
PROGRAMMING,  
DATA STRUCTURES AND
ALGORITHMS IN PYTHON

Madhavan Mukund, Chennai Mathematical Institute
http://www.cmi.ac.in/~madhavan

Week 8, Lecture 5

NPTEL MOOC

http://www.cmi.ac.in/~madhavan

Python vs other languages

Python is a good programming language to start
with because

No declaration of names in advance

Indentation avoids punctuation — { }, (), ;

No explicit memory management

Are there any down sides to this?

Debugging

Declaring names helps debug code

“Simple” typos are caught by compiler

Mistyped name will be “undeclared”

Static typing — assigning types to names

Again catch “simple” typos by type mismatch

Classes and objects
Can only associate a type with a name by creating
an object

Empty tree, with name and type declarations

Declare t to be of type Tree

Empty tree — t has value None

Instead, cumbersome convention with empty
nodes to denote frontier etc

Classes and objects
We want public interface, private implementation

For a Point p, p.x and p.y should not be available
directly outside the class

Stack implemented as a list has public methods
push() and pop() but s.append() not ruled out

Need to declare parts of implementation private

Only methods inside the class can access private
names

Classes and objects
Ideally, all internal names are private

Special functions to access and update values

p.getx() gets x-coordinate

p.setx(v) sets x-coordinate

x-coordinate is an “abstract” attribute

Works even if internal representation is (r,𝞠)

Classes and objects
Handle integrity of compound values

Date is a tuple (day,month,year)

Range for day is 1—31, month is 1—12

Valid combinations depend on all three fields

29 - 02 is valid only in a leap year

d.setdate(d,m,y) vs separate d.setd(d),
d.setm(m), d.sety(y)

Storage allocation
Python needs to allocate space dynamically

Each assignment to a name could a new type

Name declarations allow some static allocation

Still need dynamic allocation for lists, trees etc
that grow at run time

Static arrays can optimize access time: base
address plus offset

Dynamic storage

What happens when we execute del(x)?

Or when we delete a list node by bypassing it?

Do these “dead” values continue to use memory?

Garbage collection
Python, Java and other languages reclaim space
using automatic “garbage collection”

Periodically mark all memory reachable from names
in use in the program

Collect all unmarked memory locations as free
space

Run time overhead to schedule garbage collector

In C, need to explicitly ask for and return dynamic
memory

Memory leaks
Manual memory allocation is error prone

Forgetting to return junk space to free list results in
memory “leaking” out of the system

Performance suffers over time as space shrinks

All modern languages use garbage collection

Run time overhead more than compensated by
reduction of errors due to manual management

Functional programming

Declarative vs imperative

“What to compute” vs “how to compute it”

Directly specify functions inductively

factorial :: Int -> Int # Type

factorial 0 = 1  
factorial n = n * factorial (n-1)

Functional programming

List processing

sumlist :: [Int] -> Int  
 
sumlist [] = 0  
sumlist l = (head l) + sumlist (tail l)

Functional programming

Many features of Python are modelled on
functional programming

map, filter and other “higher order” functions

List comprehensions

Summary
No programming language is “universally” the best

Otherwise why are there so many?

Python’s simplicity makes it attractive to learn

But also results in some limitations

Use the language that suits your task best

Learn programming, not programming languages!

