
FSTTCS 2006, 26th International Conference on Foundations of Software
Technology and Theoretical Computer Science
Proceedings: R Ramanujam, Sandeep Sen (eds.)
Springer Lecture Notes in Computer Science 3821 (2005), 335–347

Causal closure for MSC languages

Bharat Adsul, Madhavan Mukund, K. Narayan Kumar, and Vasumathi
Narayanan

Chennai Mathematical Institute, Chennai, India
{abharat,madhavan,kumar,vasumathi}@cmi.ac.in

Abstract. Message sequence charts (MSCs) are commonly used to spec-
ify interactions between agents in communicating systems. Their visual
nature makes them attractive for describing scenarios, but also leads to
ambiguities that can result in incomplete or inconsistent descriptions.

One such problem is that of implied scenarios—a set of MSCs may
imply new MSCs which are “locally consistent” with the given set. If
local consistency is defined in terms of local projections of actions along
each process, it is undecidable whether a set of MSCs is closed with
respect to implied scenarios, even for regular MSC languages [3].

We introduce a new and natural notion of local consistency called
causal closure, based on the causal view of a process—all the information
it collects, directly or indirectly, through its actions. Our main result is
that checking whether a set of MSCs is closed with respect to implied
scenarios modulo causal closure is decidable for regular MSC languages.

1 Introduction

Message Sequence Charts (MSCs) [10] are an appealing visual formalism that
are used in a number of software engineering notational frameworks such as
SDL [15] and UML [4, 8]. A collection of MSCs is used to capture the scenarios
that a designer might want the system to exhibit (or avoid).

A standard way to generate a set of MSCs is via Hierarchical (or High-
level) Message Sequence Charts (HMSCs) [12]. Without losing expressiveness,
we consider only a subclass of HMSCs called Message Sequence Graphs (MSGs).
An MSG is a finite directed graph in which each node is labeled by an MSC.
An MSG defines a collection of MSCs by concatenating the MSCs labeling each
path from an initial vertex to a terminal vertex.

Though the visual nature of MSGs makes them attractive for describing
scenarios, it also leads to ambiguities that can result in incomplete or inconsistent
descriptions. An important issue is the presence of implied scenarios [2, 3]. An
MSC M is (weakly) implied by an MSC language L if the local actions of each
process p along M agree with its local actions along some good MSC Mp ∈ L.

Implied scenarios are naturally tied to the question of realizability—when
is an MSG specification implementable as a set of communicating finite-state
machines? In a distributed model with local acceptance conditions, it is natural



336

to expect the specification to be closed with respect to local projections. Thus,
a language is said to be weakly realizable if all weakly implied scenarios are
included in the language. Unfortunately, weak realizability is undecidable, even
for regular MSC languages [3].

Weak implication presumes that the only information a process can maintain
locally about an MSC is the sequence of actions that it participates in. How-
ever, we can augment the underlying message alphabet of an MSC by tagging
auxiliary information to each message. Using this extra information, processes
can maintain a bounded amount of information about the global state of the
system [13]. With this, we arrive at a stronger notion of implied scenario that
we call causal closure, based on the local view that each process has of an MSC
from the information it receives, directly or indirectly, about the system.

Our main result is that causal closure preserves regularity for MSC languages,
in contrast to the situation with weak closure. From this it follows that causal
realizability is effectively checkable for regular MSC languages, both in the case of
implementations with deadlocks and for safe, or deadlock-free, implementations.

Our result also allows us to interpret MSGs as incomplete specifications
whose semantics is given in terms of the causal closure. Thus, we can retain
relatively simple visual specifications without compromising on the complete-
ness and consistency of verification.

The paper is organized as follows. We begin with some basic definitions re-
garding MSCs, message sequence graphs and message-passing automata. In the
next section, we recall the results for weakly implied scenarios. In Section 4, we
define the notion of causal closure and establish our main result, that causal clo-
sure preserves regularity for MSC languages. Finally, in Section 5, we examine
the feasibility of using causal closure as a semantics for MSGs.

