∈ Gp.

Thus, safety of a run means that the eavesdropper does not know for certain
that an agent p has card c, but the eavesdropper may have concluded that p
definitely does not have c. On the other hand, strong safety requires that the
eavesdropper cannot conclude whether p holds c or p does not hold c.

We can lift the notion of safety from runs to protocols as follows.

Definition 8 (Safety of Protocols). A protocol π is

– deal safe: if every run of π is safe for some card c. Equivalently, deal safety
means that the eavesdropper does not learn the deal at the end of any run of
π.

– p-safe (for an agent p): if every run of π is safe for all cards in Hp.
– safe: if every execution of π is safe for every card c.
– strongly safe: if every execution of π is strongly safe for every card c.

In the rest of the paper, we will examine an approach to synthesize infor-
mative and safe protocols based on these definitions. Equivalently, our approach
can be used to validate if a given protocol is informative and safe.

We assume that there are at least three honest agents, so that negative
information of the form p does not hold card c does not automatically imply
positive information of the form q holds card c.

3 Implementation

In this section, we describe a tool written in Python to search for informative
and safe runs of a particular distribution type. Before presenting the details of
the tool, we present an abstract transition system model for protocols.

3.1 Defining the transition system

Fix a distribution type s̄ with k agents {0, 1, . . . , k−1}. For convenience, we
assume that the eavesdropper is agent k, with the understanding that agent k
possesses no cards. Let {0, 1, . . . , n−1} be the set of cards dealt. We describe
a transition system that tracks the uncertainty of every agent about the actual
deal. Essentially, each agent implicitly stores a set of valuations that represent
all deals that are compatible with the information that he has seen so far.

Definition 9 (Valuations). The set of knowledge propositions for agent p ≤
k, denoted K(p), is the set

{Kpq(c),KpNq(c) | q < k, q 6= p, c < n}.

The proposition Kpq(c) describes the fact that agent p knows that agent q has
card c, while the proposition KpNq(c) says that p knows that q does not have
card c.

Definition 10. A valuation for agent p (with respect to an initial deal H) is a
function v : K(p) → {>,⊥} satisfying the following conditions, where we write
v |= ` to mean v(`) = > and v 6|= ` to mean v(`) = ⊥.

– consistency with the deal: For all 0 ≤ c < n, if c ∈ Hp then for all
0 ≤ q < k, p 6= q, v |= KpNq(c).

– consistency of knowledge propositions: For all 0 ≤ q < k and 0 ≤ c <
n, either v 6|= Kpq(c) or v 6|= KpNq(c).

– ownership of cards: For all 0 ≤ q < k and 0 ≤ c < n, v |= Kpq(c) iff for
all r /∈ {p, q}, v |= KpNr(c)

– consistency with the distribution type: For each q 6= p, there are at
most sq propositions of the form Kpq(c) such that v |= Kpq(c).

– complete knowledge: For each q 6= p, there are exactly sq propositions of
the form Kpq(c) such that v |= Kpq(c) iff there are exactly (n− sq) proposi-
tions of the form KpNq(c) such that v |= KpNq(c).

We denote the set of all valuations for agent p by Valsp, and let Vals =⋃
p≤m Valsp.

A valuation for p is supposed to capture p’s information state. If v maps Kpq(c)
to >, it means that p believes, in this information state, that q has card c. If
v maps KpNq(c) to >, it means that p believes that q does not have card c. If
v maps both Kpq(c) and KpNq(c) to ⊥, this means that p is uncertain about
whether or not q holds card c.

Assuming three agents {0, 1, 2}, an example valuation for agent 0 is given in
Figure 1. This corresponds to the initial deal ({0, 1}, {2, 3, 4}, {5, 6, 7, 8}).

Each agent has a valuation describing the initial state according to his per-
spective, but as he hears more and more announcements (which are all disjunc-
tions), it might not be possible to represent the information he has by means
of one valuation. Each disjunct in the announcement he hears might lead him

0 1 2 3 4 5 6 7 8

K01 ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥
K02 ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥
K0N1 > > ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥
K0N2 > > ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥

Fig. 1. Valuation for agent 0 at initial deal 〈0, 1|2, 3, 4|5, 6, 7, 8〉

to consider a new valuation as a possible world. Thus each agent might need to
store a set of valuations as a run progresses. This leads to the following definition
of states.

