
Sessions with an unbounded number of agents

S. Akshay
IIT Bombay

Email: akshayss@cse.iitb.ac.in

Loı̈c Hélouët
INRIA Rennes

Email: loic.helouet@inria.fr

Madhavan Mukund
Chennai Mathematical Institute

Email: madhavan@cmi.ac.in

Abstract—In web-based systems, agents engage in structured
interactions called sessions. Sessions are logical units of compu-
tation, like transactions. However, unlike transactions, sessions
cannot be isolated from each other. Thus, one has to verify that
interference between sessions does not have unexpected side
effects. A challenge in building a tractable model of sessions is
that there is no a priori bound on the number of concurrently
active agents and sessions in the system. Realistic specifications
require agents to compare entities across sessions, but this must
be modeled without assigning an unbounded set of unique
identities to agents and sessions.

We propose a model called session systems that allows an
arbitrary number of concurrently active agents and sessions.
Agents have a limited ability to remember partners across
sessions. Configurations are represented as graphs and the
operational semantics is described through graph-rewriting.
Under reasonable restrictions, session systems turn out to be
well-structured systems. This provides an effective verification
algorithm for coverability properties. We show how to use this
result to verify more elaborate business rules such as avoidance
of conflicts of interest and the Chinese Wall Property.

Keywords-Services, WSTS, verification.

I. INTRODUCTION

Web services involve many parties interacting with each
other to achieve a goal. The communication between the
participating agents typically follows a structured protocol
and the entire sequence of interactions can be seen as a
logical unit of computation, typically called a session.

Sessions exhibit a richer behaviour than conventional
transactions. Transactions combine smaller steps into com-
putational units that satisfy the ACID properties—atomicity,
consistency, isolation and durability. In particular, each
transaction is assumed to be independent. For transactions
executing in parallel, the expected behaviour is specified in
terms of notions such as serializability and linearizability
that presuppose that transactions do not interact.

Sessions, on the other hand, typically need to interact
to achieve the task at hand. Consider a scenario where a
customer makes an online purchase using a credit card.
There are three interactions: the customer interacts with the
merchant to order the item, the merchant interacts with the
bank to confirm the payment and the customer interacts with
the bank to authenticate the payment. Logically, each is a
separate session. However, the merchant cannot confirm the
order before the two sessions with the bank are completed.
Likewise, the customer authenticates the payment after the

merchant tells the bank how much is to be paid and before
the bank confirms the payment to the merchant.

To capture these features, we need a model that does more
than just encapsulating a sequence of activities as an atomic
block. The model must permit controlled interactions such
as the ones described above, while taking care to disallow
undesirable interference. For instance, authentication for one
payment should not be reused for another purchase.

Our goal is to build a tractable model of sessions that
is amenable to formal verification. In addition to allowing
sessions to interact in a controlled manner, there is another
challenge. An unbounded number of agents of a given type
may be active simultaneously—e.g., customers at an online
store. This allows unboundedly many sessions to be active in
parallel. When sessions interact, we need to compare entities
across sessions and maintaining unbounded sets of agent
identities usually makes verification untractable.

Our first contribution is to extend the session system
formalism proposed in [1] to model systems with an ar-
bitrary number of active agents and sessions. We represent
configurations of session systems as labelled graphs. The
semantics is given in terms of finite graph rewriting rules.

Our second contribution is to propose effective veri-
fication techniques for session systems. Not surprisingly,
reachability is undecidable for unbounded session systems.
However, in many cases, the weaker property of cover-
ability—whether a configuration embeds a given pattern—
suffices. We show that, under reasonable restrictions, session
systems fall within a class of well-structured transition
systems (WSTS) for which coverability is decidable. We
then use the decidability of coverability to verify properties
expressing “business rules”, such as avoidance of conflict of
interest and the Chinese Wall Property (CWP) [2], which
forbids an agent interacting with a company to have direct
or indirect interactions at a later stage with a competitor.

Our paper is organized as follows. Sections II and III
introduce session systems and their semantics. Section IV
shows a restriction for which coverability is decidable.
Section V assembles these results to provide effective ver-
ification tools to check conflicts of interest and CWPs.
Section VI compares our approach with related work on
services and orchestrations. The proofs and the complete
operational semantics of session systems are provided in an
extended version available at [3].

II. SESSION SYSTEMS

A session system represents the behaviours of (possibly
infinite) sets of agents interacting with each other. Our
model has two varieties of specifications. Agent behaviours
are described by templates that determine how agents ini-
tiate and join sessions. Sessions are described by protocols
that describe what happens during the course of a single
structured interaction. We assume that any pair of actors
in the system can communicate directly and reliably with
each other, when required. Hence, every actor of the system
can share information with a partner as soon as it knows
the identity of this partner. However, we make no further
assumption about the way communication is implemented.

The key ingredient of our model is the session, a struc-
tured interaction among a finite set of agents to achieve a
goal. An agent is an entity in the distributed system, e.g.,
a customer of an online store, a bank providing financial
services online, etc. Agents operate at two levels. At an
individual level, they can create, join and kill sessions, or
query the system for the existence of a particular kind of
session. At a collective level, they communicate with each
other by playing different roles to define the interaction
within sessions. Thus, an agent can participate in an un-
bounded number of sessions in parallel, and will be the
creator (owner) of a subset of them. Each agent manages
a finite set of data variables that can be modified locally
by the agent or during interactions within a session. In
addition to data variables, each agent maintains a finite set
of references to known agents. These references help in
controlling interactions within a given scope.

Agents in the system follow predetermined behaviours,
defined by templates called archetypes. Archetypes are tran-
sition systems with guards, whose moves are labelled either
by agent operations to manage sessions (join, kill, create,
query) or by assignments of variables. Figure 1 shows an
example of archetype: an agent that is an instance of this
(arche)type can create a session of type S1, in which it must
play the role ‘client’, then update variable a, join an arbitrary
number of sessions of type S2, and finally kill all sessions
of type S1 that it has created, provided the value of a is tt .
We will detail later the meaning of these transitions.

As mentioned earlier, sessions are structured interactions
involving a finite set of participating agents. Generic patterns
of interactions are called protocols and are defined in terms
of roles (e.g., client, merchant). Sessions are instances of
these protocols in which roles are instantiated at runtime.
We will say that a session s is of type P when s is an

q0 q1 q2

q3

Create(S1, client , {}) a := b ∨ c

[a = tt]Kill(S1)

Join(S2, client , {server = k1})

Figure 1. An example of an archetype

instance of a protocol P . An agent can thus be involved in
several sessions, and play different roles in each of them.
For instance, an agent can be a client in one instance of a
client-server protocol, and a server in another instance.

