PROGRAMMING,
DATA STRUGTURES AND
ALGORITHMS IN PYTHON

Week 6, Lecture 5

http://www.cmi.ac.in/~madhavan

JOb scheduler

* A job scheduler maintains a list of pending jobs
with their priorities.

* \When the processor is free, the scheduler picks
out the job with maximum priority in the list and
schedules It.

* New jobs may join the list at any time.

* How should the scheduler maintain the list of
pending jobs and their priorities?

Priority queue

* Need to maintain a list of jobs with priorities to
optimise the following operations

* delete_max()
* |dentify and remove job with highest priority
* Need not be unique

* insert()

* Add a new job to the list

L Inear structures

* Unsorted list
* nsert() takes O(1) time
* delete_max() takes O(n) time
* Sorted list
* delete_max() takes O(1) time
* [nsert() takes O(n) time

* Processing a sequence of n jobs requires O(n?) time

Binary tree

* Two dimensional @ root
structure \
* At each node

parent

* \alue

* Link to parent, left
child, right child leaf

left right
child child

Priority queues as trees

* Maintain a special kind of binary tree called a heap
* Balanced: N node tree has height log N

* Both insert() and delete_max() take O(log N)
* Processing N jobs takes time O(N log N)

* Truly flexible, need not fix upper bound for N In
advance

Heaps

* Binary tree filled level
by level, left to right

* At each node, value
stored is bigger than
both children

* (Max) Heap ‘ A
PropertyBinary tree
filled level by level,

left to right

Examples

:

Examples

Non-examples

* No “holes” allowed
(1) ®\@
ORRO,

Non-examples

* Can’t leave a level @
incomplete ‘\

(11 (7

g% d

Non-examples

* \lolates heap
property

insert()

* |nsert 12

* Position of new
node is fixed by
structure

* Restore heap
property along the
path to the root

insert()

* |nsert 12

* Position of new
node is fixed by
structure

* Restore heap
property along the
path to the root

insert()

* |nsert 12

* Position of new
node is fixed by
structure

* Restore heap
property along the
path to the root

insert()

* |nsert 12

* Position of new
node is fixed by
structure

* Restore heap
property along the
path to the root

insert()

* |nsert 12

* Position of new
node is fixed by
structure

* Restore heap
property along the
path to the root

insert()

* Insert 33

.

b

insert()

* Insert 33

i

b

insert()

* Insert 33

i

b

insert()

@\
dé

Complexity of insert()

* Need to walk up from the leaf to the root

* Height of the tree
* Number of nodes at level 0,1,...,iis 20921 ... 2!
* K levels filled : 29+21+ ...+2%1 = 2% - 1 nodes
* N nodes : number of levels at most log N + 1

* Insert() takes time O(log N)

delete_max()

* Maximum value is
always at the root @\
* From heap
property, by @ a
induction
* How do we z @ G G

remove this value
efficiently? @

delete_max()

* Removing
maximum value
creates a “hole”
at the root @ a
* Reducing one j)\
deleting last node @ @ G G

value requires

* Move “homeless”
value to root @

delete_max()

* Removing
maximum value
creates a “hole”
at the root @ a
* Reducing one j)\
deleting last node @ @ G G

value requires

* Move “homeless”
value to root @

delete_max()

* Removing
maximum value
creates a “hole”
at the root @

* Reducing one
value requires
deleting last node @

* Move “homeless”
value to root @ 11

delete_max()

* Removing
maximum value
creates a “hole”
at the root

* Reducing one
value requires
deleting last node

* Move “homeless”
value to root @

delete_max()

* Now restore the
heap property
from root
downwards

* Swap with
largest child

* Will follow a
single path from

root to leaf @

delete_max()

* Now restore the
heap property
from root
downwards

* Swap with
largest child

* Will follow a
single path from
root to leaf (10)

delete_max()

* Now restore the
heap property
from root
downwards

* Swap with
largest child

* Will follow a
single path from
root to leaf (10)

delete_max()

* Will follow a
single path from
root to leaf

* Cost proportional

to height of tree m

* O(log N) z
(10

delete_max()

* Will follow a
single path from
root to leaf

* Cost proportional
to height of tree m

* O(log N) z
(10

delete_max()

* Will follow a
single path from

root to leaf @

* Cost proportional

to height of tree m @ G

* O(log N)

10

delete_max()

* Will follow a
single path from
root to leaf

* Cost proportional
to height of tree

* O(log N)

delete_max()

* Will follow a
single path from
root to leaf

* Cost proportional
to height of tree

* O(log N)

delete_max()

* Will follow a
single path from
root to leaf

* Cost proportional
to height of tree

* O(log N)

Impementing using arrays

* Number the nodes left
to right, level by level

* Represent as an array
H[O..N-1]

* Children of H[i] are at 3 04 5 Qﬁ
H[2i+1], H[2i+2]

* Parent of H[j] is at (éé) gégég
H[floor((j-1)/2)] for j > O

10 1 12 13 14

Building a heap, heapify()

* Given a list of values [x1,X2,...,Xn], build a heap
* Nalve strategy

* Start with an empty heap

* Insert each x;

* Overall O(N log N)

Better heapify()

* Set up the array as [x1,X2,...,XN]
* | eaf nodes trivially satisfy heap property
* Second half of array is already a valid heap
* Assume leaf nodes are at level k
* For each node at level k-1, k-2, ..., 0, fix heap property

* As we go up, the number of steps per node goes up by
1, but the number of nodes per level is halved

* Cost turns out to be O(N) overall

Better heapify()

1 node,
height 3 repair O\
2 nodes,

height 2 repair

4 nodes, - O .

height 1 repair
A Céé)(égiégég
already satisfy

heap property

Heap sort

* Start with an unordered list
* Build a heap — O(n)

* Call delete_max() n times to extract elements In
descending order — O(n log n)

* After each delete_max(), heap shrinks by 1
* Store maximum value at the end of current heap

* |n place O(n log n) sort

Summary

* Heaps are a tree implementation of priority queues
* insert() and delete_max() are both O(log N)
* heapify() builds a heap in O(N)
* [ree can be manipulated easily using an array
* Can invert the heap condition
* Each node is smaller than its children

* Min-heap, for insert(), delete_min()