Definition 11 (States). A state is an k+1-tuple (V0, . . . , Vk) where each Vp ⊆
Valsp.

Definition 12 (X-extension). Let v be a q-valuation and X be an sp-sized
subset of {0, . . . , n−1}. We say that a q-valuation v′ is a X-extension of v if
v ≤ v′ and v′ |= Kqp(c) for all c ∈ X.

Note that for a given v and X, it is possible that there is no X-extension of
v.

Definition 13 (State updates). Given a state s = (V0, . . . , Vk) and a p-
announcement α, we define update(s, α) to be s′ = (V ′0 , . . . , V

′
k) such that:

– V ′p = Vp
– for q 6= p, V ′q =

⋃
v∈Vq,X is a disjunct of α{v′ | v′ is an X-extension of v}.

The core component of our tool computes the updated state at the end of
a sequence of announcements, starting from an initial deal. The final state en-
capsulates a nontrivial amount of information, from which one can test whether
the honest agents have complete knowledge of the deal, and also whether the
eavesdropper knows the original deal. Furthermore, we can also generate the un-
certainty set of the eavesdropper, namely, the set of all deals that are compatible
with the given announcement sequence. We can use this information in a variety
of ways, as detailed in Section 4.

The important point to note is that the tool computes the updated state
implicitly. Rather than explicitly maintain a set of valuations after each an-
nouncement, the tool just collects all the announcements, and invokes the SAT
solver to determine the certain knowledge of the agents.

3.2 A high-level description of the tool

In this section, we describe in more detail some key components of our tool. In
the interests of space, we present a high-level overview1. The tool is written in

1 Please check http://www.cmi.ac.in/~spsuresh/projects/russian-cards-z3/ for
the full code.

Python, and implements the system described in the previous section. It interacts
with the SAT solver Z3 to compute the updated state after each announcement.
As detailed in the definition of valuations, each valuation has to satisfy a lot of
constraints. These are coded as system invariants. A solver instance is created
and formulas corresponding to the constraints are added to the solver, as shown
in the following snippet.

solvR = Solver()

solvR.push()

vD, oW, hK = self.validDeal(), self.ownership(), self.hand2K()

kC, oK, dK = self.kConsistency(), self.ownershipK(), self.dealK()

solvR.add(vD)

solvR.add(oW)

solvR.add(hK)

solvR.add(kC)

solvR.add(oK)

solvR.add(dK)

solvR.push()

return solvR

For instance, validDeal corresponds to the constraint that if c ∈ Hp then
v |= KpNq(c), while ownershipK corresponds to the constraint that v |= Kpq(c)
iff v |= KpNr(c) for all r 6= q. Similarly for the other constraints.

Given any announcement as a tuple consisting of the speaker as well as
the DNF formula, the updateAnn procedure produces a new state with the ap-
propriate update to the knowledge of each agent. Essentially, it translates the
announcement to an appropriate formula denoting how each agent other than
the speaker would perceive it and this is appended to the knowledge of each
listener.

To process a sequence of announcements, the tool does not calculate the set
of valuations at each intermediate state. Rather, repeated calls to updateAnn

are made, which builds a conjunction of the initial knowledge, the constraints,
and all the announcements. Now we can call the SAT solver to check what
all propositions are consequences of this formula, and thus determine all the
propositions that each agent is certain about.

The tool is meant to go through a set of runs of bounded length, each run
consisting of announcements of a specific structure (typically a bound on the
number of disjunctions in the announcement), and compute various statistics at
the end of each run. For instance, we might want to know how many propositions
of the form Kmp(c) is definitely known to m (remember {0, . . . ,m−1} is the set
of honest agents and m is the eavesdropper) at the end of a run. This measures
the amount of positive knowledge leaked. We might also want to check how
many propositions of the form KmNp(c) is definitely known to m (i.e., for every
valuation v ∈ Vm in the final state, v |= KmNp(c)). This measures the amount
of negative knowledge leaked. We can use this tool to either discover protocols
or check whether a purported protocol is informative and safe, as elaborated in
Section 4.

