
PROGRAMMING,  
DATA STRUCTURES AND
ALGORITHMS IN PYTHON

Madhavan Mukund, Chennai Mathematical Institute
http://www.cmi.ac.in/~madhavan

Week 7, Lecture 4

NPTEL MOOC

http://www.cmi.ac.in/~madhavan

Dynamic sorted data

Sorting is useful for efficient searching

What if the data is changing dynamically?

Items are periodically inserted and deleted

Insert/delete in sorted list take time O(n)

Like priority queues, move to a tree structure

Binary search tree

For each node with
value v

Values in left
subtree < v

Values in right
subtree > v

No duplicate values

5

2

1 4

8

9

Binary search tree

For each node with
value v

Values in left
subtree < v

Values in right
subtree > v

No duplicate values

5

2

1 4

8

9

Binary search tree

For each node with
value v

Values in left
subtree < v

Values in right
subtree > v

No duplicate values

5

2

1 4

8

9

Binary search tree

For each node with
value v

Values in left
subtree < v

Values in right
subtree > v

No duplicate values

5

2

1 4

8

9

Binary search tree

For each node with
value v

Values in left
subtree < v

Values in right
subtree > v

No duplicate values

5

2

1 4

8

9

Binary search tree
Each node has a value and points to its children

5

2

1 4

8

9

5

8

9

2

1

4

None

value left right

None None

None None

None None

A better representation

Add a frontier with empty node: all fields None

Empty tree is a single empty node

Leaf node has value that is not None, left and right
children point to empty nodes

Makes it easier to write recursive functions to
traverse the tree

Binary search tree 5

2

1 4

8

9

5

8

9

2

1

4

value left right

None

None None

None None

None None

Binary search tree 5

2

1 4

8

9

5

8

9

2

1

4

value left right

None
None
None

None
None
None None

None
None

None
None
None

None
None
None

None
None
None

None
None
None

The class Tree
class Tree:  
 def __init__(self,initval=None):  
 self.value = initval  
 if self.value:  
 self.left = Tree()  
 self.right = Tree()  
 else:  
 self.left = None  
 self.right = None  
 return()
 def isempty(self):  
 return(self.value == None)

Inorder traversal
def inorder(self):  
 if self.isempty():  
 return([])  
 else:  
 return( 
 self.left.inorder() +  
 [self.value] +  
 self.right.inorder()  
)

def __str__(self):  
 return(str(self.inorder())

5

2

1 4

8

9

Inorder traversal
def inorder(self):  
 if self.isempty():  
 return([])  
 else:  
 return( 
 self.left.inorder() +  
 [self.value] +  
 self.right.inorder()  
)

def __str__(self):  
 return(str(self.inorder())

5

2

1 4

8

9

Inorder traversal
def inorder(self):  
 if self.isempty():  
 return([])  
 else:  
 return( 
 self.left.inorder() +  
 [self.value] +  
 self.right.inorder()  
)

def __str__(self):  
 return(str(self.inorder())

5

2

1 4

8

9

Inorder traversal
def inorder(self):  
 if self.isempty():  
 return([])  
 else:  
 return( 
 self.left.inorder() +  
 [self.value] +  
 self.right.inorder()  
)

def __str__(self):  
 return(str(self.inorder())

5

2

1 4

8

9

Inorder traversal
def inorder(self):  
 if self.isempty():  
 return([])  
 else:  
 return( 
 self.left.inorder() +  
 [self.value] +  
 self.right.inorder()  
)

def __str__(self):  
 return(str(self.inorder())

5

2

1 4

8

9

1

Inorder traversal
def inorder(self):  
 if self.isempty():  
 return([])  
 else:  
 return( 
 self.left.inorder() +  
 [self.value] +  
 self.right.inorder()  
)

def __str__(self):  
 return(str(self.inorder())

5

2

1 4

8

9

1 2

Inorder traversal
def inorder(self):  
 if self.isempty():  
 return([])  
 else:  
 return( 
 self.left.inorder() +  
 [self.value] +  
 self.right.inorder()  
)

def __str__(self):  
 return(str(self.inorder())

5

2

1 4

8

9

1 2 4

Inorder traversal
def inorder(self):  
 if self.isempty():  
 return([])  
 else:  
 return( 
 self.left.inorder() +  
 [self.value] +  
 self.right.inorder()  
)

def __str__(self):  
 return(str(self.inorder())

