PROGRAMMING,
DATA STRUGTURES AND
ALGORITHMS IN PYTHON

Week 8, Lecture 5



http://www.cmi.ac.in/~madhavan

Python vs other languages

* Python is a good programming language to start
with because

* No declaration of names in advance
* |[ndentation avoids punctuation — { }, (), ;
* No explicit memory management

* Are there any down sides to this?




Debugging

* Declaring names helps debug code
* “Simple” typos are caught by compiler
* Mistyped name will be “undeclared”

* Static typing — assigning types to names

* Again catch “simple” typos by type mismatch




Classes and objects

* Can only associate a type with a name by creating
an object

* Empty tree, with name and type declarations
* Declare t to be of type Tree
* Empty tree — t has value None

* Instead, cumbersome convention with empty
nodes to denote frontier etc




Classes and objects

* \We want public interface, private implementation

* For a Point p, p.x and p.y should not be available
directly outside the class

* Stack implemented as a list has public methods
push() and pop() but s.append() not ruled out

* Need to declare parts of implementation private

* Only methods inside the class can access private
names




Classes and objects

* |deally, all internal names are private

* Special functions to access and update values
* p.getx() gets x-coordinate
* p.setx(v) sets x-coordinate

* X-coordinate is an “abstract” attribute

* \Works even if internal representation is (r,0)




Classes and objects

* Handle integrity of compound values
* Date is a tuple (day,month,year)
* Range for day is 1—31, monthis 1—12
* Valid combinations depend on all three fields
* 29 - 02 is valid only Iin a leap year

* d.setdate(d,m,y) vs separate d.setd(d),
d.setm(m), d.sety(y)




Storage allocation

* Python needs to allocate space dynamically
* Each assignment to a name could a new type
* Name declarations allow some static allocation

* Still need dynamic allocation for lists, trees etc
that grow at run time

* Static arrays can optimize access time: base
address plus offset




Dynamic storage

* \What happens when we execute del(x)?

* Or when we delete a list node by bypassing it?

* Do these “dead” values continue to use memory?




Garbage collection

* Python, Java and other languages reclaim space
using automatic “garbage collection”

* Periodically mark all memory reachable from names
INn use In the program

* Collect all unmarked memory locations as free
space

* Run time overhead to schedule garbage collector

* |n C, need to explicitly ask for and return dynamic
memory




Memory leaks

* Manual memory allocation is error prone

* Forgetting to return junk space to free list results In
memory “leaking” out of the system

* Performance suffers over time as space shrinks

* All modern languages use garbage collection

* Run time overhead more than compensated by
reduction of errors due to manual management




~unctional programming

* Declarative vs imperative
* “What to compute” vs “how to compute it”

* Directly specify functions inductively

factorial :: Int -> Int # Type

1
h * factorial €n=1)

factorial 0
factorial n




~unctional programming

* List processing

sumlist = FIpnt] =5 Int

sumlist [] = O
sumlist 1 = (head 1) + sumlist (tail 1)




~unctional programming

* Many features of Python are modelled on
functional programming

* map, filter and other “higher order” functions

* List comprehensions




Summary

* No programming language is “universally” the best
* Otherwise why are there so many?

* Python’s simplicity makes it attractive to learn
* But also results in some limitations

* Use the language that suits your task best

* Learn programming, not programming languages!