3.3 An example

In this example, we illustrate the functioning of our tool with the 〈2|3|4〉 SADI
problem detailed in [5]. Recall that the initial deal is 〈0, 1|2, 3, 4|5, 6, 7, 8〉, and an
informative and safe announcement sequence is the announcement {01, 08, 18}
by A, followed by the announcement {0234, 1237, 5678} by C. (B passes its turn
– by announcing true, for instance).

First, we need to create and initialize the problem instance

In [1]: from cpState import *

In [2]: deal = {’a’:[0,1], ’b’:[2,3,4], ’c’:[5,6,7,8], ’e’:[]};

In [3]: infAgts, eaves = [’a’, ’b’, ’c’], ’e’;

In [4]: agts = infAgts + [eaves]

In [5]: s0 = cpState([2, 3, 4, 0], agts, deal, infAgts, eaves)

At the end of the above commands, we obtain the initial state s0 initialized
with the deal 〈0, 1|2, 3, 4|5, 6, 7, 8〉. Having obtained the initial state, we now need
to update it with the announcements ann1 of A followed by ann2 of C.

In [6]: ann1 = (’a’, [[0, 1], [0, 8], [1, 8]])

In [7]: ann2 = (’c’, [[0, 2, 3, 4], [1, 2, 3, 7], [5, 6, 7, 8]])

In [8]: s1 = s0.updateAnn(ann1)

In [9]: s2 = s1.updateAnn(ann2)

Now that we have the resulting state s2 alongwith the the intermediate state
s1, we can actually analyze the states and query them to obtain further infor-
mation about the states of any agent in each of the states.

We can obtain the set of all positive knowledge propositions for any agent

In [10]: %time s2.getPosK(’a’)

CPU times: user 3.42 s, sys: 32 ms, total: 3.45 s

Wall time: 3.45 s

Out[10]: [’Kab__2’, ’Kab__3’, ’Kab__4’, ’Kac__5’, ’Kac__6’,

’Kac__7’, ’Kac__8’]

In [11]: %time s2.getPosK(’b’)

CPU times: user 2.95 s, sys: 0 ns, total: 2.95 s

Wall time: 2.95 s

Out[11]: [’Kba__0’, ’Kba__1’, ’Kbc__5’, ’Kbc__6’,

’Kbc__7’, ’Kbc__8’]

In [12]: %time s2.getPosK(’c’)

CPU times: user 2.46 s, sys: 4 ms, total: 2.47 s

Wall time: 2.47 s

Out[12]: [’Kca__0’, ’Kca__1’, ’Kcb__2’, ’Kcb__3’, ’Kcb__4’]

In [13]: %time s2.getPosK(’e’)

CPU times: user 4.43 s, sys: 16 ms, total: 4.44 s

Wall time: 4.45 s

Out[13]: []

As observed, the above queries take about 3 to 4 seconds even for this simple
example. However, if all we are interested is in the informativity property, we can
reduce the time taken by using isInfAgt or isInformative as shown below,

In [14]: %time s2.isInfAgt(a)

CPU times: user 472 ms, sys: 0 ns, total: 472 ms

Wall time: 480 ms

Out[14]: True

In [15]: %time s2.isInfAgt(b)

CPU times: user 468 ms, sys: 0 ns, total: 468 ms

Wall time: 471 ms

Out[15]: True

In [16]: %time s2.isInfAgt(c)

CPU times: user 472 ms, sys: 0 ns, total: 472 ms

Wall time: 476 ms

Out[16]: True

In [17]: %time s2.isInformative(infAgts)

CPU times: user 1.48 s, sys: 0 ns, total: 1.48 s

Wall time: 1.48 s

Out[15]: True

In [16]: %time s2.isInformative([eaves])

CPU times: user 508 ms, sys: 0 ns, total: 508 ms

Wall time: 509 ms

Out[16]: False

Hence, we’ve ascertained that the state s2 is informative to a, b and c but e
doesn’t learn the owner of any card. This tallies with the analysis in [5]. However,
we can also query the states for negative propositions revealed to e,