2 Preliminaries

2.1 Message sequence charts

Let P = {p, q, r, . . .} be a finite set of processes (agents) that communicate with
each other through messages via reliable FIFO channels using a finite set of
message types M. For p ∈ P , let Σp = {p!q(m), p?q(m) | p 6= q ∈ P , m ∈ M} be
the set of communication actions in which p participates. The action p!q(m) is
read as p sends the message m to q and the action p?q(m) is read as p receives the
message m from q. We set ΣP =

⋃

p∈P
Σp. We also denote the set of channels

by Ch = {(p, q) | p 6= q}. Whenever the set of processes P is clear from the
context, we write Σ instead of ΣP , etc.

Labelled posets A Σ-labelled poset is a structure M = (E,≤, λ) where (E,≤)
is a poset and λ : E → Σ is a labelling function. For e ∈ E, let ↓e = {e′ | e′ ≤ e}.
For X ⊆ E, ↓X = ∪e∈X↓e. We call X ⊆ E a prefix of M if X = ↓X .

For p ∈ P and a ∈ Σ, we set Ep = {e | λ(e) ∈ Σp} and Ea = {e | λ(e) = a},
respectively. For each (p, q) ∈ Ch, we define the relation <pq as follows:



337

m1

m2

m3

e1 e2

e′
2

e′
1

e′
3

e3

p q r

Fig. 1. An MSC over {p, q, r}.

e <pq e′ ⇐⇒ λ(e) = p!q(m), λ(e′) = q?p(m) and |↓e∩Ep!q(m)| = |↓e′∩Eq?p(m)|

The relation e <pq e′ says that channels are FIFO with respect to each message—
if e <pq e′, the message m read by q at e′ is the one sent by p at e.

Finally, for each p ∈ P , we define the relation ≤pp= (Ep ×Ep)∩≤, with <pp

standing for the largest irreflexive subset of ≤pp.

Definition 1. An MSC (over P) is a finite Σ-labelled poset M = (E,≤, λ) that
satisfies the following conditions.

1. Each relation ≤pp is a linear order.
2. If p 6= q then for each m ∈ M, |Ep!q(m)| = |Eq?p(m)|.
3. If e <pq e′, then |↓e ∩

(
⋃

m∈M
Ep!q(m)

)

| = |↓e′ ∩
(
⋃

m∈M
Eq?p(m)

)

|.
4. The partial order ≤ is the reflexive, transitive closure of the relation

⋃

p,q∈P
<pq.

The second condition ensures that every message sent along a channel is
received. The third condition says that every channel is FIFO across all messages.

In diagrams, the events of an MSC are presented in visual order. The events
of each process are arranged in a vertical line and messages are displayed as
horizontal or downward-sloping directed edges. Fig. 1 shows an example with
three processes {p, q, r} and six events {e1, e

′
1, e2, e

′
2, e3, e

′
3} corresponding to

three messages—m1 from p to q, m2 from q to r and m3 from p to r.
For an MSC M = (E,≤, λ), we let lin(M) = {λ(π) | π is a linearization of

(E,≤)}. For instance, p!q(m1) q?p(m1) q!r(m2) p!r(m3) r?q(m2) r?p(m3) is one
linearization of the MSC in Fig. 1.

MSC languages An MSC language is a set of MSCs. We can also regard an
MSC language L as a word language L over Σ consisting of all linearizations of
the MSCs in L. For an MSC language L, we set lin(L) =

⋃

{lin(M) | M ∈ L}.

Definition 2. An MSC language L is said to be a regular MSC language if the
word language lin(L) is a regular language over Σ.

2.2 Message sequence graphs

Message sequence graphs (MSGs) are finite directed graphs with designated
initial and terminal vertices. Each vertex in an MSG is labelled by an MSC. The
edges represent (asynchronous) MSC concatenation, defined as follows.



