PROGRAMMING,
DATA STRUGTURES AND
ALGORITHMS IN PYTHON

Week 7, Lecture 4

http://www.cmi.ac.in/~madhavan

Dynamic sorted data

* Sorting is useful for efficient searching

* \What if the data is changing dynamically?
* |[tems are periodically inserted and deleted
* |nsert/delete in sorted list take time O(n)

* Like priority queues, move to a tree structure

Binary search tree

* For each node with
value v @

« Values in left \

subtree < v

* Values In right
subtree > v

* No duplicate values

Binary search tree

* For each node with
value v

* \alues In left
subtree < v

* Values In right
subtree > v

* No duplicate values

Binary search tree

* For each node with
value v

* \alues In left
subtree < v

* Values In right
subtree > v

* No duplicate values

Binary search tree

* For each node with
value v @

« Values in left \

subtree < v

* Values In right \

subtree > v
* No duplicate values @

Binary search tree

* For each node with
value v @

« Values in left \

subtree < v

* Values In right
subtree > v

* No duplicate values

Binary search tree

* Each node has a value and points to its children

value left right
5 \
8 | None
9 | None
= |
None | None \

None

None

R

A better representation

* Add a frontier with empty node: all fields None
* Empty tree is a single empty node

* | eaf node has value that is not None, left and right
children point to empty nodes

* Makes it easier to write recursive functions to
traverse the tree

Binary search tree

.

value left right Cé

5

None

2 l No\; None \

4 None None

Binary search tree

5

None

2 l 3 Ni,,e \
N =

\

None None
None None
4 / \ None | | None
None None T e
None None None None
None None

None

None

The class Tree

class Tree:
def __1init__(self,1ni1tval=None):

self.value = 1initval

1f self.value:
self.left = Tree()
self.right = Tree()

else:
self.left = None
self.right = None

return()

def 1sempty(self):
return(self.value == None)

Inorder traversal

def 1inorder(self):
1f self.isempty():
return([])
else:
return(
self.left.inorder() +
[self.value] +
self.right.inorder()

)

def - str (selt):
return(str(self.inorder())

Inorder traversal

def 1inorder(self):
1f self.isempty():
return([])
else:
return(
self.left.inorder() +
[self.value] +
self.right.inorder()

)

def - str (selt):
return(str(self.inorder())

Inorder traversal

def 1inorder(self):
1f self.isempty():
return([])
else:
return(
self.left.inorder() +
[self.value] +
self.right.inorder()

)

def - str (selt):
return(str(self.inorder())

Inorder traversal

def 1inorder(self):
1f self.isempty():
return([])
else:
return(
self.left.inorder() +
[self.value] +
self.right.inorder()

)

def - str (selt):
return(str(self.inorder())

Inorder traversal

def 1inorder(self):
1f self.isempty():
return([])
else:
return(
self.left.inorder() +
[self.value] +
self.right.inorder()

)

def - str (selt):
return(str(self.inorder())

Inorder traversal

def 1inorder(self):
1f self.isempty():
return([])
else:
return(
self.left.inorder() +
[self.value] +
self.right.inorder()

)

def - str (selt):
return(str(self.inorder())

Inorder traversal

def 1inorder(self):
1f self.isempty():
return([])
else:
return(
self.left.inorder() +
[self.value] +
self.right.inorder()

)

def - str (selt):
return(str(self.inorder())

Inorder traversal

def 1inorder(self):
1f self.isempty():

return([])

else:
return(

self.left.inorder() + o
[self.value] +
self.right.inorder()
)
def - str (selt):
return(str(self.inorder())

12 4 5

Inorder traversal

def 1inorder(self):
1f self.isempty():
return([])
else:
return(
self.left.inorder() +
[self.value] +
self.right.inorder()

)

def - str (selt):
return(str(self.inorder())

12 4 5 8

Inorder traversal

def 1norder(self):
1f self.isempty():
return([])
else:
return(
self.left.inorder() +
[self.value] +
self.right.inorder()

)

def - str (selt):
return(str(self.inorder())

* Lists values in sorted order

1 2.4 5 8 Y

FINd a value v

* Scan the current node

* Go left if v is smaller than this node
* Go right if v is larger than this node

* Natural generalization of binary search

FINd a value v

def find(self,v):

1f self.isempty():
return(False)

1f self.value == v:
return(True)

1f v < self.value:
return(self.left.find(v))

else
return(self.right.find(v))

Minimum
* Left most node in the tree

def minval(self):
Assume t 1s not empty

1f self.left == None:
return(self.value)

else:
return(self.left.minval())

Maximum

* Right most node in the tree

def maxval(self): //;:>
o« %

Assume t 1s not empty

1f self.right == None:
return(self.value)
else: \ //

return(self.right.maxval()) @

INnsert v

Insert 21
* Try to find v
* |f it Is not present, add it (52,
where the search fails (78>

INnsert v

Insert 21
* Try to find v

* |f it Is not present, a.dd it 92,
where the search fails % (78>

INnsert v

Insert 21
* Try to find v
* |f it Is not present, add it 92,
where the search fails % (78>

o

INnsert v

Insert 65

(52,

* Try to find v

* |f it Is not present, add it
where the search fails

<
4%

/
@

INnsert v

Insert 65

(52,

* Try to find v

* |f it Is not present, add it
where the search fails

<>
4%

/
@

INnsert v

, Insert 65
* Try to find v
* |f it Is not present, add it (52,
where the search fails (78>
(48) (5

/
@

INnsert v

Insert 91
* Try to find v
* |f it Is not present, add it (52,
where the search fails (78>
(40 (65

/
@

INnsert v

Insert 91
* Try to find v
* |f it Is not present, add it (52,
where the search fails (78>
(a8 (65)