A protocol is a finite transition system labeled by guarded
shared actions. An action is executed by a subset of roles par-
ticipating in the protocol. This allows us to model not only
synchronous or multicast communications (where an action
is located on two or more agents), but also asynchronous
message passing (where sending and receiving messages
are separate actions, each executed by a single agent). In
addition, an action involving a set of roles can assign values
to the variables of the agents playing these roles. This allows
agents to exchange data values and agent identities.

Figure 2 shows an example of a protocol representing
an online sale with three roles, {C, S,D}, denoting,
respectively, a customer, a store, and a delivery service.
The shared actions are {Leave, Buy, ReadPage,
Coordinates, BankInfo, CheckBalance,
Cancel, Ship}. Variables of the system include
{ClientAddress, myAddress, ClientBank,
Mybank, BalanceOK}. The table summarizes how
actions are shared. To simplify the example, we have
abstracted the answer from the banking system through the
action CheckBalance that non-deterministically sets the
status of a client’s account in the store. The meaning of this
protocol is rather standard: a customer browses a website,
then decides to buy, in which case he has to enter his
personal information and bank coordinates. The webstore
checks if the payment is granted by the customer’s bank
and then asks for delivery of the chosen goods. Otherwise,
it cancels the transaction. At any stage before payment, the
customer can leave the transaction.

A session may start as soon as it is created, even if all
its roles are not yet assigned. Consider a protocol modeling
a chat service with three roles, one server and two clients.
A chat session can be established as soon as one client and
the server are ready. The second user may join an existing
session later. However, as we allow shared actions among

n0 n1

n2

n3

n4

n5n6 n7

Leave
ReadPage

Buy

Coordinates
{Store.ClientAddress
:= Store.MyAddress}

BankInfo
{Store.ClientBank

:= Client.MyBank}

CheckBalance

{Store.BalOK := tt}

CheckBalance

{Store.BalOK := ff}

¬[BalOK .Store]
Cancel

[BalOK .Store]
Ship

Leave

Leave

C S D

ReadPage + +

Leave + +

Buy + +

Coordinates + +

BankInfo + +

CheckBalance +

Ship + + +

Cancel + +

Figure 2. An example of a protocol

sets of roles, a shared action can occur only when all roles
that participate in it have been assigned to agents.

A session system manages an arbitrary number of parallel
sessions with an unbounded number of client requests.
Handling multiple sessions at the same time raises security
issues, and one has to take side effects into account when
performing an action within a session. For instance, the
example of Figure 2 may seem correct when considering a
single session, or when considering that sessions are handled
one after the other. However, if several sessions coexist in the
system, the balance should not be stored in a global variable
by the online merchant. Such problems call for automated
verification tools, which is the focus of this paper.

We now formalize the notions of archetypes and protocols.
As mentioned earlier, each agent maintains a finite set of
data variables, assumed to range over finite domains. For
simplicity, we consider only boolean variables, since finite
domains can be encoded using combinations of boolean
values. We assume that all agents have the same set of
(boolean) data variables and denote this set by V . We assume
that V contains a special variable blocked, to encode the
status of an agent. In addition, each agent has a finite set
of reference variables, or just references, that point to other
agents in the system. As with data variables, we assume that
all agents have the same set of reference variables, denoted
K. Boolean expressions over V ∪ K is defined as follows:

φ ::= tt | ff | v | ¬v | φ1 ∧ φ2 | φ1 ∨ φ2 |
k1 = k2 | k1 6= k2 | φ1 = φ2 | φ1 6= φ2,

where v ∈ V , and k1, k2 ∈ K, and φ1, φ2 are expressions.
Note that negations have been pushed inwards and only
conjunctions and disjunctions are allowed at the top level.

Variables and references can be updated through assign-
ments. Assignments are denoted by b := e, where b ∈ V and
e is a boolean expression over V ∪K (boolean assignment),
or by k := k′, where k, k′ ∈ K (reference assignment). In
general, given a set of variables X , we write Expr(X) for
the set of boolean expressions over X and Asg(X) for the
set of valid assignments to X . As usual, a valuation for X is
a function val() that maps each variable in X to an element
of its domain. Given a valuation val() and an expression
e ∈ Expr(X), we write val() |= e if e evaluates to tt under
the valuation val(). We say that expression e is satisfiable
if there exists such a valuation for X .

We are now ready to formally define session systems. We
define Σ, the set of agent operations, as follows.

Σ = a | Spawn(s, r, c) | Kill(s) | Join(s, r, c) |
Bjoin(s, r, c) | Query(s, c),

where a ∈ Asg(V ∪ K), s is the name of a protocol, r is a
role in s that the agent intends to play and c is a constraint on
the identity of other agents within this protocol. Constraints
are boolean combinations of atoms of the form rp = rq.kj
in which rp, rq are roles of protocol s and kj ∈ K. Such

a constraint expresses the fact that role rp must be played
by the agent referred to as kj by the agent playing role rq
in s. This allows an agent to ask to join a session with a
specific agent known to it, or, conversely, forbid undesirable
agents that it knows about from participating in sessions it
creates. We denote by Cnst(s,K) the finite set of possible
constraints on roles of a protocol s using variables K.

We now explain the agent operations in Σ. Spawn(s, r, c)
creates a session of type s in which the agent creating the
session plays role r, and the remaining roles can only be
assigned to agents satisfying the constraint c ∈ Cnst(s,K).
Join(s, r, c) asks to join a session of type s, where the
requesting agent wishes to play role r. This join request
is kept in a set of pending requests and the agent can
proceed to perform other operations. Bjoin(s, r, c) is similar
to Join(s, r, c), but blocks the requesting agent until an
existing session of the desired type is joined. Query(s, c)
asks if there is a current session of type s satisfying
constraint c and blocks the agent so long as there exists no
such session. When an agent is blocked, its variable blocked
is set to tt . Kill(s) kills all sessions of type s in the system
that are owned by the agent executing the action.

Definition 1: An archetype is a tuple of the form
(Q, q0,∆), where Q is a finite set of states, with q0 the
initial state, ∆ ⊆ Q×Expr(V ∪K)×Σ×Q is a transition
relation, with Σ a set of agent operations.

A transition in ∆ is a tuple (q, g, σ, q′), where q, q′ are
states of the archetype, g ∈ Expr(V ∪ K) is a guard,
and σ ∈ Σ an agent operation. Archetypes describe how
sessions are handled at a high-level by agents. An agent
can move from one state to another via a transition and
perform the associated agent operation provided the guard
of the transition holds in the current valuation. The complete
operational semantics of Spawn, Join, Bjoin, Query and
Kill is given in the extended version [3].