338

q r s r sp p q
m m

M1 M2

mm

CGM1◦M2

p

r

q

s

⇒ M2M1

Fig. 2. A message sequence graph

Let M1 = (E1,≤1, λ1) and M2 = (E2,≤2, λ2) be a pair of MSCs such that
E1 and E2 are disjoint. The (asynchronous) concatenation of M1 and M2 yields
the MSC M1 ◦ M2 = (E,≤, λ) where E = E1 ∪ E2, λ(e) = λi(e) if e ∈ Ei,
i ∈ {1, 2}, and ≤ = (

⋃

p,q∈P
<pq)

∗, where <pp=<1
pp ∪ <2

pp ∪{(e1, e2) | e1 ∈

E1, e2 ∈ E2, λ(e1) ∈ Σp, λ(e2) ∈ Σp} and for (p, q) ∈ Ch, <pq=<1
pq ∪ <2

pq.

A Message Sequence Graph is a structure G = (Q,→, Qin, F, Φ), where Q is a
finite and nonempty set of states, → ⊆ Q×Q, Qin ⊆ Q is a set of initial states,
F ⊆ Q is a set of final states and Φ labels each state with an MSC.

A path π through an MSG G is a sequence q0 → q1 → · · · → qn such
that (qi−1, qi) ∈ → for i ∈ {1, 2, . . . , n}. The MSC generated by π is M(π) =
M0 ◦ M1 ◦ M2 ◦ · · · ◦ Mn, where Mi = Φ(qi). A path π = q0 → q1 → · · · → qn

is a run if q0 ∈ Qin and qn ∈ F . The language of MSCs accepted by G is
L(G) = {M(π) | π is a run through G}.

An example of an MSG is depicted in Fig. 2. The initial state is marked ⇒
and the final state has a double line. The language L defined by this MSG is not
regular: L projected to {p!q(m), r!s(m)}∗ consists of σ ∈ {p!q(m), r!s(m)}∗ such
that |σ↾p!q(m)| = |σ↾r!s(m)| ≥ 1, which is not a regular string language.

In general, it is undecidable whether an MSG describes a regular MSC lan-
guage [9]. However, a sufficient condition for the MSC language of an MSG to
be regular is that the MSG be locally synchronized.

Communication graph For an MSC M = (E,≤, λ), let CGM , the communi-
cation graph of M , be the directed graph (P , 7→) where:

– P is the set of processes of the system.

– (p, q) ∈ 7→ iff there exists an e ∈ E with λ(e) = p!q(m).

M is said to be com-connected if CGM consists of one nontrivial strongly con-
nected component and isolated vertices.

Locally synchronized MSGs The MSG G is locally synchronized [14] (or
bounded [1]) if for every loop π = q → q1 → · · · → qn → q, the MSC M(π) is
com-connected. In Fig. 2, CGM1◦M2

is not com-connected, so the MSG is not
locally synchronized. We have the following result for MSGs [1].

Theorem 3. If G is locally synchronized, L(G) is a regular MSC language.



339

2.3 Message-passing automata

Message-passing automata are natural recognizers for MSC languages.

Definition 4. A message-passing automaton (MPA) over Σ is a structure
A = ({Ap}p∈P , ∆, sin, F ) where:

– ∆ is a finite alphabet of auxiliary messages.
– Each component Ap is of the form (Sp,→p) where Sp is a finite set of p-local

states and →p ⊆ Sp × Σp × ∆ × Sp is the p-local transition relation.
– sin ∈

∏

p∈P
Sp is the global initial state.

– F ⊆
∏

p∈P
Sp is the set of global final states.

The local transition relation →p specifies how the process p sends and re-
ceives messages. The transition (s, p!q(m), x, s′) says that in state s, p can send
the message m to q tagged with auxiliary information x and move to state s′.
Similarly, the transition (s, p?q(m), x, s′) signifies that at state s, p can receive
the message m from q tagged with information x and move to state s′.

A global state of A is an element of
∏

p∈P
Sp. For a global state s, sp denotes

the pth component of s. A configuration is a pair (s, χ) where s is a global state
and χ : Ch → (M × ∆)∗ is the channel state describing the message queue in
each channel c. The initial configuration of A is (sin, χε) where χε(c) is the empty
string ε for every channel c. The set of final configurations of A is F × {χε}.