5

2

1 4

8

9

1 2 4 5

Inorder traversal
def inorder(self):  
 if self.isempty():  
 return([])  
 else:  
 return( 
 self.left.inorder() +  
 [self.value] +  
 self.right.inorder()  
)

def __str__(self):  
 return(str(self.inorder())

5

2

1 4

8

9

1 2 4 5 8

Inorder traversal
def inorder(self):  
 if self.isempty():  
 return([])  
 else:  
 return( 
 self.left.inorder() +  
 [self.value] +  
 self.right.inorder()  
)

def __str__(self):  
 return(str(self.inorder())

5

2

1 4

8

9

1 2 4 5 8 9Lists values in sorted order

Find a value v

Scan the current node

Go left if v is smaller than this node

Go right if v is larger than this node

Natural generalization of binary search

Find a value v

def find(self,v):

 if self.isempty():  
 return(False)

 if self.value == v:  
 return(True)

 if v < self.value:  
 return(self.left.find(v))  
 else  
 return(self.right.find(v))

Minimum

def minval(self):

Assume t is not empty

 if self.left == None:  
 return(self.value)  
 else:  
 return(self.left.minval())  

Left most node in the tree

5

3

1 4

7

9

2 8

Maximum

Right most node in the tree

5

3

1 4

7

9

2 8

def maxval(self):

Assume t is not empty

 if self.right == None:  
 return(self.value)  
 else:  
 return(self.right.maxval())  

Insert v

Try to find v

If it is not present, add it
where the search fails

52

37

16 44

74

91

28 83

Insert 21

Insert v

Try to find v

If it is not present, add it
where the search fails

52

37

16 44

74

91

28 83

Insert 21

Insert v

Try to find v

If it is not present, add it
where the search fails

52

37

16 44

74

91

28 83

Insert 21

21

Insert v

Try to find v

If it is not present, add it
where the search fails

52

37

16 44

74

91

28 83

21

Insert 65

Insert v

Try to find v

If it is not present, add it
where the search fails

52

37

16 44

74

91

28 83

21

Insert 65

Insert v

Try to find v

If it is not present, add it
where the search fails

52

37

16 44

74

91

28 83

21

Insert 65

65

Insert v

Try to find v

If it is not present, add it
where the search fails

52

37

16 44

74

91

28 83

21

65

Insert 91

Insert v

Try to find v

If it is not present, add it
where the search fails

52

37

16 44

74

91

28 83

21

65

Insert 91

Insert v
def insert(self,v):

 if self.isempty(): # Add v as a new leaf  
 self.value = v  
 self.left = Tree()  
 self.right = Tree()

 if self.value == v: # Value found, do nothing  
 return

 if v < self.value:  
 self.left.insert(v)  
 return

 if v > self.value:  
 self.right.insert(v)  
 return

Delete v
If v is present, delete it

If deleted node is a leaf, done

If deleted node has only one child,
“promote” that child

If deleted node has two children,
fill in the hole with
self.left.maxval() (or
self.right.minval())

Delete self.left.maxval()—
must be leaf or have only one child

52

37

16 44

74

91

28 83

21

65

Delete 65

Delete v
If v is present, delete it

If deleted node is a leaf, done

If deleted node has only one child,
“promote” that child

If deleted node has two children,
fill in the hole with
self.left.maxval() (or
self.right.minval())

Delete self.left.maxval()—
must be leaf or have only one child

52

37

16 44

74

91

28 83

21

Delete 65

65

Delete v
If v is present, delete it

If deleted node is a leaf, done

If deleted node has only one child,
“promote” that child

If deleted node has two children,
fill in the hole with
self.left.maxval() (or
self.right.minval())

Delete self.left.maxval()—
must be leaf or have only one child

52

37

16 44

74

91

28 83

21

Delete 65

Delete v
If v is present, delete it

If deleted node is a leaf, done

If deleted node has only one child,
“promote” that child

If deleted node has two children,
fill in the hole with
self.left.maxval() (or
self.right.minval())

Delete self.left.maxval()—
must be leaf or have only one child

52

37

16 44

74

91

28 83

21

Delete 74

Delete v
If v is present, delete it

If deleted node is a leaf, done

If deleted node has only one child,
“promote” that child

If deleted node has two children,
fill in the hole with
self.left.maxval() (or
self.right.minval())

