PROGRAMMING,
DATA STRUGTURES AND
ALGORITHMS IN PYTHON

Week 6, Lecture 4

http://www.cmi.ac.in/~madhavan

Data structures

* Algorithms + Data Structures = Programs
Niklaus Wirth

* Arrays/lists — sequences of values
* Dictionaries — key-value pairs

* Python also has sets as a built in datatype

Sets in Python

* List with braces, duplicates automatically removed
colours = {‘red', 'black’', 'red’, 'green'}

>>> print(colours)
{'black', 'red', 'green'}

* Create an empty set

colours = set()

* Note, not colours = {} — empty dictionary!

Sets in Python

* Set membership

>>> 'black' 1n colours
True

* Convert a list into a set

>>> numbers = set([0,1,3,2,1,4])
>>> print(numbers)
4, 1, 2, 5, 4}

>>> letters = set('banana’)
>>> print(letters)
{'a', 'n', 'b'}

Set operations

odd = set(Fl 5.5.7.9 i)
prime = setCl2,3.5,7,11])

* Union
odd' 'l pemme > 412 s 5 7. G {1}

* |Intersection
odd & prime — {3, 11, 5, 7}

* Set difference
odd - prime — {1, 9}

* Exclusive or
odd A prime — {1, 2, 9}

Stacks

* Stack is a last-in, first-out list
* push(s,x) — add x to stack s
* pop(s) — return most recently added element
* Maintain stack as list, push and pop from the right
* push(s,x) Is s.append(x)

* s.pop() — Python built-in, returns last element

Stacks

* Stacks are natural to keep track of recursive
function calls

* In 8 queens, use a stack to keep track of queens
added

* Push the latest gueen onto the stack

* To backtrack, pop the last queen added

Queues

* First-in, first-out sequences
* addqg(qg,x) — adds x to rear of queue g
* removeq(g) — removes element at head of g
* Using Python lists, left is rear, right is front
* addg(qg,x) Is g.1nsert(0,x)
* 1.1nsert(j,x), Insert x before position j

* removeq(q) iIs q.pop()

Systematic exploration

* Rectangular m x n grid

* Chess knight starts at

(sx,sY)

* Usual knight moves

* Can it reach a target

square (tx,ty)? @

Systematic exploration

* Rectangular m x n grid

* Chess knight starts at

(sx,sY)

* Usual knight moves

* Can it reach a target

square (tx,ty)? €

Systematic exploration

* Rectangular m x n grid

* Chess knight starts at

(sx,sY)

* Usual knight moves

* Can it reach a target

square (tx,ty)? €

Systematic exploration

* Rectangular m x n grid

* Chess knight starts at
(sx,sY)

* Usual knight moves

* Can it reach a target
square (tx,ty)? €

Systematic exploration

* X1 — all squares reachable in one move from (sx,sy)
* X2 — all squares reachable from X1 in one move
* Don’t explore an already marked square
* When do we stop?
* |f we reach target square

* What if target is not reachable?

Systematic exploration

* Maintain a queue Q of cells to be explored

* |nitially Q contains only start node (sx,sy)

* Remove (ax,ay) from head of queue

* Mark all squares reachable in one step from
(ax,ay)

* Add all newly marked squares to the queue

* \WWhen the queue is empty, we have finished

Systematic exploration

def explore((sx,sy),(tx,ty)):
marked = [[@ for 1 1n range(n)]
for jJ 1n range(m)]
marked[sx][sy] =
queue = [(sx,Sy)_

while queue != []:
(ax,ay) = queue.pop()
for (nx,ny) in neighbours((ax,ay)):
1f Imarked[nx][ny]:
marked[nx][ny] =
queue.insert(0,(nx,ny))

return(marked[tx][ty])

Example

sic=(0,1) tgt=(1,1)

* This Is an example of breadth first search

Summary

* Data structures are ways of organising information
that allow efficient processing in certain contexts

* Python has a built-in implementation of sets

* Stacks are useful to keep track of recursive
computations

* Queues are useful for breadth-first exploration