The set of reachable configurations of A, ConfA, is defined in the obvi-
ous way. The initial configuration (sin, χε) is in ConfA. If (s, χ) ∈ ConfA and

(sp, p!q(m), x, s′p) ∈ →p, then there is a global move (s, χ)
p!q(m)
=⇒ (s′, χ′) where for

r 6= p, sr = s′r, for each r ∈ P , χ′((p, q)) = χ((p, q)) · (m, x), and for c 6= (p, q),
χ′(c) = χ(c). Similarly, if (s, χ) ∈ ConfA and (sp, p?q(m), x, s′p) ∈ →p, then

there is a global move (s, χ)
p?q(m)
=⇒ (s′, χ′) where for r 6= p, sr = s′r, for each

r ∈ P , χ((q, p)) = (m, x) · χ′((q, p)), and for c 6= (q, p), χ′(c) = χ(c).
Let prf(σ) denote the set of prefixes of a word σ ∈ Σ∗. A run of A over σ is

a map ρ : prf(σ) → ConfA such that ρ(ε) = (sin, χε) and for each τa ∈ prf(σ),

ρ(τ)
a

=⇒ ρ(τa). The run ρ is accepting if ρ(σ) is a final configuration.
We define L(A) = {σ | A has an accepting run over σ}. L(A) corresponds

to the set of linearizations of an MSC language. To simplify notation, we write
L(A) = L, where L is an MSC language, rather than L(A) = lin(L).

For B ∈ N, we say that a configuration (s, χ) of A is B-bounded if |χ(c)| ≤ B
for every channel c ∈ Ch. We say that A is a B-bounded automaton if every
reachable configuration (s, χ) ∈ ConfA is B-bounded.

The MPA A in Fig. 3 has two components, p and q, with initial state (s1, t1)
and only one final state, (s2, t3). A typical MSC in L(A) is displayed at the right.

Deterministic message-passing automata We say that A is deterministic if
the transition relation →p for each component satisfies the following conditions:

– (s, p!q(m), x′, s′) ∈ →p and (s, p!q(m), x′′, s′′) ∈ →p imply x′ = x′′, s′ = s′′.



340

s1

s2

s3

p!q(m)

t2

t1 q?p(m)

p!q(m)

q!p(m′)
q?p(m)

⇓ ⇓

t3

p?q(m′)

p q

m m′

m

m

m′

Fig. 3. A message-passing automaton.

– (s, p?q(m), x, s′) ∈ →p and (s, p?q(m), x, s′′) ∈ →p imply s′ = s′′.

For deterministic MPAs, the global state at the end of an MSC is independent
of the choice of linearization.

Proposition 5. Let A be a deterministic MPA, M = (E,≤, λ) an MSC and
E′ ⊆ E a prefix of M . Let w and w′ be linearizations of E′ and let ρ and ρ′ be
the runs of A on w and w′, respectively. Then, ρ(w) = ρ(w′).

If A is deterministic, for any prefix E′ of an MSC M , we can unambiguously
write ρ(E′) to denote the unique run of A on E′. In particular, the unique run
of A on M can be written as ρ(M). The following theorem characterizes regular
MSC languages in terms of message-passing automata [9].

Theorem 6. An MSC language L is regular iff there is a deterministic B-
bounded MPA A such that L(A) = L.

3 Implied scenarios: the weak case

When we use MSC languages to specify sets of scenarios, it is important to
identify whether the specification is complete. A natural requirement is that the
language be closed with respect to local views—for an MSC M , if every process
locally believes that M belongs to the language L, M should in fact be in L.

One way to formalize closure with respect to local views is in terms of local
projections [2, 3].

Definition 7. – Let M = (E,≤, λ) be an MSC and p ∈ P a process. The
projection of M onto p, M↾p, is the Σ-labelled partial order (Ep,≤p, λp),
where ≤p = ≤ ∩ (Ep × Ep) is a total order and λp = λ↾Ep

.
– An MSC M is said to be weakly implied by L if for every process p ∈ P

there is an MSC Mp ∈ L such that Mp↾p = M↾p.
– The weak closure of L is the collection of MSCs

WeakCl(L)
△
= {M | M is weakly implied by L}.



