
PROGRAMMING,  
DATA STRUCTURES AND
ALGORITHMS IN PYTHON

Madhavan Mukund, Chennai Mathematical Institute
http://www.cmi.ac.in/~madhavan

Week 8, Lecture 2

NPTEL MOOC

http://www.cmi.ac.in/~madhavan

Grid Paths

Roads arranged in a
rectangular grid

Can only go up or
right

How many different
routes from (0,0) to
(m,n)?

(0,0)

(5,10)

Grid Paths

Roads arranged in a
rectangular grid

Can only go up or
right

How many different
routes from (0,0) to
(m,n)?

(0,0)

(5,10)

Combinatorial solution
Every path from (0,0) to (5,10) has 15 segments

In general m+n segments from (0,0) to (m,n)

Of these exactly 5 are right moves, 10 are up moves

Fix the positions of the 5 right moves among the
overall 15 positions

15 choose 5 = (15!)/(10!)(5!) = 3003

Same as 15 choose 10: fix the 10 up moves

Holes

What if an
intersection is
blocked?

(2,4), for example

Paths through (2,4)
need to be discarded

Two of our earlier
examples are
invalid paths

(0,0)

(5,10)

Combinatorial solution

Every path through (2,4) goes from (0,0) to (2,4) and then
from (2,4) to (5,10)

Count these separately:

(4+2) choose 2 = 15

(6+3) choose 3 = 84

Multiply to get all paths through (2,4): 1260

Subtract from 15 choose 5 = 3003 to get valid paths that
avoid (2,4): 1743

Holes
What if two intersections
are blocked?

Subtract paths through
(2,4), (4,4)

Some paths are
counted twice!

Add back paths through
both holes

Inclusion-exclusion:
messy

(0,0)

(5,10)

Inductive formulation

How can a path reach (i,j)

Move up from (i,j-1)

Move right from (i-1,j)

Every path to these neighbours
extends in a unique way to (i,j)

(i,j)

(i,j-1)

(i-1,j)

Inductive formulation

Paths(i,j) : Number of paths from (0,0) to (i,j)

Paths(i,j) = Paths(i-1,j) + Paths(i,j-1)

Boundary cases

Paths(i,0) = Paths(i-1,0) # Bottom row

Paths(0,j) = Paths(0,j-1) # Left column

Paths(0,0) = 1 # Base case

Dealing with holes

Paths(i,j) = 0, if there is a hole at (i,j)

Paths(i,j) = Paths(i-1,j) + Paths(i,j-1), otherwise

Boundary cases

Paths(i,0) = Paths(i-1,0) # Bottom row

Paths(0,j) = Paths(0,j-1) # Left column

Paths(0,0) = 1 # Base case

Computing Paths(i,j)

Naive recursion will recompute multiple times

Paths(5,10) requires Paths(4,10) and Paths(5,9)

Both Paths(4,10) and Paths(5,9) require
Paths(4,9)

Use memoization …

… or compute the subproblems directly in a
suitable way

Dynamic programming

Identify dependency
structure

Paths(0,0) has no
dependencies

Start at (0,0)

(0,0)

(5,10)

Dynamic programming

Start at (0,0)

Fill row by row

Dynamic programming

Start at (0,0)

Fill row by row

1

Dynamic programming

Start at (0,0)

Fill row by row

1 1 1 1 1 1

Dynamic programming

Start at (0,0)

Fill row by row

1 1 1 1 1 1
1 2 3 4 5 6

Dynamic programming

Start at (0,0)

Fill row by row

1 1 1 1 1 1
1 2 3 4 5 6

3 6 10 151 21

Dynamic programming

Start at (0,0)

Fill row by row

1 1 1 1 1 1
1 2 3 4 5 6

3 6 10 151 21
4 10 20 351 56

Dynamic programming

Start at (0,0)

Fill row by row

1 1 1 1 1 1
1 2 3 4 5 6

3 6 10 151 21
4 10 20 351 56
5 0 20 01 56

Dynamic programming

Start at (0,0)

Fill row by row

1 1 1 1 1 1
1 2 3 4 5 6

3 6 10 151 21
4 10 20 351 56
5 0 20 01 56
6 6 26 261 82

Dynamic programming

Start at (0,0)

Fill row by row

1 1 1 1 1 1
1 2 3 4 5 6

3 6 10 151 21
4 10 20 351 56
5 0 20 01 56
6 6 26 261 82
7 13 39 651 147
8 21 60 1251 272
9 30 90 2151 492

10 40 130 3451 837
11 51 181 5261 1363

Dynamic programming

Start at (0,0)

Fill by column

Dynamic programming

Start at (0,0)

Fill by column

1

Dynamic programming

Start at (0,0)

Fill by column

1
1

Dynamic programming

Start at (0,0)

Fill by column

1
1
1
1
1
1
1
1
1
1
1

Dynamic programming

Start at (0,0)

Fill by column

1
1
1
1
1
1
1
1
1
1
1

1
2
3
4
5
6
7
8
9
10
11

Dynamic programming

Start at (0,0)

Fill by column

1
1
1
1
1
1
1
1
1
1
1

1
2
3
4
5
6
7
8
9
10
11

1 1 1 1
3 4 5 6
6 10 15 21

10 20 35 56
0 20 0 56
6 26 26 82
13 39 65 147
21 60 125 272
30 90 215 492
40 130 345 837
51 181 526 1363

Dynamic programming

Start at (0,0)

Fill by diagonal

Dynamic programming

Start at (0,0)

Fill by diagonal

1

Dynamic programming

Start at (0,0)

Fill by diagonal

1
1

1

Dynamic programming

Start at (0,0)

Fill by diagonal

1
1

1

1
2

1

Dynamic programming

Start at (0,0)

Fill by diagonal

1
1

1

1
2

1

1
3

3
1

Memoization vs
dynamic programming

Holes just inside the
border

Memoization never
explores the shaded
region

Memoization vs
dynamic programming

Holes just inside the
border

Memoization never
explores the shaded
region

Memoization vs
dynamic programming

Memo table has 
O(m+n) entries

Dynamic
programming blindly
fills all O(mn) entries

Iteration vs recursion
—“wasteful”
dynamic
programming is still
better, in general