/
@

INnsert v

def insert(self,v):

1f self.isempty(): # Add v as a new leaf
self.value = v
self.left = Tree()
self.right = Tree()

1f self.value == v: # Value found, do nothing
return

1f v < self.value:
self.left.i1nsert(v)
return

i1f v > self.value:
self.right.insert(v)
return

Delete v

* If v Is present, delete it

* |f deleted node is a leaf, done

* |f deleted node has only one child,
“promote” that child

* |f deleted node has two children,
fill in the hole with
self.left.maxval() (or
self.right.minval())

* Delete self.left.maxval()—
must be leaf or have only one child

Delete 65

(52,

(74

Delete v

* If v Is present, delete it

* |f deleted node is a leaf, done

* |f deleted node has only one child,
“promote” that child

* |f deleted node has two children,
fill in the hole with
self.left.maxval() (or
self.right.minval())

* Delete self.left.maxval()—
must be leaf or have only one child

Delete 65

(52,

(74

Delete v

* If v Is present, delete it

* |f deleted node is a leaf, done

* |f deleted node has only one child,
“promote” that child

* |f deleted node has two children,
fill in the hole with
self.left.maxval() (or
self.right.minval())

* Delete self.left.maxval()—
must be leaf or have only one child

Delete 65

(52,

/
@

<D

Delete v

* If v Is present, delete it

* |f deleted node is a leaf, done

* |f deleted node has only one child,
“promote” that child

* |f deleted node has two children,
fill in the hole with
self.left.maxval() (or
self.right.minval())

* Delete self.left.maxval()—
must be leaf or have only one child

Delete 74

(52,

/
@

<D

Delete v

* If v Is present, delete it

* |f deleted node is a leaf, done

* |f deleted node has only one child,
“promote” that child

* |f deleted node has two children,
fill in the hole with
self.left.maxval() (or
self.right.minval())

* Delete self.left.maxval()—
must be leaf or have only one child

Delete 74

(52,

/
@

(78

Delete v

* If v Is present, delete it

* |f deleted node is a leaf, done

* |f deleted node has only one child,
“promote” that child

* |f deleted node has two children,
fill in the hole with
self.left.maxval() (or
self.right.minval())

* Delete self.left.maxval()—
must be leaf or have only one child

Delete 74

Delete v

* If v Is present, delete it

* |f deleted node is a leaf, done

* |f deleted node has only one child,
“promote” that child

* |f deleted node has two children,
fill in the hole with
self.left.maxval() (or
self.right.minval())

* Delete self.left.maxval()—
must be leaf or have only one child

Delete 37

Delete v

* If v Is present, delete it

* |f deleted node is a leaf, done

* |f deleted node has only one child,
“promote” that child

* |f deleted node has two children,
fill in the hole with
self.left.maxval() (or
self.right.minval())

* Delete self.left.maxval()—
must be leaf or have only one child

Delete 37

Delete v

* If v Is present, delete it

* |f deleted node is a leaf, done

* |f deleted node has only one child,
“promote” that child

* |f deleted node has two children,
fill in the hole with
self.left.maxval() (or
self.right.minval())

* Delete self.left.maxval()—
must be leaf or have only one child

Delete 37

Delete v

* If v Is present, delete it

* |f deleted node is a leaf, done

* |f deleted node has only one child,
“promote” that child

* |f deleted node has two children,
fill in the hole with
self.left.maxval() (or
self.right.minval())

* Delete self.left.maxval()—
must be leaf or have only one child

Delete 37

DN
® ¥

®\@/

8L

Delete v

* If v Is present, delete it

* |f deleted node is a leaf, done

* |f deleted node has only one child,
“promote” that child

* |f deleted node has two children,
fill in the hole with
self.left.maxval() (or
self.right.minval())

* Delete self.left.maxval()—
must be leaf or have only one child

Delete 37

Delete v

* If v Is present, delete it

* |f deleted node is a leaf, done

* |f deleted node has only one child,
“promote” that child

* |f deleted node has two children,
fill in the hole with
self.left.maxval() (or
self.right.minval())

* Delete self.left.maxval()—
must be leaf or have only one child

Delete v

def delete(self,v):
1f self.isempty():
return

1f v < self.value:
self.left.delete(v)
return

1f v > self.value:
self.right.delete(v)
return

1f v == self.value:

1f self.isleaf():
self.makeempty()

elif self.left.isempty():
self.copyright()

else:
self.value = self.left.maxval()
self.left.delete(self.left.maxval())

return

De‘ete V # Convert leaf to

empty node

def delete(self,v): def makeempty(self):
if self.isempty(): self.value = None

return self.left = None
self.right = None

1f v < self.value:
self.left.delete(v)
return

return

1f v > self.value:
self.right.delete(v)
return

1f v == self.value:

1f self.isleaf():
self.makeempty()

elif self.left.isempty():
self.copyright()

else:
self.value = self.left.maxval()
self.left.delete(self.left.maxval())

return

De‘ete V # Convert leaf to

empty node

def delete(self,v): def makeempty(self):
if self.isempty(): self.value = None
return self.left = None
if v < self.value: > =
self.left.delete(v) e
return
if v > self.value: # Copy right child values
self.right.delete(v) # to current node
return def copyright(self):
s e self.value = self.right.value
! i; ;;1§eisizgf2§3 self.left = self.right.left
self.makeemthC) self.right = self.right.right
' return

elif self.left.isempty():
self.copyright()

else:
self.value = self.left.maxval()
self.left.delete(self.left.maxval())

return

Complexity

* All operations on search trees walk down a single
path

* \Worst-case: height of the tree
* Balanced trees: height is O(log n) for n nodes

* [ree can be balanced using rotations — look up
AVL trees