341

p q r s p q r sp q r s

M M ′

Fig. 4. A regular MSC language whose weak closure has unbounded buffers

Unfortunately, the weak closure of a language can admit unbounded channels
even when every channel in the original language is uniformly bounded. An
example is shown in Fig. 4—all messages are labelled m and labels are omitted.

Both M and M ′ are com-connected, so the MSC language consisting of arbi-
trary concatenations of M and M ′ is regular. However, for every natural number
k, the weak closure of this language contains the MSC Mk in which the actions
of p and q correspond to the sequence M2k ◦ M ′k while the actions of r and s
match the sequence M ′k◦M2k. In Mk, the buffer from p to s contains k messages
at the global state where p and q make the transition from M to M ′ and r and s
make the transition from M ′ to M . The figure shows the case k = 2. The dotted
line marks the global cut where the channel from p to s has maximum capacity.

Implied scenarios have a close link to implementability, or realizability. An
MSC language recognized by a communicating finite-state machine with a local
acceptance condition must be closed with respect to local views. We say that an
MSC language L is weakly realizable if L = WeakCl(L). We have the following
negative result [3], which arises from the fact that the weak closure of a regular
MSC language may have unbounded buffers.

Theorem 8. Let G be a locally synchronized MSG. It is undecidable if L(G) is
weakly realizable.

To overcome this negative result, a more restrictive notion of realizability
is proposed in [2, 11]. An MSC language is said to be safely realizable if it
admits a deadlock-free implementation—a deadlock is a global state from which
no accepting state is reachable. In a safe implementation, it turns out that all
implied scenarios must have bounded buffers, yielding the following result [3].

Theorem 9. Let G be a locally synchronized MSG. It is decidable if L(G) is
safely realizable.

4 Causal closure for regular MSC languages

Weak closure assumes that the only information that a process can maintain
locally about the current MSC is the sequence of actions that it participates



342

p q sr p q sr p q sr

M2M1 M ′

m

m

m m

m

m

m

Fig. 5. Illustrating the difference between weak and causal closure

in. However, as we have observed when characterizing regular MSC languages in
terms of MPAs, we can tag each underlying message with extra data using which
processes can maintain a bounded amount of information about the global state
of the system. This leads us to a stronger notion of local view called causal view.

We begin by defining p-views. For an MSC M = (E,≤, λ) and p ∈ P , let
maxp(M) denote the maximum event from Ep in M—since all p events in M
are linearly ordered by ≤pp, maxp(M) is well-defined whenever Ep 6= ∅.

Definition 10. Let M = (E,≤, λ) be an MSC and p ∈ P a process. The p-view
of M , ∂p(M), is the Σ-labelled partial order (E′,≤′, λ′) where E′ = {e | e ≤
maxp(M)}, ≤′ = ≤ ∩ (E′ × E′) and λ′ = λ↾E′ . If Ep = ∅, ∂p(M) = (∅, ∅, ∅).

It is easy to observe that ∂p(M) is always a prefix of M . Causal realizability
captures the intuition that each process p can keep track of the events in ∂p(M).

Definition 11. Let L be an MSC language.

– An MSC M is said to be causally implied by L if for every process p ∈ P
there is an MSC Mp ∈ L such that ∂p(M) = ∂p(Mp).

– The causal closure of L is the collection of MSCs

CausalCl(L)
△
= {M | M is causally implied by L}.

– The language L is said to be causally realizable if L = CausalCl(L).

An MSC language is causally realizable if each local process can recognize
whether an MSC belongs to the language based purely on its causal view of the
MSC. Observe that we always have L ⊆ CausalCl(L). Thus, L is not causally
realizable iff there is an MSC M ∈ CausalCl(L) such that M /∈ L.

We also have the inclusion CausalCl(L) ⊆ WeakCl(L). In general,
CausalCl(L) 6= WeakCl(L)—for instance, the implied MSCs in Fig. 4 are not in
the causal closure of the language. Fig. 5 illustrates the difference between weak
and causal closure. Here M ′ is in the weak closure of {M1, M2} but not in the
causal closure, because the causal view of process s includes information about
whether or not p has sent a message to q.