In [17]: %time s1.getNegK(’e’)

CPU times: user 8.93 s, sys: 0 ns, total: 8.93 s

Wall time: 8.97 s

Out[17]: [’KeNa__2’, ’KeNa__3’, ’KeNa__4’, ’KeNa__5’,

’KeNa__6’, ’KeNa__7’]

In [18]: %time s2.getNegK(’e’)

CPU times: user 8.86 s, sys: 4 ms, total: 8.87 s

Wall time: 8.89 s

Out[18]: [’KeNa__2’, ’KeNa__3’, ’KeNa__4’, ’KeNa__5’,

’KeNa__6’, ’KeNa__7’, ’KeNb__0’, ’KeNb__1’, ’KeNb__8’]

From the above, it is clear that even though e doesn’t know any of the owners
of any cards, he does know 9 propositions of negative information involving cards
[0, 8]. In fact, for each of the cards, he knows at least one agent that does not
own the card. Thus, for any card, e initially did not know which of the 3 agents
it belonged to, but at the end, his uncertainty is restricted to 2 of the 3 agents.

4 Formulating information leakage problems

We can use the transition system defined in the previous section in two ways: to
search for an informative and safe protocol, and to validate if a given protocal
is informative and safe.

4.1 Synthesis of protocols

We can characterize informative states based on the knowledge propositions of
the agents—in an informative state, each agent should know completely all the
cards of the agents.

Likewise, safety can be described in terms of the knowledge propositions of
the eavesdropper. Unlike the classical SADI problem, we can quantify the level
of safety we tolerate by placing a threshold on the knowledge revealed to the
eavesdropper.

Our first task is to identify a set of runs that lead to informative and safe
states. We call such a run a first-order informative run. It suffices to start the
search at a fixed initial state corresponding a canonical distribution of cards.
Every other deal is a permutation of this deal. If we can find a protocol for this
starting deal, we can construct a symmetric protocol for every other deal by
permuting all announcements in the same manner as the initial deal.

Having identified first order informative runs (through, say, depth-first search)
we have to check if they satisfy second order safety and if they meet the view-
based criterion laid down for protocols.

First order safety guarantees that the eavesdropper has at least two possible
deals in his ignorance set at the end of each such run. However, this does not
guarantee that the same run, starting from one of the alternative states, achieves
informativeness and safety. This is what we call second order safety. Our first
task, therefore, is to identify a set of first order informative runs that is closed
with respect to this pairing: for every run ρ starting from the initial deal H,
there is another deal H ′ such that ρ from H ′ is informative and safe.

Having identified such a set of runs closed with respect to second order safety,
we then ensure that there is a subset that is view-based—that is, if H ∼p H ′,
then the choice made after any sequence of announcements ρ starting from H
matches that made after ρ starting from H ′.

After these two stages of pruning, any first order informative runs that survive
constitute a protocol that solves the given problem.

4.2 Verification of protocols

Conversely, we can use our transition system to verify a given protocol. This
follows conventional lines, where we search for a state that is reachable with
respect to the protocol that violates the given safety requirement.

5 Experimental results

In this section, we document some experiments with our tool on a 3 agent SADI
system. To assist readability, we refer to the 3 honest agents as {A,B,C} rather
than {0, 1, 2}. The eavesdropper is denoted E .

5.1 Need for second order safety

To illustrate the inadequacy of direct first order reasoning, we consider an exam-
ple with the deal type 〈2, 3, 4〉. Suppose the initial deal is d0 = 〈0, 1|2, 3, 4|5, 6, 7, 8〉.
Let the first announcement (ann1) by A be {01, 12, 23}. This would result in B
obtaining complete knowledge of the deal (as he has card 2). B could then make
the second announcement (ann2) as {234, 056, 178} to inform the others.

The only alternative deals compatible with the above announcements are
a) d1 = ({1, 2}, {0, 5, 6}, {3, 4, 7, 8})
b) d2 = ({2, 3}, {1, 7, 8}, {0, 4, 5, 6})
c) d3 = ({2, 3}, {0, 5, 6}, {1, 4, 7, 8})

One may check that none of these deals are completely informative to all
three agents A,B and C when using the run ρ consisting of exactly the two
announcements above. For the first deal, A’s announcment is not informative to
B and the run itself is not informative to any of the agents. So, (d1, ρ) is not even
weakly informative. The runs (d2, ann1) as well as (d3, ann1) are informative to
exactly B and C respectively (the agent that has card 1) but, (d2, ρ) is not
informative to A and (d3, ρ) is informative to neither A nor C.

