PROGRAMMING,
DATA STRUGTURES AND
ALGORITHMS IN PYTHON

Week 4, Lecture 7

http://www.cmi.ac.in/~madhavan

Operating on lists

* Update an entire list

for x in L:
X Ex)

* Define a function to do this in general

def applylist(f,1):
fop X 1nm 1
%~ L)

Built in function map()

* map(f,1) applies f to each element of 1
* Qutput of map(f,1) is not a list!
* Use l[1st(map(f,1)) to get a list
* Can be used directly in a for loop
for 1. -1n mapCE 1)

* Like range(1,3), d.keys()

Selecting a sublist

* Extract list of primes from list numberlist

primelist = []
for 1 1n numberlist:
1f 1sprime(i):
primelist.append(1)
return(primelist)

Selecting a sublist

* |In general

def select(property,l):
suplist — |-
for-x 1n |:
1f property(x):
sublist.append(x)
return(sublist)

* Note that property is a function that returns True or
False for each element

Built in function fi1lter()

* f1lter(p,1l) checks p for each element of 1

* Qutput is sublist of values that satisfy p

Combining map and filter

* Squares of even numbers from 0 to 99
list(map(square,filter(iseven,range(100))

def square(x):
return(x*x)

def i1seven(x):
return(x%2 == 0)

| Ist comprehension

* Pythagorean triple: x2 + y? = 72
* All Pythagorean triples (x,y,z) with values below n
Xyl =xyz=n ¥ £ y.— 7
* |n set theory, this is called set comprehension
* Building a new set from existing sets

* Extend to lists

| Ist comprehension

* Sqguares of even numbers below 100

[square(x) for 1 in range(100) 1if 1iseven(x)]

map generator

filter

Multiple generators

* Pythagorean triples with x,y,z below 100

[(X,y,z) for x 1n range(100)
for y in range(100)
for z in range(100)
1f X*X + y*y == z*Z]

* Order of x,y,z is like nested for loop

for x i1n range(100):
for y in range(100):
for z in range(100):

Multiple generators

* Later generators can depend on earlier ones

* Pythagorean triples with x,y,z below 100, no
duplicates

[(X,y,z) for x 1in range(100)
for y in range(x,100)
for z in range(y,100)
1f X iy == 2o

Useftul for initialising lists

* [nitialise a 4 x 3 matrix
* 4 rows, 3 columns

* Stored row-wise

L =1 | @ £or 1 1n range(3) |
for J 1n range(4)]

Warning

* \What’s happening here?

s=> zerolist = [0 for 1 1n range(3)
>>> | = [zerolist for j 1n range(4) |

s TR = 7

>>> |

.[o,7,0]1,[0,7,0],[0,7,0],[0,7,0]]

* Each row in 1 points to same list zerolist

Summary

* map and filter are useful functions to manipulate
lists

* List comprehension provides a useful notation for
combining map and f1ilter