Every regular MSC language L is recognized by a deterministic B-bounded
MPA AL. To construct an MPA for CausalCl(L), we simulate AL and make
each process go into a local accepting state if its current history is consistent
with some accepting run of AL. To achieve this, we make use of a bounded
time-stamping protocol for B-bounded MPA, described in [13], by which each
process can maintain the latest known state of every other process and channel.
Using this protocol, we can derive the following result.



343

Theorem 12. Let A = ({Ap}p∈P , ∆, sin, F ) be a deterministic B-bounded MPA.
We can augment A with time-stamping information to get a deterministic B-
bounded MPA Aτ = ({Aτ

p}p∈P , ∆τ , sτ
in, F τ ) such that:

– For each process p, let Ap = (Sp,→p) and Aτ
p = (Sτ

p ,→τ
p) be the p compo-

nents of A and Aτ , respectively. Then:

– Sτ
p is of the form Sp × Γ , where Γ contains a bounded amount of time-

stamped data about all the processes and channels in the system.
– →τ

p is such that for every MSC M = (E,≤, λ) and for every prefix E′

of M , the unique run ρτ (E′) of Aτ on E′ corresponds to the unique run
ρ(E′) of A on E′ in the sense that ρ(E′) matches the first component of
ρτ (E′).

– sτ
in =

∏

p∈P
(sp, γ

0
p) where sin =

∏

p∈P
sp and

∏

p∈P
γ0

p is a fixed set of initial
time-stamps.

– F τ =
{

∏

p∈P
(sp, γp) |

∏

p∈P
sp ∈ F

}

.

– Let M = (E,≤, λ) be an MSC. For each p ∈ P, from the p-state (sp, γp)
assigned by ρτ (∂p(M)) we can recover the configuration (s, χ) reached by A
at the end of ∂p(M).

When we augment a deterministic MPA A with time-stamping data to obtain
Aτ , after any sequence of actions w, the local state of p in Aτ allows us to recover
the global configuration reached by A after processing all actions in the p-view
of w. Thus, incrementally each process can keep track of the global configuration
of the automaton A for the portion of the MSC that it has seen so far.

Theorem 13. Let L be a regular MSC language. Then, its causal closure
CausalCl(L) is also a regular MSC language.

Proof. Since L is a regular MSC language, by Theorem 6 there is a deterministic
B-bounded MPA A such that L(A) = L.

We apply Theorem 12, to obtain a new automaton Aτ that augments A
with time-stamped information. For each process p, we define a subset of local
final states F τ

p ⊆ Sτ
p as follows. A state (sp, γp) belongs to F τ

p iff, starting
from the configuration (s, χ) of A that we recover from (sp, γp), A can reach
a configuration (f, χε), where f ∈ F , without performing any actions involving
process p. Notice that the sets F τ

p are effectively computable.
In Aτ , we replace the set of global final states F τ by the product of local

final states
∏

p∈P
F τ

p and call this modified MPA ACl
τ .

Claim L(ACl
τ ) = CausalCl(L).

Proof of claim (⇐) Suppose that M ∈ CausalCl(L). Then, for every process p,
there is an MSC Mp ∈ L such that ∂p(M) = ∂p(Mp). Fix p ∈ P and let (sp, γp)
be the state of p in the run ρτ of Aτ on ∂p(M). The configuration (s, χ) recorded
in (sp, γp) is the configuration reached by A at the end of ∂p(M) = ∂p(Mp). Since
Mp ∈ L, A can reach a configuration (f, χε), f ∈ F , starting from (s, χ), without
performing any actions involving p. Thus, (sp, γp) ∈ F τ

p . Since p does not make



344

any moves outside ∂p(M), the state of p in ρτ (M) also belongs to F τ
p . Since

every process p reaches a state in F τ
p at the end of M , M ∈ L(ACl

τ ).