Currently, our tool can evaluate announcement sequences for first order
safety. It is straightforward to extend it to check for second order safety as
defined above. However, one would need to check what one could handle with
a näıve implementation of second order safety. In the next section, we describe
experiments using our tool for first order safety of larger instances with varying
parameters.

5.2 Hand Size and Informativity

For a particular deal type (say 〈4, 4, 4, 0〉), and a particular initial deal (say
〈{0, 1, 2, 3}|{4, 5, 6, 7}|{8, 9, 10, 11}〉), we generate random truthful announce-
ment sequences using the function genRun defined in cpState. Though an an-
nouncement is simply a disjunction of hands, it makes sense for an agent to reveal
only partial information in every announcement. This can be done by uniformly
restricting the size of each set in the announcement. We call this the size of the
hand (hSize) revealed in the announcement. The function genRun accepts the
following arguments

a) The size of each set in the announcement (hSize).
b) The number of sets (or disjuncts) in an announcement (annLen).
c) The number of announcements for each run (runLen).

The executions were generated for the deal type 〈4, 4, 4, 0〉, varying hSize
in the range {1, 2, 3}. Furthermore, we also varied annLen to take values in
{3, 5, 7}. The results obtained are presented in Tables 1, 2, 3. We also ran some
experiments for the deal type 〈8, 8, 8, 0〉—the results are tabulated in Table 4.
For all runs, we have fixed runLen as 6, denoting sequences of 6 announcements,
corresponding to exactly 2 rounds across the 3 agents. Our eventual goal is to
move beyond the 1 round protocols studied in the literature ([5, 9]).

The hSize column denotes the hand size used in the announcements. The
other columns are labeled by sets of agents. The entries in the matrix denote
the number of runs which were informative for the corresponding set of agents.

If we look at the tables for 〈4, 4, 4, 0〉, (that is, Tables 1, 2 and 3) we notice
that, as we increase hSize, the number of runs which are informative for any
agent increases. This reflects our intuition that more information is transferred
when each part of the announcment reveals more details about the hand. Another
expected outcome is that the number of cards revealed to E also increases with
increasing hSize, as observed in Figure 2. Note that the number of cards revealed
to E is not represented in the tables but was computed independently using the
same set of runs.

0 2 4 6 8 10 12
0

20

40

60

80

100

Number of Cards Revealed

E
x
ec

u
ti

o
n
s

%

Cards Revealed (in 〈 4, 4, 4, 0 〉 for annLen = 3)

Legend: hSize = 1 hSize = 2 hSize = 3

Fig. 2. Infomation leakage to E

hSize ∅ A B C A,B A,C B,C A,B,C A,B,C,E

1 500 0 0 0 0 0 0 0 0
2 355 24 27 34 17 19 22 1 1
3 9 2 6 1 36 30 35 0 381

Table 1. Executions with annLen = 3 for 〈4, 4, 4, 0〉 (500 per entry).

hSize ∅ A B C A,B A,C B,C A,B,C A,B,C,E

1 500 0 0 0 0 0 0 0 0
2 434 23 19 16 0 4 3 1 0
3 12 2 8 8 41 38 42 4 345

Table 2. Executions with annLen = 5 for 〈4, 4, 4, 0〉 (500 per entry).

Notice that for 〈4, 4, 4, 0〉, setting annLen = 7 and hSize = 3, we obtained
about 20 runs that were informative and safe. For the same configuration, we
obtained a larger number of runs (about 169 runs or about 33% of the runs)
that were informative for 2 of the agents.

One motivation for running these experiments is to identify parameters for
which the probability of hitting an informative run is high. Once we identify
informative runs, the next step would be to validate these runs with respect to
second order reasoning of E in order to design or search for informative and safe
protocols. We can also use these experiments to guide us towards impossibility
proofs when a protocol does not exist.