Next, we define templates for structured interactions be-
tween agents, called protocols. A protocol S is an automaton
whose transitions are labeled by shared actions. The partici-
pants in an action are a subset of the roles R associated with
the protocol. We write r.v to refer to the variable v attached
to role r ∈ R. Hence, protocols are transition systems whose
guards and assignments are defined over R.V = {r.v | v ∈
V, r ∈ R} and R.K = {r.k | k ∈ K, r ∈ R}.

Definition 2: A protocol is a tuple S = (N,n0, δ,R,Γ, l),
where
• N is a finite set of session nodes, n0 is an initial node,
• Γ is a finite alphabet of actions,
• R = {r1, . . . rn} is a finite set of roles,
• l : Γ × R → {⊥,+,>} is a function that indicates

whether role r participates in the shared action γ and
whether this action is the last one performed by this
agent in the current session. More precisely, l(γ, r) =
⊥ if role r does not participate in γ, l(γ, r) = > if role
r participates in γ and γ is its last action in the current

session, and l(γ, r) = + if role r participates in γ but
γ is not its last action in the current session.

• δ ⊆ N ×Expr(R.V ∪R.K)×Γ×2Asg(R.V∪R.K)×N
is a transition relation.

Sessions are instances of protocols with concrete agents
assigned to roles. As all roles need not be defined simultane-
ously, a session may start with some roles still unassigned.
A transition (n, g, γ, as, n′) in the protocol indicates that
the session can move from node n to n′ through the
shared action γ provided guard g holds with respect to the
current values of R.V ∪ R.K and all roles involved in γ
(i.e., r such that l(γ, r) ∈ {+,>}) have been assigned to
agents. Executing γ results in the update of variables: the
variables R.V ∪R.K are modified as described in the set of
assignments as. Note that a shared action allows multiple
assignments, performed atomically, in parallel. Practically,
performing actions involving more than one agent would
require use of a shared memory, or synchronization among
participants of the session. For ease of implementation, one
could also require actions to be local to a single agent,
and communications to be asynchronous. However, these
implementation details do not affect the decidability results
described in this paper, and are left for future work.

Definition 3: A session system is a pair SS = (A,S)
where A = {A1, . . . , Ak} is a finite set of archetypes and
S = {S1, . . . , Sq} is a finite set of protocols. Each archetype
in A is of the form Ai = (Qi, q

i
0,∆i), and each protocol in

S is of the form Sj = (Nj , n
j
0, δj ,Rj ,Γj , lj).

III. SESSION SYSTEMS SEMANTICS

In this section, we describe the operational semantics of ses-
sion systems. A configuration of a session system describes
the local states of all agents and sessions, together with the
valuation of their variables. We represent a configuration as
a (vertex and edge) labeled graph C = (V,E, τ) where
• V = VA] VS is a finite set of vertices, where VA

denotes agents (i.e., instantiations of archetypes) and
VS denotes sessions (i.e., instantiations of protocols).

• E ⊆ (VA×K×VA)∪(VA×N×{tt ,ff }×VS)∪(VA×
{qry}×VS) is a set of labeled edges over V , represent-
ing agent references, and connections between agents
and sessions. A triple (v, k, v′) ∈ VA ×K× VA means
that the agent represented by v has stored the identity
of the agent represented by v′ via reference variable k.
An edge of the form (v, qry, v′) means that the agent
represented by v is querying the system for a session
whose characteristics are described by v′. The number
of labels for these two kinds of edges is finite. Edges
of the form (v, l, s) where l = (n, b) ∈ N × {tt ,ff },
v ∈ VA, and s ∈ VS indicate one of the following.

– The agent represented by vertex v plays role n in
a session represented by vertex s. The boolean flag
b is set to tt if v is the owner of the session, and
to ff otherwise.

– The agent represented by v asks to play role n in a
session. Vertex s then represents a join request. The
label of this vertex defines the type of session that
agent v wishes to join, along with the constraints
attached to this request. The flag b is set to ff (v
cannot own a joined session that it did not create).

Note that an agent can be connected via reference
edges only to a finite number of agents, but it can be
connected to an unbounded number of session vertices.
Conversely, a session can only be connected to a finite
number of agents that is bounded by the number of
roles in the protocol it instantiates.

• τ labels each vertex of VA with details of the agent it
represents (archetype, control state, valuation of vari-
ables) and each vertex of VS with details of the session
it represents (protocol name, current node, constraints
on roles yet to be instantiated).
More formally, the labelling of vertices is defined as
follows. We have τ : VA → A×

⋃
i∈AQi × V al(V).

The label τ(v) = (Ai, q, val) indicates that v represents
an agent behaving according to archetype Ai, currently
in state q ∈ Qi, with valuation val of its variables. Let
us now consider the labeling of session vertices. We
have τ : VS → S×N ×Cnst(S,K)×2R, where N is
the union of all possible nodes appearing in protocols.
For every vertex v ∈ VS that represents an instance of
a running session, we have τ(v) = (s, n, c, J), which
indicates that v is an instance of protocol s, currently
in node n with contraints c attached to uninstantiated
roles, such that roles in J have not yet been assigned.
Similarly, τ(v) = (s, c) if v represents a join request or
a query for a protocol s with constraints defined by c.
In these cases, vertex v is connected to an agent vertex
either via an edge labeled by (r,ff), for a join request,
or via an edge labeled by qry, for a query.

Clearly, the set of labels attached to edges and vertices is
finite. We further impose well-formedness constraints. For
every vertex v ∈ VS , if τ(v) = (s, c) then there exists a
single vertex v ∈ VA connected to v. If τ(v) = (s, n, c),
then the number of agents connected to v is at most the
number of roles in protocol s. Further, exactly one agent is
connected to a session via an edge labeled by (n, tt), i.e.,
each session has only one owner.

Figure 3 shows a graphical representation of a possible
configuration for a set of archetypes A = {A1, A2} and a
set of protocols S = {S1, S2}. Agents are represented as
rectangles and sessions as ellipses. For clarity, we have not
represented variable valuations in the labels of agents. In
this configuration, agent p of (arche)type A1 is in state q1,
agent q of type A1 is in state q3, and agent r of type A2

is in state q2. Agent p knows agent q through its reference
variable k1. Agents p, q, r are involved in a session of type
S1 owned by q, currently in state n2, where they play roles

S1, n1, {r2 6= r1.k1}, {2}

S2, n2, {r2 = r1.k1}, {2, 3} S1, n2, {}, {} S2, {}

A1, q1 A1, q3 A2, q2

p q r

1, tt

k1

1, tt

1,ff

3,ff

2, tt
3,ff

2,ff

Figure 3. Graphical representation of configurations

r1, r2, r3, respectively. Agent p is the owner and plays role
r1 in an instance of session protocol S2, currently in node
n2. A constraint indicates that role r2 can only be assigned
to the agent known as k1 by p, and roles r2, r3 are not yet
assigned. Agents p, q have joined a session of type S1 and
play roles r1, r3, respectively, within the session. Agent p
is the owner of this session, and the constraint says that
the agent that will join role r2 should differ from the agent
known as k1 by p. Agent r has asked to join an existing
session of type S2 in role r2.