(⇒) Suppose that M ∈ L(ACl
τ ). Fix a process p, and let (sp, γp) ∈ F τ

p be the

state of p in the accepting run ρτ (M) of ACl
τ on M . Since p does not participate

in any action outside ∂p(M), the state of p in ρτ (∂p(M)) must also be (sp, γp).
Let (s, χ) be the configuration of A that we recover from (sp, γp)—by Theo-

rem 12, (s, χ) is the configuration reached by A at the end of ∂p(M). From the
definition of F τ

p , we know that A can reach a configuration (f, χε) from (s, χ),
where f ∈ F , without perfoming any actions involving p. Let wp be linearization
of ∂p(M) and let w be the sequence of actions processed by A when going from
the configuration (s, χ) to the configuration (f, χε). All messages sent during
wp but not received in wp must be received in w since all channels are empty
in the final configuration. It is not difficult to see that wpw corresponds to the
linearization of an MSC Mp. By construction, A has an accepting run on Mp,
so Mp ∈ L, with ∂p(M) = ∂p(Mp).

Thus, whenever p reaches a state in F τ
p after M , there is an MSC Mp ∈ L

such that ∂p(M) = ∂p(Mp). If M is in L(Aτ ), then we find such a witness Mp

for every p ∈ P , so M ∈ CausalCl(L). ⊓⊔

Since we can construct a B-bounded MPA recognizing CausalCl(L) for any
regular MSC language L, we can effectively check whether L = CausalCl(L).
Thus, we have the following.

Corollary 14. For any regular MSC language L (respectively, locally synchro-
nized MSG G), it is decidable if L (respectively, L(G)) is causally realizable.

Every regular MSC language is recognized by a deterministic MPA. Our
construction for the causal closure preserves determinacy. We can check this
deterministic MPA for deadlocked states, which immediately yields the following.

Corollary 15. Let L be a regular MSC language. It is decidable if L is causally
realizable and admits a deadlock-free implementation.

Not all regular MSC languages are MSG-definable. A regular MSC language
is MSG-definable precisely when it is finitely generated—that is, there is a finite
set of MSCs Atoms = {M1, M2, . . . , Mk} such that every MSC in the language
can be written out as a sequence Mi1 ◦Mi2◦· · ·◦Miℓ

where each Mij
∈ Atoms [9].

Proposition 16. There exist regular MSC languages L such that L is MSG-
definable but CausalCl(L) is not.

Proof. The MSG in Fig. 6 is locally synchronized and hence defines a regular
MSC language. In the same figure is shown a family of MSCs {Mn}n∈N, each
of which is causally implied by the language of this MSG. However, observe
that each Mn is an atomic MSC that cannot be written as the asynchronous
concatenation M1 ◦M2 of two nontrivial MSCs. Thus, the causal closure of this
MSG language is regular but not MSG-definable. ⊓⊔



345

p sq r

p sq r

p sq r

p sq r

p sq r

... n copies

⇓

⇓

Fig. 6. MSG definability and causal closure

Moving to arbitrary MSGs takes us into the realm of undecidability. We have
the following results, whose proofs are omitted.

Theorem 17. For an arbitrary MSG G, it is undecidable whether L(G) is causally
realizable. It is also undecidable whether the causal closure of L(G) is a regular
MSC language.

5 MSGs as partial specifications

The realizability question for MSGs asks whether the set of scenarios represented
by an MSG corresponds exactly to the language of a suitably defined MPA. To
ensure that a specification is realizable, we need to impose severe restrictions on
the structure of the MSG. This leads to an explosion in the complexity of the
MSG and detracts significantly from the main motivation for using this notation,
which is to have a transparent and visually appealing formalism to describe the
behaviour of communicating systems.

An alternative is to view MSGs as partial specifications and interpret them
modulo the closure conditions required by distributed implementations. This
approach was studied in the context of Petri nets in [5]. For MPAs, we cannot use
weak closure as the semantics of MSGs because weak closure does not preserve
regularity. However, since the causal closure does preserve regularity, it is feasible
to use this as a semantics for MSGs.

Under the exact interpretation, locally synchronized MSGs correspond to
the class of finitely-generated regular MSC languages [9]. If we interpret MSGs
modulo causal closure, an MSG can represent languages that are not finitely
generated (like the example in Fig. 6). This increases the expressive power of
the MSG notation. Another advantage is that we can sensibly analyze less com-
plicated MSG specifications, making the notation more usable.

