
PROGRAMMING,  
DATA STRUCTURES AND
ALGORITHMS IN PYTHON

Madhavan Mukund, Chennai Mathematical Institute
http://www.cmi.ac.in/~madhavan

Week 4, Lecture 3

NPTEL MOOC

http://www.cmi.ac.in/~madhavan

Merge Sort: Shortcomings

Merging A and B creates a new array C

No obvious way to efficiently merge in place

Extra storage can be costly

Inherently recursive

Recursive call and return are expensive

Alternative approach

Extra space is required to merge

Merging happens because elements in left half
must move right and vice versa

Can we divide so that everything to the left is
smaller than everything to the right?

No need to merge!

Divide and conquer without merging

Suppose the median value in A is m

Move all values ≤ m to left half of A

Right half has values > m

This shifting can be done in place, in time O(n)

Recursively sort left and right halves

A is now sorted! No need to merge

T(n) = 2T(n/2) + n = O(n log n)

Divide and conquer without merging

How do we find the median?

Sort and pick up middle element

But our aim is to sort!

Instead, pick up some value in A — pivot

Split A with respect to this pivot element

Quicksort

Choose a pivot element

Typically the first value in the array

Partition A into lower and upper parts with respect
to pivot

Move pivot between lower and upper partition

Recursively sort the two partitions

Quicksort

High level view

43 32 22 78 63 57 91 13

Quicksort

High level view

43 32 22 78 63 57 91 13

Quicksort

High level view

43 32 22 78 63 57 91 13

Quicksort

High level view

13 32 22 43 63 57 91 78

Quicksort

High level view

13 22 32 43 57 63 78 91

Quicksort: Partitioning

43 32 22 78 63 57 91 13

Quicksort: Partitioning

43 32 22 78 63 57 91 13

Quicksort: Partitioning

43 32 22 78 63 57 91 13

Quicksort: Partitioning

43 32 22 78 63 57 91 13

Quicksort: Partitioning

43 32 22 78 63 57 91 13

Quicksort: Partitioning

43 32 22 78 63 57 91 13

Quicksort: Partitioning

43 32 22 78 63 57 91 13

Quicksort: Partitioning

43 32 22 78 63 57 91 13

Quicksort: Partitioning

43 32 22 78 63 57 91 13

Quicksort: Partitioning

43 32 22 78 63 57 91 13

Quicksort: Partitioning

43 32 22 13 63 57 91 78

Quicksort: Partitioning

13 32 22 43 63 57 91 78

def Quicksort(A,l,r): # Sort A[l:r]  
 if r - l <= 1: # Base case  
 return ()

 # Partition with respect to pivot, a[l]  
 yellow = l+1

 for green in range(l+1,r):  
 if A[green] <= A[l]:  
 (A[yellow],A[green]) = (A[green],A[yellow])  
 yellow = yellow + 1

 # Move pivot into place  
 (A[l],A[yellow-1]) = (A[yellow-1],A[l])

 Quicksort(A,l,yellow-1) # Recursive calls  
 Quicksort(A,yellow,r)

Quicksort in Python