In the rest of the paper, we denote by C the (possibly
infinite) set of all configurations. We provide an informal
semantics for our session systems. A session system starts
in an initial configuration C0 (typically the empty configura-
tion). Three kinds of moves can occur from a configuration:
a local move of an agent, a shared action within a session, or
an environment move, i.e., either an operation that matches
a join request to an existing session or existing query, or
the arrival of a new agent in the system. Local agent moves
can change the values of the variables owned by the agent,
create a new session, ask to join a particular kind of session,
kill sessions owned by the agent, or modify its references.
All these actions are described in our model through a finite
number of creations or deletions of vertices and edges, and a
relabeling of vertices, due to a change in the valuation and
control state of the agents. Spawn creates a new session
vertex and connects it to the creating agent. Each form
of join (Join, Bjoin) and query also creates a new vertex
and a new edge with appropriate labels corresponding to
the operation. Kill suppresses edges and session vertices
corresponding to some sessions owned by the agent. As all
these operations are transitions of an archetype, this also
results in a relabeling of the agent vertex to model the change
of state. Session actions model interactions among agents
within a session: in some currently active session, a shared
action that is currently enabled is performed. Such a move
results in a relabeling of a session vertex in a configuration
(the session changes its state), a relabeling of agents involved
in the session (the agents’ variables may be updated), and
a finite number of changes in the edges representing the
references of agents contributing to the session.

Environment moves are high-level actions provided by a
system that manages all sessions. We do not detail how such

a system is implemented. Arrival of a new agent introduces
a fresh instance of some archetype into the system (it creates
a new agent vertex). Agent vertices are never removed.
Query unlocking simply consists of removing the edge and
vertex modeling a query, and updating the status of the
special variable blocked in the querying agent. The last
kind of move is servicing a join request. This operation
nondeterministically matches a pending join request and an
available session. It results in the suppression of the vertex
representing the request, a connection of the joining agent to
a session vertex with an appropriate label, and in a relabeling
of the vertex representing the joined session to take into
account the constraints imposed by the joining agent. Note
that join requests can remain pending for an arbitrarily long
time, even if matching sessions are available. There is no
obligation to match pending join requests “eagerly”.

Following this informal definition of the semantics of
session systems, we can define the behaviour of a session
system as a sequence of moves satisfying the semantics.
A move from a configuration C to a configuration C ′ via
action σ is denoted by C

σ−→ C ′. A run of a session
system from a configuration C0 is a sequence of moves
ρ = C0

σ1−→ C1 . . .
σk−→ Ck. Given a set of configurations

X , we will say that ρ is a run over X if it is exclusively
composed of configurations from X . With this semantics,
a session system defines an infinite state transition system.
The formal semantics of moves is defined in detail in the
extended version [3]. We say that a configuration C is reach-
able from an initial configuration C0, denoted C0 −→ C, if
there exists ρ = C0

σ1−→ C1 . . .
σn−→ C.

Theorem 4: Reachability of a configuration C from an
initial configuration C0 is undecidable.

A similar result was proved in [1] for a less expressive
session model. Session systems can simulate reset Petri nets,
for which reachability is undecidable: sessions are used
to encode place contents, adding tokens is simulated by
creating sessions, consuming them is simulated by entering
a session and terminating it, and resetting places is simulated
by killing sessions corresponding to the reset places.

IV. WELL-STRUCTURED SESSION SYSTEMS

As observed above, session systems have an infinite space
of configurations for which even reachability is undecidable.
However, we now show that under some mild restrictions,
these systems are well-structured, which implies that some
interesting problems such as coverability become decidable.
In the next section, we will show that this allows us to verify
business rules such as conflict of interest.

We start with some relevant notions and results from [4].
A well-quasi ordering (WQO) on a set X is a reflexive,
transitive binary relation ≤ such that any infinite sequence
x0, x1, . . . of elements of X contains a pair xi, xj such that
i < j and xi ≤ xj . In fact, ≤ is a WQO iff it is well-founded
on X (i.e., it does not contain infinite decreasing sequences)

and does not contain infinite antichains, i.e., infinite sets of
incomparable elements. The upward closure of a set X is
↑X = {y | ∃x ∈ X, y ≥ x}. A set X is called upward
closed if ↑X = X . Any upward closed set X in a WQO
can be represented by a finite basis B(X) = min≤{X}.

A well-structured transition system (WSTS) is a structure
(X, succ,≤) where X is a possibly infinite set of elements,
succ ⊆ X×X is a transition relation, and ≤ is a preorder on
X such that (X,≤) is a wqo, and succ satisfies the following
monotonicity property: ∀x ∈ X, (x, x′) ∈ succ and y ≥
x implies (y, y′) ∈ succ∗ for some y′ ≥ x′, where succ∗ is
the transitive and reflexive closure of relation succ. For an
upward closed set X , pre(X) = {y | ∃x ∈ X,x ∈ succ(y)}
denotes the set of predecessors of X , with pre∗(X) = {y |
∃x ∈ X,x ∈ succ∗(y)}. The pred-basis of X is the finite
set predB(X) = B(pre(X)). We say that a WSTS has an
effective pred-basis if there exists an algorithm that accepts
an element x and returns a basis for ↑Pre(↑x). We recall
the following result (see for instance [4]):

Proposition 5 ([4]): Let S = (X, succ,≤) be a WSTS
with decidable ≤ and effective pred-basis. Then, for a pair
x, x0 ∈ X , one can decide the coverability problem, which
asks whether there exists a run of S from x0 to some x′

such that x′ ≥ x.
To apply Proposition 5 to sessions systems, we define an

ordering on configurations.
Definition 6: Let C1 = (V1, E1, τ1), C2 = (V2, E2, τ2)

be two configurations. We say that C1 is a subgraph of
C2, denoted by C1 v C2 iff there exists a pair of injective
mappings ψ : V1 → V2 and ψ′ : E1 → E2 such that:
• ∀v ∈ V1, τ(ψ(v)) = τ(v)
• ∀e = (v, l, v′) ∈ E1, with l ∈ K∪(N×{tt ,ff })∪{qry},
ψ′(e) = (ψ(v), l, ψ(v)) is an edge of E2.

