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Grid Paths

Roads arranged in a 
rectangular grid


Can only go up or 
right


How many different 
routes from (0,0) to 
(m,n)?
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Combinatorial solution
Every path from (0,0) to (5,10) has 15 segments


In general m+n segments from (0,0) to (m,n)


Of these exactly 5 are right moves, 10 are up moves


Fix the positions of the 5 right moves among the 
overall 15 positions


15 choose 5 = (15!)/(10!)(5!) = 3003


Same as 15 choose 10: fix the 10 up moves



Holes

What if an 
intersection is 
blocked?


(2,4), for example


Paths through (2,4) 
need to be discarded


Two of our earlier 
examples are 
invalid paths
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Combinatorial solution

Every path through (2,4) goes from (0,0) to (2,4) and then 
from (2,4) to (5,10)


Count these separately: 


(4+2) choose 2 = 15


(6+3) choose 3 = 84


Multiply to get all paths through (2,4): 1260


Subtract from 15 choose 5 = 3003 to get valid paths that 
avoid (2,4): 1743



Holes
What if two intersections 
are blocked?


Subtract paths through 
(2,4), (4,4)


Some paths are 
counted twice!


Add back paths through 
both holes


Inclusion-exclusion: 
messy

(0,0)

(5,10)



Inductive formulation

How can a path reach (i,j)


Move up from (i,j-1)


Move right from (i-1,j)


Every path to these neighbours 
extends in a unique way to (i,j)

(i,j)

(i,j-1)

(i-1,j)



Inductive formulation

Paths(i,j) : Number of paths from (0,0) to (i,j)


Paths(i,j) = Paths(i-1,j) + Paths(i,j-1)


Boundary cases


Paths(i,0) = Paths(i-1,0)  # Bottom row


Paths(0,j) = Paths(0,j-1)  # Left column


Paths(0,0) = 1  # Base case



Dealing with holes

Paths(i,j) = 0, if there is a hole at (i,j)


Paths(i,j) = Paths(i-1,j) + Paths(i,j-1), otherwise


Boundary cases


Paths(i,0) = Paths(i-1,0)  # Bottom row


Paths(0,j) = Paths(0,j-1)  # Left column


Paths(0,0) = 1  # Base case



Computing Paths(i,j)

Naive recursion will recompute multiple times


Paths(5,10) requires Paths(4,10) and Paths(5,9)


Both Paths(4,10) and Paths(5,9) require 
Paths(4,9)


Use memoization …


… or compute the subproblems directly in a 
suitable way



Dynamic programming

Identify dependency 
structure


Paths(0,0) has no 
dependencies


Start at (0,0)

(0,0)

(5,10)
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Dynamic programming

Start at (0,0)


Fill row by row 

1 1 1 1 1 1
1 2 3 4 5 6

3 6 10 151 21
4 10 20 351 56
5 0 20 01 56
6 6 26 261 82
7 13 39 651 147
8 21 60 1251 272
9 30 90 2151 492

10 40 130 3451 837
11 51 181 5261 1363
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Dynamic programming

Start at (0,0)


Fill by column

1
1
1
1
1
1
1
1
1
1
1

1
2
3
4
5
6
7
8
9
10
11

1 1 1 1
3 4 5 6
6 10 15 21

10 20 35 56
0 20 0 56
6 26 26 82
13 39 65 147
21 60 125 272
30 90 215 492
40 130 345 837
51 181 526 1363
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Start at (0,0)
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1
1
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Memoization vs 
dynamic programming

Holes just inside the 
border


Memoization never 
explores the shaded 
region
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Memoization vs 
dynamic programming

Memo table has 
O(m+n) entries


Dynamic 
programming blindly 
fills all O(mn) entries


Iteration vs recursion
—“wasteful” 
dynamic 
programming is still 
better, in general