Delete self.left.maxval()—
must be leaf or have only one child

52

37

16 44 91

28 83

21

Delete 74

74

Delete v
If v is present, delete it

If deleted node is a leaf, done

If deleted node has only one child,
“promote” that child

If deleted node has two children,
fill in the hole with
self.left.maxval() (or
self.right.minval())

Delete self.left.maxval()—
must be leaf or have only one child

52

37

16 44

28

21

Delete 74

91

83

Delete v
If v is present, delete it

If deleted node is a leaf, done

If deleted node has only one child,
“promote” that child

If deleted node has two children,
fill in the hole with
self.left.maxval() (or
self.right.minval())

Delete self.left.maxval()—
must be leaf or have only one child

52

37

16 44

28

21

91

83

Delete 37

Delete v
If v is present, delete it

If deleted node is a leaf, done

If deleted node has only one child,
“promote” that child

If deleted node has two children,
fill in the hole with
self.left.maxval() (or
self.right.minval())

Delete self.left.maxval()—
must be leaf or have only one child

52

16 44

28

21

91

83

Delete 37

37

Delete v
If v is present, delete it

If deleted node is a leaf, done

If deleted node has only one child,
“promote” that child

If deleted node has two children,
fill in the hole with
self.left.maxval() (or
self.right.minval())

Delete self.left.maxval()—
must be leaf or have only one child

52

16 44

21

91

83

Delete 37

37

28

Delete v
If v is present, delete it

If deleted node is a leaf, done

If deleted node has only one child,
“promote” that child

If deleted node has two children,
fill in the hole with
self.left.maxval() (or
self.right.minval())

Delete self.left.maxval()—
must be leaf or have only one child

52

16 44

21

91

83

Delete 37

28

28

Delete v
If v is present, delete it

If deleted node is a leaf, done

If deleted node has only one child,
“promote” that child

If deleted node has two children,
fill in the hole with
self.left.maxval() (or
self.right.minval())

Delete self.left.maxval()—
must be leaf or have only one child

52

16 44

91

83

Delete 37

28

21

Delete v
If v is present, delete it

If deleted node is a leaf, done

If deleted node has only one child,
“promote” that child

If deleted node has two children,
fill in the hole with
self.left.maxval() (or
self.right.minval())

Delete self.left.maxval()—
must be leaf or have only one child

52

16 44

91

83

28

21

Delete v
def delete(self,v):  
 if self.isempty():  
 return

 if v < self.value:  
 self.left.delete(v)  
 return

 if v > self.value:  
 self.right.delete(v)  
 return

 if v == self.value:  
 if self.isleaf():  
 self.makeempty()  
 elif self.left.isempty():  
 self.copyright()  
 else:  
 self.value = self.left.maxval()  
 self.left.delete(self.left.maxval())  
 return

Delete v
def delete(self,v):  
 if self.isempty():  
 return

 if v < self.value:  
 self.left.delete(v)  
 return

 if v > self.value:  
 self.right.delete(v)  
 return

 if v == self.value:  
 if self.isleaf():  
 self.makeempty()  
 elif self.left.isempty():  
 self.copyright()  
 else:  
 self.value = self.left.maxval()  
 self.left.delete(self.left.maxval())  
 return

Convert leaf to  
empty node  
def makeempty(self):  
 self.value = None  
 self.left = None  
 self.right = None  
 return

Delete v
def delete(self,v):  
 if self.isempty():  
 return

 if v < self.value:  
 self.left.delete(v)  
 return

 if v > self.value:  
 self.right.delete(v)  
 return

 if v == self.value:  
 if self.isleaf():  
 self.makeempty()  
 elif self.left.isempty():  
 self.copyright()  
 else:  
 self.value = self.left.maxval()  
 self.left.delete(self.left.maxval())  
 return

Convert leaf to  
empty node  
def makeempty(self):  
 self.value = None  
 self.left = None  
 self.right = None  
 return

Copy right child values  
to current node  
def copyright(self):  
 self.value = self.right.value  
 self.left = self.right.left  
 self.right = self.right.right  
 return

Complexity

All operations on search trees walk down a single
path

Worst-case: height of the tree

Balanced trees: height is O(log n) for n nodes

Tree can be balanced using rotations — look up
AVL trees