We say that two configurations C1, C2 ∈ C are isomorphic
iff C1 v C2 and C2 v C1. As configurations are finite
graphs, one can effectively check if C1 v C2. Now if
(C,−→,v) were a WSTS, we could directly check proper-
ties of session systems using Proposition 5. However, (C,v)
is not a WQO: one can design sets of pairwise incomparable
configurations of unbounded size. To overcome this problem,
we need to restrict the set of configurations considered.

One obvious restriction is to bound the number of agents
in configurations. In [1], it is shown that this suffices to
obtain a WQO on configurations (roughly speaking, the
set of configurations can be encoded as an integer vector
counting the number of occurrences of each tuple 〈session,
state, unassigned roles〉). However, for some applications,
this can be rather restrictive. For instance, a webstore is
supposed to accept huge numbers of clients. Even if its
resources call for a bound on the number of clients using
a site, this bound depends on architectural choices, and not
on the behavioural specification of the system. Increasing
the resources may increase the number of clients a store can
handle, and one cannot set such a bound a priori.

In this paper, we propose a different restriction, namely
k-boundedness of configurations, which allows us to model
systems with unboundedly many agents and sessions, and
yet obtain a WQO on configurations.

Let C = (V,E, τ) be a configuration. We say that a vertex
v2 ∈ VA is a successor of vertex v1 ∈ VA if there is a
reference edge from v1 to v2 (i.e, (v1, ki, v2) ∈ E for some
ki ∈ K) or there exists a pair of edges (v1, l, s), (v2, l

′, s) ∈
E connecting the two agent vertices to the same session
vertex s. A path in C is a sequence of vertices v1, v2 . . . vn
such that vi+1 is a successor of vi in C. This path is simple
if i 6= j implies vi 6= vj . The length of a simple path is
the number of vertices it contains. A configuration C is k-
bounded if it has no simple paths of length greater than k.

We will denote by Ck the set of k-bounded configurations.
Note that Ck is not a finite set: configurations of Ck may
contain an arbitrary number of k-bounded connected com-
ponents, containing arbitrary numbers of sessions. So, the
number of vertices in configurations of Ck is not bounded,
but the way these vertices are connected is constrained.

The two ways a configuration C ∈ Ck can evolve into
C ′ /∈ Ck are through a merge move by the environment,
or by an agent learning the identity of a new agent, which
creates a new simple path of length greater than k. In such
a situation, that is, when C σ−→ C ′ with C ∈ Ck and C ′ ∈
Ck′>k for some action σ, we consider that the system leaves
the set of accepted configurations, and we replace this move
by a move C → > to a special configuration > (“Top”) that
has the following properties:
• C v > for all configurations C ∈ Ck∪{>}. Henceforth

we write Ck> for Ck ∪ {>}.
• All types of moves (session, agent, environment) are

enabled at > and the resulting configuration is >.
The element > should not be considered as a real config-

uration, but rather as an indication that a run of the system
has reached a configuration that is not k-bounded. With this
restriction we obtain the well-structured property.

Theorem 7: For any fixed k ∈ N, (Ck>,−→,v) is a well-
structured transition system.

Now, in order to use Proposition 5 to show decidability of
coverability for session systems, it remains to prove that the
computation of a pred-basis is effective. In the rest of the
paper, we will use set saturation techniques, and represent an
upward closed set using its basis. Indeed, as Ck> is a WQO,
any upward closed set of configurations has a finite basis:
for a configuration C in Ck>, {C} is a finite basis for ↑C.
This property extends to arbitrary sets of configurations. For
any finite {C1, C2, . . . , Cn} ⊆ Ck>, the basis of

⋃n
i=1 ↑Ci is

the set of minimal elements w.r.t. v in {C1, C2, . . . , Cn}.
Using bases as representations for upward closed sets in a
WQO setting allows us to work with finite representations
of infinite sets. Further, it is sufficient to manipulate a basis
B = {B1, B2, . . . , Bn} to decide membership. If X is an
upward closed subset of Ck> represented by its finite basis

{B1, B2, . . . , Bn}, then checking that C ∈ X amounts to
checking Bi v C for some Bi in the basis of X .

For a configuration C ∈ Ck>, we define Pre(C) = {C ′ |
C ′

σ−→ C}, as usual. This extends to the upward closure
as follows: Pre(↑C) = {C ′ | C ′ σ−→ C ′′ w C}. For a set
of configuration X ⊆ Ck>, we have, as usual, Pre(X) =⋃
C∈X Pre(C) and Pre(↑X) =

⋃
C∈X Pre(↑C). It is easy

to see that a basis and pred-basis for an upward closed set
are effectively computable. Thus, we have:

Lemma 8: Let X be an upward closed subset of Ck>
represented by its basis {B1, B2, . . . , Bn}. Then we can
effectively compute a basis for ↑Pre(X).

In the context of session systems, the coverability problem
consists of deciding if, from an initial configuration C0, one
can reach a configuration C ′ that covers a target configura-
tion C (i.e., such that C v C ′). When C is coverable from
C0, we write C0 ; C ′. Similarly, we will say that a run
ρ = C0

σ1−→ C1 . . .
σk−→ Ck covers C if C v Ck. From the

properties of WSTS, Theorem 7 and Lemma 8 we have:
Corollary 9: For a session system S = (A,S), coverabil-

ity of a configuration C by a run over Ck> from an initial
configuration C0 is decidable.

The complete proof is available in [3], but we describe
here an effective algorithm to check, for a given configu-
ration C and session system S, if there exists a run of S
starting from configuration C0 that reaches a configuration
that subsumes C. The algorithm is a set-saturation technique
that computes a basis for ↑pre∗(↑C) as a fixpoint. We
start from PB0 = B(↑C) = {C}, and compute iteratively
PBk = PBk−1 ∪ B(↑pre(↑PBk−1)), until ↑PBk =
↑PBk−1. It has been proved in [4] that for any upward
closed set, this algorithm is correct and terminates when the
pred-basis computation is effective. Hence, at the end of the
fixpoint computation, we have ↑

⋃
PBk = Pre∗(↑C). Once

basis PBk is built, we compare its elements to C0 to check
if C is coverable from C0.

V. MODEL CHECKING

We now use the results of Section IV to check business
rules on session systems. As mentioned in the Introduction,
session systems can model business processes, web-based
applications, and transactional systems. For these applica-
tions, several properties are of practical interest. In this
paper, we focus on two classes of interesting properties,
namely, conflicts of interest and Chinese Wall Properties.

A. Conflicts of interest

Conflicts of interest may arise when two clients of a
webstore are involved at the same time in an online purchase
involving the same item. Similarly, one may not want a bank
to deliver its services to competing business entities. We
formalize such situations as undesirable patterns, i.e., partial
descriptions of undesirable configurations and show that we

can check whether such undesired configurations can occur
during the lifetime of a system.

