
PROGRAMMING,  
DATA STRUCTURES AND
ALGORITHMS IN PYTHON

Madhavan Mukund, Chennai Mathematical Institute
http://www.cmi.ac.in/~madhavan

Week 6, Lecture 2

NPTEL MOOC

http://www.cmi.ac.in/~madhavan

Recall 8 queens
def placequeen(i,board): # Trying row i  
 for each c such that (i,c) is available:  
 place queen at (i,c) and update board  
 if i == n-1:  
 return(True) # Last queen has been placed  
 else:  
 extendsoln = placequeen(i+1,board)  
 if extendsoln:  
 return(True) # This solution extends fully  
 else:  
 undo this move and update board  
 else:  
 return(False) # Row i failed

Global variables

Can we avoid passing board explicitly to each
function?

Can we have a single global copy of board that all
functions can update?

Scope of name

Scope of name is the portion of code where it is
available to read and update

By default, in Python, scope is local to functions

But actually, only if we update the name inside
the function

Two examples
def f():  
 y = x  
 print(y)

x = 7  
f()

Fine!

Two examples
def f():  
 y = x  
 print(y)

x = 7  
f()

def f():  
 y = x  
 print(y)  
 x = 22

x = 7  
f()Fine! Error!

Two examples
def f():  
 y = x  
 print(y)

x = 7  
f()

def f():  
 y = x  
 print(y)  
 x = 22

x = 7  
f()

If x is not found in f(), Python looks at enclosing
function for global x

If x is updated in f(), it becomes a local name!

Fine! Error!

Global variables

Actually, this applies
only to immutable
values

Global names that
point to mutable
values can be
updated within a
function

def f():  
 y = x[0]  
 print(y)  
 x[0] = 22

x = [7]  
f()

Fine!

Global immutable values

What if we want a
global integer

Count the number
of times a function
is called

Declare a name to be
global

def f():  
 global x  
 y = x  
 print(y)  
 x = 22

x = 7  
f()  
print(x)

Global immutable values

What if we want a
global integer

Count the number
of times a function
is called

Declare a name to be
global

def f():  
 global x  
 y = x  
 print(y)  
 x = 22

x = 7  
f()  
print(x) 22

Nest function definitions

Can define local
“helper” functions

g() and h() are only
visible to f()

Cannot be called
directly from outside

def f():  
 def g(a):  
 return(a+1)

 def h(b):  
 return(2*b)

 global x  
 y = g(x) + h(x)  
 print(y)  
 x = 22

x = 7  
f()

Nest function definitions
If we look up x, y inside
g() or h() it will first
look in f(), then outside

Can also declare names
global inside g(), h()

Intermediate scope
declaration: nonlocal

See Python
documentation

def f():  
 def g(a):  
 return(a+1)

 def h(b):  
 return(2*b)

 global x  
 y = g(x) + h(x)  
 print(y)  
 x = 22

x = 7  
f()

Summary

Python names are looked up inside-out from
within functions

Updating a name with immutable value creates a
local copy of that name

Can update global names with mutable values

Use global definition to update immutable values

Can nest helper function — hidden to the outside

