PROGRAMMING,
DATA STRUGTURES AND
ALGORITHMS IN PYTHON

Week 5, Lecture 3

http://www.cmi.ac.in/~madhavan

Dealing with files

* Standard input and output is not convenient for
large volumes of data

* |nstead, read and write files on the disk

* Disk read/write is much slower than memory

DISK bufters

* Disk data is read/written in large blocks

* “Buffer” is a temporary parking place for disk
data

Reading/writing disk data

Reading/writing disk data

* Open a file — create file handle to file on disk

* Like setting up a buffer for the file

Reading/writing disk data

* Open a file — create file handle to file on disk

* Like setting up a buffer for the file

* Read and write operations are to file handle

Reading/writing disk data

* Open a file — create file handle to file on disk

* Like setting up a buffer for the file

* Read and write operations are to file handle
* Close a file
* Write out buffer to disk (flush)

* Disconnect file handle

Opening a file

Opening a file

fh = open gcd.py ,

TR

Opening a file

tH = opent gcad.py,)

* First argument to open is file name

* Can give a full path

Opening a file

tH = opent gcad.py,)

* First argument to open is file name

* Can give a full path

* Second argument is mode for opening file

* Read, "r": opens a file for reading only
* Write, "w": creates an empty file to write to

* Append, "a": append to an existing file

Read through file handle

Read through file handle

contents = fh.read()

* Reads entire file into name as a single string

Read through file handle

contents = fh.read()

* Reads entire file into name as a single string

fh.readline()

* Reads one line into name—Ilines end with "\n'

contents

* String includes the '\n', unlike input()

Read through file handle

contents = fh.read()

* Reads entire file into name as a single string

fh.readline()

* Reads one line into name—Ilines end with "\n'

contents

* String includes the '\n', unlike input()

contents = fh.readlines()

* Reads entire file as list of strings

* Each string is one line, ending with'\n'

Reading files

Reading files

o _ File

* Reading is a sequential operation

Reading files

File |

open()

* Reading is a sequential operation

* \When file is opened, point to position O, the start

Reading files

File |

open()

* Reading is a sequential operation
* \When file is opened, point to position O, the start

* Each successive readline() moves forward

Reading files

File |

S readline()

* Reading is a sequential operation
* \When file is opened, point to position O, the start

* Each successive readline() moves forward

Reading files

File |

readline() 'T readHne(BT

open()

* Reading is a sequential operation
* \When file is opened, point to position O, the start

* Each successive readline() moves forward

Reading files

File

readline() 'T read'lime(jT

open()

* Reading is a sequential operation
* \When file is opened, point to position O, the start

* Each successive readline() moves forward

* fh.seek(n) — moves pointer to position n

Reading files

File

readline() 'T read'lime(sT

open()

* Reading is a sequential operation
* \When file is opened, point to position O, the start
* Each successive readline() moves forward

* fh.seek(n) — moves pointer to position n

* block = fh.read(12) — read a fixed number of
characters

=nd of file

=nd of file

* \When reading incrementally, important to know
when file has ended

=nd of file

* \When reading incrementally, important to know
when file has ended

* The following both signal end of file

* fh.read() returns empty string

* fh.readline() returns empty string

Writing to a file

Writing to a file

fh.write(s)
* Write string s to file
* Returns number of characters written

* Include "\n' explicitly to go to a new line

Writing to a file

fh.write(s)
* Write string s to file
* Returns number of characters written

* Include "\n' explicitly to go to a new line

fh.writelines(l)
* Write a list of lines 1 to file

* Must includes "\n' explicitly for each string

Closing a file

Closing a file

fh.close()

* Flushes output buffer and decouples file handle

* All pending writes copied to disk

Closing a file

fh.close()
* Flushes output buffer and decouples file handle

* All pending writes copied to disk
fh.flush()

* Manually forces write to disk

Processing file line by line

Processing file line by line

contents = fh.readlines()
for 1 1n contents:

Processing file line by line

contents = fh.readlines()
for 1 1n contents:

* Even better

for L 1n fh.readlines():

Copying a file

ihElle = open(1nput . txt ')

outfile = open("output.txt”, "w")

for 1line in infile.readlines():
outfile.write(line)

infile.close()

outfile.close()

Copying a file

ihElle = open(1nput . txt ')
otittile = open(‘output . txt "W)
contents = infile.readlines()
outfile.writelines(contents)
infile.close()

outfile.close()

Strip new line character

Strip new line character

* Get rid of trailing '\n'

contents = fh.readlines()
for line 1n contents:
s = line[:-1]

Strip new line character

* Get rid of trailing '\n'

contents = fh.readlines()
for line 1n contents:
s = line[:-1]

* Instead, use rstrip() to remove trailing whitespace

for line 1n contents:
5 =“lqne pstripl)

Strip new line character

* Get rid of trailing '\n'

contents = fh.readlines()
for line 1n contents:

s = line[:-1]

* Instead, use rstrip() to remove trailing whitespace

for line 1n contents:
5 =“lqne pstripl)

* Also strip() — both sides, 1strip() — from left

* String manipulation functions — coming up

Summary

* |nteract with files through file handles

* Open a file in one of three modes — read, write,
append

* Read entire file as a string, or line by line
* Write a string, or a list of strings to a file
* Close handle, flush buffer

* String operations to strip white space