Definition 10: A pattern is a graph (V,E, τ), where V ,
E and τ have the same interpretation as in configurations.

We say that a configuration C matches a pattern P if
P v C. Further, a run ρ = C0

σ1−→ C1 . . .
σk−→ Ck of a

session system meets a pattern P if some configuration Ci
along the run matches P . Finally, a pattern is reachable in
a session system SS from a configuration C0 if there exists
a run of SS that meets P . Thus, checking for a conflict of
interest (modeled as a pattern) corresponds to checking if it
is possible to reach a configuration which matches the pat-
tern. Note that patterns need not be configurations. However,
decision procedures for coverability can be used for patterns,
as saturation techniques and proofs for well structure and
effectiveness do not use the fact that the considered objects
are configurations: v is defined for any kind of subgraph,
and we can set P v > for every pattern P . Similarly, upward
closure of patterns, predecessors, bases, can be defined for
patterns, and proved effective. As we restrict ourselves to
k-bounded configurations, we also restrict to k-bounded
patterns for a fixed k and denote by Pk the set of k-bounded
patterns. Now, the results on coverability extend to patterns:

Proposition 11: Given a session system SS, pattern P ∈
Pk, and configuration C0 ∈ Ck, one can decide if there
exists a run of SS over Ck starting from C0 that meets P .

Proof Sketch: Following the proof of Corollary 9, we
can build a finite sequence PB0, . . . , PBn of unions of
bases such that ↑PBn = ↑pre∗(↑P). Using the steps of
the construction of PBn, we build a directed acyclic graph
GPB , whose vertices are the bases computed at each step.
An edge connect bases b and b′ if b is computed at step j
and b′ at step j − 1. It now suffices to examine paths of
GPB to decide existence of a run over Ck that meets P .

Figure 4 illustrates the construction of the pred-basis, and
of the graph GPB . Circles labeled B represent a temporary
basis computed during one step of the algorithm. Edges
represent the fact that a temporary basis was computed as a
predecessor of a formerly discovered one.

B. Chinese Wall Properties

Conflicts of interest represent properties of systems at a
single instant. Business rules need to guarantee properties

P

T

B

B

TTT

C0

B

B

B

B

B

B

B

B

PB0PB1PBn-1PBn

Figure 4. Computing a Basis for Pre∗(↑C) or Pre∗(↑P)

throughout the lifetime of a system by considering several
situations that should (or should not) appear along a run.
For instance, we may want to ensure that a client receives
an item sold by a webstore only after making the payment.
One may also want to enforce non-competition clauses, i.e.,
an agent involved in an activity should not provide the same
service at a later date to a competitor (such properties are
also called Chinese Wall Properties, or CWP [2]). In both
examples, a first attempt would be to model the properties as
a pair of coverability problems: can one reach a pattern P2

from a configuration matching P1 that is accessible from C0?
This approach is flawed: in this approach, P1 and P2 may be
witnessed by different agents and sessions, while the sales
or non-competition examples depict situations involving the
same participants. To model such situations, we need to
specify elements that refer to the same agents in both
patterns P1 and P2. This is formalized as follows:

Definition 12: A correlated pattern is a triple (P1, P2, ψ)
where, for i = 1, 2, Pi = (Vi, Ei, τi) is a pattern and ψ :
V1 ⇀ V2 is a partial function.

A run ρ = C0 −→ C1 . . . Cn matches a correlated pattern
(P1, P2, ψ) if there exist Ci and Cj with 0 ≤ i < j ≤ n
and embeddings h1, h2 such that P1 v Ci via embedding
h1, P2 v Cj via embedding h2 and for all v ∈ dom(ψ),
h1(v) = h2(ψ(v)). In other words, vertices in the two
patterns that are connected by ψ must map to the same vertex
in the corresponding configurations where the two patterns
are embedded. A Chinese Wall Property (CWP) is specified
by a finite set of correlated patterns {(Pi, P ′i , ψi)}i∈1...n. A
session system violates a CWP {(Pi, P ′i , ψi)}i∈1...n if one of
its runs matches one of the correlated patterns (Pj , P

′
j , ψj).

CWPs allow us to specify sets of incompatible situations that
should not occur: an employee holding a counselor position
at time t in a bank A does not have the right to hold the
same position at any time greater than t, nor to be head of
client accounts department for a competitor bank B.

In the rest of this section, we will prove that checking
the violation of CWPs is decidable for k-bounded session
systems. More formally:

Theorem 13: Let SS be a session system, k ∈ N be a
bound on path length in configurations of SS. Let C =
{(Pi, P ′i , ψi)}i∈1...n be a CWP. Then, one can decide if there
exists a run of SS over Ck violating C.

We prove this theorem as follows. First, as we need
to identify agents in patterns, we will slightly adapt the
semantics of session systems. When an agent is created, its
vertex will be attached a tag that will never be modified,
and will help to trace it along a run. This results in a slight
change in the semantics preserving WQO and compatibility.
Then we prove that CWP verification amounts to checking
two coverability problems with tagged patterns.

Let T⊥ = T ∪ ⊥, where T is a finite set of tags. Define
an ordering < on T⊥ as follows: ⊥ < t for all t ∈ T .
In other words, elements of T are not ordered with respect

to each other. A T -tagged configuration is a graph C =
(V,E, τ, Tg), where V and E are vertices and edges as in
configurations and Tg ⊆ 2T is the set of tags used in C.
For edges and session vertices, the labeling τ is defined as
for configurations. For v ∈ VA, τ(v) ∈ L × T⊥, where L
is the set of labels defined for configurations. We extend
the ordering < on T⊥ to L × T⊥ such that (`,⊥) < (`, t)
for all ` ∈ L, and (`′, t) and (`, t) are incomparable. For
a pair of tagged configurations C1, C2, we write C1 vt C2

if there exists a homomorphism h such that for all v ∈ V1,
τ1(v) < h(τ2(v)), and Tg1 = Tg2. That is, configurations
that use different sets of tags from T are incomparable, and
configurations with incomparable sets of used tags are also
incomparable.

