
PROGRAMMING,  
DATA STRUCTURES AND
ALGORITHMS IN PYTHON

Madhavan Mukund, Chennai Mathematical Institute
http://www.cmi.ac.in/~madhavan

Week 6, Lecture 4

NPTEL MOOC

http://www.cmi.ac.in/~madhavan

Data structures

Algorithms + Data Structures = Programs  
Niklaus Wirth

Arrays/lists — sequences of values

Dictionaries — key-value pairs

Python also has sets as a built in datatype

Sets in Python

List with braces, duplicates automatically removed

colours = {‘red','black','red','green'}

>>> print(colours)  
{'black', 'red', 'green'}

Create an empty set

colours = set()

Note, not colours = {} — empty dictionary!

Sets in Python
Set membership

>>> 'black' in colours  
True

Convert a list into a set

>>> numbers = set([0,1,3,2,1,4])  
>>> print(numbers)  
{0, 1, 2, 3, 4}

>>> letters = set('banana')  
>>> print(letters)  
{'a', 'n', 'b'}

Set operations
odd = set([1,3,5,7,9,11])  
prime = set([2,3,5,7,11])

Union 
odd | prime ⟶ {1, 2, 3, 5, 7, 9, 11}

Intersection 
odd & prime ⟶ {3, 11, 5, 7}

Set difference  
odd - prime ⟶ {1, 9}

Exclusive or 
odd ^ prime ⟶ {1, 2, 9}

Stacks

Stack is a last-in, first-out list

push(s,x) — add x to stack s

pop(s) — return most recently added element

Maintain stack as list, push and pop from the right

push(s,x) is s.append(x)

s.pop() — Python built-in, returns last element

Stacks

Stacks are natural to keep track of recursive
function calls

In 8 queens, use a stack to keep track of queens
added

Push the latest queen onto the stack

To backtrack, pop the last queen added

Queues
First-in, first-out sequences

addq(q,x) — adds x to rear of queue q

removeq(q) — removes element at head of q

Using Python lists, left is rear, right is front

addq(q,x) is q.insert(0,x)

l.insert(j,x), insert x before position j

removeq(q) is q.pop()

Systematic exploration

Rectangular m x n grid

Chess knight starts at
(sx,sy)

Usual knight moves

Can it reach a target
square (tx,ty)?

Systematic exploration

Rectangular m x n grid

Chess knight starts at
(sx,sy)

Usual knight moves

Can it reach a target
square (tx,ty)?

Systematic exploration

Rectangular m x n grid

Chess knight starts at
(sx,sy)

Usual knight moves

Can it reach a target
square (tx,ty)?

Systematic exploration

Rectangular m x n grid

Chess knight starts at
(sx,sy)

Usual knight moves

Can it reach a target
square (tx,ty)?

Systematic exploration

X1 — all squares reachable in one move from (sx,sy)

X2 — all squares reachable from X1 in one move

. . .

Don’t explore an already marked square

When do we stop?

If we reach target square

What if target is not reachable?

Systematic exploration

Maintain a queue Q of cells to be explored

Initially Q contains only start node (sx,sy)

Remove (ax,ay) from head of queue

Mark all squares reachable in one step from
(ax,ay)

Add all newly marked squares to the queue

When the queue is empty, we have finished

Systematic exploration

def explore((sx,sy),(tx,ty)):  
 marked = [[0 for i in range(n)]  
 for j in range(m)]  
 marked[sx][sy] = 1  
 queue = [(sx,sy)]
 while queue != []:  
 (ax,ay) = queue.pop()  
 for (nx,ny) in neighbours((ax,ay)):  
 if !marked[nx][ny]:  
 marked[nx][ny] = 1  
 queue.insert(0,(nx,ny))
 return(marked[tx][ty])

Example

src = (0,1) tgt =(1,1)

This is an example of breadth first search

Summary

Data structures are ways of organising information
that allow efficient processing in certain contexts

Python has a built-in implementation of sets

Stacks are useful to keep track of recursive
computations

Queues are useful for breadth-first exploration

