
PROGRAMMING,  
DATA STRUCTURES AND
ALGORITHMS IN PYTHON

Madhavan Mukund, Chennai Mathematical Institute
http://www.cmi.ac.in/~madhavan

Week 7, Lecture 1

NPTEL MOOC

http://www.cmi.ac.in/~madhavan

Data structures
Behaviour defined through interface

Allowed set of operations

Stack: push() and pop()

Queue: addq() and removeq()

Heap: insert() and delete_max()

Heap implemented as a list h, does not mean
h.append(7) is legal

Abstract datatype
Define behaviour in terms of operations

(s.push(v)).pop() == v

If q.isempty() then
((q.addq(u)).addq(v)).removeq() == u

No reference to implementation details

Implementation can be optimized without affecting
functionality

Black box view
Imagine the data
structure as a black
box

Designated buttons to
interact

Slot for input

Display for output

No other manipulation
allowed

23

pop push

Display

Input

Built in datatypes
l = []

List operations l.append(), l.extend() permitted

… but not dictionary operations like l.keys()

Likewise, after d = {}, d.values() is OK

… but not d.append()

Can we do this for stacks, queues, heaps, …?

Object Oriented
programming

Data type definition with

Public interface

Operations allowed on the data

Private implementation

Match the specification of the interface

Classes and objects
Class

Template for a data type

How data is stored

How public functions manipulate data

Object

Concrete instance of template

Classes and objects
class Heap:  
 def __init__(self,l):  
 # Create heap  
 # from list l  
 
 def insert(self,x):  
 # insert x into heap  
 
 def delete_max(self):  
 # return max element

Create object,  
calls __init__()  
l = [14,32,15]  
h = Heap(l)

Apply operation  
h.insert(17)

h.insert(28)

v = h.delete_max()

Summary

An abstract data type is a black box description

Public interface — update/query the data type

Private implementation — change does not
affect functionality

Classes and objects can be used for this

More details in the next lecture