For a tagged configuration Ct = (V,E, τ), we define
its untagged version UT (Ct) = (V,E, τ ′) where for every
vertex v in VA, τ

′(v) = ` iff τ(v) = (`, x), and every
vertex v in VS , τ

′(v) = τ(v). Let TCk be the set of all
T -tagged configurations whose untagging is in Ck and let
TCk> = TCk∪>. We slightly update the semantics of moves
from −→ to −→t to take tags into account. The only change is
the environment move create. When adding a new agent, the
create action now assigns a random unused element from T⊥
as a permanent tag for the new agent and adds it to the set
of used tags. The new agent will carry this tag for the rest of
the run: for every C1 −→ C2, v ∈ V1 ∩ V2 and τ1(v) = (`, t)
implies that τ2(v) = (`′, t) for some `′. Note that tags play
no role in enabling or disabling actions. Untagging easily ex-
tends to runs, i.e., for any tagged run ρ = C0 −→t C1 . . . Ck,
UT (ρ) = UT (C0) −→ UT (C1) . . . UT (Ck). We do not
change the semantics of patterns, and say that a configuration
C embeds a pattern P if P v UT (C). We then obtain:

Lemma 14: (TCk>,−→t,v) is a WSTS. Also, if C ∈ TCk>,
then ↑Pre(↑C) has an effectively computable finite basis.

We can now explain the connection between tags and
correlated patterns. Tags will help identify common agents
in correlated patterns. We define tagged patterns, i.e., pairs
of patterns that carry tags that identify commonalities. Let
(P, P ′, ψ) be a correlated pattern, with P = (V,E, τ),
P ′ = (V ′, E′, τ ′), and let Tψ = {tv | v ∈ dom(ψ)}. The
corresponding Tψ-tagged correlated pattern is (Pt, P

′
t , ψ)

where:

• Pt = (V,E, τt), where τt(v) = (τ(v), tv) if v ∈
dom(ψ) and τt(v) = (τ(v),⊥) otherwise.

• P ′t = (V ′, E′, τ ′t) where τ ′t(v) = (τ ′(v), tv) if v ∈
range(ψ) and τ ′t(v) = (τ ′(v),⊥) otherwise.

• ψ(v) = v′, τt(v) = (`, x) and τ ′t(v
′) = (`′, y) imply

x = y.

Using tagged patterns, we can ensure that an agent v
identified by a tag t in pattern P of a configuration during
an execution is the same agent (with tag t) in the following
configuration meeting another pattern P ′. We are now ready
to prove decidability of correlated patterns checking:

Lemma 15: There exists a run matching a correlated
pattern (P, P ′, ψ) from C0 iff the following hold:

(i) there exists Ct ∈ Pre∗(↑P ′t) with Pt vt Ct in the
tagged semantics (using tags from Tψ).

(ii) C0 ∈ Pre∗ (UT (↑Pt ∩ Pre∗(↑P ′t))) with respect to
untagged semantics.

This lemma shows that correlated pattern matching re-
duces to a pair of coverability problems, and suffices to
prove Theorem 13. By Lemma 14, coverability of tagged
patterns is effective, so part (i) of Lemma 15 is effective.
Similarly, ↑Pt ∩ Pre∗(↑P ′t) can be represented by a finite
basis, so part (ii) of Lemma 15 is also effective.

VI. RELATED WORK

Several formalisms have been proposed to implement or
orchestrate sessions into larger applications. A BPEL [5]
specification describes a set of independent communicat-
ing agents with a rich control structure. Coordination is
achieved through message-passing. Interactions are grouped
into sessions implicitly through correlations, which specify
data values that uniquely identify a session—for instance,
an order ID. ORC [6] is a programming language for the
orchestration of services. It allows algorithmic manipulation
of data, with an orchestration overlay to start new services
and synchronize their results. ORC has better mechanisms
to define workflows than BPEL, but lacks the notion of
correlation required to establish sessions among participants
in a service. AXML [7] defines web services as a set of
rules for transforming semi-structured documents described,
for instance, in XML. However, it does not make workflows
explicit, and does not have a native notion of session either.
A common feature of these formalisms is that they aim to
describe implementations of web services or orchestrations.
All of them are Turing powerful, hence properties such as
termination of a service, or coverability are undecidable.

To obtain decidability of coverability for session systems,
we have used well quasi ordering on graphs, with a re-
striction to yield well-structuredness. Several papers have
explored verification techniques on models based on graph
transformation systems (GTS). [8] studies GTS with the
graph minor relation and shows that several subclasses are
WSTS. However, we cannot use the minor relation when
modeling business rules. In our model, patterns describe di-
rect connections between agents and sessions. Graph minors
allow collapsing of nodes and edges, describing connectivity
of vertices via paths rather than direct edges. Sangnier et al
[9] consider reachability and coverability for GTS ordered
by subgraph inclusion. Their decidable classes are GTS
without deletion rules, context free graph grammars, or
grammars with mandatory hyperedge contraction rules. In
our model, sessions can end or be killed, hence deletion can
occur, and the join operation merges two edges, hence our
model is not context free.

A lot of effort has been devoted to modeling services in
the π-calculus. Session types [10] are a formal model for web
services, and have been enhanced to capture various features
such as multiple instantiations of identical agents [11] and
nested sessions [12]. The main focus is to determine whether
an otherwise unconstrained set of processes adheres to the
communication discipline specified by a session type. Verifi-
cation on session types address features such as information
flow between agents. The expressive power of the whole
π-calculus and session types do not allow for verification
of reachability or coverability properties. [13] uses WSTS
to show that a fragment of spatial logic is decidable for
well-typed π-calculus processes, which can express safety
properties. A solution to coverability for depth-bounded π-
calculus processes has been proposed in [14]. For this class,
a forward coverability algorithm (EEC) terminates, even
if the depth bound is not known in advance. Both depth-
bounded π-calculus processes and k-bounded configurations
can be represented as graphs with bounded path length.
Note, however, that k-boundedness for session systems is
obtained through a restriction in the semantics. We do not
yet have any syntactic restrictions on session systems that
ensure a bound on path lengths in configurations.

In the π-calculus, one can view a session as a shared
local name. However, some features of session systems do
not have straightforward translations into the π-calculus.
First, agents can kill sessions. This feature is essential in
a web-based system, where a server may shut down and
cancel a series of ongoing transactions. In the π-calculus,
local names can survive the end of a session, and processes
are not meant to be aborted. Second, joining a session and
querying the system to find an occurrence of an existing
session are non-deterministic actions provided by the envi-
ronment. Though one could perhaps model an environment
and simulate killing, querying, and joining in the π-calculus,
the semantics of both models appear quite different.