MSC languages can also be used to specify desirable properties of commu-
nicating systems. Two interpretations are possible: positive scenarios are those
that the system must be able to exhibit, while negative scenarios should be
avoided.



346

Suppose we use MSC languages both to specify the communicating system
as well as to describe the scenarios that the system should exhibit. To verify
that a set of positive scenarios P is included in the set of system behaviours S,
it is important that both P and S are causally closed to avoid missing out some
scenarios when checking this inclusion.

When model checking a negative property, it is again important to use the
causal closure of the property. We have argued that reasonable implementations
are causally closed. If the property is not causally closed, the implementation may
exhibit an implied scenario that is forbidden, but this fact could go undetected.

In [7], it is shown that model checking of positive and negative scenarios under
the exact interpretation can be performed for MSC languages where channels
are existentially bounded—there is at least one linearization for each MSC in the
language for which all channels are uniformly bounded. This is contrast to regular
MSC languages, where channels are universally bounded across all linearizations.
The properties of existentially bounded MSC languages are further elaborated in
[6]. Unfortunately, the causal closure of an existentially bounded MSC language
need not be existentially bounded. It would be interesting to identify when the
causal closure of an existentially bounded MSC languages remains existentially
bounded so that the results of [7] can be applied modulo causal closure.

References

[1] Alur, R., Yannakakis, M.: Model checking of message sequence charts. Proc. CON-
CUR 1999), Springer Lecture Notes in Computer Science 1664 (1999) 114–129.

[2] Alur, R., Etessami, K., Yannakakis, M.: Inference of message sequence graphs.
IEEE Trans. Software Engg 29(7) (2003) 623–633.

[3] Alur, R., Etessami, K., Yannakakis, M.: Realizability and Verification of MSC
Graphs. Theor. Comput. Sci. 331(1) (2005) 97–114.

[4] Booch, G., Jacobson, I., Rumbaugh, J.: Unified Modeling Language User Guide.
Addison-Wesley (1997)

[5] Caillaud, B., Darondeau, P., Hélouët, L. and Lesventes, G.: HMSCS as partial
specifications . . . with PNs as completions. In Modeling and Verification of Parallel
Processes, 4th Summer School, MOVEP 2000, Nantes, France (2000).

[6] Genest, B., Muscholl, A., and Kuske, D.: A Kleene Theorem for a Class of Commu-
nicating Automata with Effective Algorithms. Proc DLT 2004, Springer Lecture
Notes in Computer Science 3340 (2004) 30–48.

[7] Genest, B., Muscholl, A., Seidl, H. and Zeitoun, M.: Infinite-State High-Level
MSCs: Model-Checking and Realizability. Proc ICALP 2002, Springer Lecture
Notes in Computer Science 2380 (2002) 657–668.

[8] Harel, D., Gery, E.: Executable object modeling with statecharts. IEEE Computer,
July 1997 (1997) 31–42.

[9] Henriksen, J.G., Mukund, M., Narayan Kumar, K., Sohoni, M., and Thiagarajan,
P.S.: A Theory of Regular MSC Languages. Inf. Comp., 202(1) (2005) 1–38.

[10] ITU-TS Recommendation Z.120: Message Sequence Chart (MSC). ITU-TS,
Geneva (1997).

[11] Lohrey, M.: Safe Realizability of High-Level Message Sequence Charts. Proc CON-
CUR 2002, Springer Lecture Notes in Computer Science 2421 (2002) 177–192.



347

[12] Mauw, S., Reniers, M. A.: High-level message sequence charts, Proc SDL’97, El-
sevier (1997) 291–306.

[13] Mukund, M., Narayan Kumar, K., Sohoni, M.: Bounded time-stamping in
message-passing systems. Theoretical Computer Science, 290(1) (2003) 221–239.

[14] Muscholl, A., Peled, D.: Message sequence graphs and decision problems on
Mazurkiewicz traces. Proc. MFCS 1999), Springer Lecture Notes in Computer
Science 1672 (1999) 81–91.

[15] Rudolph, E., Graubmann, P., Grabowski, J.: Tutorial on message sequence charts.
In Computer Networks and ISDN Systems — SDL and MSC 28 (1996)


