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JOb scheduler

* A job scheduler maintains a list of pending jobs
with their priorities.

* \When the processor is free, the scheduler picks
out the job with maximum priority in the list and
schedules It.

* New jobs may join the list at any time.

* How should the scheduler maintain the list of
pending jobs and their priorities?




Priority queue

* Need to maintain a list of jobs with priorities to
optimise the following operations

* delete_max()
* |dentify and remove job with highest priority
* Need not be unique

* insert( )

* Add a new job to the list




L Inear structures

* Unsorted list
* nsert( ) takes O(1) time
* delete_max() takes O(n) time
* Sorted list
* delete_max() takes O(1) time
* [nsert( ) takes O(n) time

* Processing a sequence of n jobs requires O(n?) time




Binary tree

* Two dimensional @ root
structure \
* At each node

parent

* \alue

* Link to parent, left
child, right child leaf

left right
child child




Priority queues as trees

* Maintain a special kind of binary tree called a heap
* Balanced: N node tree has height log N

* Both insert() and delete_max( ) take O(log N)
* Processing N jobs takes time O(N log N)

* Truly flexible, need not fix upper bound for N In
advance




Heaps

* Binary tree filled level
by level, left to right

* At each node, value
stored is bigger than
both children

* (Max) Heap ‘ A
PropertyBinary tree
filled level by level,

left to right




Examples
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Non-examples

* No “holes” allowed
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Non-examples

* Can’t leave a level @
incomplete ‘\
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Non-examples

* \lolates heap
property
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Complexity of insert( )

* Need to walk up from the leaf to the root

* Height of the tree
* Number of nodes at level 0,1,...,iis 20921 ... 2!
* K levels filled : 29+21+ ...+2%1 = 2% - 1 nodes
* N nodes : number of levels at most log N + 1

* Insert( ) takes time O(log N)




delete_max( )

* Maximum value is
always at the root @\
* From heap
property, by @ a
induction
* How do we z @ G G

remove this value
efficiently? @
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Impementing using arrays

* Number the nodes left
to right, level by level

* Represent as an array
H[O..N-1]

* Children of H[i] are at 3 04 5 Qﬁ
H[2i+1], H[2i+2]

* Parent of H[j] is at (éé) gégég
H[floor((j-1)/2)] for j > O

10 1 12 13 14




Building a heap, heapify( )

* Given a list of values [x1,X2,...,Xn], build a heap
* Nalve strategy

* Start with an empty heap

* Insert each x;

* Overall O(N log N)




Better heapify( )

* Set up the array as [x1,X2,...,XN]
* | eaf nodes trivially satisfy heap property
* Second half of array is already a valid heap
* Assume leaf nodes are at level k
* For each node at level k-1, k-2, ..., 0, fix heap property

* As we go up, the number of steps per node goes up by
1, but the number of nodes per level is halved

* Cost turns out to be O(N) overall




Better heapify( )

1 node,
height 3 repair O\
2 nodes,

height 2 repair

4 nodes, - O .

height 1 repair
A Céé)(égiégég
already satisfy

heap property




Heap sort

* Start with an unordered list
* Build a heap — O(n)

* Call delete_max( ) n times to extract elements In
descending order — O(n log n)

* After each delete_max( ), heap shrinks by 1
* Store maximum value at the end of current heap

* |n place O(n log n) sort




Summary

* Heaps are a tree implementation of priority queues
* insert() and delete_max( ) are both O(log N)
* heapify( ) builds a heap in O(N)
* [ree can be manipulated easily using an array
* Can invert the heap condition
* Each node is smaller than its children

* Min-heap, for insert( ), delete_min()