Several variants of π-calculus have been designed to
model services. A variant of ORC and π-calculus is pro-
posed by [15] in which processes communicate via streams.
This model is more expressive than session systems, since
it allows selecting values from (ordered) streams, but this
comes at the cost of decidability. Implicitly, processes can
interact but they run until completion, unlike sessions, which
can be interrupted. The multiparty session formalism called
µse [16] avoids managing session identities explicitly, like
session systems. In µse, processes within a session can
communicate privately. An arbitrary number of sessions
can be created at a site and additional communications
are allowed among processes located on the same site.
A merge mechanism allows a process to enter a session
at any point, and persistent services can be implemented.
Unlike session systems, in which each session has a fixed
number of participants, µse sessions can allow an arbitrary
number of processes to join. However, there is no mech-

anism to abort processes. CASPIS [17] is a formalism for
orchestration influenced by the π-calculus and by ORC. It
provides pairwise sessions, modeled as service calls that
create private names shared by the caller and callee of a
session, and pipelining—a way for service P to call another
service Q whenever a new value in produced by P . Unlike
the preceding variants, CASPIS allows guarded sums (i.e.,
internal choices), and provides a mechanism to terminate
sessions. Conversation types [18] extend π-calculus and
replace channel based communications by context sensi-
tive message based communication. A conversation is a
behavioral type describing multi party interactions among
processes. [18] provides typing mechanisms to ensure that
processes implement conversations in a compatible way and
never get stuck when interleaving sessions. A conversation
is close to our notion of session but allows for an unbounded
number of participants. Like other π-calculus variants, this
formalism does not allow conversations to be aborted. COWS
[19] is a language for service orchestration. COWS allows
stateful services with special variables that implement cor-
relations, as in BPEL, a wait operation to suspend processes
and a kill operation that terminates terms within a delimited
scope. The semantics of kill does not take into consideration
the nature of the canceled terms, while in session systems,
only the owner can kill a service.

VII. CONCLUSION

We have presented a formalism to model session-based
systems with arbitrary numbers of sessions and agents. A
restriction of the semantics to runs over bounded path length
configurations allows us to decide coverability problems. An
immediate consequence is that we can also check properties
such as conflict of interest or Chinese Wall Properties.

Several issues remain. The first is efficiency. Our results
rely on well-structured systems and set saturation tech-
niques. We do not know the exact complexity of checking
coverability for session systems, but the complexity of
WSTS can be very high, and may need to consider runs
of non-elementary length. Even with a fixed set of agents,
session systems have the expressive power of reset Petri
nets [1], for which coverability is Ackermann-hard [20].
Abstraction techniques, such as those proposed in [14] for
depth-bounded processes, may help in reducing complexity,
and also possibly avoid the k-boundedness restriction. Fi-
nally, our model considers finite data. A possible improve-
ment is to introduce well-structured data, either for variables,
or as elements conveyed within sessions.

ACKNOWLEDGMENTS

This work is an outcome of the DISTOL associated team.
We would like to thank the anonymous referees for their
useful comments. Last, we dedicate this paper to Philippe
Darondeau, who played a key role in the initial formulation
of this work.

REFERENCES

[1] P. Darondeau, L. Hélouët, and M. Mukund, “Assembling
sessions,” in ATVA, ser. LNCS, vol. 6996, 2011, pp. 259–274.

[2] D. F. Brewer and M. J. Nash, “The chinese wall security
policy,” in IEEE Symposium on Security and Privacy. IEEE
Computer Society, 1989, pp. 206–214.

[3] S. Akshay, L. Hélouët, and M. Mukund, “Sessions with
an unbounded number of agents,” HAL-INRIA, Tech. Rep.,
2014. [Online]. Available: hal.inria.fr/hal-00979409

[4] A. Finkel and P. Schnoebelen, “Well-structured transition
systems everywhere!” Theor. Comput. Sci., vol. 256, no. 1-2,
pp. 63–92, 2001.

[5] T. Andrews, F. Curbera, H. Dholakia, Y. Goland, J. Klein,
F. Leymann, K. Liu, D. Roller, D. Smith, S. Thatte, I. Trick-
ovic, and S. Weerawarana, “Business process execution lan-
guage for web services (BPEL4WS). version 1.1,” 2003.

[6] J. Misra and W. Cook, “Computation orchestration,” Software
and Systems Modeling, vol. 6, no. 1, pp. 83–110, 2007.

[7] S. Abiteboul, O. Benjelloun, I. Manolescu, T. Milo, and
R. Weber, “Active XML: A data-centric perspective on web
services,” in BDA02, 2002.

[8] S. Joshi and B. König, “Applying the graph minor theorem to
the verification of graph transformation systems,” in Proceed-
ings of CAV 2008, ser. LNCS, vol. 5123, 2008, pp. 214–226.

[9] N. Bertrand, G. Delzanno, B. König, A. Sangnier, and
J. Stückrath, “On the decidability status of reachability and
coverability in graph transformation systems,” in Rewriting
Techniques and Applications (RTA’12), ser. LIPIcs, vol. 15,
2012, pp. 101–116.

[10] K. Honda, N. Yoshida, and M. Carbone, “Multiparty asyn-
chronous session types,” in POPL, 2008, pp. 273–284.

[11] P.-M. Deniélou and N. Yoshida, “Dynamic multirole session
types,” in POPL, 2011, pp. 435–446.

[12] R. Demangeon and K. Honda, “Nested protocols in session
types,” in CONCUR, 2012, pp. 272–286.

[13] L. Acciai and M. Boreale, “Deciding safety properties in
infinite-state pi-calculus via behavioural types,” in ICALP (2),
ser. LNCS, vol. 5556, 2009, pp. 31–42.

[14] T. Wies, D. Zufferey, and T. A. Henzinger, “Forward analysis
of depth-bounded processes,” in FOSSACS, ser. LNCS, vol.
6014, 2010, pp. 94–108.

[15] I. Lanese, F. Martins, V. T. Vasconcelos, and A. Ravara, “Dis-
ciplining orchestration and conversation in service-oriented
computing,” in SEFM. IEEE Computer Society, 2007, pp.
305–314.

[16] R. Bruni, I. Lanese, H. C. Melgratti, and E. Tuosto, “Multi-
party sessions in SOC,” in COORDINATION, ser. LNCS, vol.
5052, 2008, pp. 67–82.

[17] M. Boreale, R. Bruni, R. De Nicola, and M. Loreti, “Ses-
sions and pipelines for structured service programming,” in
FMOODS, ser. LNCS, vol. 5051, 2008, pp. 19–38.

[18] L. Caires and H. T. Vieira, “Conversation types,” Theor.
Comput. Sci., vol. 411, no. 51-52, pp. 4399–4440, 2010.

[19] R. Pugliese and F. Tiezzi, “A calculus for orchestration of web
services,” J. Applied Logic, vol. 10, no. 1, pp. 2–31, 2012.

[20] P. Schnoebelen, “Revisiting Ackermann-hardness for lossy
counter machines and reset Petri nets,” in MFCS’10 : Math-
ematical Foundations of Computer Science, ser. LNCS, vol.
6281, 2010, pp. 616–628.