6 Discussion

We have attempted to describe a framework for quantifying information flow in
protocols in terms of discrete items of knowledge. We have used card playing
protocols because the cards themselves act as natural units of knowledge.

We have identified two kinds of knowledge propositions: A knows that B
has card i and A knows that B does not have card i. In the Russian Cards
Problem where there are only two honest agents, these two are dual to each
other. However, in the SADI framework, the second type of knowledge is strictly
weaker than the first. Positive information about where a card is implies negative
information about where the card is not to be found, but not vice versa.

We can thus impose a partial order on different knowledge states of the
eavesdropper and use this to rank different protocols according the amount of
information that they reveal. A challenge would then be to synthesize an optimal
protocol with respect to this information ordering.

A more ambitious extension would be to extend our analysis to settings such
as bidding in the game of bridge. In the bridge bidding process, each pair tries to

hSize ∅ A B C A,B A,C B,C A,B,C A,B,C,E

1 500 0 0 0 0 0 0 0 0
2 480 7 8 5 0 0 0 0 0
3 12 12 13 10 55 59 55 20 264

Table 3. Executions with annLen = 7 for 〈4, 4, 4, 0〉 (500 per entry).

hSize ∅ C A,B A,C B,C A,B,C,E

2 250 0 0 0 0 0
4 243 0 4 2 1 0
6 38 1 30 19 31 131

Table 4. Executions with annLen = 3 for 〈8, 8, 8, 0〉 (250 per entry)

understand the strength of the team’s hand without revealing too much to the
opponent. Bids are restricted to be an ascending sequence of announcements and
the number of such announcements is fixed a priori. Hence, the goal is to maxi-
mize the information shared between partners while minimizing the information
revealed to the opponents.

References

1. Konstantinos Chatzikokolakis, Catuscia Palamidessi, and Prakash Panangaden.
Probability of error in information-hiding protocols. In 20th IEEE Computer Se-
curity Foundations Symposium, CSF 2007, 6-8 July 2007, Venice, Italy, pages
341–354. IEEE Computer Society, 2007.

2. David Clark, Sebastian Hunt, and Pasquale Malacaria. Quantitative information
flow, relations and polymorphic types. J. Log. Comput., 15(2):181–199, 2005.

3. David Clark, Sebastian Hunt, and Pasquale Malacaria. A static analysis for quan-
tifying information flow in a simple imperative language. Journal of Computer
Security, 15(3):321–371, 2007.

4. Michael R. Clarkson, Andrew C. Myers, and Fred B. Schneider. Belief in infor-
mation flow. In 18th IEEE Computer Security Foundations Workshop, (CSFW-18
2005), 20-22 June 2005, Aix-en-Provence, France, pages 31–45. IEEE Computer
Society, 2005.

5. David Fernández-Duque and Valentin Goranko. Secure aggregation of distributed
information: How a team of agents can safely share secrets in front of a spy. Discrete
Applied Mathematics, 198:118 – 135, 2016.

6. Boris Köpf and David A. Basin. An information-theoretic model for adaptive side-
channel attacks. In Peng Ning, Sabrina De Capitani di Vimercati, and Paul F.
Syverson, editors, Proceedings of the 2007 ACM Conference on Computer and
Communications Security, CCS 2007, Alexandria, Virginia, USA, October 28-31,
2007, pages 286–296. ACM, 2007.

7. Gavin Lowe. Quantifying information flow. In 15th IEEE Computer Security
Foundations Workshop (CSFW-15 2002), 24-26 June 2002, Cape Breton, Nova
Scotia, Canada, pages 18–31.

8. Alessandra Di Pierro, Chris Hankin, and Herbert Wiklicky. Approximate non-
interference. In 15th IEEE Computer Security Foundations Workshop (CSFW-15
2002), 24-26 June 2002, Cape Breton, Nova Scotia, Canada, pages 3–17.

9. Hans P. van Ditmarsch, Wiebe van der Hoek, Ron van der Meyden, and Ji Ruan.
Model checking russian cards. Electr. Notes Theor. Comput. Sci., 149(2):105–123,
2006.

